JP4528821B2 - Fuel supply controller - Google Patents

Fuel supply controller Download PDF

Info

Publication number
JP4528821B2
JP4528821B2 JP2007279767A JP2007279767A JP4528821B2 JP 4528821 B2 JP4528821 B2 JP 4528821B2 JP 2007279767 A JP2007279767 A JP 2007279767A JP 2007279767 A JP2007279767 A JP 2007279767A JP 4528821 B2 JP4528821 B2 JP 4528821B2
Authority
JP
Japan
Prior art keywords
discharge
fuel
plunger
fuel supply
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007279767A
Other languages
Japanese (ja)
Other versions
JP2008069789A (en
Inventor
健一郎 徳尾
賢二 平工
忠彦 野上
邦彦 高尾
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2007279767A priority Critical patent/JP4528821B2/en
Publication of JP2008069789A publication Critical patent/JP2008069789A/en
Application granted granted Critical
Publication of JP4528821B2 publication Critical patent/JP4528821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、筒内噴射エンジンの燃料供給装置に係わり、特に吐出流量制御方法に関する。   The present invention relates to a fuel supply device for a direct injection engine, and more particularly to a discharge flow rate control method.

従来の燃料供給装置は、例えば国際公開番号WO00/47888に記載されているように、吐出行程毎にアクチュエータに駆動信号を与え、その駆動信号の与えるタイミングを制御することにより吐出流量制御をおこなうものがある。   A conventional fuel supply device, as described in, for example, International Publication No. WO00 / 47888, performs a discharge flow rate control by giving a drive signal to an actuator for each discharge stroke and controlling the timing of the drive signal. There is.

国際公開番号WO00/47888International Publication Number WO00 / 47888

しかしながら、上記従来技術の高圧燃料ポンプでは、駆動信号を与えてからアクチュエータが駆動するまでに応答遅れの時間があり、プランジャの往復周期が短い場合においては、アクチュエータの動作がプランジャの往復動作に追いつかないという問題がある。   However, in the above-described conventional high-pressure fuel pump, there is a response delay time from when the drive signal is given to when the actuator is driven. There is no problem.

実際の自動車において、このような状況は、エンジンの回転数が高い状態でおこり得る。また、排気量が大きなエンジンに燃料を供給する装置では、カム1回転あたりの高圧燃料ポンプの吐出流量を多くするためにカム1回転あたりのプランジャの往復回数を増やす、すなわち駆動するカムの山数を多くした場合にも発生する。   In an actual automobile, such a situation can occur at a high engine speed. Further, in a device that supplies fuel to an engine with a large displacement, the number of reciprocations of the plunger per cam rotation is increased in order to increase the discharge flow rate of the high-pressure fuel pump per cam rotation, that is, the number of cam ridges to be driven. It also occurs when increasing the number.

本発明の目的は、可変容量機構であるアクチュエータの応答性を上げる必要なく、プランジャの往復周期が短い場合にも吐出流量制御を可能とする可変容量式高圧燃料ポンプの燃料供給装置を提供することにある。   An object of the present invention is to provide a fuel supply device for a variable displacement high-pressure fuel pump that enables discharge flow rate control even when the reciprocating cycle of the plunger is short without increasing the responsiveness of an actuator that is a variable displacement mechanism. It is in.

上記目的は、可変容量機構を有し燃料噴射弁に燃料を加圧供給する単筒プランジャ式燃料ポンプを備えた燃料供給装置のコントローラであって、前記可変容量機構を制御して燃料供給圧力を調節する燃料供給装置のコントローラにおいて、先の吐出行程から吸入行程を経て次回の吐出行程に至る間に、前記可変容量機構を前記第1の吐出行程における状態に保持するように制御することにより、前記高圧燃料ポンプの前記プランジャが少なくとも2回以上往復動するごとに前記可変容量機構を1回駆動することにより達成される。   The above object is a controller of a fuel supply device having a variable displacement mechanism and a single cylinder plunger type fuel pump that pressurizes and supplies fuel to a fuel injection valve, and controls the variable displacement mechanism to control the fuel supply pressure. In the controller of the fuel supply device to be adjusted, by controlling the variable displacement mechanism so as to be maintained in the state in the first discharge stroke from the previous discharge stroke through the suction stroke to the next discharge stroke, This is achieved by driving the variable displacement mechanism once every time the plunger of the high-pressure fuel pump reciprocates at least twice.

このとき、前記プランジャは2回往復するごとに1回は前記プランジャの押しのける容積の燃料を全て吐出するようにするとよい。   At this time, every time the plunger reciprocates twice, it is preferable that the fuel of a volume that can be pushed by the plunger is discharged once.

また、燃料供給量が燃料ポンプの最大吐出流量の概ね50%以上である場合に、前記第1の吐出行程で吐出流量を制御し、前記次回の吐出行程ではプランジャが押しのける容積の燃料を全て吐出するようにするとよい。   Further, when the fuel supply amount is approximately 50% or more of the maximum discharge flow rate of the fuel pump, the discharge flow rate is controlled in the first discharge stroke, and in the next discharge stroke, all of the fuel whose volume is pushed by the plunger is discharged. It is good to do.

本発明によれば、可変容量機構の応答性を上げることなく、プランジャの往復周期が短い場合でも吐出流量制御ができる高圧燃料ポンプを実現することができる。   According to the present invention, it is possible to realize a high-pressure fuel pump capable of controlling the discharge flow rate even when the reciprocating cycle of the plunger is short without increasing the response of the variable displacement mechanism.

以下、本発明の実施例を図面を用いて説明する。図1は、本発明の実施例を備えた高圧燃料ポンプを用いた燃料供給システムの概略を説明する図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining an outline of a fuel supply system using a high-pressure fuel pump provided with an embodiment of the present invention.

図1において、ポンプ本体1には、燃料吸入通路10、吐出通路11、加圧室12が形成されている。加圧室12には、加圧部材であるプランジャ2が摺動可能に保持されている。吸入通路10及び吐出通路11には、吸入弁5、吐出弁6が設けられており、それぞればねにて一方向に保持され、燃料の流通方向を制限する逆止弁となっている。また、アクチュエータ8がポンプ本体1に保持されており、アクチュエータ8はソレノイド90、ロッド91、ばね92で構成される。ロッド91は、アクチュエータ8に駆動信号が与えられていない時は、ばね92によって、吸入弁5を開弁する方向に付勢力がかけられている。ばね92の付勢力は、吸入弁5のばねの付勢力より大きくなっているため、アクチュエータ8に駆動信号が与えられていない時は、図1に示すように、吸入弁5は開弁状態となっている。   In FIG. 1, a fuel suction passage 10, a discharge passage 11, and a pressurizing chamber 12 are formed in the pump body 1. In the pressurizing chamber 12, a plunger 2 as a pressurizing member is slidably held. The intake passage 10 and the discharge passage 11 are provided with an intake valve 5 and a discharge valve 6, respectively, which are held in one direction by springs and serve as check valves that limit the flow direction of fuel. An actuator 8 is held by the pump main body 1, and the actuator 8 includes a solenoid 90, a rod 91, and a spring 92. When the drive signal is not given to the actuator 8, the rod 91 is biased by a spring 92 in a direction to open the intake valve 5. Since the urging force of the spring 92 is larger than the urging force of the spring of the intake valve 5, when the drive signal is not given to the actuator 8, the intake valve 5 is in an open state as shown in FIG. It has become.

燃料は、タンク50から低圧ポンプ51にてポンプ本体1の燃料導入口に、プレッシャレギュレータ52によって一定の圧力に調圧されて導かれる。その後、ポンプ本体1にて加圧され、燃料吐出口からコモンレール53に圧送される。コモンレール53には、インジェクタ54、圧力センサ56が装着されている。インジェクタ54は、エンジンの気筒数にあわせて装着されており、コントローラ57の信号に従って燃料を噴射する。   The fuel is led from the tank 50 to the fuel inlet of the pump body 1 by the low-pressure pump 51 while being regulated to a constant pressure by the pressure regulator 52. After that, the pump body 1 is pressurized and is pumped from the fuel discharge port to the common rail 53. An injector 54 and a pressure sensor 56 are attached to the common rail 53. The injectors 54 are installed according to the number of cylinders of the engine, and inject fuel according to a signal from the controller 57.

プランジャ2は、エンジンカムシャフト等により回転されるカム100により、往復運動して加圧室12内の容積を変化させる。   The plunger 2 is reciprocated by a cam 100 rotated by an engine cam shaft or the like to change the volume in the pressurizing chamber 12.

プランジャ2の吐出行程中に吸入弁5が閉弁すると、加圧室12内の圧力が上昇し、これにより吐出弁6が自動的に開弁し、燃料をコモンレール53に圧送する。   When the intake valve 5 is closed during the discharge stroke of the plunger 2, the pressure in the pressurizing chamber 12 rises, whereby the discharge valve 6 is automatically opened and the fuel is pumped to the common rail 53.

吸入弁5は、加圧室12の圧力が燃料導入口より低くなると自動的に開弁するが、閉弁に関してはアクチュエータ8の動作によって決定する。   The suction valve 5 automatically opens when the pressure in the pressurizing chamber 12 becomes lower than the fuel inlet, but the valve closing is determined by the operation of the actuator 8.

アクチュエータ8に駆動信号を与えて保持すると、ソレノイド90にばね92の付勢力以上の電磁力が発生してロッド91をソレノイド90側に引き寄せるため、ロッド91と吸入弁5は分離する。この状態であれば、吸入弁5はプランジャ2の往復運動に同期して開閉する自動弁となる。従って、吐出行程中は、吸入弁5は閉塞し、加圧室12の容積減少分の燃料は、吐出弁6を押し開きコモンレール53へ圧送される。よって、ポンプ吐出流量は最大となる。   When a drive signal is given to the actuator 8 and held, an electromagnetic force greater than the urging force of the spring 92 is generated in the solenoid 90 and the rod 91 is pulled toward the solenoid 90, so that the rod 91 and the intake valve 5 are separated. In this state, the intake valve 5 is an automatic valve that opens and closes in synchronization with the reciprocating motion of the plunger 2. Therefore, during the discharge stroke, the suction valve 5 is closed, and the fuel corresponding to the volume reduction of the pressurizing chamber 12 pushes the discharge valve 6 and is pumped to the common rail 53. Therefore, the pump discharge flow rate becomes maximum.

これに対し、アクチュエータ8に駆動信号を与えないと、ばね92の付勢力によりロッド91は吸入弁5を押し上げ、吸入弁5を開弁状態に保持する。従って、吐出行程時においても加圧室12の圧力は、燃料導入口部とほぼ同等の低圧状態を保つため、吐出弁6を開弁することができず、加圧室12の容積減少分の燃料は、吸入弁5を通り燃料導入口側へ戻される。よって、ポンプ吐出流量を0とすることができる。   On the other hand, when a drive signal is not given to the actuator 8, the rod 91 pushes up the suction valve 5 by the biasing force of the spring 92, and holds the suction valve 5 in the open state. Accordingly, the pressure in the pressurizing chamber 12 is maintained at a low pressure almost equal to that of the fuel introduction port even during the discharge stroke, so that the discharge valve 6 cannot be opened and the volume of the pressurizing chamber 12 is reduced. The fuel is returned to the fuel inlet side through the intake valve 5. Therefore, the pump discharge flow rate can be set to zero.

また、吐出行程の途中で、アクチュエータ8に駆動信号を与えると、アクチュエータ8の応答遅れの時間後、コモンレール53へ燃料が圧送される。一度圧送が始まると加圧室12内の圧力は上昇するため、その後、アクチュエータ8の駆動信号を切っても吸入弁5は閉塞状態を維持し、吸入行程の始まりと同期して自動開弁する。よって、アクチュエータ8に駆動信号を与えるタイミングによってある吐出行程において、吐出量を0から最大吐出量の範囲で可変に調節することができる。以降、最大吐出量に対する吐出量の割合の時間平均をデューティと呼ぶこととする。   If a drive signal is given to the actuator 8 during the discharge stroke, the fuel is pumped to the common rail 53 after a response delay of the actuator 8. Once the pressure feeding starts, the pressure in the pressurizing chamber 12 rises. Therefore, even after the actuator 8 is turned off, the suction valve 5 remains closed and automatically opens in synchronization with the start of the suction stroke. . Therefore, the discharge amount can be variably adjusted in the range from 0 to the maximum discharge amount in a certain discharge stroke according to the timing at which the drive signal is supplied to the actuator 8. Hereinafter, the time average of the ratio of the discharge amount to the maximum discharge amount is referred to as duty.

また、圧力センサ56の信号に基づき、コントローラ57にて適切な吐出タイミングを演算しロッド91をコントロールすることにより、コモンレール53の圧力を略一定値に保つことができる。   Further, the pressure of the common rail 53 can be maintained at a substantially constant value by calculating an appropriate discharge timing by the controller 57 based on the signal from the pressure sensor 56 and controlling the rod 91.

次に、本発明の制御方法で高圧燃料ポンプのアクチュエータ8を駆動した例を図2ないし図3を用いて説明する。   Next, an example in which the actuator 8 of the high-pressure fuel pump is driven by the control method of the present invention will be described with reference to FIGS.

図2は、高圧燃料ポンプのデューティが50%以下で運転された場合の制御タイミングの実施例である。このような運転状態は、例えば自動車の定速走行時や減速時、アイドル運転時など、エンジン負荷が小さい状況で必要とされる。   FIG. 2 shows an example of control timing when the high-pressure fuel pump is operated at a duty of 50% or less. Such an operating state is required in a situation where the engine load is small, for example, when the automobile is running at a constant speed, when decelerating, or when idling.

すなわち、エンジンの出力トルクが必要とされず、エンジンの消費燃料が少ない状態である。その場合の吐出流量制御は、プランジャ2が2回往復動する度に、アクチュエータ8に1回駆動信号を与えることによって行なう。そして、2回の吐出行程のうち、1回は吐出せずに、残りの1回の吐出量を制御して、2回の圧縮行程における平均の吐出量を制御する。吐出量を制御する回の吐出行程では、目標となる吐出開始のタイミングから、アクチュエータ8の応答遅れの時間分だけ早いタイミングでアクチュエータ8に駆動信号を送る。そうしてロッド91を引き上げ、吸入弁5を自閉させ、目標の吐出開始タイミングで燃料を圧縮、吐出させる。圧縮行程2回分の吐出量は、この1回分の吐出量となる。アクチュエータ8に駆動信号を送るタイミングと長さはコントローラ57により算出される。   That is, the engine output torque is not required and the engine consumes less fuel. In this case, the discharge flow rate control is performed by giving a drive signal to the actuator 8 once every time the plunger 2 reciprocates twice. Of the two discharge strokes, one discharge is not performed but the remaining one discharge is controlled to control the average discharge in the two compression strokes. In the discharge stroke in which the discharge amount is controlled, a drive signal is sent to the actuator 8 at a timing earlier than the target discharge start timing by the response delay time of the actuator 8. Then, the rod 91 is pulled up, the suction valve 5 is self-closed, and the fuel is compressed and discharged at the target discharge start timing. The discharge amount for two compression strokes is the discharge amount for this one time. The timing and length of sending the drive signal to the actuator 8 are calculated by the controller 57.

アクチュエータ8に駆動信号を与えると、ソレノイド90に電圧がかかり、電流はソレノイド90のインダクタンスにより、1次遅れで立ち上がる。アクチュエータに駆動信号を与えてからソレノイド90の電磁力がロッド91を吸引できる電流まで達し、ロッド91を引き上げるまでにかかる時間が、アクチュエータ8の駆動時の応答遅れ時間である。その時間を以降、引き上げ遅れ時間t1と呼ぶ。また、駆動信号を切ると、ソレノイド90のインダクタンスにより電流がロッド91の保持限界電流まで下がるのに時間がかかる。駆動信号を切ってから、ロッド91が下がるまでの時間を以降、引き下げ遅れ時間t2と呼ぶ。 When a drive signal is given to the actuator 8, a voltage is applied to the solenoid 90, and the current rises with a first order delay due to the inductance of the solenoid 90. The time required for the electromagnetic force of the solenoid 90 to reach a current that can attract the rod 91 after the drive signal is given to the actuator and the rod 91 is pulled up is the response delay time when the actuator 8 is driven. This time is hereinafter referred to as a pull-up delay time t 1 . When the drive signal is turned off, it takes time for the current to drop to the holding limit current of the rod 91 due to the inductance of the solenoid 90. Turn off the drive signal, since the time until the rod 91 is lowered, referred to as a pull-down delay time t 2.

例えば、高圧燃料ポンプの所望のデューティが25%である場合、ある1回の吐出行程はプランジャ2の押しのける容積の0%(吐出しない)を、他の1回でプランジャ2の押しのける容積の50%吐出することにより、時間平均のデューティ25%を得る。吐出をする行程では、コントローラ57は、プランジャが50%吐出行程を終了するタイミングから、引き上げ遅れ時間t1だけ早いタイミングでアクチュエータ8に駆動信号を送る。そうして、次の吐出行程が始まる前にロッド91が戻るように駆動信号を切る。 For example, when the desired duty of the high-pressure fuel pump is 25%, one discharge stroke is 0% of the displacement of the plunger 2 (no discharge), and the other one is 50% of the displacement of the plunger 2 By discharging, a time-average duty of 25% is obtained. In the discharge stroke, the controller 57 sends a drive signal to the actuator 8 at a timing earlier than the timing at which the plunger finishes the 50% discharge stroke by the pull-up delay time t 1 . Then, the drive signal is turned off so that the rod 91 returns before the next discharge stroke starts.

このように、吐出流量を制御することのメリットとして、プランジャ2が往復動する度に毎回アクチュエータを駆動していないため、駆動信号と駆動信号の間隔が広くなる。従来の制御方法では、引き上げ遅れ時間t1と引き下げ遅れ時間t2の和は少なくともプランジャの往復周期よりも短くないとアクチュエータは吐出流量を制御できなかったが、このように制御することによりプランジャの往復周期の方が短い場合においても吐出流量制御が可能となる。よって、燃料供給装置のアクチュエータの応答速度を上げる必要なく、高速回転するエンジンに燃料を必要な量だけ供給することが可能となる。また、アクチュエータ8の通電回数が減ることにより消費電力低減、発熱量低減を図ることができる。 Thus, as an advantage of controlling the discharge flow rate, since the actuator is not driven every time the plunger 2 reciprocates, the interval between the drive signal and the drive signal becomes wide. In the conventional control method, the actuator cannot control the discharge flow rate unless the sum of the pull-up delay time t 1 and the pull-down delay time t 2 is at least shorter than the reciprocating cycle of the plunger. The discharge flow rate can be controlled even when the reciprocating cycle is shorter. Therefore, it is possible to supply the required amount of fuel to the engine that rotates at high speed without increasing the response speed of the actuator of the fuel supply device. In addition, power consumption and heat generation can be reduced by reducing the number of times the actuator 8 is energized.

さらに、プランジャ2を駆動するカム100の葉数を、図1で用いられている2葉ではなく、それよりも葉数の多い4葉や5葉にした場合においても本制御方法を用いることが可能である。葉数の多いカムを用いるのは、エンジンに大量の燃料を供給する場合、すなわち排気量の大きいエンジンやターボ付きエンジンに燃料を供給する場合などである。   Furthermore, this control method can be used even when the number of leaves of the cam 100 that drives the plunger 2 is not the two leaves used in FIG. 1 but four leaves or five leaves having a larger number of leaves. Is possible. The cam with a large number of leaves is used when supplying a large amount of fuel to the engine, that is, when supplying fuel to an engine with a large displacement or a turbo engine.

以上の本実施例では、ポンプの吐出流量をデューティの50%以下の範囲で制御できる。デューティの50%以上の吐出流量を制御する場合は次に述べる制御方法用いることが可能である。   In the present embodiment described above, the discharge flow rate of the pump can be controlled within a range of 50% or less of the duty. When controlling the discharge flow rate of 50% or more of the duty, the following control method can be used.

その前に、自動車においてこのような燃料ポンプの運転状態が必要とされるのは、例えば加速時や登坂時などエンジン負荷が大きい場合である。すなわち、エンジンが高出力トルクを得るために燃料を多く消費する状況である。   Before that, the operating state of the fuel pump in the automobile is required when the engine load is large, for example, when accelerating or climbing. That is, the engine consumes a large amount of fuel to obtain a high output torque.

この場合も同じく、プランジャ2が2往復するうち、アクチュエータに1回駆動信号を与えて吐出流量を制御する。ただしこの場合、吐出行程2回のうち、1回は吐出するタイミングを制御して吐出量を制御し、他の1回は全吐出することにより吐出行程2回の平均吐出流量を制御する。すなわち、吐出量を制御する行程で、吐出を開始したいタイミングから引き上げ遅れ時間t1だけ早めに駆動信号を与える。そうしてロッド91を引き上げ、吸入弁5を自閉させ、吐出を開始したいタイミングに圧縮、吐出させる。その後、次の吐出行程が始まるまでロッド91が引き下がらないように保持させる。次の吐出行程開始時にロッド91が引き上がったままの状態でいれば、吸入弁5は液圧力とばねの力で自閉し、加圧室内の燃料は加圧される。加圧室が高圧になると、吸入弁には高い背圧がかかり、ロッド91が下がってきても押し開かれることはない。これにより、次の吐出行程では吐出行程の始まりと同時に吸入弁が閉じ、プランジャ2の押し退ける容積分の燃料が吐出することになる。アクチュエータ8に駆動信号を送りはじめるタイミングと、信号の幅はコントローラ57により算出される。 In this case as well, while the plunger 2 reciprocates twice, a drive signal is given to the actuator once to control the discharge flow rate. However, in this case, of the two discharge strokes, the discharge amount is controlled by controlling the discharge timing once, and the average discharge flow rate of the two discharge strokes is controlled by discharging all the other one time. That is, in the process of controlling the discharge amount, the drive signal is given earlier by the pull-up delay time t 1 from the timing at which discharge is desired to start. Then, the rod 91 is pulled up, the suction valve 5 is self-closed, and compressed and discharged at a timing when discharge is desired to start. Thereafter, the rod 91 is held so as not to be pulled down until the next discharge stroke starts . If the rod 91 is still pulled up at the start of the next discharge stroke, the suction valve 5 is self-closed by the liquid pressure and the spring force, and the fuel in the pressurizing chamber is pressurized. When the pressurizing chamber becomes high pressure, a high back pressure is applied to the suction valve, and even if the rod 91 is lowered, it is not pushed open. As a result, in the next discharge stroke, the suction valve is closed simultaneously with the start of the discharge stroke, and the fuel corresponding to the volume that the plunger 2 pushes away is discharged. The controller 57 calculates the timing for starting to send a drive signal to the actuator 8 and the signal width.

例えば、高圧燃料ポンプの所望のデューティが75%である場合、ある1回の吐出行程は50%、他の1回は100%吐出することにより、2回の吐出行程における平均デューティ75%を得ることができる。50%吐出をする行程では、コントローラ57はプランジャが50%の圧縮行程を終了するタイミングから、引き上げ遅れ時間t1だけ早いタイミングでアクチュエータ8に駆動信号を送り、次の吐出行程が始まるまでロッド91が下がらないように次の吐出行程が始まるタイミングより引き下がり時間t2より前のタイミングまで駆動信号を送り続ける。 For example, when the desired duty of the high-pressure fuel pump is 75%, one discharge stroke is 50%, and the other discharge is 100%, thereby obtaining an average duty of 75% in the two discharge strokes. be able to. In the stroke of 50% discharge, the controller 57 sends a drive signal to the actuator 8 at a timing earlier than the timing at which the plunger finishes the compression stroke of 50% by the pulling delay time t 1 until the next discharge stroke starts. The drive signal is continuously sent until the timing before the pull-down time t 2 from the timing when the next discharge stroke starts so as not to decrease.

このように吐出流量を制御することによって、全吐出する行程が始まる前に駆動信号を切ることができるため、その次の駆動信号が発せられるまでの間隔が長くなる。これによりプランジャの往復周期が短い場合においてもアクチュエータの応答速度を上げる必要なく、高速回転するエンジンに燃料を必要な量だけ供給することが可能となる。また、前述同様、葉数の多いカムを用いることにより排気量の大きいエンジンに燃料を供給することができる。   By controlling the discharge flow rate in this way, the drive signal can be turned off before the entire discharge process starts, and therefore the interval until the next drive signal is issued becomes longer. As a result, even when the reciprocating cycle of the plunger is short, it is possible to supply the required amount of fuel to the engine that rotates at high speed without increasing the response speed of the actuator. Further, as described above, fuel can be supplied to an engine having a large displacement by using a cam having a large number of leaves.

また、必要とするデューティが50%以下の場合は、前述の図2の例の制御方法、50%以下の場合は、前述の図3の制御方法をとるように場合分けして制御することにより、デューティ0〜100%までの範囲において吐出流量が制御可能となる。   Further, when the required duty is 50% or less, the control method shown in FIG. 2 is used. When the duty is 50% or less, the control method shown in FIG. 3 is used. In addition, the discharge flow rate can be controlled in a range from 0 to 100% duty.

なお、本実施例の構成は吸入弁5とアクチュエータ8が別体であり、吸入弁5は自動で開弁できる構造であるため、図2、および図3の制御方法が可能となる。吸入弁5とアクチュエータ8が常に一体となり動作する構成では、吸入行程、吐出行程に関わらずアクチュエータ8を駆動している間は吸入弁5が閉じた状態でいるため、吸入弁5を自動開閉させることにより、プランジャ1往復分の吐出をさせることを狙った図3の制御方法は実施することができない。吸入弁とアクチュエータが一体の構成でも図2の制御方法を実施することは可能であるが、より広範囲の流量制御をするには本実施例の構成が望ましい。   In the configuration of this embodiment, the suction valve 5 and the actuator 8 are separate, and the suction valve 5 has a structure that can be automatically opened, so that the control method of FIGS. 2 and 3 is possible. In the configuration in which the suction valve 5 and the actuator 8 always operate integrally, the suction valve 5 is closed while the actuator 8 is driven regardless of the suction stroke and the discharge stroke, so that the suction valve 5 is automatically opened and closed. Therefore, the control method shown in FIG. 3 aiming to discharge one plunger reciprocally cannot be implemented. Although it is possible to implement the control method of FIG. 2 even if the intake valve and the actuator are integrated, the configuration of the present embodiment is desirable for a wider range of flow rate control.

本実施例では、アクチュエータとして駆動信号を与えるとロッド91を引き上げるプル型のアクチュエータを用いて説明したが、逆に、駆動信号を与えることによりロッド91を引き下げるプッシュ型のアクチュエータを用いても、駆動信号のON、OFFを逆にすることにより図2ないし図3と同様の吐出流量制御が適用可能である。   In this embodiment, a pull-type actuator that pulls up the rod 91 when a drive signal is given as an actuator has been described, but conversely, even if a push-type actuator that pulls down the rod 91 by giving a drive signal is used, the drive The discharge flow rate control similar to that shown in FIGS. 2 to 3 can be applied by reversing the ON / OFF state of the signal.

本制御方法は、エンジンが低回転の場合にも適用することができるが、プランジャの往復周期が容量制御機構の応答遅れの時間より十分に長い場合は敢えて適用する必要はなく、エンジンの回転数に応じて燃料供給装置の制御方法を切り替えてもよい。   This control method can also be applied when the engine is running at low speed, but it is not necessary to apply it when the reciprocating cycle of the plunger is sufficiently longer than the response delay time of the capacity control mechanism. The control method of the fuel supply device may be switched according to the above.

次に、図4示す別の構造の高圧燃料ポンプにおいて、本発明の制御方法を適用したタイミング図を図5ないし図6に示す。   Next, timing diagrams to which the control method of the present invention is applied in a high-pressure fuel pump having another structure shown in FIG. 4 are shown in FIGS.

図4において、ポンプは、吸入弁22を通過して加圧室に燃料を供給する流路と、加圧室の燃料を低圧流路(吸入弁22の上流側)に逃がす通路と、その流路を開閉する電磁弁81を有する。吸入弁22は自動開閉し、電磁弁81は駆動信号を与えることにより閉弁する。燃料はタンク50から低圧ポンプ51にて加圧され、吸入弁22を通過して加圧室に供給される。吐出行程において、電磁弁81に駆動信号を与えない場合は燃料は加圧されずに低圧流路に戻される。吐出行程の途中で電磁弁81に駆動信号を与えると、低圧流路に戻る通路が閉鎖され、加圧室の圧力が上昇し、ポンプから燃料が吐出される。このような構成の高圧燃料ポンプにおいても、図1に示す構成の高圧燃料ポンプと同じく、本発明の制御方法を適用することができる。   In FIG. 4, the pump passes a suction valve 22 to supply fuel to the pressurizing chamber, a passage for allowing fuel in the pressurizing chamber to escape to the low pressure channel (upstream of the suction valve 22), and a flow thereof. An electromagnetic valve 81 for opening and closing the path is provided. The suction valve 22 is automatically opened and closed, and the electromagnetic valve 81 is closed by giving a drive signal. The fuel is pressurized from the tank 50 by the low pressure pump 51, passes through the suction valve 22, and is supplied to the pressurizing chamber. In the discharge stroke, when no drive signal is given to the electromagnetic valve 81, the fuel is not pressurized and returned to the low pressure flow path. When a drive signal is given to the electromagnetic valve 81 during the discharge stroke, the passage returning to the low pressure flow path is closed, the pressure in the pressurizing chamber rises, and fuel is discharged from the pump. Also in the high-pressure fuel pump having such a configuration, the control method of the present invention can be applied similarly to the high-pressure fuel pump having the configuration shown in FIG.

図5にデューティ50%以下の吐出をする場合の制御タイミングの例を示す。   FIG. 5 shows an example of control timing when discharging with a duty of 50% or less.

図5において、電磁弁にも図1のアクチュエータと同じく、駆動信号を与えてから動作するまでに遅れの時間があり、以降、駆動信号を与えてから電磁弁が閉じるまでの時間を閉じ遅れ時間t1'、駆動信号を切ってから弁が開くまでの時間を開き遅れ時間t2'とよぶこととする。2回の吐出行程のうち、1回は吐出せずに、残りの1回の吐出流量を制御することにより流量を制御する。これによりある時刻で電磁弁81に駆動信号を切った後、弁が開くまでにかかる開き遅れ時間t2’後の時刻と、その次の駆動信号が発せられる時刻までに余裕ができる。少ない吐出流量を2回に分けて吐出せずに1回にまとめることにより駆動信号間の時間に余裕をもたせることができる。また、電磁弁81の通電回数が減ることにより消費電力低減、発熱量低減を図ることができる。 In FIG. 5, the solenoid valve also has a delay time from when a drive signal is applied to when the solenoid valve operates, like the actuator of FIG. 1, and thereafter the time from when the drive signal is applied until the solenoid valve closes is closed. t 1 will be referred to as a 'delay to open the time to turn off the drive signal to open the valve time t 2'. Of the two discharge strokes, the flow rate is controlled by controlling the remaining one discharge flow rate without discharging once. As a result, after the drive signal is cut to the electromagnetic valve 81 at a certain time, there is a margin between the time after the opening delay time t 2 ′ required until the valve is opened and the time when the next drive signal is issued. By dividing a small discharge flow rate into two times and collecting them in one time, it is possible to provide a margin for the time between drive signals. Moreover, power consumption can be reduced and the amount of heat generated can be reduced by reducing the number of energizations of the solenoid valve 81.

図6にデューティ50%以上の吐出をする場合の制御タイミングの例を示す。   FIG. 6 shows an example of control timing when discharging with a duty of 50% or more.

図6において、前記と同様にプランジャ2往復毎に、電磁弁81に1回駆動信号を与える。吐出行程2回のうち、1回は吐出するタイミングを制御し、他の1回は全吐出することにより流量を制御する。吐出を開始したいタイミングから閉じ遅れ時間t1'だけ早めに駆動信号を与え、次の吐出行程が始まるまで電磁弁が閉じないように保持する。燃料は吸入弁22を通過して加圧室へ供給され、次の吐出行程開始時に吸入弁22は自閉し、吐出される。2回目の全吐出のときに、電磁弁は閉じた状態のままで保持する必要があるが、電磁弁の弁体は図4に示すような外開き式の場合、加圧室が高圧になると弁に背圧がかかり、駆動信号を切っても開弁しない。よって先の実施例と同じく駆動信号は最低でも次の吐出行程が始まる時刻より開き遅れ時間t2'より前までかけ続ければよい。図3の例と同じく次の駆動信号を発するまでの時間に余裕ができるため、プランジャの往復周期が短い場合でも吐出流量制御が可能となる。 In FIG. 6, a drive signal is given to the electromagnetic valve 81 once every two reciprocations of the plunger in the same manner as described above. Of the two discharge strokes, the discharge timing is controlled once, and the flow rate is controlled by discharging the other one time. A drive signal is given as early as the closing delay time t 1 ′ from the timing at which discharge is desired to start, and the solenoid valve is held so as not to close until the next discharge stroke starts. The fuel passes through the suction valve 22 and is supplied to the pressurizing chamber. At the start of the next discharge stroke, the suction valve 22 is closed and discharged. In the second full discharge, the solenoid valve needs to be held in a closed state. However, when the valve body of the solenoid valve is an externally open type as shown in FIG. Back pressure is applied to the valve, and it will not open even if the drive signal is turned off. Therefore, as in the previous embodiment, it is sufficient that the drive signal is continued at least before the opening delay time t 2 ′ from the time when the next discharge stroke starts. As in the example of FIG. 3, the time until the next drive signal is generated can be afforded, so that the discharge flow rate can be controlled even when the reciprocating cycle of the plunger is short.

図4のような構成の燃料供給装置においても、エンジンが低回転の場合にも適用することができるが、プランジャの往復周期が容量制御機構の応答遅れの時間より十分に長い場合は敢えて適用する必要はなく、エンジンの回転数に応じて燃料供給装置の制御方法を切り替えてもよい。   The fuel supply apparatus configured as shown in FIG. 4 can also be applied when the engine is running at a low speed. However, the fuel supply apparatus is intentionally applied when the reciprocating cycle of the plunger is sufficiently longer than the response delay time of the capacity control mechanism. There is no need, and the control method of the fuel supply device may be switched according to the engine speed.

また、図5、図6のタイミング図は、ノーマルオープン型の電磁弁を用いた構成のタイミング図であるが、ノーマルクローズ型の電磁弁を用いた場合においても、駆動信号のONとOFFを逆にすることにより本発明の制御方法を実施することができる。   The timing charts of FIGS. 5 and 6 are timing diagrams of a configuration using a normally open type solenoid valve. However, when a normally closed type solenoid valve is used, ON and OFF of the drive signal are reversed. Thus, the control method of the present invention can be implemented.

以上説明したように、本発明によれば、可変容量機構の応答性を上げることなく、プランジャの往復周期が短い場合においても吐出流量制御ができる高圧燃料ポンプを実現することができる。かつ、デューティが小さい場合には可変容量機構の駆動時間が短いため、省電力、低発熱の効果も得られる。   As described above, according to the present invention, it is possible to realize a high-pressure fuel pump capable of controlling the discharge flow rate even when the reciprocating cycle of the plunger is short without increasing the responsiveness of the variable displacement mechanism. In addition, when the duty is small, the driving time of the variable capacity mechanism is short, so that the effects of power saving and low heat generation can be obtained.

実際の自動車においては、エンジンの高回転領域おいても必要な量の燃料を供給することが可能となる。また、燃料の最大供給量を増やすために、カムの葉数を増やしてプランジャの往復回数を増やした場合でも、アクチュエータの応答性を上げることなく可変容量制御を実現することができる。これにより燃料の消費量の多い大排気量エンジンやターボ付きエンジンにも十分な燃料を供給できる。   In an actual automobile, it is possible to supply a necessary amount of fuel even in a high engine speed range. Further, even when the number of cam leaves is increased to increase the number of reciprocations of the plunger in order to increase the maximum fuel supply amount, variable displacement control can be realized without increasing the response of the actuator. As a result, sufficient fuel can be supplied to a large displacement engine or a turbo engine with a large amount of fuel consumption.

1種類の高圧燃料ポンプを、カムの葉数を変えるだけで小排気量エンジンから大排気量エンジンまで共用化できるため、量産効果により製造コストを低減できるという効果もある。また、部品の調達、管理が簡単になる。   One type of high-pressure fuel pump can be shared from a small displacement engine to a large displacement engine by simply changing the number of leaves on the cam, so that the production cost can be reduced due to the mass production effect. In addition, procurement and management of parts are simplified.

本発明を備えた高圧燃料ポンプの概略構成図である。It is a schematic block diagram of the high pressure fuel pump provided with this invention. 本発明の高圧燃料ポンプの制御例を示すタイミング図である。It is a timing diagram which shows the example of control of the high pressure fuel pump of this invention. 本発明の高圧燃料ポンプの制御例を示すタイミング図である。It is a timing diagram which shows the example of control of the high pressure fuel pump of this invention. 他の実施例を備えた高圧燃料ポンプの概略構成図である。It is a schematic block diagram of the high pressure fuel pump provided with the other Example. 図4のシステムにおける制御例を示すタイミング図である。FIG. 5 is a timing chart showing a control example in the system of FIG. 4. 図4のシステムにおける制御例を示すタイミング図である。FIG. 5 is a timing chart showing a control example in the system of FIG. 4.

符号の説明Explanation of symbols

1…ポンプ本体、2…プランジャ、5…吸入弁,6…吐出弁、8…アクチュエータ、10…吸入流路、11…吐出流路、57…コントローラ。   DESCRIPTION OF SYMBOLS 1 ... Pump main body, 2 ... Plunger, 5 ... Suction valve, 6 ... Discharge valve, 8 ... Actuator, 10 ... Suction flow path, 11 ... Discharge flow path, 57 ... Controller.

Claims (3)

加圧室に吸入した燃料を吸入弁の上流へ戻す量を制御する電磁式制御弁を備えた可変容量機構を有する単筒プランジャ式高圧燃料ポンプを備えた燃料供給装置のコントローラであって、前記可変容量機構の前記電磁制御弁を構成するソレノイドに供給する電流を制御して燃料供給圧力を調節する燃料供給装置のコントローラにおいて、
前記高圧燃料ポンプの前記プランジャが少なくとも2回以上往復動するごとに前記可変容量機構の前記電磁制御弁を構成するソレノイドに電流を1回供給することで、前記プランジャが2回以上に分けて吐出する燃料を1回で吐出する第1の制御領域を設け、
当該制御領域では、前記ソレノイドへ流れる電流の立ち上がり、立下り期間を含む通流区間が、前記プランジャの往復周期よりも長く、前記プランジャの特定の吐出工程の前後の吸入工程に及ぶように構成し、
前記第1の制御領域の他に、前記プランジャ2回往復するごとに1回は前記プランジャの押しのける容積の燃料を全て吐出する第2の制御領域を設け、
この第2の制御領域においては、吐出量が制御された一つの吐出工程の前段の吸入工程で前記ソレノイドに通電され、続く吸入吐出工程では吸入弁が自閉動作するよう前記ソレノイドへの通電が制御され、続く吸入工程の開始前に通電が終了するよう構成したことを特徴とする燃料供給装置のコントローラ。
A controller of the fuel supply apparatus provided with a single-cylinder plunger type high-pressure fuel pump that having a variable capacity mechanism which includes an electromagnetic control valve for controlling an amount of returning the inhaled into the pressurizing chamber fuel to the upstream of the intake valve In the controller of the fuel supply device for adjusting the fuel supply pressure by controlling the current supplied to the solenoid constituting the electromagnetic control valve of the variable capacity mechanism,
Each time the plunger of the high-pressure fuel pump reciprocates at least twice , the current is supplied once to the solenoid constituting the electromagnetic control valve of the variable displacement mechanism , so that the plunger is divided into two or more times. A first control region for discharging the fuel to be discharged at a time,
In the control region, the flow section including the rising and falling periods of the current flowing to the solenoid is longer than the reciprocating cycle of the plunger, and extends to the suction process before and after the specific discharge process of the plunger. ,
In addition to the first control region, the providing the second control region for discharging all the fuel volume displacing of said plunger once per said plunger reciprocates twice,
In the second control region, the solenoid is energized in the suction process preceding the one discharge process in which the discharge amount is controlled, and the solenoid is energized so that the suction valve is self-closing in the subsequent suction / discharge process. A controller for a fuel supply apparatus, characterized in that the controller is configured so that energization is terminated before the start of the subsequent suction process .
請求項1に記載のものにおいて、燃料供給量が燃料ポンプの最大吐出流量の概ね50%以上である場合に、前記第2の制御領域で制御して、1回の吐出行程で吐出流量を制御し、次回の吐出行程ではプランジャが押しのける容積の燃料を全て吐出することを特徴とする燃料供給装置のコントローラ。 2. The discharge flow rate is controlled in one discharge stroke by controlling in the second control region when the fuel supply amount is approximately 50% or more of the maximum discharge flow rate of the fuel pump. and, a controller of the following times of fuel supply apparatus you characterized by discharging all the fuel volume plunger displaces the discharge stroke. 請求項1に記載のものにおいて、燃料供給量が燃料ポンプの最大吐出流量の50%以下である場合に、前記第1の制御領域で制御して、1回の吐出行程では吐出流量をゼロに制御し、次回の吐出行程で必要な容積の燃料を全て吐出することを特徴とする燃料供給装置のコントローラ。 The fuel supply amount according to claim 1, wherein when the fuel supply amount is 50% or less of the maximum discharge flow rate of the fuel pump, the discharge flow rate is set to zero in one discharge stroke by controlling in the first control region. controlled, the controller of the next fuel supply apparatus you characterized in that all discharging fuel required volume with the discharge stroke.
JP2007279767A 2007-10-29 2007-10-29 Fuel supply controller Expired - Fee Related JP4528821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007279767A JP4528821B2 (en) 2007-10-29 2007-10-29 Fuel supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007279767A JP4528821B2 (en) 2007-10-29 2007-10-29 Fuel supply controller

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001073280A Division JP4123729B2 (en) 2001-03-15 2001-03-15 Control method of fuel supply device

Publications (2)

Publication Number Publication Date
JP2008069789A JP2008069789A (en) 2008-03-27
JP4528821B2 true JP4528821B2 (en) 2010-08-25

Family

ID=39291560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279767A Expired - Fee Related JP4528821B2 (en) 2007-10-29 2007-10-29 Fuel supply controller

Country Status (1)

Country Link
JP (1) JP4528821B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0712777D0 (en) * 2007-07-02 2007-08-08 Edwards Ltd Vacuum Pump
GB0811385D0 (en) * 2008-06-20 2008-07-30 Artemis Intelligent Power Ltd Fluid working machines and method
JP5798799B2 (en) * 2011-05-30 2015-10-21 日立オートモティブシステムズ株式会社 High pressure fuel supply pump with electromagnetically driven suction valve
JP5664539B2 (en) * 2011-12-21 2015-02-04 株式会社デンソー Control device for fuel supply system
JP6079487B2 (en) * 2013-07-18 2017-02-15 株式会社デンソー High pressure pump control device
JP6221828B2 (en) * 2013-08-02 2017-11-01 株式会社デンソー High pressure pump control device
JP6308012B2 (en) * 2014-05-16 2018-04-11 株式会社デンソー High pressure pump control device
JP6421767B2 (en) * 2016-02-12 2018-11-14 株式会社デンソー Fuel pump control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026059A (en) * 1996-07-08 1998-01-27 Mitsubishi Electric Corp Fuel injection device
JP2000008997A (en) * 1998-06-29 2000-01-11 Hitachi Ltd Variable displacement high pressure fuel pump and fuel supply control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026059A (en) * 1996-07-08 1998-01-27 Mitsubishi Electric Corp Fuel injection device
JP2000008997A (en) * 1998-06-29 2000-01-11 Hitachi Ltd Variable displacement high pressure fuel pump and fuel supply control method

Also Published As

Publication number Publication date
JP2008069789A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4123729B2 (en) Control method of fuel supply device
JP4528821B2 (en) Fuel supply controller
EP2453122B1 (en) Method and control apparatus for controlling a high-pressure fuel supply pump configured to supply pressurized fuel to an internal combustion engine
JP4603867B2 (en) Control device and fuel supply system for variable displacement fuel pump
US6651630B2 (en) High pressure fuel pump
JP4455470B2 (en) Controller for high pressure fuel pump and normally closed solenoid valve of high pressure fuel pump
US7198034B2 (en) Method and system for the direct injection of fuel into an internal combustion engine
US7063073B2 (en) Method for the direct injection of fuel into an internal combustion engine
US6886536B2 (en) Fuel injection system of the common rail type with a variable flow-rate pump
JP2008128229A (en) Improvement in fuel injection system for internal combustion engine
CN107366585B (en) Method for controlling a fuel pump for a direct injection system
JP6034494B2 (en) Fuel pump device
JP2639017B2 (en) Variable discharge high pressure pump and control method thereof
JP2005538285A (en) A device that controls the flow rate of a pump that directly injects gasoline.
WO2002079614A1 (en) Valve gear drive device of internal combustion engine
JP2003269287A (en) High pressure fuel supply system
JP5003720B2 (en) Fuel pumping system
JP4552991B2 (en) Fuel injection control system and fuel injection valve
JP3557871B2 (en) Fuel injection device
JP2010090778A (en) Fuel injection control system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees