JP5798419B2 - 3D coordinate detector - Google Patents

3D coordinate detector Download PDF

Info

Publication number
JP5798419B2
JP5798419B2 JP2011198898A JP2011198898A JP5798419B2 JP 5798419 B2 JP5798419 B2 JP 5798419B2 JP 2011198898 A JP2011198898 A JP 2011198898A JP 2011198898 A JP2011198898 A JP 2011198898A JP 5798419 B2 JP5798419 B2 JP 5798419B2
Authority
JP
Japan
Prior art keywords
dimensional coordinate
coordinate detection
light
region
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011198898A
Other languages
Japanese (ja)
Other versions
JP2013061747A (en
Inventor
尚也 曽根
尚也 曽根
小林 信之
信之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011198898A priority Critical patent/JP5798419B2/en
Publication of JP2013061747A publication Critical patent/JP2013061747A/en
Application granted granted Critical
Publication of JP5798419B2 publication Critical patent/JP5798419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Input By Displaying (AREA)

Description

本発明は、三次元座標領域内の物体の座標を検知する装置に関する。   The present invention relates to an apparatus for detecting the coordinates of an object in a three-dimensional coordinate area.

従来、物体の位置を決定する長方形状の目標区域を内部に有するハウジングと、一対の光分配検出アセンブリとを備える光学的位置決め装置が知られている(特許文献1)。この装置において、ハウジングは、再帰反射性の材料からなる反射器アセンブリを有する。ここで、再帰反射とは、入射した光に平行で且つ入射方向と反対の方向に出射する反射のことである。また、光分配検出アセンブリは、目標区域を走査する走査光を出射する光源と、走査光が反射器アセンブリにより再帰反射した光を検出する光検出器とを有する。   2. Description of the Related Art Conventionally, there is known an optical positioning device including a housing having a rectangular target area for determining the position of an object, and a pair of light distribution detection assemblies (Patent Document 1). In this device, the housing has a reflector assembly made of a retroreflective material. Here, the retroreflection is a reflection that is emitted in a direction parallel to the incident light and opposite to the incident direction. The light distribution detection assembly also includes a light source that emits scanning light that scans the target area and a light detector that detects light retroreflected by the reflector assembly.

光源から出射された光が反射器アセンブリに到達する前に物体に遮られた場合には、物体に遮られていない場合に比べて光検出器が検出する光のレベルが変化する。光分配検出アセンブリは、この検出した光のレベルによって物体の有無を検知できる。   When the light emitted from the light source is blocked by the object before reaching the reflector assembly, the level of light detected by the photodetector changes compared to the case where the light is not blocked by the object. The light distribution detection assembly can detect the presence or absence of an object based on the detected light level.

ここで、光分配検出アセンブリが一対あるため、目標区域内に物体がある場合、この物体によって光源から出射された光が遮られた角度が2つ検知される。一対の光分配検出アセンブリ間の距離は既知であるので、一辺とその両端の角度とから頂点を求める三角測量法によって目標区域内の物体の位置を検知することができる。   Here, since there is a pair of light distribution detection assemblies, when there is an object in the target area, two angles at which the light emitted from the light source is blocked by the object are detected. Since the distance between the pair of light distribution detection assemblies is known, it is possible to detect the position of the object in the target area by triangulation which obtains the apex from the angle of one side and both ends thereof.

特開昭62−5428号公報JP-A-62-2428

近年、このような物体の位置を検知する装置には、例えば、長方形状等の二次元領域内の位置を検知するだけでなく、二次元領域の法線方向の位置も検知する、すなわち三次元領域内の位置を検知することが求められている。しかしながら、特許文献1の光学式座標検知装置では、二次元領域(平面)内の位置は検知できるが、三次元領域内、すなわち目標区域の面に対して法線方向の位置は検知できない。   In recent years, such an apparatus for detecting the position of an object can detect not only the position in a two-dimensional area such as a rectangular shape but also the position in the normal direction of the two-dimensional area, that is, three-dimensional. It is required to detect the position in the region. However, the optical coordinate detection device of Patent Document 1 can detect the position in the two-dimensional area (plane), but cannot detect the position in the normal direction with respect to the surface of the target area in the three-dimensional area.

本発明は、三次元領域内の物体の位置(座標)を検知することができる三次元座標検知装置を提供することを目的とする。   An object of this invention is to provide the three-dimensional coordinate detection apparatus which can detect the position (coordinate) of the object in a three-dimensional area | region.

本発明は、二次元座標領域内の物体の座標を検知するために、前記二次元座標領域の周縁上又は前記二次元座標領域外に配置され、光を出射する照射部と光を受光する受光部とをそれぞれ有する一対の光学装置と、前記光学装置から出射された光を再帰反射する再帰反射部とを備え、前記照射部が前記二次元座標領域を走査する光を出射し、前記受光部が前記照射部から出射されて前記再帰反射部に再帰反射された光を受光するように構成された二次元座標検知装置を複数有し、前記複数の二次元座標検知装置は、各々が検知する座標を含む二次元座標領域が互いに平行となるように、各二次元座標領域の面に対して法線方向に並設され、前記二次元座標領域の座標に当該二次元座標領域の面に対して法線方向の位置を加えた三次元座標領域内の物体の座標を、前記複数の二次元座標検知装置のそれぞれが検知した座標に基づいて検知する三次元座標検知装置であって、
前記照射部が有する光源には、駆動波形として振幅が0と0でない値とを交互に繰り返すパルス波が供給され、前記パルス波の振幅が0のときに前記光源が消灯し、前記パルス波の振幅が0でない値のときに前記光源が点灯し、前記複数の二次元座標検知装置が並設された並びで隣り合う二次元座標検知装置の光源には、互いのパルス波の振幅が同時に0でない値とはならないように供給され、前記隣り合う二次元座標検知装置は、前記受光部が受光した光の信号の各瞬時値に、当該受光部を備える二次元座標検知装置が有する照射部に供給されたパルス波の振幅の各瞬時値を乗算して得た信号により、当該二次元座標検知装置の二次元座標領域内にある物体の座標を検知することを特徴とする。
In order to detect the coordinates of an object in a two-dimensional coordinate area, the present invention is arranged on the periphery of the two-dimensional coordinate area or outside the two-dimensional coordinate area, and an irradiating unit that emits light and a light receiving unit that receives the light. A pair of optical devices, and a retroreflecting unit that retroreflects the light emitted from the optical device, the irradiation unit emits light that scans the two-dimensional coordinate region, and the light receiving unit There plurality have a two-dimensional coordinate detection device configured to receive light which is retroreflected in the retroreflective portion is emitted from the irradiation unit, the plurality of two-dimensional coordinate sensing device, each of which detects as the two-dimensional coordinate space containing the coordinates are parallel to each other, arranged in parallel in the direction normal to the plane of the two-dimensional coordinate space, the coordinates of the two-dimensional coordinate space on the surface of this the two-dimensional coordinate area 3D coordinate region with normal direction added to A of the coordinates of the object, the three-dimensional coordinate detecting device for detecting on the basis of the coordinates is detected each of said plurality of two-dimensional coordinate detection device,
The light source included in the irradiation unit is supplied with a pulse wave that alternately repeats an amplitude of 0 and a value other than 0 as a drive waveform. When the amplitude of the pulse wave is 0, the light source is turned off, and the pulse wave The light source is turned on when the amplitude is a non-zero value, and the amplitude of the pulse wave of each other is simultaneously zero for the light sources of the adjacent two-dimensional coordinate detection devices arranged side by side. The adjacent two-dimensional coordinate detection device is supplied to the irradiation unit included in the two-dimensional coordinate detection device including the light receiving unit for each instantaneous value of the light signal received by the light receiving unit. A feature is that the coordinates of an object in the two-dimensional coordinate region of the two-dimensional coordinate detection device are detected by a signal obtained by multiplying the instantaneous values of the amplitudes of the supplied pulse waves .

本発明によれば、二次元座標検知装置は、一対の光学装置を備え、一対の光学装置のそれぞれは、二次元座標領域を走査する光を照射部から出射し、再帰反射部に再帰反射された光を受光部で受光する。光学装置は、二次元座標領域内に物体がある場合、再帰反射された光が遮られる(光のレベルが変化する)。各光学装置は、この遮られたときの方向、すなわち、「当該光学装置と他方の光学装置とを結ぶ線」と、「当該光学装置と二次元座標領域内の物体とを結ぶ線」との角度を検知できる。二次元座標検知装置は、各光学装置により検知されたそれぞれの角度と各光学装置間の距離から、三角測量法により二次元座標領域内の物体の座標(二次元の座標)を検知できる。   According to the present invention, the two-dimensional coordinate detection device includes a pair of optical devices, and each of the pair of optical devices emits light that scans the two-dimensional coordinate region from the irradiation unit and is retroreflected by the retroreflection unit. The received light is received by the light receiving unit. When there is an object in the two-dimensional coordinate region, the optical device blocks the retroreflected light (the light level changes). Each optical device has a direction when it is blocked, that is, “a line connecting the optical device and the other optical device” and “a line connecting the optical device and an object in the two-dimensional coordinate region”. The angle can be detected. The two-dimensional coordinate detection device can detect the coordinates (two-dimensional coordinates) of the object in the two-dimensional coordinate region by the triangulation method from the respective angles detected by the respective optical devices and the distances between the respective optical devices.

三次元座標検知装置は、このような二次元座標検知装置を複数備え、複数の二次元座標検知装置を、各々の二次元座標領域が互いに平行となるように、各二次元座標領域の面に対して法線方向に並設されている。   The three-dimensional coordinate detection device includes a plurality of such two-dimensional coordinate detection devices, and the plurality of two-dimensional coordinate detection devices are arranged on the surface of each two-dimensional coordinate region so that each two-dimensional coordinate region is parallel to each other. On the other hand, they are juxtaposed in the normal direction.

そして、例えば、三次元座標検知装置に、3つの二次元座標検知装置が並設され、中央に配設された二次元座標検知装置が物体の座標を検知した場合、当該物体の二次元座標領域の面に対して法線方向の位置は、中央に配設された二次元座標検知装置の位置となる。このようにして、各二次元座標検知装置が検知したそれぞれの座標に基づいて、三次元座標領域内の物体の座標(二次元座標領域の面に対して法線方向の位置を加えた三次元の座標)を検知できる。
また、出射した光が混入する可能性のある範囲に配設された二次元座標検知装置の各光源が同時に点灯することがなくなる。このため、各二次元座標検知装置の受光部が受光した光の信号の各瞬時値に、当該二次元座標検知装置の照射部の光源に供給されたパルス波の振幅の各瞬時値を乗算することで、パルス波の振幅が0のとき、すなわち、光源が消灯しているときの受光した光のレベルが0になる。このため、隣り合う二次元座標検知装置の光が混入した場合であっても、混入した光を除去できる。また、前述の光学フィルタと組み合わせることにより、更に高精度に、混入した光を除去することができる。
For example, when three two-dimensional coordinate detection devices are arranged in parallel in the three-dimensional coordinate detection device, and the two-dimensional coordinate detection device arranged in the center detects the coordinates of the object, the two-dimensional coordinate region of the object The position in the normal direction with respect to the surface is the position of the two-dimensional coordinate detector arranged in the center. In this way, based on the respective coordinates detected by each two-dimensional coordinate detection device, the coordinates of the object in the three-dimensional coordinate area (three-dimensional with the position in the normal direction relative to the plane of the two-dimensional coordinate area added) Can be detected.
Further, the light sources of the two-dimensional coordinate detection device arranged in a range where the emitted light may be mixed are not lit simultaneously. Therefore, each instantaneous value of the light signal received by the light receiving unit of each two-dimensional coordinate detection device is multiplied by each instantaneous value of the amplitude of the pulse wave supplied to the light source of the irradiation unit of the two-dimensional coordinate detection device. Thus, when the amplitude of the pulse wave is 0, that is, when the light source is turned off, the level of the received light becomes 0. For this reason, even if it is a case where the light of an adjacent two-dimensional coordinate detection apparatus mixes, the mixed light can be removed. Further, by combining with the above-described optical filter, it is possible to remove the mixed light with higher accuracy.

本発明において、前記光学装置の照射部及び受光部は、当該光学装置を備える二次元座標検知装置と隣り合う二次元座標検知装置の照射部から出射した光を区別するための光学フィルタを備え、前記照射部は前記光学フィルタを介して前記再帰反射部に光を出射し、前記受光部は前記再帰反射部に再帰反射された光を前記光学フィルタを介して受光することが好ましい。   In the present invention, the irradiation unit and the light receiving unit of the optical device include an optical filter for distinguishing light emitted from the irradiation unit of the two-dimensional coordinate detection device adjacent to the two-dimensional coordinate detection device including the optical device, It is preferable that the irradiating unit emits light to the retroreflective unit through the optical filter, and the light receiving unit receives light retroreflected by the retroreflective unit through the optical filter.

二次元座標検知装置は並設されているので、所定の二次元座標検知装置の受光部が受光した光には、当該二次元座標検知装置以外の、すなわち当該二次元座標検知装置と隣り合う二次元座標検知装置が出射した光が混入する可能性がある。このため、各二次元座標装置の光学フィルタを介すことで、隣り合う二次元座標装置とは異なる光(例えば、波長が異なる光等)を出射し、当該二次元座標装置の受光部が照射部と同じ特性の光学フィルタを介して受光することで、隣り合う二次元座標検知装置が出射した光を区別することができる。   Since the two-dimensional coordinate detection devices are arranged in parallel, the light received by the light receiving unit of the predetermined two-dimensional coordinate detection device is not the two-dimensional coordinate detection device, that is, two adjacent to the two-dimensional coordinate detection device. There is a possibility that light emitted from the dimensional coordinate detection device is mixed. For this reason, by passing through the optical filter of each two-dimensional coordinate device, light different from the adjacent two-dimensional coordinate device (for example, light having a different wavelength, etc.) is emitted, and the light receiving unit of the two-dimensional coordinate device emits light. By receiving light through the optical filter having the same characteristics as the unit, it is possible to distinguish the light emitted by the adjacent two-dimensional coordinate detection devices.

なお、本発明において、隣り合う二次元座標検知装置とは、一つ隣の二次元座標検知装置のみだけではなく、出射した光が混入する可能性のある範囲に配設された二次元座標検知装置を含むものとする。すなわち、例えば、7つの二次元座標検知装置が並設されていた場合に、二次元座標検知装置間の距離が近いことにより、中央(並設された並び順で4番目)に配設された二次元座標検知装置が受光する光に、その両隣(3番目と5番目)だけではなく、更にその一つ隣(2番目と6番目)の二次元座標検知装置の光が混入することがある。この場合には、中央(4番目)に配設された二次元座標検知装置に隣り合う二次元座標検知装置は、2番目、3番目、5番目、6番目の二次元座標検知装置となる。   In the present invention, the adjacent two-dimensional coordinate detection device is not limited to one adjacent two-dimensional coordinate detection device, but also two-dimensional coordinate detection arranged in a range where the emitted light may be mixed. Including equipment. That is, for example, when seven two-dimensional coordinate detection devices are arranged side by side, the distance between the two-dimensional coordinate detection devices is short, so that they are arranged in the center (fourth in the arrangement order arranged in parallel). The light received by the two-dimensional coordinate detection device may be mixed not only with its two neighbors (third and fifth) but also with the two-dimensional coordinate detection device adjacent to it (second and sixth). . In this case, the two-dimensional coordinate detection devices adjacent to the center (fourth) two-dimensional coordinate detection device are the second, third, fifth, and sixth two-dimensional coordinate detection devices.

本発明において、前記複数の二次元座標検知装置間の間隔に基づいて、前記三次元座標領域内の物体の前記二次元座標領域の面に対する法線方向の位置を決定することができる。   In the present invention, based on the interval between the plurality of two-dimensional coordinate detection devices, the position in the normal direction of the object in the three-dimensional coordinate region with respect to the surface of the two-dimensional coordinate region can be determined.

本発明において、前記二次元座標検知装置が検知する座標は、当該二次元座標検知装置の二次元座標領域と交差する前記三次元座標領域内の物体の断面の外形を示す1又は複数の座標の集合であり、前記複数の二次元座標検知装置のそれぞれが検知した1又は複数の座標の集合から前記三次元座標領域内にある物体の外形を検知することが好ましい。これにより、物体の外形の状態や方向等を検知することができる。   In the present invention, the coordinates detected by the two-dimensional coordinate detection device are one or more coordinates indicating the outer shape of the cross section of the object in the three-dimensional coordinate region intersecting the two-dimensional coordinate region of the two-dimensional coordinate detection device. Preferably, the outer shape of the object in the three-dimensional coordinate area is detected from a set of one or more coordinates detected by each of the plurality of two-dimensional coordinate detection devices. As a result, it is possible to detect the state and direction of the outer shape of the object.

本発明において、前記三次元座標領域内にある物体は、所定の領域内の所定の座標を指し示す指示部を有し、前記所定の領域は、前記二次元座標領域の並設方向において前記指示部が指し示す側の端にある二次元座標領域上に位置し、又は前記端にある二次元座標領域より外側に位置し、前記三次元座標領域内にある物体の1又は複数の座標の集合を検知した各二次元座標検知装置のうち、前記所定の領域に最も近い二次元座標領域に対応した二次元座標検知装置が検知した1又は複数の座標の集合を前記物体の指示部として検知することが好ましい。これにより、物体の指示部(例えば、先端)を検知することで、当該三次元座標検知装置を搭載した機器は、検知した先端の位置に応じて作動を変更することができる。   In the present invention, the object in the three-dimensional coordinate area has an instruction unit indicating a predetermined coordinate in the predetermined area, and the predetermined area is arranged in the direction in which the two-dimensional coordinate area is arranged. Detects a set of one or more coordinates of an object that is located on the two-dimensional coordinate area at the end on the side indicated by or that is located outside the two-dimensional coordinate area at the end and within the three-dimensional coordinate area Detecting a set of one or more coordinates detected by the two-dimensional coordinate detection device corresponding to the two-dimensional coordinate region closest to the predetermined region among the two-dimensional coordinate detection devices that have been detected as the object instruction unit. preferable. Thereby, by detecting the pointing unit (for example, the tip) of the object, the device equipped with the three-dimensional coordinate detection device can change the operation according to the detected position of the tip.

本発明において、前記所定の領域に最も近い二次元座標領域と、当該二次元座標領域の前記所定の領域とは反対側に隣り合う二次元座標領域とのそれぞれに応じた二次元座標検知装置が検知したそれぞれの1又は複数の座標の集合から前記三次元座標領域内にある物体の方向を検知することが好ましい。これにより、物体の方向を検知することで、当該三次元座標検知装置を搭載した機器は、検知した方向に応じて作動を変更することができる。   In the present invention, there is provided a two-dimensional coordinate detection device corresponding to each of a two-dimensional coordinate area closest to the predetermined area and a two-dimensional coordinate area adjacent to the two-dimensional coordinate area opposite to the predetermined area. It is preferable to detect the direction of an object in the three-dimensional coordinate region from the set of one or more detected coordinates. Thus, by detecting the direction of the object, the device on which the three-dimensional coordinate detection device is mounted can change the operation according to the detected direction.

本発明において、前記所定の領域に最も近い二次元座標領域と、当該二次元座標領域の前記所定の領域とは反対側に隣り合う二次元座標領域とのそれぞれに応じた二次元座標検知装置が検知したそれぞれの1又は複数の座標の集合の重心座標から前記三次元座標領域内にある物体の方向を検知することが好ましい。これにより、物体の方向を検知することで、当該三次元座標検知装置を搭載した機器は、検知した方向に応じて作動を変更することができる。   In the present invention, there is provided a two-dimensional coordinate detection device corresponding to each of a two-dimensional coordinate area closest to the predetermined area and a two-dimensional coordinate area adjacent to the two-dimensional coordinate area opposite to the predetermined area. It is preferable to detect the direction of an object in the three-dimensional coordinate area from the barycentric coordinates of the detected set of one or more coordinates. Thus, by detecting the direction of the object, the device on which the three-dimensional coordinate detection device is mounted can change the operation according to the detected direction.

本発明において、前記検知した物体の指示部と前記検知した物体の方向から、前記所定の領域内の前記所定の座標を検知することが好ましい。これにより、物体の指示部が指し示す座標を検知することで、当該三次元座標検知装置を搭載した機器は、物体の指示部が指している座標に応じて作動を変更することができる。また、物体が前記所定の領域にない場合であっても、物体が当該領域内の所定座標のいずれを指し示しているかを検知できるので、三次元座標検知装置の利便性が向上する。   In the present invention, it is preferable that the predetermined coordinates in the predetermined area are detected from the detected object indicating unit and the direction of the detected object. Thus, by detecting the coordinates pointed to by the object instruction unit, the device equipped with the three-dimensional coordinate detection device can change the operation according to the coordinates pointed to by the object instruction unit. Further, even when the object is not in the predetermined area, it is possible to detect which of the predetermined coordinates in the area the object is pointing to, so that the convenience of the three-dimensional coordinate detection apparatus is improved.

本発明の本実施形態の三次元座標検知装置の構成を示す図。The figure which shows the structure of the three-dimensional coordinate detection apparatus of this embodiment of this invention. 本実施形態の三次元座標検知装置に用いられる二次元座標検知装置の構成を示す図。The figure which shows the structure of the two-dimensional coordinate detection apparatus used for the three-dimensional coordinate detection apparatus of this embodiment. 図2の二次元座標検知装置が備える光学装置の構成を示す図。The figure which shows the structure of the optical apparatus with which the two-dimensional coordinate detection apparatus of FIG. 2 is provided. 三次元座標領域及び複数の二次元座標領域を示す模式図。The schematic diagram which shows a three-dimensional coordinate area | region and a some two-dimensional coordinate area | region. 三次元座標領域内に物体があるときの模式図。The schematic diagram when an object exists in a three-dimensional coordinate area. 図5の状態の各二次元座標領域の物体イメージを示す模式図。The schematic diagram which shows the object image of each two-dimensional coordinate area | region of the state of FIG. (a)は物体の方向及び目標点の検知を示す図、(b)は(a)とは別の方法により物体の方向及び目標点の検知を示す図。(A) is a figure which shows detection of the direction of an object and a target point, (b) is a figure which shows detection of the direction of an object and a target point by the method different from (a). (a)は第1,第3,第5の二次元座標検知装置の光源に供給するパルス波の時間変化を示し、(b)は(a)の二次元座標検知装置の走査部から出射される光のレベルの時間変化を示し、(c)は(a)の二次元座標検知装置の受光部が受光した光の信号を示し、(d)は(a)と(c)とを乗算した結果を示し、(e)は第2,第4の二次元座標検知装置の光源に供給するパルス波の時間変化を示し、(f)は(e)の二次元座標検知装置の走査部から出射される光のレベルの時間変化を示し、(g)は(e)の二次元座標検知装置の受光部が受光した光の信号を示し、(h)は(e)と(g)とを乗算した結果を示す図。(A) shows the time change of the pulse wave supplied to the light source of the 1st, 3rd, 5th two-dimensional coordinate detection apparatus, (b) is radiate | emitted from the scanning part of the two-dimensional coordinate detection apparatus of (a). (C) shows a signal of light received by the light receiving unit of the two-dimensional coordinate detection apparatus of (a), and (d) multiplies (a) and (c). The results are shown, (e) shows the time variation of the pulse wave supplied to the light source of the second and fourth two-dimensional coordinate detectors, and (f) is emitted from the scanning unit of the two-dimensional coordinate detector of (e). (G) shows a signal of light received by the light receiving unit of the two-dimensional coordinate detection apparatus of (e), and (h) multiplies (e) and (g). FIG.

本発明の実施形態の三次元座標検知装置の構成について説明する。本実施形態の三次元座標検知装置1は、大型ディスプレイやホワイトボード等に搭載される三次元座標検知装置である。   A configuration of the three-dimensional coordinate detection apparatus according to the embodiment of the present invention will be described. The three-dimensional coordinate detection device 1 of the present embodiment is a three-dimensional coordinate detection device mounted on a large display, a white board, or the like.

図1に示されるように、本実施形態の三次元座標検知装置1は、5つの二次元座標検知装置11〜15から構成されている。これらの各二次元座標検知装置11〜15はそれぞれが同じ構造である。以下、図2〜図3を参照して、複数の二次元座標検知装置11〜15を代表して二次元座標検知装置11の構造について説明する。   As shown in FIG. 1, the three-dimensional coordinate detection device 1 of this embodiment includes five two-dimensional coordinate detection devices 11 to 15. Each of these two-dimensional coordinate detection devices 11 to 15 has the same structure. Hereinafter, the structure of the two-dimensional coordinate detection device 11 will be described on behalf of the plurality of two-dimensional coordinate detection devices 11 to 15 with reference to FIGS.

二次元座標検知装置11は、外枠2と、平面状の領域である二次元座標領域D2内の物体の座標を検知するために、光を出射すると共に受光する左右一対の光学装置3,4とを備える。   The two-dimensional coordinate detection device 11 emits light and receives a pair of left and right optical devices 3 and 4 to detect the coordinates of the object in the outer frame 2 and the two-dimensional coordinate region D2 which is a planar region. With.

外枠2は、二次元座標領域D2の周縁上に配置され、図2において上側の上辺21と、下側の下辺22と、右側の右辺23と、左側の左辺24とで構成される。上辺21と下辺22は互いに平行で且つ水平な辺として構成され、右辺23と左辺24は互いに平行で且つ上下辺21,22に垂直な辺として構成される。   The outer frame 2 is disposed on the peripheral edge of the two-dimensional coordinate area D2, and includes an upper side 21 on the upper side, a lower side 22 on the lower side, a right side 23 on the right side, and a left side 24 on the left side in FIG. The upper side 21 and the lower side 22 are configured as parallel sides and horizontal sides, and the right side 23 and the left side 24 are configured as sides parallel to each other and perpendicular to the upper and lower sides 21 and 22.

外枠2は、大画面の枠として必要な剛性を持つ部材であればよく、例えば、熱可塑性樹脂を用いて射出成形等の製法で製造された軽量安価な樹脂枠が好ましい。下辺22,右辺23及び左辺24は、入射した光に平行で且つ入射方向とは反対方向に出射する再帰反射となるような反射特性を持つように表面が加工されている。下辺22,右辺23及び左辺24が、本発明における再帰反射部に相当する。   The outer frame 2 may be a member having rigidity necessary for a large screen frame. For example, a lightweight and inexpensive resin frame manufactured by a method such as injection molding using a thermoplastic resin is preferable. The lower side 22, the right side 23, and the left side 24 are processed so as to have reflection characteristics that are retroreflected parallel to the incident light and emitted in the direction opposite to the incident direction. The lower side 22, the right side 23, and the left side 24 correspond to the retroreflective portion in the present invention.

右側の光学装置3は、上辺21と右辺23の交点上、すなわち図2の右上の角の外枠2の周縁上に配置され、左側の光学装置4は、上辺21と左辺24の交点上、すなわち図2の左上の角の外枠2の周縁上に配置される。一対の光学装置3,4は、外枠2の配置する位置に応じて左右対称に同じ構成を有するものであるので、以下の説明では、主に右側の光学装置3について説明し、左側の光学装置4の詳細な説明は省略する。   The right optical device 3 is disposed on the intersection of the upper side 21 and the right side 23, that is, on the periphery of the outer frame 2 in the upper right corner of FIG. 2, and the left optical device 4 is disposed on the intersection of the upper side 21 and the left side 24. That is, it is arranged on the periphery of the outer frame 2 at the upper left corner of FIG. Since the pair of optical devices 3 and 4 have the same configuration symmetrically according to the position where the outer frame 2 is arranged, in the following description, the right optical device 3 will be mainly described, and the left optical device will be described. A detailed description of the device 4 is omitted.

図3に示されるように、右側の光学装置3は、光源31と、走査部32と、受光部33とを備える。光源31は、狭指向性の光となるように半導体レーザ光を出射するように構成されている。このため、光が進んだ距離による光の減衰は無いものとして扱うことができる。これによって、本実施形態の各光学装置3,4は、大型ディスプレイに適した構成となっている。また、光源31には、振幅が0と0でない値(例えば5[V])とを交互に繰り返すパルス波形が駆動波形として供給されるものであり、パルス波の振幅が0のときに光源31が消灯し、パルス波の振幅が0でない値のときに光源31が点灯する。   As shown in FIG. 3, the right optical device 3 includes a light source 31, a scanning unit 32, and a light receiving unit 33. The light source 31 is configured to emit semiconductor laser light so as to be light having narrow directivity. For this reason, it can be handled that there is no light attenuation due to the distance traveled by the light. Thereby, each optical apparatus 3 and 4 of this embodiment becomes a structure suitable for a large sized display. The light source 31 is supplied with a pulse waveform that alternately repeats an amplitude of 0 and a value other than 0 (for example, 5 [V]) as a drive waveform. When the amplitude of the pulse wave is 0, the light source 31 Is turned off, and the light source 31 is turned on when the amplitude of the pulse wave is a non-zero value.

走査部32は、光偏向器40を有している。走査部32は、光偏向器40が有するミラーを回転駆動することで、光源31が出射したレーザ光を様々な角度に偏向して、外枠2で形成された二次元座標領域D2内を走査する。ここで、光源31と走査部32とが本発明における「照射部」に相当する。   The scanning unit 32 has an optical deflector 40. The scanning unit 32 rotationally drives a mirror included in the optical deflector 40 to deflect the laser light emitted from the light source 31 at various angles, and scans within the two-dimensional coordinate region D2 formed by the outer frame 2. To do. Here, the light source 31 and the scanning unit 32 correspond to the “irradiation unit” in the present invention.

本実施形態では、光偏向器40を、電圧信号が供給されることでミラーを回転駆動する圧電アクチュエータを備えるMEMS(Micro Electro Mechanical System)デバイスで構成している。このように、圧電アクチュエータを用いることで、光偏向器40の駆動部を非常に小型化できる。なお、光偏向器40は、本実施形態の構成に限らず、モータ(電動機)等の駆動力により回転駆動するものであってもよい。   In this embodiment, the optical deflector 40 is configured by a MEMS (Micro Electro Mechanical System) device including a piezoelectric actuator that rotationally drives a mirror when a voltage signal is supplied. As described above, by using the piezoelectric actuator, the drive unit of the optical deflector 40 can be very miniaturized. The optical deflector 40 is not limited to the configuration of the present embodiment, and may be rotationally driven by a driving force such as a motor (electric motor).

受光部33は、走査部32によって二次元座標領域D2内に出射された光が、外枠2の下辺22,右辺23及び左辺24のいずれかに入射し、再帰反射して戻って来た反射光を受光できるように配置される。受光部33は、受光したエネルギーに応じて電気信号を出す光電変換素子であり、コスト等を考慮するとフォトダイオードが好ましいが、これに限らず、イメージセンサー等を使用しても良い。   In the light receiving unit 33, the light emitted into the two-dimensional coordinate region D2 by the scanning unit 32 is incident on one of the lower side 22, the right side 23, and the left side 24 of the outer frame 2, and is reflected after being retroreflected. It arrange | positions so that light can be received. The light receiving unit 33 is a photoelectric conversion element that outputs an electric signal according to the received energy, and is preferably a photodiode in consideration of cost and the like, but is not limited thereto, and an image sensor or the like may be used.

光源31は、外枠2の上辺21から走査部32の光偏向器40のミラーの中央部に向けてレーザ光を出射できる位置に配置される。本実施形態では、光源31は、半導体レーザの出力にビーム整形用のレンズを装着してレーザ光を出力できるように構成しているがこれに限らない。例えば、任意の位置に配置された光源の光を、光ファイバによって本実施形態の光源31の位置に伝達させて、光偏向器40のミラーに向けてレーザ光を出射できるように構成したものであってもよい。   The light source 31 is disposed at a position where laser light can be emitted from the upper side 21 of the outer frame 2 toward the center of the mirror of the optical deflector 40 of the scanning unit 32. In the present embodiment, the light source 31 is configured to be able to output a laser beam by attaching a beam shaping lens to the output of the semiconductor laser, but is not limited thereto. For example, the light of the light source arranged at an arbitrary position is transmitted to the position of the light source 31 of the present embodiment by an optical fiber so that the laser light can be emitted toward the mirror of the optical deflector 40. There may be.

走査部32は、周期性を有する電圧波形(例えば、正弦波や三角波等)を光偏向器40に供給することで、光偏向器40のミラーを±22.5°(計45°)以上の角度で回転駆動(振動)し、二次元座標領域D2の全領域に対して光源31からのレーザ光で走査可能に構成される。このとき、走査部32は、光源31からのレーザ光を偏向した光が、二次元座標領域D2の面に対して水平に出射されるように光偏向器40のミラーを回転駆動する。以下、この光偏向器40に偏向されたレーザ光の光路で形成される平面を「走査平面」という。   The scanning unit 32 supplies a voltage waveform having periodicity (for example, a sine wave or a triangular wave) to the optical deflector 40, so that the mirror of the optical deflector 40 is ± 22.5 ° (total 45 °) or more. It is configured to be rotationally driven (vibrated) at an angle so that the entire area of the two-dimensional coordinate area D2 can be scanned with the laser light from the light source 31. At this time, the scanning unit 32 rotationally drives the mirror of the optical deflector 40 so that the light obtained by deflecting the laser light from the light source 31 is emitted horizontally with respect to the surface of the two-dimensional coordinate region D2. Hereinafter, a plane formed by the optical path of the laser beam deflected by the optical deflector 40 is referred to as a “scanning plane”.

光偏向器40のミラーの偏向角が22.5°の時には、二次元座標領域D2の垂直方向に向かって光偏向器40のミラーからレーザ光が出射される。すなわち、右側の光学装置3の場合には、上辺21と右辺23の交点から下辺22と右辺23の交点に向かって光偏向器40のミラーからレーザ光が出射され、左側の光学装置4の場合には、上辺21と左辺24の交点から下辺22と左辺24の交点に向かって光偏向器40のミラーからレーザ光が出射される。   When the deflection angle of the mirror of the optical deflector 40 is 22.5 °, laser light is emitted from the mirror of the optical deflector 40 in the vertical direction of the two-dimensional coordinate region D2. That is, in the case of the right optical device 3, the laser beam is emitted from the mirror of the optical deflector 40 from the intersection of the upper side 21 and the right side 23 toward the intersection of the lower side 22 and the right side 23, and in the case of the left optical device 4. The laser beam is emitted from the mirror of the optical deflector 40 from the intersection of the upper side 21 and the left side 24 toward the intersection of the lower side 22 and the left side 24.

光偏向器40のミラーの偏向角が−22.5°の時には、二次元座標領域D2の水平方向に向かって光偏向器40のミラーからレーザ光が出射される。すなわち、右側の光学装置3の場合には、上辺21と右辺23の交点から上辺21と左辺24の交点に向かって光偏向器40のミラーからレーザ光が出射され、左側の光学装置4の場合には、上辺21と左辺24の交点から上辺21と右辺23の交点に向かって光偏向器40のミラーからレーザ光が出射される。   When the deflection angle of the mirror of the optical deflector 40 is −22.5 °, laser light is emitted from the mirror of the optical deflector 40 in the horizontal direction of the two-dimensional coordinate region D2. That is, in the case of the right optical device 3, the laser beam is emitted from the mirror of the optical deflector 40 from the intersection of the upper side 21 and the right side 23 toward the intersection of the upper side 21 and the left side 24. The laser beam is emitted from the mirror of the optical deflector 40 from the intersection of the upper side 21 and the left side 24 toward the intersection of the upper side 21 and the right side 23.

次に、外枠2の下辺22,右辺23及び左辺24の再帰反射となるように加工された表面の詳細について説明する。   Next, the detail of the surface processed so that it may become retroreflection of the lower side 22, the right side 23, and the left side 24 of the outer frame 2 is demonstrated.

下辺22,右辺23及び左辺24は、入射角が0°の光を、反射角が0°で最大光度となり所定の半値角の広がりを持つ光として反射する反射特性を持つ。これによって、例えば二次元座標領域D2の大きさ、例えば、二次元座標領域D2の対角線の長さが50インチ程度とすると、光学装置3,4から出射した光が再び光学装置3,4に戻ってきた時点で、30〜40mmφ程度のビーム幅を持つことになる。従って、この場合には、各光学装置3,4の受光部33は、光偏向器40のミラーから30〜40mm以内の場所に配置されれば、再起反射した光を受光できる。   The lower side 22, the right side 23, and the left side 24 have reflection characteristics of reflecting light having an incident angle of 0 ° as light having a predetermined half-value angle spread with a maximum reflection angle when the reflection angle is 0 °. Accordingly, for example, when the size of the two-dimensional coordinate region D2, for example, the length of the diagonal line of the two-dimensional coordinate region D2 is about 50 inches, the light emitted from the optical devices 3 and 4 returns to the optical devices 3 and 4 again. At this point, the beam width is about 30 to 40 mmφ. Therefore, in this case, if the light receiving unit 33 of each of the optical devices 3 and 4 is disposed at a location within 30 to 40 mm from the mirror of the optical deflector 40, it can receive the re-reflected light.

本実施形態では、受光部33を外枠2の右上(上辺21と右辺23の交点)及び左上(上辺21と左辺24の交点)の二次元座標領域D2側の側壁に配置している。このとき、各光学装置3,4の光偏向器のミラーと受光部33は、二次元座標領域D2の面に対して法線方向に30〜40mm程度ずらした位置に配置される。   In the present embodiment, the light receiving unit 33 is arranged on the side wall on the two-dimensional coordinate region D2 side on the upper right (intersection of the upper side 21 and the right side 23) and upper left (intersection of the upper side 21 and the left side 24) of the outer frame 2. At this time, the mirror of the optical deflector and the light receiving unit 33 of each of the optical devices 3 and 4 are arranged at a position shifted by about 30 to 40 mm in the normal direction with respect to the surface of the two-dimensional coordinate region D2.

このように、各光学装置3,4の光偏向器40のミラーから受光部33までの距離を、再帰反射部としての下辺22,右辺23及び左辺24の反射特性と、二次元座標領域D2の大きさとに応じて決定することで、ビーム分割器のような光束を分割する装置を設けることなく、光偏向器40のミラーと受光部33とを互いに干渉しないように配置できる。   As described above, the distance from the mirror of the optical deflector 40 of each optical device 3 and 4 to the light receiving unit 33 is determined based on the reflection characteristics of the lower side 22, the right side 23, and the left side 24 as a retroreflective unit, and the two-dimensional coordinate region D2. By determining according to the size, the mirror of the optical deflector 40 and the light receiving unit 33 can be arranged so as not to interfere with each other without providing a device for splitting the light beam such as a beam splitter.

また、各光学装置3,4の光偏向器40のミラーから出射する光が互いに影響を与えないようにするため、互いの走査平面が同一平面にならないように構成している。すなわち、互いの走査平面を、平行となるように法線方向にずらしている。このように、二次元座標領域D2内には2つの走査平面が存在している。また、二次元座標領域D2は、上記のように2つの走査平面が存在しているので、厳密に言えば、当該二次元座標領域D2の法線方向にWの厚さを持つ領域となる。この厚さWは、外枠2の厚さと同じである。   Further, in order to prevent the light emitted from the mirrors of the optical deflector 40 of each of the optical devices 3 and 4 from affecting each other, the mutual scanning planes are configured not to be the same plane. That is, the scanning planes are shifted in the normal direction so as to be parallel to each other. Thus, there are two scanning planes in the two-dimensional coordinate area D2. Further, since the two-dimensional coordinate region D2 has two scanning planes as described above, strictly speaking, the two-dimensional coordinate region D2 is a region having a thickness of W in the normal direction of the two-dimensional coordinate region D2. This thickness W is the same as the thickness of the outer frame 2.

また、光源31には、光が出射される部位に光学フィルタ41が貼設されている。また、受光部33には、光を受光する部位に光学フィルタ41と同じ特性の光学フィルタ42が貼設されている。これらの光学フィルタ41,42は、所定の波長の光のみを通過させるバンドパスフィルタである。これにより、光源31から出射される光は、光学フィルタ41により所定の波長のみの光となり、走査平面に出射される。また、受光部33が受光する光は、光学フィルタ42により所定の波長のみの光となる。   In addition, an optical filter 41 is attached to the light source 31 at a portion where light is emitted. In the light receiving unit 33, an optical filter 42 having the same characteristics as the optical filter 41 is attached to a portion that receives light. These optical filters 41 and 42 are band-pass filters that allow only light having a predetermined wavelength to pass therethrough. Thereby, the light emitted from the light source 31 becomes light having a predetermined wavelength by the optical filter 41 and is emitted to the scanning plane. Further, the light received by the light receiving unit 33 becomes light having a predetermined wavelength by the optical filter 42.

以上が二次元座標検知装置11の構成である。   The above is the configuration of the two-dimensional coordinate detection apparatus 11.

次に、このように構成された二次元座標検知装置11の座標(二次元座標)の検知方法について説明する。走査部32が二次元座標領域D2内を走査しているとき、走査部32からの光(レーザ光)が、二次元座標領域D2内の物体に遮られた場合と遮られなかった場合とでは、受光部33が受光する光のレベル(例えば、光エネルギー等)が異なる。すなわち、遮られた場合には、遮られなかった場合に比べ、極端に低くなる(0又は0に同等)。   Next, a method for detecting coordinates (two-dimensional coordinates) of the two-dimensional coordinate detection apparatus 11 configured as described above will be described. When the scanning unit 32 scans the inside of the two-dimensional coordinate region D2, the light (laser light) from the scanning unit 32 is blocked or not blocked by the object in the two-dimensional coordinate region D2. The light level (for example, light energy) received by the light receiving unit 33 is different. That is, when blocked, it is extremely lower (equivalent to 0 or 0) than when not blocked.

二次元座標検知装置11は、受光部33が受光した光のレベルが低くなったときに、走査部32が光を出射していた角度を検知する。走査部32の光偏向器40に供給していた電圧波形に応じてミラーの偏向角が一意に決定される。このため、二次元座標検知装置11は、ミラーの偏向角より光を出射していた角度を検知している。このときの角度は、光学装置(3又は4)と物体とを結ぶ直線(詳細には、ミラーの反射中心と物体とを結ぶ直線)と、上辺21の中心線(詳細には、上辺21の中心線に平行で、且つミラーの光源31からレーザ光の反射中心を通る直線)との2つの直線のなす角度(鋭角側の角度)である。以下、この角度を「検知角」という。   The two-dimensional coordinate detection device 11 detects the angle at which the scanning unit 32 emits light when the level of light received by the light receiving unit 33 becomes low. The mirror deflection angle is uniquely determined according to the voltage waveform supplied to the optical deflector 40 of the scanning unit 32. For this reason, the two-dimensional coordinate detector 11 detects the angle at which light is emitted from the deflection angle of the mirror. The angle at this time is the straight line connecting the optical device (3 or 4) and the object (specifically, the straight line connecting the reflection center of the mirror and the object) and the center line of the upper side 21 (specifically, the upper side 21 It is an angle (angle on the acute angle side) formed by two straight lines and a straight line parallel to the center line and passing through the reflection center of the laser beam from the light source 31 of the mirror. Hereinafter, this angle is referred to as “detection angle”.

このようにして、二次元座標検知装置11は、一対の光学装置3,4のそれぞれの受光部33が受光した光のレベルが低くなったときのそれぞれの検知角を検知する。また、一対の光学装置3,4間の距離、(詳細には各光学装置3,4のミラーの光源31からのレーザ光の反射中心間の距離)は、規定の値である。   In this way, the two-dimensional coordinate detection device 11 detects each detection angle when the level of the light received by each light receiving unit 33 of the pair of optical devices 3 and 4 becomes low. The distance between the pair of optical devices 3 and 4 (specifically, the distance between the reflection centers of the laser beams from the light sources 31 of the mirrors of the optical devices 3 and 4) is a specified value.

右側の光学装置3の検知角と、左側の光学装置4の検知角と、右側の光学装置3と左側の光学装置4間の距離とが既知となる、すなわち、一辺とその両端の角が既知となるので、右側の光学装置3、左側の光学装置4、及び物体の3点を頂点とする三角形が一意に決定される。そして、二次元座標検知装置11は、三角測量法により、二次元座標領域D2内の物体の座標P(x,y)を検知できる。このとき、座標P(x,y)の、第1成分xは右辺23及び左辺24の長手方向(図2の左右方向)の位置を示し、第2成分yは上辺21及び下辺22の長手方向(図2の上下方向)の位置を示す。以下、上辺21及び下辺22の長手方向をX軸方向といい、右辺23及び左辺24の長手方向をY軸方向という場合がある。   The detection angle of the right optical device 3, the detection angle of the left optical device 4, and the distance between the right optical device 3 and the left optical device 4 are known, that is, the angles of one side and both ends thereof are known. Therefore, the right optical device 3, the left optical device 4, and a triangle whose apexes are three points of the object are uniquely determined. The two-dimensional coordinate detection device 11 can detect the coordinates P (x, y) of the object in the two-dimensional coordinate region D2 by the triangulation method. At this time, the first component x of the coordinate P (x, y) indicates the position of the right side 23 and the left side 24 in the longitudinal direction (left-right direction in FIG. 2), and the second component y is the longitudinal direction of the upper side 21 and the lower side 22. The position in the (vertical direction in FIG. 2) is shown. Hereinafter, the longitudinal direction of the upper side 21 and the lower side 22 may be referred to as the X-axis direction, and the longitudinal direction of the right side 23 and the left side 24 may be referred to as the Y-axis direction.

図1に示されるように、複数の二次元座標検知装置11〜15は、各々が検知する座標を含む二次元座標領域D2が互いに平行となるように、各二次元座標領域D2の面に対して法線方向に並設される。このとき、互いの二次元座標検知装置は、間隔が設けられずに並設されている。なお、互いの二次元座標検知装置は、所定の間隔を設けて並設されてもよい。また、三次元座標検知装置1は、大型ディスプレイやホワイトボードに搭載されるときには、複数の二次元座標検知装置11〜15の各々が検知する座標を含む二次元座標領域D2が、大型ディスプレイの表示面(画面)やホワイトボードの描画面に平行となるように配置される。   As shown in FIG. 1, the plurality of two-dimensional coordinate detection devices 11 to 15 are arranged on the surface of each two-dimensional coordinate region D2 so that the two-dimensional coordinate regions D2 including the coordinates detected by each of the two-dimensional coordinate detection devices 11 to 15 are parallel to each other. Are arranged side by side in the normal direction. At this time, the two-dimensional coordinate detectors are arranged side by side without any interval. Note that the two-dimensional coordinate detection devices may be arranged in parallel at a predetermined interval. When the three-dimensional coordinate detection device 1 is mounted on a large display or whiteboard, a two-dimensional coordinate region D2 including coordinates detected by each of the plurality of two-dimensional coordinate detection devices 11 to 15 is displayed on the large display. It is arranged so as to be parallel to the surface (screen) and the drawing surface of the whiteboard.

以下、大型ディスプレイの表示面(画面)又はホワイトボードの描画面を「目標領域T」という。   Hereinafter, the display surface (screen) of the large display or the drawing surface of the whiteboard is referred to as “target region T”.

また、複数の二次元座標検知装置11〜15のそれぞれを明確に区別する場合には、当該複数の二次元座標検知装置11〜15の並設された並び順で、第1二次元座標検知装置11、第2二次元座標検知装置12、第3二次元座標検知装置13、第4二次元座標検知装置14、及び第5二次元座標検知装置15という。このとき、大型ディスプレイの表示面(画面)又はホワイトボードの描画面に最も近い側に配設された二次元座標検知装置を第1二次元座標検知装置11という。   In addition, when each of the plurality of two-dimensional coordinate detection devices 11 to 15 is clearly distinguished, the first two-dimensional coordinate detection device is arranged in the order in which the plurality of two-dimensional coordinate detection devices 11 to 15 are arranged in parallel. 11, a second two-dimensional coordinate detection device 12, a third two-dimensional coordinate detection device 13, a fourth two-dimensional coordinate detection device 14, and a fifth two-dimensional coordinate detection device 15. At this time, the two-dimensional coordinate detection device disposed on the side closest to the display surface (screen) of the large display or the drawing surface of the whiteboard is referred to as a first two-dimensional coordinate detection device 11.

また、各二次元座標検知装置11〜15が座標を検知する対象となる各二次元座標領域D2のそれぞれを明確に区別する場合には、第1二次元座標検知装置11が座標を検知する対象となる二次元座標領域を第1二次元座標領域D21といい、第2二次元座標検知装置12が座標を検知する対象となる二次元座標領域を第2二次元座標領域D22といい、第3二次元座標検知装置13が座標を検知する対象となる二次元座標領域を第3二次元座標領域D23といい、第4二次元座標検知装置14が座標を検知する対象となる二次元座標領域を第4二次元座標領域D24といい、第5二次元座標検知装置15が座標を検知する対象となる二次元座標領域を第5二次元座標領域D25という。また、各二次元座標検知装置11〜15が検知した座標P(x,y)をそれぞれ明確に区別する場合には、第1二次元座標検知装置11が検知した物体の座標を第1座標P1(x1,y1)といい、第2二次元座標検知装置12が検知した物体の座標を第2座標P2(x2,y2)といい、第3二次元座標検知装置13が検知した物体の座標を第3座標P3(x3,y3)といい、第4二次元座標検知装置14が検知した物体の座標を第4座標P4(x4,y4)といい、第5二次元座標検知装置15が検知した物体の座標を第5座標P5(x5,y5)という。   Moreover, when each two-dimensional coordinate area | region D2 used as the object from which each two-dimensional coordinate detection apparatus 11-15 detects a coordinate clearly distinguishes, the object from which the first two-dimensional coordinate detection apparatus 11 detects coordinates The two-dimensional coordinate region that becomes the first two-dimensional coordinate region D21, the second two-dimensional coordinate region that is the target for which the second two-dimensional coordinate detection device 12 detects the coordinates is called the second two-dimensional coordinate region D22, and the third The two-dimensional coordinate area for which the two-dimensional coordinate detection device 13 is to detect the coordinates is referred to as a third two-dimensional coordinate area D23, and the second two-dimensional coordinate detection device 14 for which the coordinates are to be detected. The second two-dimensional coordinate region D24 is referred to as a fifth two-dimensional coordinate region D25. When the coordinates P (x, y) detected by the two-dimensional coordinate detection devices 11 to 15 are clearly distinguished from each other, the coordinates of the object detected by the first two-dimensional coordinate detection device 11 are set as the first coordinates P1. The coordinates of the object detected by the second two-dimensional coordinate detection device 12 are referred to as (x1, y1), and the coordinates of the object detected by the third two-dimensional coordinate detection device 13 are referred to as the second coordinates P2 (x2, y2). The third coordinate P3 (x3, y3) is called, the coordinate of the object detected by the fourth two-dimensional coordinate detection device 14 is called the fourth coordinate P4 (x4, y4), and the fifth two-dimensional coordinate detection device 15 detects it. The coordinates of the object are referred to as fifth coordinates P5 (x5, y5).

図4は、三次元座標領域D3の説明のために図1の複数の二次元座標検知装置11〜15を省略して、複数の二次元座標領域D21〜D25を示した模式図である。各二次元座標領域D21〜D25は、各二次元座標検知装置11〜15の並設された並び順で並ぶ。すなわち、目標領域Tに最も近い位置に第1二次元座標領域D21が配置され、目標領域Tに最も遠い位置に第5二次元座標領域D25が配置される。また、第1二次元座標検知装置11は、大型ディスプレイの表面又はホワイトボードの描画面に接触した状態で設置される。このため、第1二次元座標領域D21は、目標領域Tに接触した領域となる。   FIG. 4 is a schematic diagram showing a plurality of two-dimensional coordinate regions D21 to D25, omitting the plurality of two-dimensional coordinate detection devices 11 to 15 in FIG. 1 for the description of the three-dimensional coordinate region D3. The two-dimensional coordinate regions D21 to D25 are arranged in the order in which the two-dimensional coordinate detection devices 11 to 15 are arranged in parallel. That is, the first two-dimensional coordinate area D21 is arranged at a position closest to the target area T, and the fifth two-dimensional coordinate area D25 is arranged at a position farthest from the target area T. The first two-dimensional coordinate detection device 11 is installed in contact with the surface of the large display or the drawing surface of the whiteboard. For this reason, the first two-dimensional coordinate area D21 is an area in contact with the target area T.

ここで、第1二次元座標領域D21側が、本発明における「前記二次元座標領域の並設方向において前記指示部が指し示す側の端にある二次元座標領域」に相当する。また、目標領域Tが、本発明における「所定の領域」に相当する。また、第1二次元座標領域D21と目標領域Tとが接触していることが、本発明における「前記所定の領域は、前記二次元座標領域の並設方向において前記指示部が指し示す側の端にある二次元座標領域上に位置」することに相当する。   Here, the first two-dimensional coordinate region D21 side corresponds to the “two-dimensional coordinate region at the end pointed by the instruction unit in the parallel direction of the two-dimensional coordinate region” in the present invention. The target area T corresponds to a “predetermined area” in the present invention. Further, the fact that the first two-dimensional coordinate area D21 and the target area T are in contact with each other in the present invention means that “the predetermined area is an end pointed by the pointing unit in the direction in which the two-dimensional coordinate areas are arranged side by side. Corresponds to “position on a two-dimensional coordinate area”.

三次元座標領域D3は、平面状の二次元座標領域(D21〜D25)に対して、当該領域の面の法線方向に大きさを持つ直方体状の領域である。このため、三次元座標領域D3内の座標(三次元座標)は、二次元座標領域(D21〜D25)内の座標P(x,y)に、第3成分として当該領域の面の法線方向の位置を加えた座標P(x,y,z)となる。また、三次元座標領域D3内の座標P(x,y,z)の第1成分xと第2成分yは、二次元座標領域D2内の座標P(x,y)の第1成分xと第2成分yと同様に、それぞれがX軸方向、Y軸方向の位置を示す。以下、二次元座標領域(D21〜D25)の面の法線方向をZ軸方向という場合がある。   The three-dimensional coordinate area D3 is a rectangular parallelepiped area having a size in the normal direction of the surface of the planar two-dimensional coordinate area (D21 to D25). For this reason, the coordinates (three-dimensional coordinates) in the three-dimensional coordinate area D3 are set to the coordinates P (x, y) in the two-dimensional coordinate areas (D21 to D25) as the third component normal direction of the surface of the area. The coordinates P (x, y, z) are added. Further, the first component x and the second component y of the coordinate P (x, y, z) in the three-dimensional coordinate region D3 are the same as the first component x of the coordinate P (x, y) in the two-dimensional coordinate region D2. Similarly to the second component y, each indicates a position in the X-axis direction and the Y-axis direction. Hereinafter, the normal direction of the surface of the two-dimensional coordinate region (D21 to D25) may be referred to as the Z-axis direction.

三次元座標領域D3のZ軸方向の大きさは、各二次元座標領域D21〜D25の厚さ(Z軸方向の長さ)Wが5つ分で「5×W」となる。   The size of the three-dimensional coordinate region D3 in the Z-axis direction is “5 × W” when the thicknesses (lengths in the Z-axis direction) W of the two-dimensional coordinate regions D21 to D25 are five.

図5は、三次元座標検知装置1の利用者の腕(物体)101が挿入されたときの三次元座標領域D3を示す模式図である。なお、図5は、図1及び図4の下側(各二次元座標検知装置11〜15の下辺22側)から上側(各二次元座標検知装置11〜15の上辺21側)に向かって見たときの図である。腕101は、第5二次元座標領域D25から目標領域Tに向かって挿入されている。このとき、腕101は、図5の手前から奥に向かって且つ図5の右側から左側に向かって斜めに挿入されている。また、腕101の先端(すなわち、指先)は、第2二次元座標領域D22に位置している。このため、第1二次元座標領域D21内には腕101は位置していない。従って、第1二次元座標検知装置11は腕101の座標を検知せず、第2二次元座標検知装置12〜第5二次元座標検知装置15は、各二次元座標領域D22〜D25内に位置する腕101の座標をそれぞれ検知する。   FIG. 5 is a schematic diagram showing the three-dimensional coordinate region D3 when the user's arm (object) 101 of the three-dimensional coordinate detection apparatus 1 is inserted. 5 is viewed from the lower side (the lower side 22 side of each of the two-dimensional coordinate detection devices 11 to 15) to the upper side (the upper side 21 side of each of the two-dimensional coordinate detection devices 11 to 15). FIG. The arm 101 is inserted from the fifth two-dimensional coordinate area D25 toward the target area T. At this time, the arm 101 is inserted obliquely from the front of FIG. 5 to the back and from the right side to the left side of FIG. The tip of the arm 101 (that is, the fingertip) is located in the second two-dimensional coordinate area D22. For this reason, the arm 101 is not located in the first two-dimensional coordinate area D21. Accordingly, the first two-dimensional coordinate detection device 11 does not detect the coordinates of the arm 101, and the second two-dimensional coordinate detection device 12 to the fifth two-dimensional coordinate detection device 15 are located in the respective two-dimensional coordinate regions D22 to D25. The coordinates of the arm 101 to be detected are detected.

腕101は、各二次元座標領域D21〜D25と交差する面において広さがあるため、各二次元座標領域D21〜D25内のある程度の範囲に(複数の座標に跨って)位置している。このため、各二次元座標検知装置11〜15の走査部32から出射したレーザ光は、腕101に遮られている範囲において、受光部33が受光する光のレベルが低下する。   Since the arm 101 has a width in a plane that intersects with each of the two-dimensional coordinate areas D21 to D25, the arm 101 is located in a certain range (straddling a plurality of coordinates) in each of the two-dimensional coordinate areas D21 to D25. For this reason, the level of the light which the light-receiving part 33 light-receives in the range which the laser beam radiate | emitted from the scanning part 32 of each two-dimensional coordinate detection apparatus 11-15 is interrupted by the arm 101 falls.

図6は、図5の状態において、各二次元座標検知装置11〜15の受光部33が受光した光のレベルが低下した座標を示す模式図である。なお、図6(a)〜(f)のそれぞれは、二次元座標領域D2を目標領域Tに向かって見たとき(図5の上方向から下方向へ見たとき)の図である。図6(a)は第5二次元座標領域D25を示し、図6(b)は第4二次元座標領域D24を示し、図6(c)は第3二次元座標領域D23を示し、図6(d)は第2二次元座標領域D22を示し、図6(e)は第1二次元座標領域D21を示す。また、図6(f)は、第2二次元座標検知装置12〜第5二次元座標検知装置15の光のレベルが低下した座標を重ね合わせた概念図である。なお、図6では分かりやすくするために、座標を升目状で示している。また、一つの升目の各辺は、X軸方向及びY軸方向の大きさを1としている。   FIG. 6 is a schematic diagram illustrating coordinates in which the level of light received by the light receiving unit 33 of each of the two-dimensional coordinate detection devices 11 to 15 is lowered in the state of FIG. Each of FIGS. 6A to 6F is a diagram when the two-dimensional coordinate region D2 is viewed toward the target region T (when viewed from the upper side to the lower side in FIG. 5). 6A shows the fifth two-dimensional coordinate area D25, FIG. 6B shows the fourth two-dimensional coordinate area D24, FIG. 6C shows the third two-dimensional coordinate area D23, and FIG. (D) shows the second two-dimensional coordinate region D22, and FIG. 6 (e) shows the first two-dimensional coordinate region D21. FIG. 6F is a conceptual diagram in which the coordinates of the light levels of the second two-dimensional coordinate detection device 12 to the fifth two-dimensional coordinate detection device 15 are overlapped. In FIG. 6, the coordinates are shown in a grid for easy understanding. Each side of one square has a size of 1 in the X-axis direction and the Y-axis direction.

第5二次元座標検知装置15は、図6(a)に示されるように、座標P(8,0),座標P(8,2),座標P(10,0),及び座標P(10,2)の4つの点(座標)を頂点とする四角形の領域で、受光部33が受光した光のレベルが低下する。以降、受光部33が受光した光のレベルが低下した領域の形を「物体イメージ」という。この物体イメージ(四角形の領域)の重心座標(中心となる座標)は、P(9,1)となる。なお、この重心座標にZ軸方向の位置を加えた三次元座標で表現する場合には、P(9,1,4.5W)となる。ここで、Z軸成分の4.5Wとは、第1二次元座標領域D21〜第4二次元座標領域D24の4つの厚さWに(4W)、第5二次元座標領域D25の厚さWの半分(0.5W)を足したものである。以下、このように、第5二次元座標領域D25内の物体イメージの重心座標を三次元座標で表現したものを「第5重心座標」という。   As shown in FIG. 6A, the fifth two-dimensional coordinate detection device 15 has coordinates P (8,0), coordinates P (8,2), coordinates P (10,0), and coordinates P (10 , 2), the level of light received by the light receiving unit 33 is lowered in a rectangular area having four points (coordinates) as vertices. Hereinafter, the shape of the area where the level of light received by the light receiving unit 33 is reduced is referred to as “object image”. The barycentric coordinates (coordinates at the center) of this object image (rectangular area) are P (9, 1). It should be noted that P (9, 1, 4.5 W) is expressed in three-dimensional coordinates obtained by adding the position in the Z-axis direction to the barycentric coordinates. Here, the 4.5 W of the Z-axis component means that the four thicknesses W of the first two-dimensional coordinate region D21 to the fourth two-dimensional coordinate region D24 are (4W) and the thickness W of the fifth two-dimensional coordinate region D25. Is half (0.5W). Hereinafter, the representation of the center-of-gravity coordinates of the object image in the fifth two-dimensional coordinate area D25 in this way as three-dimensional coordinates is referred to as “fifth center-of-gravity coordinates”.

ここで、第5重心座標のZ軸方向の位置を4.5Wのように決定するように、「各二次元座標領域D21〜D25の厚さWに応じてZ軸方向の位置を決定する」ことが、本発明における「前記複数の二次元座標検知装置間の間隔に基づいて、前記三次元座標領域内の物体の前記二次元座標領域の面に対する法線方向の位置を決定する」ことに相当する。   Here, “the position in the Z-axis direction is determined according to the thickness W of each of the two-dimensional coordinate regions D21 to D25” so that the position in the Z-axis direction of the fifth barycentric coordinate is determined as 4.5 W. In the present invention, “determines the position of the object in the three-dimensional coordinate region in the normal direction relative to the surface of the two-dimensional coordinate region based on the interval between the plurality of two-dimensional coordinate detection devices”. Equivalent to.

第4二次元座標検知装置14は、図6(b)に示されるように、座標P(7,1),座標P(7,3),座標P(9,1),及び座標P(9,3)の4つの点(座標)を頂点とする四角形の領域で、受光部33が受光した光のレベルが低下する。この物体イメージ(四角形の領域)の重心座標(中心となる座標)は、P(8,2)となる。なお、この重心座標にZ軸方向の位置を加えた三次元座標で表現する場合には、P(8,2,3.5W)となる。以下、第4二次元座標領域D24内の物体イメージの重心座標を三次元座標で表現したものを「第4重心座標」という。   As shown in FIG. 6B, the fourth two-dimensional coordinate detection device 14 has coordinates P (7, 1), coordinates P (7, 3), coordinates P (9, 1), and coordinates P (9 3), the level of light received by the light receiving unit 33 is reduced in a rectangular area having four points (coordinates) as vertices. The barycentric coordinates (coordinates at the center) of this object image (rectangular area) are P (8, 2). It should be noted that P (8, 2, 3.5 W) is expressed in three-dimensional coordinates obtained by adding the position in the Z-axis direction to the barycentric coordinates. Hereinafter, the centroid coordinates of the object image in the fourth two-dimensional coordinate area D24 expressed as three-dimensional coordinates are referred to as “fourth centroid coordinates”.

第3二次元座標検知装置13は、図6(c)に示されるように、座標P(6,3),座標P(6,4),座標P(8,3),及び座標P(8,4)の4つの点(座標)を頂点とする四角形の領域で、受光部33が受光した光のレベルが低下する。この物体イメージ(四角形の領域)の重心座標(中心となる座標)は、P(7,3.5)となる。なお、この重心座標にZ軸方向の位置を加えた三次元座標で表現する場合には、P(7,3.5,2.5W)となる。以下、第3二次元座標領域D23内の物体イメージの重心座標を三次元座標で表現したものを「第3重心座標」という。   As shown in FIG. 6C, the third two-dimensional coordinate detection device 13 has coordinates P (6, 3), coordinates P (6, 4), coordinates P (8, 3), and coordinates P (8 , 4) in the quadrangular region having the four points (coordinates) as vertices, the level of light received by the light receiving unit 33 decreases. The barycentric coordinates (coordinates at the center) of this object image (rectangular region) are P (7, 3.5). It should be noted that P (7, 3.5, 2.5 W) is expressed in the three-dimensional coordinates obtained by adding the position in the Z-axis direction to the barycentric coordinates. Hereinafter, the centroid coordinates of the object image in the third two-dimensional coordinate area D23 expressed as three-dimensional coordinates are referred to as “third centroid coordinates”.

第2二次元座標検知装置12は、図6(d)に示されるように、座標P(6,3)で、受光部33が受光した光のレベルが低下する(重心座標も同じ)。なお、Z軸の位置を加えた三次元座標で表現する場合には、P(6,3,1.5W)となる。以下、第2二次元座標領域D22内の物体イメージの重心座標を三次元座標で表現したものを「第2重心座標」という。   As shown in FIG. 6D, in the second two-dimensional coordinate detection device 12, the level of the light received by the light receiving unit 33 is reduced at the coordinates P (6, 3) (the centroid coordinates are the same). It should be noted that P (6, 3, 1.5 W) is expressed in three-dimensional coordinates including the Z-axis position. Hereinafter, the centroid coordinates of the object image in the second two-dimensional coordinate area D22 expressed as three-dimensional coordinates are referred to as “second centroid coordinates”.

第1二次元座標検知装置11は、腕101が第1二次元座標領域D21内に位置していないため、図6(e)に示されるように、受光部33が受光した光のレベルが低下する領域が存在しない。図6の例では第1二次元座標領域D21内に物体イメージが存在しないが、第1二次元座標領域D21内に物体イメージがある場合には、この物体イメージの重心座標を三次元座標で表現したものを「第1重心座標」という。   In the first two-dimensional coordinate detection device 11, since the arm 101 is not located in the first two-dimensional coordinate region D21, the level of the light received by the light receiving unit 33 is lowered as shown in FIG. There is no area to perform. In the example of FIG. 6, there is no object image in the first two-dimensional coordinate area D21, but when there is an object image in the first two-dimensional coordinate area D21, the barycentric coordinates of this object image are expressed in three-dimensional coordinates. This is called “first barycentric coordinates”.

上記のように、各二次元座標領域D21〜D25内の物体イメージは、各二次元座標領域D21〜D25の面による、物体(腕101)の断面形状を表わすこととなる。
例えば、第5二次元座標検知装置15においては、「座標P(8,0),座標P(8,2),座標P(10,0),及び座標P(10,2)の4つの点(座標)を頂点とする四角形」は、腕101が第5二次元座標領域D25と交差する面の断面形状を表わしている。このように、物体イメージは、本発明における「当該二次元座標検知装置の二次元座標領域と交差する前記三次元座標領域内の物体の断面の外形を示す1又は複数の座標の集合」に相当する。
As described above, the object image in each of the two-dimensional coordinate areas D21 to D25 represents the cross-sectional shape of the object (arm 101) by the surface of each of the two-dimensional coordinate areas D21 to D25.
For example, in the fifth two-dimensional coordinate detection device 15, “four points of coordinates P (8, 0), coordinates P (8, 2), coordinates P (10, 0), and coordinates P (10, 2)”. "Rectangle with (coordinate) as vertex" represents the cross-sectional shape of the surface where the arm 101 intersects the fifth two-dimensional coordinate region D25. As described above, the object image corresponds to “a set of one or more coordinates indicating the outer shape of the cross section of the object in the three-dimensional coordinate region intersecting the two-dimensional coordinate region of the two-dimensional coordinate detection device” in the present invention. To do.

また、各二次元座標領域D22〜D25内の物体イメージを当該領域の並び順に従って並べることで、三次元座標領域D3内の物体の外形を検知することができる。   Further, by arranging the object images in each of the two-dimensional coordinate areas D22 to D25 according to the arrangement order of the areas, the outer shape of the object in the three-dimensional coordinate area D3 can be detected.

第5二次元座標領域D25及び第4二次元座標領域D24の物体イメージが同じ大きさ(3×3の正方形領域)であり、第5二次元座標領域D25から第4二次元座標領域D24に向かって物体イメージが図6の右下方向から左上方向に移動している。また、第3二次元座標領域D23の物体イメージの大きさ(3×2の長方形領域)が第4二次元座標領域D24の物体イメージの大きさに比べて小さくなり、第4二次元座標領域D24から第3二次元座標領域D23に向かって物体イメージが図6の右下方向から左上方向に移動している。また、第2二次元座標領域D22の物体イメージの大きさ(1×1の領域)が第3二次元座標領域D23の物体イメージの大きさに比べて小さくなっている。第1二次元座標領域D21は物体イメージが存在しない。   The object images of the fifth two-dimensional coordinate area D25 and the fourth two-dimensional coordinate area D24 have the same size (3 × 3 square area), and go from the fifth two-dimensional coordinate area D25 to the fourth two-dimensional coordinate area D24. Thus, the object image moves from the lower right direction to the upper left direction in FIG. Further, the size of the object image in the third two-dimensional coordinate area D23 (3 × 2 rectangular area) is smaller than the size of the object image in the fourth two-dimensional coordinate area D24, and the fourth two-dimensional coordinate area D24. The object image moves from the lower right direction to the upper left direction in FIG. 6 toward the third two-dimensional coordinate area D23. In addition, the size of the object image in the second two-dimensional coordinate area D22 (1 × 1 area) is smaller than the size of the object image in the third two-dimensional coordinate area D23. The first two-dimensional coordinate area D21 has no object image.

このことより、三次元座標検知装置1は、三次元座標領域D3内の物体(腕101)の外形がその先端に向かうにつれ次第に細くなっていき、且つ、図6の右下方向から左上方向に向かって斜めになっていると検知できる。この検知結果は、上述したように、腕101が図5の手前から奥に向かって且つ図5の右側から左側に向かって斜めに挿入されている、すなわち、図6の右下方向から左上方向に向かって挿入されていることに一致することより、正しく物体の外形を検知できていることが分かる。   From this, the three-dimensional coordinate detection apparatus 1 gradually becomes thinner as the outer shape of the object (arm 101) in the three-dimensional coordinate region D3 moves toward the tip, and from the lower right direction to the upper left direction in FIG. It can be detected when it is slanted. As described above, this detection result is that the arm 101 is inserted obliquely from the front side to the back side in FIG. 5 and from the right side to the left side in FIG. 5, that is, from the lower right direction to the upper left direction in FIG. It can be seen that the outer shape of the object can be correctly detected by matching that the object is inserted toward.

このように、「各二次元座標領域D21〜D25内の物体イメージから物体の外形を検知する」ことが、本発明における「前記複数の二次元座標検知装置のそれぞれが検知した1又は複数の座標の集合から前記三次元座標領域内にある物体の外形を検知する」ことに相当する。   In this way, “detecting the outer shape of the object from the object image in each of the two-dimensional coordinate areas D21 to D25” means “one or more coordinates detected by each of the plurality of two-dimensional coordinate detection devices” in the present invention. The outer shape of the object in the three-dimensional coordinate region is detected from the set of

また、三次元座標領域D3内の物体の方向、例えば図5であれば腕101の方向が、当該三次元座標検知装置1の利用者にとって意味を持つ場合がある。例えば、利用者は、所定の位置(目標領域T内の所定の二次元座標。以下、「目標点TP」という)を腕101の先端、すなわち指先で指すような場合がある。このような場合には、必ずしも指先が目標領域Tに接触しているとは限らず、指先が空中に浮いている状態である場合も充分に考えられる。このような場合であっても、指先が指している目標領域T内の目標点TPを三次元座標検知装置1が検知できると、利用者によって、三次元座標検知装置1の利便性が向上する。ここで、目標点TPが、本発明における「所定の領域内の所定の座標」に相当する。   In addition, the direction of the object in the three-dimensional coordinate area D3, for example, the direction of the arm 101 in FIG. 5 may be meaningful to the user of the three-dimensional coordinate detection apparatus 1. For example, the user may point to a predetermined position (predetermined two-dimensional coordinates in the target region T; hereinafter referred to as “target point TP”) with the tip of the arm 101, that is, the fingertip. In such a case, the fingertip is not necessarily in contact with the target area T, and the case where the fingertip is floating in the air can be considered sufficiently. Even in such a case, if the three-dimensional coordinate detection device 1 can detect the target point TP in the target region T pointed to by the fingertip, the convenience of the three-dimensional coordinate detection device 1 is improved by the user. . Here, the target point TP corresponds to “predetermined coordinates in a predetermined region” in the present invention.

このとき、指先が第1二次元座標領域D21内に位置しているときのみ目標点TPを検知できるようにするよりは、例えば、第2二次元座標領域D22内に位置しているときであっても目標領域T内の目標点TPを検知できた方が、三次元座標検知装置1の利便性が向上する。すなわち、指先が三次元座標領域D3内に位置している場合には、可能な限り指先が指している目標領域T内の目標点TPを検知できるようにすると、三次元座標検知装置1の利便性が向上する。   At this time, for example, when the fingertip is located in the first two-dimensional coordinate area D21, the target point TP is detected only when the fingertip is located in the first two-dimensional coordinate area D21. However, the convenience of the three-dimensional coordinate detection apparatus 1 is improved when the target point TP in the target region T can be detected. That is, when the fingertip is located in the three-dimensional coordinate area D3, it is possible to detect the target point TP in the target area T pointed to by the fingertip as much as possible. Improves.

このため、三次元座標検知装置1は、まず三次元座標領域D3内の物体の先端(腕101の先端、すなわち指先)を検知する。このとき、三次元座標検知装置1は、各二次元座標領域D21〜D25のうち物体イメージが存在している二次元座標領域の中で、最も目標領域Tに近い二次元座標領域(図6の例では第2二次元座標領域D22)内の物体イメージが物体の先端であると検知している。   For this reason, the three-dimensional coordinate detection apparatus 1 first detects the tip of the object (the tip of the arm 101, that is, the fingertip) in the three-dimensional coordinate region D3. At this time, the three-dimensional coordinate detection device 1 has a two-dimensional coordinate region (in FIG. 6) closest to the target region T among the two-dimensional coordinate regions D21 to D25 in which the object image exists. In the example, it is detected that the object image in the second two-dimensional coordinate area D22) is the tip of the object.

このように「物体の先端を検知する」ことが、本発明における「前記三次元座標領域内にある物体の1又は複数の座標の集合を検知した各二次元座標検知装置のうち、前記所定の領域に最も近い二次元座標領域に対応した二次元座標検知装置が検知した1又は複数の座標の集合を前記物体の指示部として検知する」ことに相当する。また、物体の先端(腕101の先端、すなわち指先)が、本発明における「物体の指示部」に相当する。   In this way, “detecting the tip of an object” means “predetermined among the two-dimensional coordinate detection devices that detect a set of one or a plurality of coordinates of an object in the three-dimensional coordinate region” in the present invention. This corresponds to “detecting a set of one or a plurality of coordinates detected by the two-dimensional coordinate detection device corresponding to the two-dimensional coordinate region closest to the region as an instruction unit of the object”. Further, the tip of the object (the tip of the arm 101, that is, the fingertip) corresponds to the “object instruction unit” in the present invention.

そして、三次元座標検知装置1は、この物体の先端がある二次元座標領域内の物体イメージの重心座標を検知する(図6の例では、第2重心座標P(6,3,1.5W))。続いて、三次元座標検知装置1は、最も目標領域Tに近い二次元座標領域の目標領域Tとは反対側に隣接した二次元座標領域(図6の例では、第3二次元座標領域D23)内の物体イメージの重心座標を検知する(図6の例では、第3重心座標P(7,3.5,2.5W))。   Then, the three-dimensional coordinate detection device 1 detects the barycentric coordinates of the object image in the two-dimensional coordinate area where the tip of the object is located (in the example of FIG. 6, the second barycentric coordinates P (6, 3, 1.5W )). Subsequently, the three-dimensional coordinate detection apparatus 1 uses a two-dimensional coordinate area adjacent to the opposite side of the target area T of the two-dimensional coordinate area closest to the target area T (in the example of FIG. 6, a third two-dimensional coordinate area D23). ) Is detected (in the example of FIG. 6, the third barycentric coordinates P (7, 3.5, 2.5 W)).

このようにして得られた2つの重心座標から方向ベクトルLを決定する。図6の例では、方向ベクトルは、次のように決定される。   A direction vector L is determined from the two barycentric coordinates thus obtained. In the example of FIG. 6, the direction vector is determined as follows.

方向ベクトルL=(6,3,1.5W)−(7,3.5,2.5W)
=(−1,−0.5,−W)
このようにして決定された方向ベクトルLと、物体の先端の重心座標(図6の例では、第2重心座標P(6,3,1.5W))とから、目標領域T内の目標点TPを検知できる。図7(a)に示されるように、一般的に、方向ベクトルLを(l,m,n)、物体の先端の座標を(x,y,z)、物体の先端と目標点TPとのZ軸方向の距離をvとすると、目標点TPの座標(p,q,r)の各成分は、それぞれ、
p=x−v・l/n、
q=y−v・m/n、
r=z−v、
となる。
Direction vector L = (6, 3, 1.5 W) − (7, 3.5, 2.5 W)
= (-1, -0.5, -W)
From the direction vector L thus determined and the center of gravity coordinates of the tip of the object (in the example of FIG. 6, the second center of gravity coordinates P (6, 3, 1.5 W)), the target point in the target region T TP can be detected. As shown in FIG. 7A, generally, the direction vector L is (l, m, n), the coordinates of the tip of the object are (x, y, z), the tip of the object and the target point TP. When the distance in the Z-axis direction is v, each component of the coordinates (p, q, r) of the target point TP is
p = x−v · l / n,
q = y−v · m / n,
r = z−v,
It becomes.

図6の例では、方向ベクトルLが(l,m,n)=(−1,−0.5,−W)、物体の先端の座標が(x,y,z)=(6,3,1.5W)、物体の先端と目標点とのZ軸方向の距離v=1.5Wである。これより、目標点TPの座標は、
p=6−1.5W・(−1)/(−W)=4.5、
q=3−1.5W・(−0.5)/(−W)=2.25、
r=1.5W−1.5W=0
から、(4.5,2.25,0)となる。
In the example of FIG. 6, the direction vector L is (l, m, n) = (− 1, −0.5, −W), and the coordinates of the tip of the object are (x, y, z) = (6, 3, 1.5W), and the distance v in the Z-axis direction between the tip of the object and the target point is 1.5W. From this, the coordinates of the target point TP are
p = 6-1.5W · (−1) / (− W) = 4.5,
q = 3-1.5W · (−0.5) / (− W) = 2.25,
r = 1.5W−1.5W = 0
From (4.5, 2.25, 0)

三次元座標検知装置1は、以上のようにして、物体(腕101)の先端が指し示す目標領域T内の目標点TPを各二次元座標領域D21〜D25内の物体イメージの重心座標から検知している。このように、目標点TPを検知することが、本発明における「前記検知した物体の指示部と前記検知した物体の方向から、前記所定の領域内の前記所定の座標を検知する」ことに相当する。また、上記のように方向ベクトルLを決定することが、本発明における「前記所定の領域に最も近い二次元座標領域と、当該二次元座標領域の前記所定の領域とは反対側に隣り合う二次元座標領域とのそれぞれに応じた二次元座標検知装置が検知したそれぞれの1又は複数の座標の集合の重心座標から前記三次元座標領域内にある物体の方向を検知する」ことに相当する。   As described above, the three-dimensional coordinate detection apparatus 1 detects the target point TP in the target region T indicated by the tip of the object (arm 101) from the barycentric coordinates of the object images in the two-dimensional coordinate regions D21 to D25. ing. Thus, detecting the target point TP corresponds to “detecting the predetermined coordinates in the predetermined region from the direction of the detected object and the direction of the detected object” in the present invention. To do. Further, the determination of the direction vector L as described above means that the two-dimensional coordinate region closest to the predetermined region and the two adjacent two-dimensional coordinate regions on the opposite side of the predetermined region. This corresponds to “detecting the direction of an object in the three-dimensional coordinate region from the barycentric coordinates of the set of one or more coordinates detected by the two-dimensional coordinate detection device corresponding to each of the three-dimensional coordinate region”.

なお、最も目標領域Tに近い二次元座標領域の目標領域Tとは反対側に隣接した二次元座標領域は、1つだけである必要はなく、2つ以上であってもよい。例えば、図6の例であれば、第2二次元座標領域D22に隣接する二次元座標領域として、第3二次元座標領域D23だけでなく、第4二次元座標領域D24も含めてよい。更には、第5二次元座標領域D25を第2二次元座標領域D22に隣接する二次元座標領域として、含めてもよい。このように、最も目標領域Tに近い二次元座標領域の目標領域Tとは反対側に隣接した二次元座標領域は、二次元座標領域のZ軸方向の厚さや、物体の方向を検知する精度に応じて変更すればよい。また、方向を指示する物体が予め規定されている場合(例えば、指、ペン、指示棒、ゲームコントローラ等)には、当該規定された物体に応じて適宜決定すればよい。   Note that the number of two-dimensional coordinate areas adjacent to the opposite side of the target area T of the two-dimensional coordinate area closest to the target area T is not necessarily one, and may be two or more. For example, in the example of FIG. 6, not only the third two-dimensional coordinate area D23 but also the fourth two-dimensional coordinate area D24 may be included as a two-dimensional coordinate area adjacent to the second two-dimensional coordinate area D22. Furthermore, the fifth two-dimensional coordinate area D25 may be included as a two-dimensional coordinate area adjacent to the second two-dimensional coordinate area D22. As described above, the two-dimensional coordinate region adjacent to the opposite side of the target region T of the two-dimensional coordinate region closest to the target region T has an accuracy for detecting the thickness of the two-dimensional coordinate region in the Z-axis direction and the direction of the object. It may be changed according to. Further, when an object that indicates a direction is defined in advance (for example, a finger, a pen, a pointing stick, a game controller, or the like), it may be appropriately determined according to the defined object.

なお、物体の方向や指している目標点TPを検知する方法として、別の方法を用いてもよい。例えば、図7(b)に示されるように、各二次元座標領域D22〜D25の物体イメージの外形を、第5二次元座標領域D25から第1二次元座標領域D21に向かって線で結び、その線を目標領域Tまで延長した際に、目標領域Tに投影される領域の重心座標を目標点TPとしてもよい。また、図6の例では、図6(f)に示されるように、各物体イメージの外形は、図6の右下方向から左上方向に移動していると検知できる(方向の検知)。ここで、第5二次元座標領域D25から第1二次元座標領域D21に向かって各物体イメージの外形から方向を検知することが、本発明における「前記所定の領域に最も近い二次元座標領域と、当該二次元座標領域の前記所定の領域とは反対側に隣り合う二次元座標領域とのそれぞれに応じた二次元座標検知装置が検知したそれぞれの1又は複数の座標の集合から前記三次元座標領域内にある物体の方向を検知する」ことに相当する。   Note that another method may be used as a method of detecting the direction of the object and the target point TP being pointed to. For example, as shown in FIG. 7B, the outlines of the object images in the respective two-dimensional coordinate areas D22 to D25 are connected by lines from the fifth two-dimensional coordinate area D25 to the first two-dimensional coordinate area D21. When the line is extended to the target area T, the barycentric coordinates of the area projected onto the target area T may be set as the target point TP. In the example of FIG. 6, as shown in FIG. 6F, it is possible to detect that the outer shape of each object image is moving from the lower right direction to the upper left direction in FIG. 6 (direction detection). Here, detecting the direction from the outer shape of each object image from the fifth two-dimensional coordinate region D25 toward the first two-dimensional coordinate region D21 is “the two-dimensional coordinate region closest to the predetermined region” in the present invention. The three-dimensional coordinates from a set of one or more coordinates detected by the two-dimensional coordinate detection device corresponding to each of the two-dimensional coordinate areas adjacent to the opposite side of the predetermined area of the two-dimensional coordinate area This corresponds to “detecting the direction of an object in the region”.

また、本実施形態では、上述したように、互いに同じ特性、詳細には所定の波長の光のみを通過させるバンドパスフィルタからなる光学フィルタ41,42が光源31の光が出射される部位と受光部33の光を受光する部位とにそれぞれ貼設されている。三次元座標検知装置1は、一つの二次元座標検知装置内では、光学フィルタ41,42が通過させる波長は同じ波長となるように構成しており、隣り合う二次元座標検知装置では、互いに備える光学フィルタ41,42が通過させる波長が異なるように構成している。   Further, in the present embodiment, as described above, the optical filters 41 and 42 including bandpass filters that pass only light of a predetermined wavelength and the same characteristics as each other, and the portion where the light of the light source 31 is emitted and the light reception. It is affixed to the site | part which receives the light of the part 33, respectively. The three-dimensional coordinate detection device 1 is configured such that the wavelengths transmitted by the optical filters 41 and 42 are the same in one two-dimensional coordinate detection device, and the adjacent two-dimensional coordinate detection devices are provided with each other. The optical filters 41 and 42 are configured to pass different wavelengths.

このように構成することで、所定の二次元座標検知装置の走査部32から出射された光が、下辺22等で再帰反射した光が拡散する等により、隣りの二次元座標検知装置の受光部33が受光する光に混入した場合であっても、この混入の影響を光学フィルタ41,42により低減又は除去できる。   With this configuration, the light emitted from the scanning unit 32 of the predetermined two-dimensional coordinate detection device is diffused by the light retroreflected by the lower side 22 or the like, so that the light receiving unit of the adjacent two-dimensional coordinate detection device is diffused. Even when the light 33 is mixed in the received light, the influence of this mixing can be reduced or eliminated by the optical filters 41 and 42.

例えば、第1二次元座標検知装置11、第3二次元座標検知装置13、第5二次元座標検知装置15は、それぞれが、610〜780[nm]の波長を通過させる光学フィルタ41,42を備え、第2二次元座標検知装置12、第4二次元座標検知装置14は、それぞれが、460〜500[nm]の波長を通過させる光学フィルタ41,42を備える。このように構成した場合には、第3二次元座標検知装置13の走査部32から出射された光は、その波長が610〜780[nm]である。   For example, the first two-dimensional coordinate detection device 11, the third two-dimensional coordinate detection device 13, and the fifth two-dimensional coordinate detection device 15 each include optical filters 41 and 42 that pass wavelengths of 610 to 780 [nm]. The second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14 include optical filters 41 and 42 that pass wavelengths of 460 to 500 [nm], respectively. In such a configuration, the wavelength of the light emitted from the scanning unit 32 of the third two-dimensional coordinate detection device 13 is 610 to 780 [nm].

このため、第3二次元座標検知装置13の走査部32から出射された光が、第3二次元座標検知装置13に隣り合う第2二次元座標検知装置12又は第4二次元座標検知装置14の二次元座標領域D2(詳細には、走査平面)に混入した場合であっても、460〜500[nm]の波長のみを通過させる光学フィルタ42が貼設されているので、第2二次元座標検知装置12及び第4二次元座標検知装置14の受光部33には、第3二次元座標検知装置13の走査部32からの光は入射されない。   For this reason, the light emitted from the scanning unit 32 of the third two-dimensional coordinate detection device 13 is the second two-dimensional coordinate detection device 12 or the fourth two-dimensional coordinate detection device 14 adjacent to the third two-dimensional coordinate detection device 13. Since the optical filter 42 that passes only the wavelength of 460 to 500 [nm] is pasted even when mixed in the two-dimensional coordinate region D2 (specifically, the scanning plane) of the second two-dimensional coordinate region D2 The light from the scanning unit 32 of the third two-dimensional coordinate detection device 13 is not incident on the light receiving unit 33 of the coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14.

このようにして、三次元座標検知装置1は、光学フィルタ41,42の効果により、隣り合う二次元座標検知装置の走査部32から出射された光が混入した場合であっても、混入した光の影響を低減又は除去することができる。これによって、三次元座標検知装置1は、三次元座標領域D3内の物体の座標の検知を高精度にできる。   In this way, the three-dimensional coordinate detection device 1 has the mixed light even when the light emitted from the scanning unit 32 of the adjacent two-dimensional coordinate detection device is mixed due to the effects of the optical filters 41 and 42. Can be reduced or eliminated. Thereby, the three-dimensional coordinate detection apparatus 1 can detect the coordinates of the object in the three-dimensional coordinate region D3 with high accuracy.

このように、「第1二次元座標検知装置11、第3二次元座標検知装置13、第5二次元座標検知装置15が610〜780[nm]の波長を通過させる光学フィルタ41,42を備え、第2二次元座標検知装置12、第4二次元座標検知装置14が460〜500[nm]の波長を通過させる光学フィルタ41,42を備える」ことが、本発明における「前記光学装置の照射部及び受光部は、当該光学装置を備える二次元座標検知装置と隣り合う二次元座標検知装置の照射部から出射した光を区別するための光学フィルタを備える」ことに相当する。   As described above, “the first two-dimensional coordinate detection device 11, the third two-dimensional coordinate detection device 13, and the fifth two-dimensional coordinate detection device 15 include the optical filters 41 and 42 that allow the wavelength of 610 to 780 [nm] to pass. "The second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14 include optical filters 41 and 42 that pass a wavelength of 460 to 500 [nm]" in the present invention. The unit and the light receiving unit correspond to “equipped with an optical filter for distinguishing light emitted from the irradiation unit of the two-dimensional coordinate detection device adjacent to the two-dimensional coordinate detection device including the optical device”.

また、「各二次元座標検知装置11〜15の光源31に、それぞれの二次元座標検知装置に応じた光学フィルタ41を貼設し、各二次元座標検知装置11〜15の受光部33に、それぞれの二次元座標検知装置に応じた光学フィルタ42を貼設している」ことが、本発明における「前記照射部は前記光学フィルタを介して前記再帰反射部に光を出射し、前記受光部は前記再帰反射部に再帰反射された光を前記光学フィルタを介して受光する」ことに相当する。   In addition, “the optical filter 41 corresponding to each two-dimensional coordinate detection device is attached to the light source 31 of each two-dimensional coordinate detection device 11-15, and the light receiving unit 33 of each two-dimensional coordinate detection device 11-15 is attached to the light receiving unit 33. The optical filter 42 corresponding to each two-dimensional coordinate detection device is affixed ”in the present invention“ the irradiation unit emits light to the retroreflective unit through the optical filter, and the light receiving unit Corresponds to “receiving the light retroreflected by the retroreflecting portion through the optical filter”.

更に、三次元座標検知装置1は、隣り合う二次元座標検知装置の光源31に供給する互いのパルス波(駆動波形)の振幅が、同時に0でない値とはならないように位相をずらして供給される。   Further, the three-dimensional coordinate detection device 1 is supplied with the phases shifted so that the amplitudes of the mutual pulse waves (drive waveforms) supplied to the light sources 31 of the adjacent two-dimensional coordinate detection devices do not become non-zero values at the same time. The

図8(a)は、第1二次元座標検知装置11,第3二次元座標検知装置13,第5二次元座標検知装置15のそれぞれの光源31に供給されるパルス波の時間変化を示し、図8(b)は、これらの二次元座標検知装置11,13,15のそれぞれの走査部32から出射される光のレベル(例えば光エネルギー)の時間変化を示す。図8(c)は、第1二次元座標検知装置11,第3二次元座標検知装置13,第5二次元座標検知装置15のそれぞれの受光部33が受信する光の信号(光の時間変化)を示し、図8(d)は、図8(a)と図8(c)とを乗算した結果を示す。   FIG. 8A shows temporal changes of pulse waves supplied to the light sources 31 of the first two-dimensional coordinate detection device 11, the third two-dimensional coordinate detection device 13, and the fifth two-dimensional coordinate detection device 15, FIG. 8B shows a temporal change in the level (for example, light energy) of the light emitted from the respective scanning units 32 of these two-dimensional coordinate detection apparatuses 11, 13, and 15. FIG. 8C shows a light signal (time change of light) received by each light receiving unit 33 of the first two-dimensional coordinate detection device 11, the third two-dimensional coordinate detection device 13, and the fifth two-dimensional coordinate detection device 15. 8 (d) shows the result of multiplying FIG. 8 (a) and FIG. 8 (c).

また、図8(e)は、第2二次元座標検知装置12,第4二次元座標検知装置14のそれぞれの光源31に供給されるパルス波の時間変化を示し、図8(f)は、これらの二次元座標検知装置12,14のそれぞれの走査部32から出射される光のレベル(例えば光エネルギー)を示す。図8(g)は、第2二次元座標検知装置12,第4二次元座標検知装置14のそれぞれの受光部33が受信する光の信号(光の時間変化)を示し、図8(h)は、図8(e)と図8(g)とを乗算した結果を示す。   Moreover, FIG.8 (e) shows the time change of the pulse wave supplied to each light source 31 of the 2nd two-dimensional coordinate detection apparatus 12 and the 4th two-dimensional coordinate detection apparatus 14, FIG.8 (f) is shown. The level (for example, light energy) of the light radiate | emitted from each scanning part 32 of these two-dimensional coordinate detection apparatuses 12 and 14 is shown. FIG. 8G shows a light signal (time change of light) received by each light receiving unit 33 of the second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14, and FIG. Shows the result of multiplying FIG. 8 (e) and FIG. 8 (g).

図8(a)〜(h)の横軸は時間を示す。また、図8(a),(e)の縦軸は光源31に供給される電圧を示す。図8(b),(c),(d),(f),(g),(h)の縦軸は受光した光のレベルを示し、0のときは光がない状態(例えば、光エネルギーが0)である。   The horizontal axis of Fig.8 (a)-(h) shows time. 8A and 8E, the vertical axis indicates the voltage supplied to the light source 31. 8 (b), (c), (d), (f), (g), (h), the vertical axis indicates the level of received light, and when it is 0, there is no light (for example, light energy). Is 0).

図8(a),(b)に示されるように、第1二次元座標検知装置11,第3二次元座標検知装置13,第5二次元座標検知装置15の走査部32からは、時刻t2から時刻t3の間(以下、このような時刻と時刻の間を「時間t2−t3」と表す)時間t4−t5,時間t6−t7,時間t8−t9,時間t10−t11,時間t12−t13のときに光が出射され、これ以外の時間では光は出射されない。以下、時間t2−t3,時間t4−t5,時間t6−t7,時間t8−t9,時間t10−t11,時間t12−t13のように、第1二次元座標検知装置11,第3二次元座標検知装置13,第5二次元座標検知装置15の走査部32(若しくは光源31)から光が出射されている時間をまとめて、「第1出射時間」という。   As shown in FIGS. 8A and 8B, the scanning unit 32 of the first two-dimensional coordinate detection device 11, the third two-dimensional coordinate detection device 13, and the fifth two-dimensional coordinate detection device 15 receives a time t2. From time t3 to time t3 (hereinafter, the time between these times is expressed as “time t2-t3”) time t4-t5, time t6-t7, time t8-t9, time t10-t11, time t12-t13 At this time, light is emitted, and no light is emitted at other times. Hereinafter, the first two-dimensional coordinate detection device 11 and the third two-dimensional coordinate detection are performed at time t2-t3, time t4-t5, time t6-t7, time t8-t9, time t10-t11, time t12-t13. The time during which light is emitted from the scanning unit 32 (or the light source 31) of the device 13 and the fifth two-dimensional coordinate detection device 15 is collectively referred to as “first emission time”.

同様に、図8(e),(f)に示されるように、第2二次元座標検知装置12,第4二次元座標検知装置14の走査部32からは、時間t1−t2,時間t3−t4,時間t5−t6,時間t7−t8,時間t9−t10,時間t11−t12のときに光が出射され、これ以外の時間では光は出射されない。以下、時間t1−t2,時間t3−t4,時間t5−t6,時間t7−t8,時間t9−t10,時間t11−t12のように、第2二次元座標検知装置12,第4二次元座標検知装置14の走査部32(若しくは光源31)から光が出射されている時間をまとめて、「第2出射時間」という。   Similarly, as shown in FIGS. 8E and 8F, the scanning unit 32 of the second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14 receives time t1-t2 and time t3-. Light is emitted at time t4, time t5-t6, time t7-t8, time t9-t10, time t11-t12, and no light is emitted at other times. Hereinafter, as in time t1-t2, time t3-t4, time t5-t6, time t7-t8, time t9-t10, and time t11-t12, the second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection are performed. The time during which light is emitted from the scanning unit 32 (or the light source 31) of the apparatus 14 is collectively referred to as “second emission time”.

このように、第1出射時間と第2出射時間は、排他的に設定されている。これより、隣り合う二次元座標検知装置の走査部32からは同時に光が出射されない。詳細には、第1二次元座標検知装置11,第3二次元座標検知装置13,第5二次元座標検知装置15の走査部32からは、第2出射時間では光が出射されず、第2二次元座標検知装置12,第4二次元座標検知装置14の走査部32からは、第1出射時間では光が出射されない。また、パルス波の周期は、光速に比べ非常に遅いため、走査部32から出射した後、ほぼ瞬時に、下辺22等の再帰反射部によって再帰反射された光を受光部33が受光する。   Thus, the first emission time and the second emission time are set exclusively. Thus, no light is emitted simultaneously from the scanning units 32 of the adjacent two-dimensional coordinate detection devices. Specifically, no light is emitted from the scanning unit 32 of the first two-dimensional coordinate detection device 11, the third two-dimensional coordinate detection device 13, and the fifth two-dimensional coordinate detection device 15 during the second emission time. No light is emitted from the scanning unit 32 of the two-dimensional coordinate detection device 12 or the fourth two-dimensional coordinate detection device 14 during the first emission time. Further, since the period of the pulse wave is very slow compared to the speed of light, the light receiving unit 33 receives the light retroreflected by the retroreflecting unit such as the lower side 22 after being emitted from the scanning unit 32 almost instantaneously.

このため、例えば、図8(c)の時間t7−t8や、図8(g)の時間t4−t5に例示したように、迷光(他の二次元座標検知装置の走査部32からの光)が混入した場合であっても、当該時間(t7−t8又はt4−t5)は、それぞれの二次元座標検知装置の走査部32から光が出射されていないため、迷光が混入したとみなすことができる。   For this reason, for example, as illustrated at time t7-t8 in FIG. 8C and time t4-t5 in FIG. 8G, stray light (light from the scanning unit 32 of another two-dimensional coordinate detection device). Even when the light is mixed, since the light is not emitted from the scanning unit 32 of each two-dimensional coordinate detection device during the time (t7-t8 or t4-t5), it can be considered that the stray light is mixed. it can.

従って、各二次元座標検知装置11〜15は、走査部32から光が出射していない時間に受光部33が受光した光を除去するために、受光した光の信号の各瞬時値に、当該二次元座標検知装置(11〜15)の光源31に供給したパルス波の振幅の各瞬時値を乗算することで、走査部32から光を出射していないときの信号を0にして(迷光を除去して)、走査部32から光を出射しているときの信号のみを物体の座標を検知する信号としている。   Accordingly, each of the two-dimensional coordinate detection devices 11 to 15 applies the instantaneous value of the received light signal to each instantaneous value of the received light in order to remove the light received by the light receiving unit 33 when the light is not emitted from the scanning unit 32. By multiplying each instantaneous value of the amplitude of the pulse wave supplied to the light source 31 of the two-dimensional coordinate detector (11-15), the signal when the light is not emitted from the scanning unit 32 is set to 0 (stray light is not emitted). Only the signal when light is emitted from the scanning unit 32 is used as a signal for detecting the coordinates of the object.

このような場合であっても、走査部32からの光が物体に遮られたときは、図8(d)の時間t10−t11,時間t12−t13や図8(h)の時間t5−t6に示されるように、光のレベルが低くなっているので、このときのミラーの偏向角より物体の座標を検知することができる。   Even in such a case, when the light from the scanning unit 32 is blocked by the object, the time t10-t11, the time t12-t13 in FIG. 8D and the time t5-t6 in FIG. Since the light level is low, the coordinates of the object can be detected from the deflection angle of the mirror at this time.

このように、光学フィルタ41,42による波長の変更に加え、光源31に供給するパルス波によって、隣り合う二次元座標検知装置の走査部32から光が出射される時間を排他的にすることで、他の二次元座標検知装置からの光の混入の影響を更に効果的に低減することができる。   In this way, in addition to changing the wavelength by the optical filters 41 and 42, the pulse wave supplied to the light source 31 makes the time for emitting light from the scanning unit 32 of the adjacent two-dimensional coordinate detection device exclusive. Further, the influence of light contamination from other two-dimensional coordinate detection devices can be further effectively reduced.

上記のように、第1出射時間と第2出射時間とが排他的に設定されていることが、本発明における「隣り合う二次元座標検知装置の光源には、互いのパルス波の振幅が同時に0でない値とはならないように」していることに相当する。   As described above, the first emission time and the second emission time are set exclusively. In the present invention, “the light sources of the adjacent two-dimensional coordinate detection devices have the amplitudes of the pulse waves of each other at the same time. This corresponds to “does not become a non-zero value”.

また、図8(d)及び図8(h)の信号が、本発明における「前記受光部が受光した光の信号の各瞬時値に、当該受光部を備える二次元座標検知装置が有する照射部に供給されたパルス波の振幅の各瞬時値を乗算して得た信号」に相当する。   8D and 8H corresponds to the “irradiation unit included in the two-dimensional coordinate detection apparatus including the light receiving unit for each instantaneous value of the light signal received by the light receiving unit” in the present invention. Corresponds to a signal obtained by multiplying each instantaneous value of the amplitude of the pulse wave supplied to “

また、「各二次元座標検知装置11〜15が、図8(a)と図8(c)とを乗算することで図8(d)の信号を得るか、又は図8(e)と図8(g)とを乗算することで図8(h)の信号を得て、これらの信号から物体の座標を検知する」ことが、本発明における「前記隣り合う二次元座標検知装置のそれぞれは、前記受光部が受光した光の信号の各瞬時値に、当該受光部を備える二次元座標検知装置が有する照射部に供給されたパルス波の振幅の各瞬時値を乗算して得た信号により、当該二次元座標検知装置の二次元座標領域内にある物体の座標を検知する」ことに相当する。   Further, “each two-dimensional coordinate detection device 11-15 obtains the signal of FIG. 8D by multiplying FIG. 8A and FIG. 8C, or FIG. 8E and FIG. 8 (g) is multiplied to obtain the signals shown in FIG. 8 (h) and the coordinates of the object are detected from these signals. By a signal obtained by multiplying each instantaneous value of the light signal received by the light receiving unit by each instantaneous value of the amplitude of the pulse wave supplied to the irradiation unit included in the two-dimensional coordinate detection device including the light receiving unit Corresponds to “detecting the coordinates of an object in the two-dimensional coordinate region of the two-dimensional coordinate detection device”.

以上のように、三次元座標検知装置1は、上述のように、物体の先端(腕101の先端、すなわち指先)を検知しているので、物体の先端が、第1二次元座標領域D21内にある場合には、物体の先端が目標領域Tに接触していると判定できる。また、物体の先端が、第2二次元座標領域D22〜第5二次元座標領域D25内のいずれかにある場合には、物体の先端が空中にあると判定できる。このとき、物体の先端がある二次元座標領域に応じて物体のZ軸方向の位置を検知できる。例えば、第2二次元座標領域D22にある場合には、目標領域Tにより近い距離の空中にあることを検知でき、第5二次元座標領域D25にある場合には、目標領域Tからは遠い距離の空中にあることを検知できる。   As described above, since the three-dimensional coordinate detection apparatus 1 detects the tip of the object (the tip of the arm 101, that is, the fingertip) as described above, the tip of the object is within the first two-dimensional coordinate region D21. If it is, it can be determined that the tip of the object is in contact with the target region T. Further, when the tip of the object is in any of the second two-dimensional coordinate region D22 to the fifth two-dimensional coordinate region D25, it can be determined that the tip of the object is in the air. At this time, the position of the object in the Z-axis direction can be detected according to the two-dimensional coordinate region where the tip of the object is located. For example, when it is in the second two-dimensional coordinate area D22, it can be detected that it is in the air at a distance closer to the target area T, and when it is in the fifth two-dimensional coordinate area D25, it is a distance far from the target area T. Can be detected in the air.

三次元空間の座標を検知できることにより、物体の動きを検知することができる。例えば、物体の先端が第5二次元座標領域D25から第1二次元座標領域D21に向かって移動したときは、目標領域Tに近づいていると検知できる。更に、物体の先端が第1二次元座標領域D21から第5二次元座標領域D25に向かって移動したときは、目標領域Tから遠ざかっていると検知できる。また、物体の先端が同じ二次元座標領域内に留まったまま、二次元座標のみが変化したときは、その二次元座標領域内で物体が移動していると検知できる。   By detecting the coordinates of the three-dimensional space, the movement of the object can be detected. For example, when the tip of the object moves from the fifth two-dimensional coordinate area D25 toward the first two-dimensional coordinate area D21, it can be detected that the object is approaching the target area T. Furthermore, when the tip of the object moves from the first two-dimensional coordinate area D21 toward the fifth two-dimensional coordinate area D25, it can be detected that the object is moving away from the target area T. Further, when only the two-dimensional coordinate changes while the tip of the object remains in the same two-dimensional coordinate area, it can be detected that the object is moving within the two-dimensional coordinate area.

このように物体の動きを検知したとき、当該動きにそれぞれ所定の意味を持たせることで、三次元座標検知装置1を搭載した機器の作動を、利用者がコントロールすることもできる。例えば、「目標領域Tに接触しているときは、目標点TPを選択する」、「目標領域Tに近づいているときは、目標点TP付近を強調表示する」、「同じ二次元座標領域内で物体が移動しているときは、線を描画する」等のようなものが考えられる。   When the movement of the object is detected in this way, the user can also control the operation of the device equipped with the three-dimensional coordinate detection device 1 by giving each of the movements a predetermined meaning. For example, “when the target area T is touched, the target point TP is selected”, “when the target area T is approached, the vicinity of the target point TP is highlighted”, “within the same two-dimensional coordinate area When an object is moving, a line may be drawn.

更に、三次元座標検知装置1を搭載する大型ディスプレイやホワイトボードの表示面、すなわち目標領域Tに圧電センサ等を備えれば、目標領域Tが押圧されたことを検知できる。これにより、更に様々な機器のコントロールを可能にできる。   Furthermore, if a piezoelectric sensor or the like is provided on the display surface of a large display or whiteboard on which the three-dimensional coordinate detection device 1 is mounted, that is, the target area T, it can be detected that the target area T is pressed. As a result, various devices can be controlled.

なお、本実施形態では、三次元座標検知装置1を、5つの二次元座標検知装置11〜15を備えるように構成したがこれに限らない。例えば、2つであってもよいし、7つ以上であってもよい。二次元座標検知装置の数は、三次元座標検知装置として、検知したい目標領域Tの面に対する法線方向の範囲に応じて決定すればよい。   In the present embodiment, the three-dimensional coordinate detection device 1 is configured to include the five two-dimensional coordinate detection devices 11 to 15, but is not limited thereto. For example, the number may be two, or may be seven or more. What is necessary is just to determine the number of two-dimensional coordinate detection apparatuses according to the range of the normal direction with respect to the surface of the target area | region T to detect as a three-dimensional coordinate detection apparatus.

また、本実施形態では、各二次元座標領域D21〜D25のそれぞれの厚さWが同じであったが、それぞれの厚さを異なるように設定してもよい。例えば、目標領域Tに近づくにつれ、厚さWが小さくなるように設定してもよい。   In the present embodiment, the thicknesses W of the two-dimensional coordinate regions D21 to D25 are the same. However, the thicknesses may be set differently. For example, the thickness W may be set to be smaller as the target area T is approached.

また、本実施形態では、第1二次元座標領域D21と目標領域Tとは接触しているが接触していなくてもよい。この場合には、物体の座標を検知するときには、第1二次元座標領域D21と目標領域Tとの間の距離を加味してZ軸方向の位置を検知すればよい。このように、第1二次元座標領域D21と目標領域Tとが接触していない場合が、本発明における「前記所定の領域は、前記端にある二次元座標領域より外側に位置」することに相当する。   In the present embodiment, the first two-dimensional coordinate area D21 and the target area T are in contact with each other, but may not be in contact with each other. In this case, when detecting the coordinates of the object, the position in the Z-axis direction may be detected in consideration of the distance between the first two-dimensional coordinate area D21 and the target area T. Thus, when the first two-dimensional coordinate area D21 and the target area T are not in contact with each other, the “predetermined area is located outside the two-dimensional coordinate area at the end” in the present invention. Equivalent to.

また、本実施形態では、第1二次元座標検知装置11、第3二次元座標検知装置13、第5二次元座標検知装置15が610〜780[nm]の波長を通過させる光学フィルタ41,42を備え、第2二次元座標検知装置12、第4二次元座標検知装置14が460〜500[nm]の波長を通過させる光学フィルタ41,42を備えている。すなわち、二次元座標検知装置が並設する並び順で隣り合う二次元座標検知装置の光学フィルタの特性を変えているがこれに限らない。   In the present embodiment, the first two-dimensional coordinate detection device 11, the third two-dimensional coordinate detection device 13, and the fifth two-dimensional coordinate detection device 15 allow the optical filters 41 and 42 to pass the wavelength of 610 to 780 [nm]. The second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14 are provided with optical filters 41 and 42 that pass a wavelength of 460 to 500 [nm]. That is, the characteristics of the optical filters of the adjacent two-dimensional coordinate detection devices are changed in the arrangement order in which the two-dimensional coordinate detection devices are arranged side by side, but the present invention is not limited to this.

例えば、下辺22等の再帰反射部の反射特性により反射光の広がりが大きくなるような場合には、第3二次元座標検知装置13の走査部32からの光が、第2二次元座標検知装置12及び第4二次元座標検知装置14のみならず、第1二次元座標検知装置11や第5二次元座標検知装置15にまで混入する可能性がある。このような場合には、例えば、第1二次元座標検知装置11及び第5二次元座標検知装置15が610〜780[nm]の波長を通過させる光学フィルタ41,42を備え、第2二次元座標検知装置12及び第4二次元座標検知装置14が460〜500[nm]の波長を通過させる光学フィルタ41,42を備え、第3二次元座標検知装置13が570〜590[nm]の波長を通過させる光学フィルタ41,42を備えるようにすればよい。また、各二次元座標検知装置11〜15のそれぞれが、互いに異なる波長を通過させる光学フィルタ41,42を備えるようにしてもよい。   For example, when the spread of the reflected light becomes large due to the reflection characteristics of the retroreflective portion such as the lower side 22, the light from the scanning unit 32 of the third two-dimensional coordinate detection device 13 is transmitted to the second two-dimensional coordinate detection device. 12 and the fourth two-dimensional coordinate detection device 14 as well as the first two-dimensional coordinate detection device 11 and the fifth two-dimensional coordinate detection device 15 may be mixed. In such a case, for example, the first two-dimensional coordinate detection device 11 and the fifth two-dimensional coordinate detection device 15 include optical filters 41 and 42 that allow the wavelength of 610 to 780 [nm] to pass, and the second two-dimensional coordinate detection device 15. The coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14 include optical filters 41 and 42 that pass wavelengths of 460 to 500 [nm], and the third two-dimensional coordinate detection device 13 has a wavelength of 570 to 590 [nm]. The optical filters 41 and 42 that allow the light to pass therethrough may be provided. In addition, each of the two-dimensional coordinate detection devices 11 to 15 may include optical filters 41 and 42 that allow different wavelengths to pass.

また、本実施形態では、第1出射時間と第2出射時間とを排他的に設定しているがこれに限らない。例えば、光学フィルタ41,42のときと同様に、第3二次元座標検知装置13の走査部32からの光が、第2二次元座標検知装置12及び第4二次元座標検知装置14のみならず、第1二次元座標検知装置11や第5二次元座標検知装置15にまで混入する可能性がある場合においては、第1二次元座標検知装置11及び第5二次元座標検知装置15の走査部32(若しくは光源31)から光が出射される時間と、第2二次元座標検知装置12及び第4二次元座標検知装置14の走査部32(若しくは光源31)から光が出射される時間と、第3二次元座標検知装置13の走査部32(若しくは光源31)から光が出射される時間とを排他的に設定してもよい。更に言えば、各二次元座標検知装置11〜15のそれぞれの走査部32(若しくは光源31)から光が出射される時間を排他的に設定してもよい。   In the present embodiment, the first emission time and the second emission time are set exclusively, but the present invention is not limited to this. For example, as in the case of the optical filters 41 and 42, the light from the scanning unit 32 of the third two-dimensional coordinate detection device 13 is not limited to the second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14. In the case where there is a possibility that even the first two-dimensional coordinate detection device 11 and the fifth two-dimensional coordinate detection device 15 are mixed, the scanning unit of the first two-dimensional coordinate detection device 11 and the fifth two-dimensional coordinate detection device 15 32 (or light source 31), the time when light is emitted, and the time when light is emitted from the scanning unit 32 (or light source 31) of the second two-dimensional coordinate detection device 12 and the fourth two-dimensional coordinate detection device 14, The time when the light is emitted from the scanning unit 32 (or the light source 31) of the third two-dimensional coordinate detection device 13 may be set exclusively. Furthermore, you may set exclusively the time when light is radiate | emitted from each scanning part 32 (or light source 31) of each two-dimensional coordinate detection apparatus 11-15.

このように、本発明において、隣り合う二次元座標検知装置とは、一つ隣の二次元座標検知装置のみだけではなく、出射した光が混入する可能性のある範囲に配設された二次元座標検知装置(すなわち、近傍に配設された二次元座標検知装置)を含むものとする。   As described above, in the present invention, the adjacent two-dimensional coordinate detection device is not only the one adjacent two-dimensional coordinate detection device, but also a two-dimensional arrangement arranged in a range where the emitted light may be mixed. It is assumed to include a coordinate detection device (that is, a two-dimensional coordinate detection device disposed in the vicinity).

また、本実施形態の三次元座標検知装置1では、隣り合う二次元座標検知装置からの光の混入の影響を、光学フィルタ41,42による低減に加え、光源31に供給するパルス波による低減を行っているが、いずれか片方のみによる低減であってもよい。   Further, in the three-dimensional coordinate detection device 1 of the present embodiment, the influence of light mixing from adjacent two-dimensional coordinate detection devices is reduced by the pulse wave supplied to the light source 31 in addition to the reduction by the optical filters 41 and 42. However, reduction by only one of them may be performed.

また、本実施形態では、三次元座標検知装置1を、大型ディスプレイやホワイトボードに搭載する装置としたが、これに限らない。小型ディスプレイであってもよいし、電子看板、アーケードゲーム端末、テーブルの上面に画面を表示するテーブル型PC等のように、平面状の領域(二次元座標領域)を有するものに搭載する場合であってもよい。この場合であっても、平面状の領域(二次元座標領域)の座標に、この二次元座標領域の面に対して法線方向の位置を加えた三次元座標領域内の物体の座標を検知することができる。更に、所定の領域内にいる人や物体等を検知できるエリアセンサとして使用することもできる。   Moreover, in this embodiment, although the three-dimensional coordinate detection apparatus 1 was set as the apparatus mounted in a large sized display or a white board, it is not restricted to this. It may be a small display, or it may be mounted on a display having a planar area (two-dimensional coordinate area) such as an electronic signboard, an arcade game terminal, or a table type PC displaying a screen on the upper surface of the table. There may be. Even in this case, the coordinates of the object in the three-dimensional coordinate area are detected by adding the position in the normal direction to the plane of this two-dimensional coordinate area to the coordinates of the planar area (two-dimensional coordinate area). can do. Furthermore, it can also be used as an area sensor that can detect a person or an object in a predetermined area.

1…三次元座標検知装置、D2…二次元座標領域、D3…三次元座標領域、11〜15…複数の二次元座標検知装置、22…下辺(再帰反射部)、23…右辺(再帰反射部)、24…左辺(再帰反射部)、3,4…一対の光学装置、31…光源、32…走査部(照射部)、33…受光部、40…光偏向器(照射部)、41,42…光学フィルタ、P…座標。   DESCRIPTION OF SYMBOLS 1 ... Three-dimensional coordinate detection apparatus, D2 ... Two-dimensional coordinate area | region, D3 ... Three-dimensional coordinate area | region, 11-15 ... Multiple two-dimensional coordinate detection apparatus, 22 ... Lower side (retroreflection part), 23 ... Right side (retroreflection part) , 24 ... Left side (retroreflective part), 3, 4 ... A pair of optical devices, 31 ... Light source, 32 ... Scanning part (irradiation part), 33 ... Light receiving part, 40 ... Optical deflector (irradiation part), 41, 42: Optical filter, P: Coordinate.

Claims (8)

二次元座標領域内にある物体の座標を検知するために、前記二次元座標領域の周縁上又は前記二次元座標領域外に配置され、光を出射する照射部と光を受光する受光部とをそれぞれ有する一対の光学装置と、前記光学装置から出射された光を再帰反射する再帰反射部とを備え、前記照射部が前記二次元座標領域を走査する光を出射し、前記受光部が前記照射部から出射されて前記再帰反射部に再帰反射された光を受光するように構成された二次元座標検知装置を複数有し、
前記複数の二次元座標検知装置は、各々が検知する座標を含む二次元座標領域が互いに平行となるように、各二次元座標領域の面に対して法線方向に並設され、
前記二次元座標領域の座標に当該二次元座標領域の面に対して法線方向の位置を加えた三次元座標領域内にある物体の座標を、前記複数の二次元座標検知装置のそれぞれが検知した座標に基づいて検知する三次元座標検知装置であって、
前記照射部が有する光源には、駆動波形として振幅が0と0でない値とを交互に繰り返すパルス波が供給され、前記パルス波の振幅が0のときに前記光源が消灯し、前記パルス波の振幅が0でない値のときに前記光源が点灯し、
前記複数の二次元座標検知装置が並設された並びで隣り合う二次元座標検知装置の光源には、互いのパルス波の振幅が同時に0でない値とはならないように供給され、
前記隣り合う二次元座標検知装置は、前記受光部が受光した光の信号の各瞬時値に、当該受光部を備える二次元座標検知装置が有する照射部に供給されたパルス波の振幅の各瞬時値を乗算して得た信号により、当該二次元座標検知装置の二次元座標領域内にある物体の座標を検知することを特徴とする三次元座標検知装置。
In order to detect the coordinates of an object in the two-dimensional coordinate area, an irradiation unit that emits light and a light-receiving unit that receives light are arranged on the periphery of the two-dimensional coordinate area or outside the two-dimensional coordinate area. A pair of optical devices each having a retroreflecting unit that retroreflects the light emitted from the optical device, the irradiation unit emits light that scans the two-dimensional coordinate region, and the light receiving unit emits the irradiation a two-dimensional coordinate detection device configured to receive retro-reflected light on the retroreflective portion is emitted from parts plurality Yes,
The plurality of two-dimensional coordinate detection devices are juxtaposed in a normal direction with respect to the surface of each two-dimensional coordinate region so that two-dimensional coordinate regions including coordinates detected by each of the two-dimensional coordinate regions are parallel to each other,
The object of the coordinates in the two-dimensional coordinates in a three-dimensional coordinate area plus the position of the normal to the plane of those said two-dimensional coordinate space to the coordinates of the region, each of said plurality of two-dimensional coordinate detection device A three-dimensional coordinate detection device that detects based on the detected coordinates,
The light source included in the irradiation unit is supplied with a pulse wave that alternately repeats an amplitude of 0 and a value other than 0 as a drive waveform. When the amplitude of the pulse wave is 0, the light source is turned off, and the pulse wave The light source is turned on when the amplitude is a non-zero value,
The light sources of the two-dimensional coordinate detection devices adjacent to each other in the arrangement in which the plurality of two-dimensional coordinate detection devices are arranged in parallel are supplied so that the amplitudes of the mutual pulse waves do not become non-zero at the same time,
Each of the adjacent two-dimensional coordinate detection devices has an instantaneous value of an amplitude of a pulse wave supplied to an irradiation unit included in the two-dimensional coordinate detection device including the light receiving unit, for each instantaneous value of a light signal received by the light receiving unit. A three-dimensional coordinate detection apparatus that detects coordinates of an object in a two-dimensional coordinate area of the two-dimensional coordinate detection apparatus based on a signal obtained by multiplying values .
請求項1に記載の三次元座標検知装置において、
前記光学装置の照射部及び受光部は、当該光学装置を備える二次元座標検知装置と隣り合う二次元座標検知装置の照射部から出射した光を区別するための光学フィルタを備え、
前記照射部は前記光学フィルタを介して前記再帰反射部に光を出射し、前記受光部は前記再帰反射部に再帰反射された光を前記光学フィルタを介して受光することを特徴とする三次元座標検知装置。
The three-dimensional coordinate detection apparatus according to claim 1,
The irradiation unit and the light receiving unit of the optical device include an optical filter for distinguishing light emitted from the irradiation unit of the two-dimensional coordinate detection device adjacent to the two-dimensional coordinate detection device including the optical device,
The irradiation unit emits light to the retroreflective unit through the optical filter, and the light receiving unit receives light retroreflected by the retroreflective unit through the optical filter. Coordinate detection device.
請求項1又は2に記載の三次元座標検知装置において、
前記複数の二次元座標検知装置間の間隔に基づいて、前記三次元座標領域内にある物体の前記二次元座標領域の面に対する法線方向の位置を決定することを特徴とする三次元座標検知装置。
In the three-dimensional coordinate detection apparatus according to claim 1 or 2,
A three-dimensional coordinate detection characterized by determining a position in a normal direction with respect to a surface of the two-dimensional coordinate region of an object in the three-dimensional coordinate region based on an interval between the plurality of two-dimensional coordinate detection devices. apparatus.
請求項1〜3のいずれか1項に記載の三次元座標検知装置において、
前記二次元座標検知装置が検知する座標は、当該二次元座標検知装置の二次元座標領域と交差する前記三次元座標領域内の物体の断面の外形を示す1又は複数の座標の集合であり、
前記複数の二次元座標検知装置のそれぞれが検知した1又は複数の座標の集合から前記三次元座標領域内にある物体の外形を検知することを特徴とする三次元座標検知装置。
In the three-dimensional coordinate detection apparatus of any one of Claims 1-3,
The coordinates detected by the two-dimensional coordinate detection device are a set of one or more coordinates indicating the outer shape of the cross section of the object in the three-dimensional coordinate region intersecting the two-dimensional coordinate region of the two-dimensional coordinate detection device,
A three-dimensional coordinate detection apparatus, wherein an outer shape of an object in the three-dimensional coordinate area is detected from a set of one or a plurality of coordinates detected by each of the plurality of two- dimensional coordinate detection apparatuses.
請求項に記載の三次元座標検知装置において、
前記三次元座標領域内にある物体は、所定の領域内の所定の座標を指し示す指示部を有し、
前記所定の領域は、前記二次元座標領域の並設方向において前記指示部が指し示す側の端にある二次元座標領域上に位置し、又は前記端にある二次元座標領域より外側に位置し、
前記三次元座標領域内にある物体の1又は複数の座標の集合を検知した各二次元座標検知装置のうち、前記所定の領域に最も近い二次元座標領域に対応した二次元座標検知装置が検知した1又は複数の座標の集合を前記物体の指示部として検知することを特徴とする三次元座標検知装置。
The three-dimensional coordinate detection apparatus according to claim 4 ,
The object in the three-dimensional coordinate area has an instruction unit that indicates a predetermined coordinate in the predetermined area,
The predetermined region is located on the two-dimensional coordinate region at the end on the side indicated by the pointing unit in the juxtaposed direction of the two-dimensional coordinate region, or located outside the two-dimensional coordinate region at the end,
Among each two-dimensional coordinate detection device that detects a set of one or more coordinates of an object in the three-dimensional coordinate region, a two-dimensional coordinate detection device corresponding to the two-dimensional coordinate region closest to the predetermined region detects A three-dimensional coordinate detection apparatus that detects a set of one or more coordinates as an instruction unit of the object .
請求項5に記載の三次元座標検知装置において、
前記所定の領域に最も近い二次元座標領域と、当該二次元座標領域の前記所定の領域とは反対側に隣り合う二次元座標領域とのそれぞれに応じた二次元座標検知装置が検知したそれぞれの1又は複数の座標の集合から前記三次元座標領域内にある物体の方向を検知することを特徴とする三次元座標検知装置。
In the three-dimensional coordinate detection apparatus according to claim 5,
Each of the two-dimensional coordinate detection devices detected by the two-dimensional coordinate region closest to the predetermined region and the two-dimensional coordinate region adjacent to the opposite side of the predetermined region of the two-dimensional coordinate region. A three-dimensional coordinate detection apparatus that detects a direction of an object in the three-dimensional coordinate region from a set of one or a plurality of coordinates .
請求項6に記載の三次元座標検知装置において、
前記所定の領域に最も近い二次元座標領域と、当該二次元座標領域の前記所定の領域とは反対側に隣り合う二次元座標領域とのそれぞれに応じた二次元座標検知装置が検知したそれぞれの1又は複数の座標の集合の重心座標から前記三次元座標領域内にある物体の方向を検知することを特徴とする三次元座標検知装置。
The three-dimensional coordinate detection apparatus according to claim 6,
Each of the two-dimensional coordinate detection devices detected by the two-dimensional coordinate region closest to the predetermined region and the two-dimensional coordinate region adjacent to the opposite side of the predetermined region of the two-dimensional coordinate region. A three-dimensional coordinate detection apparatus that detects a direction of an object in the three-dimensional coordinate region from a barycentric coordinate of a set of one or a plurality of coordinates.
請求項6又は7に記載の三次元座標検知装置において、
前記検知した物体の指示部と前記検知した物体の方向から、前記所定の領域内の前記所定の座標を検知することを特徴とする三次元座標検知装置。
The three-dimensional coordinate detection apparatus according to claim 6 or 7,
A three-dimensional coordinate detection apparatus that detects the predetermined coordinates in the predetermined area from the detected object indicating unit and the direction of the detected object.
JP2011198898A 2011-09-12 2011-09-12 3D coordinate detector Active JP5798419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198898A JP5798419B2 (en) 2011-09-12 2011-09-12 3D coordinate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198898A JP5798419B2 (en) 2011-09-12 2011-09-12 3D coordinate detector

Publications (2)

Publication Number Publication Date
JP2013061747A JP2013061747A (en) 2013-04-04
JP5798419B2 true JP5798419B2 (en) 2015-10-21

Family

ID=48186382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198898A Active JP5798419B2 (en) 2011-09-12 2011-09-12 3D coordinate detector

Country Status (1)

Country Link
JP (1) JP5798419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213076B2 (en) * 2013-09-05 2017-10-18 コニカミノルタ株式会社 Touch panel input device, touch panel input device control method, and touch panel input device control program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625207U (en) * 1985-06-25 1987-01-13
JPH07129307A (en) * 1993-11-08 1995-05-19 Nippon Signal Co Ltd:The Input device
JP2002163071A (en) * 2000-11-27 2002-06-07 Canon Inc Photodetector
JP2002342015A (en) * 2001-05-15 2002-11-29 Ricoh Co Ltd Information input device and information input/output system

Also Published As

Publication number Publication date
JP2013061747A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP3830121B2 (en) Optical unit for object detection and position coordinate input device using the same
US9652085B2 (en) Spatial input device
JP2010277122A (en) Optical position detection apparatus
JP2001228974A (en) Light receiver for coordinate detection, coordinate input/ detecting device, electronic blackboard, loading position detecting method and storage medium
EP2711809A2 (en) Position detection apparatus
JPH09319501A (en) Coordinate detector
JP2015060296A (en) Spatial coordinate specification device
KR20140068927A (en) User interface display device
JP5857711B2 (en) Optical measuring device
JP2001142643A (en) Device for inputting/detecting coordinates
CN102681730A (en) Optical navigation module
JP2011090242A (en) Projection display device with position detecting function
JP2014202951A (en) Image projection device and operation matter detection method
JP5798419B2 (en) 3D coordinate detector
JP2007206935A (en) Coordinate detection system, coordinate detection device, coordinate detection method and touch pen
JP5742398B2 (en) Optical position detection device and display system with input function
JP4034328B2 (en) Luminescence detection device and coordinate detection device
JP2011122867A (en) Optical position detection device and display device with position detection function
JP6315127B2 (en) Input device, aerial image interaction system, and input method
JP2865754B2 (en) Optical two-dimensional coordinate input device and coordinate input pen
CN201741135U (en) Touch screen, touch system and display device
JP2014178746A (en) Position detector
JP5799627B2 (en) Position detection apparatus, position detection system, and display system with input function
JP2013152519A (en) Two-dimensional coordinate detection device
JP2001084108A (en) Device for inputting and detecting and displaying coordinate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5798419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250