JP5795898B2 - CuGaNa sputtering target - Google Patents

CuGaNa sputtering target Download PDF

Info

Publication number
JP5795898B2
JP5795898B2 JP2011164999A JP2011164999A JP5795898B2 JP 5795898 B2 JP5795898 B2 JP 5795898B2 JP 2011164999 A JP2011164999 A JP 2011164999A JP 2011164999 A JP2011164999 A JP 2011164999A JP 5795898 B2 JP5795898 B2 JP 5795898B2
Authority
JP
Japan
Prior art keywords
powder
particle size
sintered body
average particle
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011164999A
Other languages
Japanese (ja)
Other versions
JP2013028837A (en
Inventor
宣宏 原田
宣宏 原田
松本 博
博 松本
純一 新田
純一 新田
岩重 央
央 岩重
泰彦 赤松
泰彦 赤松
功一 橋本
功一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011164999A priority Critical patent/JP5795898B2/en
Publication of JP2013028837A publication Critical patent/JP2013028837A/en
Application granted granted Critical
Publication of JP5795898B2 publication Critical patent/JP5795898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、薄膜太陽電池における光吸収層の形成に用いられるCuGaNa系スパッタリング用ターゲット及びその製造方法に関する。   The present invention relates to a CuGaNa-based sputtering target used for forming a light absorption layer in a thin film solar cell and a method for producing the same.

近年、p型光吸収層として、Cu、In、Ga、Se、S等を含むカルコパイライト構造の化合物半導体を用いたCIS系薄膜太陽電池の開発が進められている。薄膜太陽電池においては、ガラス基板に青板ガラスを使用した場合、p型光吸収層の成膜過程でガラス中のNaがその光吸収層に拡散し、キャリア濃度を増加させるため、高い光電変換効率を実現できることが知られている(例えば特許文献1,2参照)。   In recent years, CIS-based thin-film solar cells using a compound semiconductor having a chalcopyrite structure containing Cu, In, Ga, Se, S and the like as a p-type light absorption layer have been developed. In thin-film solar cells, when blue glass is used for the glass substrate, Na in the glass diffuses into the light absorption layer during the formation process of the p-type light absorption layer, increasing the carrier concentration. Can be realized (see, for example, Patent Documents 1 and 2).

一方、青板ガラスを使用せずに、Naを含有する光吸収層を形成する方法が種々提案されている。例えば特許文献1には、Naを含むCuGaターゲットと、Naを含まないCuGaターゲットと、Inターゲットとを用いて、金属プリカーサー膜を形成する方法が記載されている。また特許文献2には、フッ化ナトリウム、炭酸ナトリウム等のアルカリ金属化合物を含有するSiターゲットを用いて光電変換層を成膜する方法が記載されている。   On the other hand, various methods for forming a light-absorbing layer containing Na without using blue glass have been proposed. For example, Patent Document 1 describes a method of forming a metal precursor film using a CuGa target containing Na, a CuGa target not containing Na, and an In target. Patent Document 2 describes a method of forming a photoelectric conversion layer using a Si target containing an alkali metal compound such as sodium fluoride or sodium carbonate.

特開2009−283560号公報JP 2009-283560 A 特開2010−258429号公報JP 2010-258429 A

しかしながら、特許文献1、2にはNaを含有するCuGaターゲットの製造方法の詳細については記載されていない。また、この種のターゲットにおいては、安定したスパッタを行うために、相対密度が高く、抵抗値のバラツキが小さいことが必要とされる。   However, Patent Documents 1 and 2 do not describe details of a method for producing a CuGa target containing Na. Further, in this type of target, in order to perform stable sputtering, it is necessary that the relative density is high and the variation in resistance value is small.

以上のような事情に鑑み、本発明の目的は、相対密度の高く、抵抗値のバラツキが小さいCuGaNa系スパッタリング用ターゲット及びその製造方法を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a CuGaNa-based sputtering target having a high relative density and a small variation in resistance value and a method for manufacturing the same.

上記目的を達成するため、本発明の一形態に係るCuGaNa系スパッタリング用ターゲットの製造方法は、CuGa合金粉末と、150μm以下の平均粒度を有するNa2CO3粉末との混合粉末を作製し、上記混合粉末を加圧焼結する。 In order to achieve the above object, a method for producing a CuGaN-based sputtering target according to an embodiment of the present invention produces a mixed powder of CuGa alloy powder and Na 2 CO 3 powder having an average particle size of 150 μm or less, and The mixed powder is pressure sintered.

本発明の一形態に係るCuGaNa系スパッタリング用ターゲットは、CuGa合金粉末とNa2CO3粉末との混合粉末の焼結体からなり、30原子%以上50原子%以下のGaと3重量%以上5重量%以下のNaとを含有し、98%以上の相対密度を有する。 A CuGaNa-based sputtering target according to an embodiment of the present invention is composed of a sintered body of a mixed powder of CuGa alloy powder and Na 2 CO 3 powder, and contains 30 atomic% to 50 atomic% Ga and 3 weight% to 5 weight%. It contains Na by weight or less and has a relative density of 98% or more.

本発明の一実施形態に係るCuGaNa系スパッタリング用ターゲットの製造方法を説明する工程フローである。It is a process flow explaining the manufacturing method of the target for CuGaNa type sputtering concerning one embodiment of the present invention. 本発明の一実施形態において使用されるNa2CO3粉末の平均粒度を説明する図である。It is a diagram illustrating an average particle size of Na 2 CO 3 powder used in one embodiment of the present invention. 平均粒度の異なる複数のNa2CO3粉末を使用して作製された焼結体のXRDチャートである。Is an XRD chart of a sintered body prepared by using a plurality of Na 2 CO 3 powder having different average particle size.

本発明の一実施形態に係るCuGaNa系スパッタリング用ターゲットの製造方法は、CuGa合金粉末と、150μm以下の平均粒度を有するNa2CO3粉末との混合粉末を作製し、上記混合粉末を加圧焼結する。 A method for producing a CuGaNa-based sputtering target according to an embodiment of the present invention is to produce a mixed powder of CuGa alloy powder and Na 2 CO 3 powder having an average particle size of 150 μm or less, and pressurize the mixed powder under pressure. Conclude.

上記製造方法においては、CuGa合金粉末に添加されるNa原料としてNa2CO3粉末を採用し、そのNa2CO3粉末の平均粒度を規定することにより、高密度化および抵抗値の均一化を実現するようにしている。すなわち、Na2CO3粉末の平均粒度を150μm以下に制限することで、焼結体の相対密度を例えば98%以上に高めることができるとともに、抵抗値のバラツキを例えば±6%以下に抑えることができる。 In the above manufacturing method, Na 2 CO 3 powder is adopted as the Na raw material added to the CuGa alloy powder, and the average particle size of the Na 2 CO 3 powder is defined, thereby achieving high density and uniform resistance value. It has been realized. That is, by limiting the average particle size of the Na 2 CO 3 powder to 150 μm or less, the relative density of the sintered body can be increased to 98% or more, for example, and the variation in resistance value is suppressed to, for example, ± 6% or less. Can do.

ここで、本明細書において「平均粒度」とは、レーザー散乱回折法で測定した粒度分布の積算%が50%の値(D50)を意味する。また、平均粒度の値は、ベックマン・コールター社製装置「LS 13 320」による測定値を用いた。   Here, the “average particle size” in this specification means a value (D50) in which the integrated percentage of the particle size distribution measured by the laser scattering diffraction method is 50%. The average particle size was measured using a device “LS 13 320” manufactured by Beckman Coulter.

Na2CO3粉末の平均粒径が150μmを超えると、焼結体の相対密度は98%に達することができず、また抵抗値のバラツキも±100%に達するおそれがある。この場合、安定したスパッタを実現することが困難となり、異常放電やパーティクルの発生の原因となり得る。 When the average particle diameter of the Na 2 CO 3 powder exceeds 150 μm, the relative density of the sintered body cannot reach 98%, and the variation in resistance value may reach ± 100%. In this case, it becomes difficult to realize stable sputtering, which may cause abnormal discharge and generation of particles.

CuGa合金粉末は、CuとGaの合金インゴットを粉砕することで作製され、例えば200μm以下の平均粒度に分級された粉末が用いられる。Na2CO3粉末は、CuGa合金粉末と混合された後、板状に加圧焼結される。焼結法は特に限定されず、例えば真空中でのホットプレス法が適用される。 CuGa alloy powder is produced by pulverizing an alloy ingot of Cu and Ga, and for example, powder classified to an average particle size of 200 μm or less is used. The Na 2 CO 3 powder is mixed with the CuGa alloy powder and then pressure-sintered into a plate shape. The sintering method is not particularly limited, and for example, a hot press method in a vacuum is applied.

焼結体のGa含有量は、例えば30原子%以上50原子%以下とされる。一方、Na含有量は、3重量%以上5重量%以下とされる。これにより、34μΩ・cmの平均抵抗値と、±6%以下の抵抗値バラツキを実現することができる。   The Ga content of the sintered body is, for example, 30 atomic% or more and 50 atomic% or less. On the other hand, the Na content is 3 wt% or more and 5 wt% or less. As a result, an average resistance value of 34 μΩ · cm and a resistance value variation of ± 6% or less can be realized.

以下、図面を参照しながら、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るCuGaNa系スパッタリング用ターゲットの製造方法を説明する工程フローである。本実施形態のCuGaNa系スパッタリング用ターゲットの製造方法は、CuGa合金粉末を作製する工程(S1)と、CuGa合金粉末にNa2CO3粉末を混合する工程(S2)と、CuGa合金粉末とNa2CO3粉末との混合粉末を焼結する工程(S3)と、焼結体をターゲット形状に加工する工程(S4)とを有する。 FIG. 1 is a process flow illustrating a method for manufacturing a CuGaN-based sputtering target according to an embodiment of the present invention. The manufacturing method of the CuGaNa-based sputtering target of the present embodiment includes a step of producing CuGa alloy powder (S1), a step of mixing Na 2 CO 3 powder with CuGa alloy powder (S2), a CuGa alloy powder and Na 2. CO having 3 to mixed powder of powder and process of sintering (S3), and a step of processing the sintered body target shape (S4).

[CuGa合金粉末の作製工程]
CuGa合金粉末の作製工程(S1)は、本実施形態では、CuGa合金を作製する工程と、CuGa合金インゴットを粉砕する工程とを有する。
[CuGa alloy powder production process]
In this embodiment, the CuGa alloy powder production step (S1) includes a step of producing a CuGa alloy and a step of crushing a CuGa alloy ingot.

CuGa合金は、所定の混合割合となるように秤量されたCuインゴットとGaインゴットをそれぞれ溶解し、所定形状の鋳造することで作製される。Cuインゴット及びGaインゴットの純度は特に制限されず、例えば4N程度が用いられる。Cuインゴット及びGaインゴットは同一のルツボに装入され、例えば真空誘導溶解炉で溶解される。   The CuGa alloy is produced by melting a Cu ingot and a Ga ingot that are weighed so as to have a predetermined mixing ratio and casting in a predetermined shape. The purity of the Cu ingot and Ga ingot is not particularly limited, and for example, about 4N is used. Cu ingot and Ga ingot are charged in the same crucible and melted in, for example, a vacuum induction melting furnace.

CuGa合金インゴットの粉砕には、例えば、ジョークラッシャ、ロールミル等の適宜の破砕機を単独または組み合わせて用いることができる。本実施形態では、平均粒度が例えば200μm程度のCuGa合金粉末が作製される。   For crushing the CuGa alloy ingot, an appropriate crusher such as a jaw crusher or a roll mill can be used alone or in combination. In this embodiment, a CuGa alloy powder having an average particle size of, for example, about 200 μm is produced.

[Na2CO3粉末の混合工程]
次に、CuGa合金粉末とNa2CO3粉末との混合粉末が作製される(S2)。CuGa合金粉末とNa2CO3粉末との混合方法は特に限定されず、シェーカミキサー等の公知の撹拌器あるいは混合器を使用することができる。
[Na 2 CO 3 powder mixing step]
Next, a mixed powder of CuGa alloy powder and Na 2 CO 3 powder is produced (S2). Method of mixing CuGa alloy powder and Na 2 CO 3 powder is not particularly limited, and may be a known stirrer or mixer such as a shaker mixer.

Na2CO3粉末の平均粒度は、CuGaNa焼結体の相対密度や抵抗値の分布に大きく影響する。すなわち、Na2CO3粉末の平均粒度が大きいほど、得られる焼結体の相対密度は低く、抵抗値のばらつきが大きくなる。このような焼結体をスパッタリング用ターゲットに用いた場合、異常放電やパーティクルの発生頻度が高くなり、安定したスパッタ成膜が困難となる。 The average particle size of the Na 2 CO 3 powder greatly influences the relative density and resistance value distribution of the CuGaNa sintered body. That is, the larger the average particle size of the Na 2 CO 3 powder, the lower the relative density of the obtained sintered body and the greater the variation in resistance value. When such a sintered body is used for a sputtering target, abnormal discharge and generation frequency of particles increase, and stable sputtering film formation becomes difficult.

そこで本実施形態では、平均粒度が150μm以下のNa2CO3粉末が使用される。これにより、得られる焼結体の相対密度を98%以上に高めることができるとともに、抵抗値のバラツキを例えば±6%以下に抑えることができる。一方、Na2CO3粉末の平均粒度が150μmを超えると、焼結体の相対密度は98%に達することができず、抵抗値のバラツキも±100%に達するおそれがある。 Therefore, in this embodiment, Na 2 CO 3 powder having an average particle size of 150 μm or less is used. As a result, the relative density of the obtained sintered body can be increased to 98% or more, and the variation in resistance value can be suppressed to ± 6% or less, for example. On the other hand, when the average particle size of the Na 2 CO 3 powder exceeds 150 μm, the relative density of the sintered body cannot reach 98%, and the variation in resistance value may reach ± 100%.

Na2CO3粉末の平均粒度は、100μm以下であってもよい。これにより、相対密度98%以上の焼結体を安定して製造することができる。また、得られる焼結体の抵抗値のバラツキの更なる低減を図ることができる。また、Na2CO3粉末の平均粒度を45μm以下とした場合、上記効果をさらに一層高めることができる。 The average particle size of the Na 2 CO 3 powder may be 100 μm or less. Thereby, a sintered body having a relative density of 98% or more can be stably produced. Further, it is possible to further reduce variation in resistance value of the obtained sintered body. Moreover, when the average particle size of the Na 2 CO 3 powder is 45 μm or less, the above effect can be further enhanced.

Na2CO3粉末の平均粒度の調製には、市販のNa2CO3粉末(平均粒度353μm)を破砕し、メッシュの目の大きさが例えば150μm以下の篩(ふるい)を用いて分級してもよい。図2は、上述のように調整したNa2CO3粉末の平均粒度を測定した一実験結果である。図において横軸は粒径(μm)であり、対数目盛で示されている。縦軸は頻度(%)である。 The preparation of the average particle size of Na 2 CO 3 powder, crushed commercial Na 2 CO 3 powder (average particle size 353Myuemu), and classified with a mesh of mesh size of, for example, 150μm following sieve Also good. FIG. 2 shows an experimental result of measuring the average particle size of the Na 2 CO 3 powder prepared as described above. In the figure, the horizontal axis represents the particle size (μm) and is shown on a logarithmic scale. The vertical axis represents frequency (%).

図2において、C1は、メッシュの目の大きさが150μmの篩を用いて分級したときの篩い上残量に相当する粉末の粒度分布を示し、C2は、メッシュの目の大きさが100μmの篩を用いて分級したときの篩い上残量に相当する粉末の粒度分布を示している。C3は、メッシュの目の大きさが45μmの篩を用いて分級したときの篩い上残量に相当する粉末の粒度分布を示し、C4は、メッシュの目の大きさが45μmの篩いを通過した粉末の粒度分布を示している。C2の平均粒度は121μmであり、C3の平均粒度は84μmであり、C4の平均粒度は33μmであった。C2〜C4の平均粒度は、原料粉末の粉砕の程度によって変動するが、メッシュの目の大きさがそれぞれ150μm、100μmおよび45μmの篩を使用すれば、平均粒度がそれぞれ150μm以下、100μm以下および45μm以下の粉末を確実に得ることができる。   In FIG. 2, C1 indicates the particle size distribution of the powder corresponding to the remaining amount on the sieve when classified using a sieve having a mesh size of 150 μm, and C2 indicates that the mesh size is 100 μm. The particle size distribution of the powder corresponding to the residual amount on the sieve when classified using a sieve is shown. C3 shows the particle size distribution of the powder corresponding to the remaining amount on the sieve when classified using a sieve with a mesh size of 45 μm, and C4 passed through a sieve with a mesh size of 45 μm. The particle size distribution of the powder is shown. The average particle size of C2 was 121 μm, the average particle size of C3 was 84 μm, and the average particle size of C4 was 33 μm. The average particle size of C2 to C4 varies depending on the degree of pulverization of the raw material powder, but if a mesh with a mesh size of 150 μm, 100 μm and 45 μm is used, the average particle size is 150 μm or less, 100 μm or less and 45 μm, respectively The following powder can be obtained reliably.

CuGa合金粉末に対するNa2CO3粉末の混合比率は、作製されるCuGaNa焼結体の組成比に応じて定められる。本実施形態では、Ga含有量が30原子%以上50原子%以下、Na含有量が3重量%以上5重量%以下、残部CuのCuGaNa焼結体が作製される。なお不可避の不純物元素の混入や、In、Se等の第4、第5の元素の添加は排除されない。 The mixing ratio of the Na 2 CO 3 powder to the CuGa alloy powder is determined according to the composition ratio of the CuGaNa sintered body to be produced. In the present embodiment, a CuGaNa sintered body having a Ga content of 30 atomic% to 50 atomic%, an Na content of 3 weight% to 5 weight%, and the balance Cu is produced. Inevitable impurity elements and the addition of fourth and fifth elements such as In and Se are not excluded.

[混合粉末の焼結工程]
続いて、CuGa合金粉末とNa2CO3粉末との混合粉末が焼結される(S3)。本実施形態では真空ホットプレス法によって焼結体が作製されるが、これ以外にも、HIP法等の他の焼結法が採用されてもよい。焼結条件も特に限定されず、真空ホットプレス法では例えば温度700℃、圧力24.5MPa(250kg/cm2)等とすることができる。上記混合粉末は所定厚みの板状に焼結されるが、その平面形状は円形でもよいし矩形でもよい。
[Sintering process of mixed powder]
Subsequently, a mixed powder of CuGa alloy powder and Na 2 CO 3 powder is sintered (S3). In the present embodiment, the sintered body is produced by a vacuum hot press method, but other sintering methods such as the HIP method may be adopted. Sintering conditions are not particularly limited, and in the vacuum hot press method, for example, a temperature of 700 ° C. and a pressure of 24.5 MPa (250 kg / cm 2 ) can be used. The mixed powder is sintered into a plate having a predetermined thickness, but the planar shape may be circular or rectangular.

以上のようにして、30原子%以上50原子%以下のGaと3重量%以上5重量%以下のNaとを含有し、98%以上の相対密度と、34μΩ・cm以下の平均抵抗値とを有するCuGaNa系スパッタリング用ターゲットが作製される。   As described above, 30% to 50% by weight of Ga and 3% to 5% by weight of Na are contained, and a relative density of 98% or more and an average resistance value of 34 μΩ · cm or less are obtained. A CuGaNa-based sputtering target is prepared.

[焼結体の機械加工工程]
作製された焼結体は、所定のターゲット形状に加工される(S4)。典型的には、焼結体は、旋盤等を用いて切削あるいは研削される。所定のサイズに加工されたターゲットは、インジウム等のロウ材を用いてバッキングプレートに接合され、ターゲットアセンブリを構成する。
[Machining process of sintered body]
The produced sintered body is processed into a predetermined target shape (S4). Typically, the sintered body is cut or ground using a lathe or the like. The target processed to a predetermined size is joined to a backing plate using a brazing material such as indium to constitute a target assembly.

以上のように本実施形態においては、CuGa合金粉末に添加されるNa原料としてNa2CO3粉末を採用し、そのNa2CO3粉末の平均粒度を規定することにより、高密度化および抵抗値の均一化を実現するようにしている。 As described above, in the present embodiment, the Na 2 CO 3 powder is adopted as the Na raw material added to the CuGa alloy powder, and the average particle size of the Na 2 CO 3 powder is defined, thereby increasing the density and the resistance value. To achieve uniformization.

Na原料にNa2CO3を採用することにより、他のナトリウム化合物と比較して、取り扱い性、品質の安定性等において有利となる。例えばNa2CO3は、NaF等と比較して毒性が低いため安全に取り扱うことができ、またNa2S等と比較して酸化し難いためターゲットの組成が安定に維持される。 By adopting Na 2 CO 3 as the Na raw material, it is advantageous in terms of handleability, quality stability and the like as compared with other sodium compounds. For example, Na 2 CO 3 can be handled safely because it is less toxic than NaF or the like, and it is difficult to oxidize compared to Na 2 S or the like, so that the composition of the target is stably maintained.

一方、Na2CO3粉末の平均粒度を150μm以下に制限することで、焼結体の相対密度を例えば98%以上に高めることができるとともに、抵抗値のバラツキを例えば±6%に抑えることができる。 On the other hand, by limiting the average particle size of the Na 2 CO 3 powder to 150 μm or less, the relative density of the sintered body can be increased to 98% or more, for example, and the variation in resistance value can be suppressed to ± 6%, for example. it can.

[実験例]
本発明者らは、平均粒度の異なる複数種のNa2CO3粉末を準備し、これを平均粒度が200μmのCuGa合金粉末と混合した後、焼結体を作製し、その相対密度と抵抗値のバラツキを測定した。さらに各焼結体をスパッタ装置に組み込んでそのスパッタ性を評価した。
[Experimental example]
The present inventors prepared a plurality of types of Na 2 CO 3 powders having different average particle sizes, mixed them with CuGa alloy powders having an average particle size of 200 μm, and then produced sintered bodies, and their relative densities and resistance values. Variation was measured. Further, each sintered body was incorporated into a sputtering apparatus and its sputterability was evaluated.

(実験例1)
平均粒度が150μmを超えるNa2CO3粉末(図2においてC1で示される粒度分布を有する粉末)をCuGa合金粉末に混合し、Cu−30at%Ga−3wt%Na焼結体を作製した。焼結法には真空ホットプレス法を採用し、焼結温度を700℃、焼結圧力を24.5MPa(250kg/cm2)、焼結時間は2時間とした。
(Experimental example 1)
Na 2 CO 3 powder having an average particle size exceeding 150 μm (powder having a particle size distribution indicated by C1 in FIG. 2) was mixed with CuGa alloy powder to prepare a Cu-30 at% Ga-3 wt% Na sintered body. A vacuum hot press method was employed as the sintering method, the sintering temperature was 700 ° C., the sintering pressure was 24.5 MPa (250 kg / cm 2 ), and the sintering time was 2 hours.

焼結体の相対密度は、焼結体の見掛け密度と理論密度(7.31g/cm3)との比を計算により求めた。見掛け密度は、得られた焼結体を機械加工して外周及び厚みの寸法をノギス、マイクロメータ或いは3次元測定器を用いて測定して体積を求め、次に、電子天秤にて重量を測定し、(重量/体積)の式から求めた。 The relative density of the sintered body was obtained by calculating the ratio between the apparent density of the sintered body and the theoretical density (7.31 g / cm 3 ). The apparent density is obtained by machining the obtained sintered body and measuring the outer circumference and thickness using a caliper, micrometer or three-dimensional measuring instrument to determine the volume, and then measuring the weight with an electronic balance. And obtained from the formula of (weight / volume).

焼結体の抵抗値は、4探針法によって測定した。測定装置は、NPS社製「Σ−1」を用いた。抵抗値のバラツキは、抵抗値の最大値、最小値及び平均値を算出し、[{(最大値−最小値)/平均値}×1/2]の式から求めた。   The resistance value of the sintered body was measured by a 4-probe method. As the measuring device, “Σ-1” manufactured by NPS was used. The variation in the resistance value was calculated from the formula [{(maximum value−minimum value) / average value} × 1/2] by calculating the maximum value, the minimum value, and the average value of the resistance values.

スパッタ評価は、焼結体を直径10cm(4インチ)、厚み6mmに加工し、これをバッキングプレートに装着してスパッタ装置に組み込み、所定時間スパッタを行って異常放電の有無を評価した。異常放電が無かった場合を「○」、異常放電が認められた場合を「×」とした。   For the sputter evaluation, the sintered body was processed into a diameter of 10 cm (4 inches) and a thickness of 6 mm, and this was mounted on a backing plate and incorporated in a sputtering apparatus, and sputtered for a predetermined time to evaluate the presence or absence of abnormal discharge. The case where there was no abnormal discharge was indicated as “◯”, and the case where abnormal discharge was observed was indicated as “x”.

実験の結果を表1に示す。焼結体の相対密度は95.9%、平均抵抗値は41.1μΩ・cm、抵抗値のバラツキは±97%、スパッタ評価は「×」であった。   The results of the experiment are shown in Table 1. The relative density of the sintered body was 95.9%, the average resistance value was 41.1 μΩ · cm, the variation in resistance value was ± 97%, and the sputter evaluation was “x”.

(実験例2)
平均粒度が100μm以上150μm以下のNa2CO3粉末(図2においてC2で示される粒度分布を有する粉末)をCuGa合金粉末に混合し、実験例1と同一の焼結条件でCu−30at%Ga−3wt%Na焼結体を作製した。得られた焼結体の相対密度は98%、平均抵抗値は29.2μΩ・cm、抵抗値のバラツキは±6%、スパッタ評価は「○」であった(表1)。
(Experimental example 2)
Na 2 CO 3 powder (powder having a particle size distribution indicated by C2 in FIG. 2) having an average particle size of 100 μm or more and 150 μm or less is mixed with CuGa alloy powder, and Cu-30 at% Ga under the same sintering conditions as in Experimental Example 1. A −3 wt% Na sintered body was produced. The relative density of the obtained sintered body was 98%, the average resistance value was 29.2 μΩ · cm, the variation in resistance value was ± 6%, and the sputter evaluation was “◯” (Table 1).

(実験例3)
平均粒度が45μm以上100μm以下のNa2CO3粉末(図2においてC3で示される粒度分布を有する粉末)をCuGa合金粉末に混合し、実験例1と同一の焼結条件でCu−30at%Ga−3wt%Na焼結体を作製した。得られた焼結体の相対密度は98%、平均抵抗値は32.7μΩ・cm、抵抗値のバラツキは±6%、スパッタ評価は「○」であった(表1)。
(Experimental example 3)
Na 2 CO 3 powder having an average particle size of 45 μm or more and 100 μm or less (powder having a particle size distribution indicated by C3 in FIG. 2) is mixed with CuGa alloy powder, and Cu-30 at% Ga under the same sintering conditions as in Experimental Example 1. A −3 wt% Na sintered body was produced. The relative density of the obtained sintered body was 98%, the average resistance value was 32.7 μΩ · cm, the variation in resistance value was ± 6%, and the sputter evaluation was “◯” (Table 1).

(実験例4)
平均粒度が45μm以下のNa2CO3粉末(図2においてC4で示される粒度分布を有する粉末)をCuGa合金粉末に混合し、実験例1と同一の焼結条件でCu−30at%Ga−3wt%Na焼結体を作製した。得られた焼結体の相対密度は98.8%、平均抵抗値は33μΩ・cm、抵抗値のバラツキは±6%、スパッタ評価は「○」であった(表1)。
(Experimental example 4)
Na 2 CO 3 powder having an average particle size of 45 μm or less (powder having a particle size distribution indicated by C4 in FIG. 2) was mixed with CuGa alloy powder, and Cu-30 at% Ga-3 wt under the same sintering conditions as in Experimental Example 1. % Na sintered compact was produced. The relative density of the obtained sintered body was 98.8%, the average resistance value was 33 μΩ · cm, the variation in resistance value was ± 6%, and the sputtering evaluation was “◯” (Table 1).

(実験例5)
平均粒度が45μm以上100μm以下のNa2CO3粉末(図2においてC3で示される粒度分布を有する粉末)をCuGa合金粉末に混合し、実験例1と同一の焼結条件でCu−50at%Ga−3wt%Na焼結体を作製した。得られた焼結体の相対密度は98%、平均抵抗値は34μΩ・cm、抵抗値のバラツキは±4.5%、スパッタ評価は「○」であった(表1)。
(Experimental example 5)
Na 2 CO 3 powder having an average particle size of 45 μm or more and 100 μm or less (powder having a particle size distribution indicated by C3 in FIG. 2) is mixed with CuGa alloy powder, and Cu-50 at% Ga under the same sintering conditions as in Experimental Example 1. A −3 wt% Na sintered body was produced. The relative density of the obtained sintered body was 98%, the average resistance value was 34 μΩ · cm, the variation in resistance value was ± 4.5%, and the sputter evaluation was “◯” (Table 1).

(実験例6)
平均粒度が45μm以上100μm以下のNa2CO3粉末(図2においてC3で示される粒度分布を有する粉末)をCuGa合金粉末に混合し、実験例1と同一の焼結条件でCu−30at%Ga−5wt%Na焼結体を作製した。得られた焼結体の相対密度は98.5%、平均抵抗値は32μΩ・cm、抵抗値のバラツキは±3%、スパッタ評価は「○」であった(表1)。
(Experimental example 6)
Na 2 CO 3 powder having an average particle size of 45 μm or more and 100 μm or less (powder having a particle size distribution indicated by C3 in FIG. 2) is mixed with CuGa alloy powder, and Cu-30 at% Ga under the same sintering conditions as in Experimental Example 1. A −5 wt% Na sintered body was produced. The relative density of the obtained sintered body was 98.5%, the average resistance value was 32 μΩ · cm, the variation in resistance value was ± 3%, and the sputter evaluation was “◯” (Table 1).

Figure 0005795898
Figure 0005795898

表1に示すように、150μm以下の平均粒度を有するNa2CO3粉末を混合した焼結体(実験例2〜6)においては、98%以上の相対密度を得られることが確認された。また、これら焼結体の抵抗値の平均値が34μΩ・cm以下、抵抗値のバラツキが±6%以下であることから、焼結体全体において組成の均一化を実現できることが確認された。 As shown in Table 1, it was confirmed that a relative density of 98% or more can be obtained in a sintered body (Experimental Examples 2 to 6) in which Na 2 CO 3 powder having an average particle size of 150 μm or less is mixed. Further, since the average resistance value of these sintered bodies was 34 μΩ · cm or less and the variation in resistance values was ± 6% or less, it was confirmed that uniform composition could be realized in the entire sintered body.

また、Na2CO3粉末の平均粒度が小さいほど相対密度が高くなる傾向があることが確認された(実験例4)。 Further, it was confirmed that the relative density tends to increase as the average particle size of the Na 2 CO 3 powder decreases (Experimental Example 4).

続いて、図3は、平均粒度の異なる複数種のNa2CO3粉末を用いて、Cu−30at%Ga−3wt%Na焼結体を作製したときの各サンプルのXRDチャートである。
図において「P0」は、市販のNa2CO3原料粉末(平均粒度353μm)を粉砕せずにCuGa合金粉末(平均粒度200μm)に混合して作製した焼結体のXRDチャートである。
「P1」は、上記原料粉末を粉砕後、平均粒度が150μmを超えるもの(図2においてC1で示される粒度分布を有する粉末)をCuGa合金粉末に混合して作製した焼結体のXRDチャートである。
「P2」は、上記原料粉末を粉砕後、平均粒度が100μm以上150μm以下のもの(図2においてC2で示される粒度分布を有する粉末)をCuGa合金粉末に混合して作製した焼結体のXRDチャートである。
「P3」は、上記原料粉末を粉砕後、平均粒度が45μm以上100μm以下のもの(図2においてC3で示される粒度分布を有する粉末)をCuGa合金粉末に混合して作製した焼結体のXRDチャートである。
「P4」は、上記原料粉末を粉砕後、平均粒度が45μm以下のもの(図2においてC4で示される粒度分布を有する粉末)をCuGa合金粉末に混合して作製した焼結体のXRDチャートである。
Next, FIG. 3 is an XRD chart of each sample when a Cu-30 at% Ga-3 wt% Na sintered body is produced using a plurality of types of Na 2 CO 3 powders having different average particle sizes.
In the figure, “P0” is an XRD chart of a sintered body prepared by mixing commercially available Na 2 CO 3 raw material powder (average particle size 353 μm) with CuGa alloy powder (average particle size 200 μm) without crushing.
“P1” is an XRD chart of a sintered body prepared by pulverizing the above raw material powder and mixing a powder having a mean particle size exceeding 150 μm (powder having a particle size distribution indicated by C1 in FIG. 2) with CuGa alloy powder. is there.
“P2” is an XRD of a sintered body prepared by pulverizing the above raw material powder and then mixing the powder having an average particle size of 100 μm or more and 150 μm or less (powder having a particle size distribution indicated by C2 in FIG. 2) with CuGa alloy powder. It is a chart.
“P3” is an XRD of a sintered body prepared by pulverizing the above raw material powder and then mixing the powder having an average particle size of 45 μm or more and 100 μm or less (powder having a particle size distribution indicated by C3 in FIG. 2) with CuGa alloy powder. It is a chart.
“P4” is an XRD chart of a sintered body prepared by pulverizing the raw material powder and then mixing the powder having an average particle size of 45 μm or less (powder having a particle size distribution indicated by C4 in FIG. 2) with CuGa alloy powder. is there.

図3に示すように、Na2CO3の回折ピークは、Na2CO3の平均粒度が小さくなるほど小さくなることから、Na2CO3粉末の平均粒度が小さくなるほどNa化合物(Na2CO3)の存在量が減少することが確認された。このことから、Na2CO3粉末は、その平均粒度が小さくなるほど焼結体に分散しすくなり、Na化合物相が形成されにくくなるものと推測される。 As shown in FIG. 3, the diffraction peaks of Na 2 CO 3, since the smaller as the average particle size of Na 2 CO 3 becomes smaller, as the average particle size of Na 2 CO 3 powder decreases Na compound (Na 2 CO 3) It was confirmed that the abundance of was decreased. From this, it is presumed that the Na 2 CO 3 powder becomes easier to disperse in the sintered body as the average particle size becomes smaller, and the Na compound phase is hardly formed.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。   The embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.

例えば以上の実施形態では、焼結体の焼結温度を700℃としたが、これに限られず、例えばNa2CO3の融点以下の温度で適宜変更することが可能である。 For example, in the above embodiment, the sintering temperature of the sintered body is set to 700 ° C., but is not limited thereto, and can be appropriately changed at a temperature equal to or lower than the melting point of Na 2 CO 3 , for example.

また以上の実施形態では、Cu−Ga−Naの三元系焼結体を例に挙げて説明したが、更にInやSe等の元素が添加された多元系焼結体の製造にも、本発明は適用可能である。   In the above embodiment, the Cu-Ga-Na ternary sintered body has been described as an example. However, the present invention is also applicable to the production of multi-element sintered bodies to which elements such as In and Se are added. The invention is applicable.

S1…CuGa合金粉末の作製工程
S2…Na2CO3粉末の混合工程
S3…焼結工程
S4…機械加工工程
S1 ... CuGa alloy powder preparation step S2 ... Na 2 CO 3 powder mixing steps S3 ... sintering step S4 ... machining processes

Claims (2)

CuGa合金粉末とNa2CO3粉末との混合粉末の焼結体からなり、
前記焼結体に対して30原子%以上50原子%以下のGaと、前記焼結体に対して3重量%以上5重量%以下のNaとを含有し、98%以上の相対密度を有する
CuGaNa系スパッタリング用ターゲット。
A sintered body of a mixed powder of CuGa alloy powder and Na 2 CO 3 powder,
Wherein the Ga of 30 to 50 atom% relative to the sintered body, and containing the above 3 wt% to 5 wt% based on the sintered body Na, CuGaNa having a relative density of 98% or more Sputtering target.
請求項に記載のCuGaNa系スパッタリング用ターゲットであって、
平均抵抗値が34μΩ・cm以下である
CuGaNa系スパッタリング用ターゲット。
The CuGaNa sputtering target according to claim 1 ,
A CuGaNa sputtering target having an average resistance value of 34 μΩ · cm or less.
JP2011164999A 2011-07-28 2011-07-28 CuGaNa sputtering target Active JP5795898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164999A JP5795898B2 (en) 2011-07-28 2011-07-28 CuGaNa sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164999A JP5795898B2 (en) 2011-07-28 2011-07-28 CuGaNa sputtering target

Publications (2)

Publication Number Publication Date
JP2013028837A JP2013028837A (en) 2013-02-07
JP5795898B2 true JP5795898B2 (en) 2015-10-14

Family

ID=47786132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164999A Active JP5795898B2 (en) 2011-07-28 2011-07-28 CuGaNa sputtering target

Country Status (1)

Country Link
JP (1) JP5795898B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540724B2 (en) * 2008-05-20 2010-09-08 昭和シェル石油株式会社 CIS type thin film solar cell manufacturing method
TWI482301B (en) * 2009-03-30 2015-04-21 Fujifilm Corp Photoelectric conversion device and manufacturing method thereof, solar cell, and target
JP4793504B2 (en) * 2009-11-06 2011-10-12 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP5877510B2 (en) * 2010-01-07 2016-03-08 Jx金属株式会社 Cu-Ga-based sputtering target, method for producing the target, light absorption layer, and solar cell using the light absorption layer
JP4831258B2 (en) * 2010-03-18 2011-12-07 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP5418463B2 (en) * 2010-10-14 2014-02-19 住友金属鉱山株式会社 Method for producing Cu-Ga alloy sputtering target
JP5725610B2 (en) * 2011-04-29 2015-05-27 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013028837A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
EP2703519B1 (en) Sputtering target and method for producing same
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
KR20130028067A (en) Sputtering target and manufacturing method therefor
US20120205242A1 (en) Cu-In-Ga-Se QUATERNARY ALLOY SPUTTERING TARGET
US20130098758A1 (en) Powder, sintered body and sputtering target, each containing elements of cu, in, ga and se, and method for producing the powder
JP5165100B1 (en) Sputtering target and manufacturing method thereof
TWI750210B (en) Chalcogenide sputtering target and method of making the same
WO2013069710A1 (en) Sputtering target and method for producing same
TWI550117B (en) Sputtering target and method for producing sputtering target
US9273389B2 (en) Cu—In—Ga—Se quaternary alloy sputtering target
TWI653348B (en) Cu-Ga SPUTTERING TARGET AND METHOD OF PRODUCING Cu-Ga SPUTTERING TARGET
WO2016006600A1 (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING SAME
WO2012144655A1 (en) Sputtering target and method for producing same
EP3124647B1 (en) Sputtering target comprising al-te-cu-zr alloy, and method for producing same
JP5795898B2 (en) CuGaNa sputtering target
JP5795897B2 (en) CuGaNa sputtering target
JP2012256759A (en) Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material
JP6311912B2 (en) Cu-Ga binary sputtering target and method for producing the same
JP2014210943A (en) Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME
US20190271069A1 (en) Cu-Ga SPUTTERING TARGET AND METHOD OF MANUFACTURING Cu-Ga SPUTTERING TARGET
WO2018021105A1 (en) Cu-Ga SPUTTERING TARGET AND METHOD FOR PRODUCING Cu-Ga SPUTTERING TARGET
JP2021091944A (en) Sputtering target and manufacturing method of sputtering target
JP5705640B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP5930744B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5795898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250