JP5794041B2 - Concentration measuring device and concentration measuring method - Google Patents

Concentration measuring device and concentration measuring method Download PDF

Info

Publication number
JP5794041B2
JP5794041B2 JP2011189308A JP2011189308A JP5794041B2 JP 5794041 B2 JP5794041 B2 JP 5794041B2 JP 2011189308 A JP2011189308 A JP 2011189308A JP 2011189308 A JP2011189308 A JP 2011189308A JP 5794041 B2 JP5794041 B2 JP 5794041B2
Authority
JP
Japan
Prior art keywords
abrasive
buoyancy
detection electrode
concentration measuring
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011189308A
Other languages
Japanese (ja)
Other versions
JP2013050409A (en
Inventor
石飛 毅
毅 石飛
石川 隆一
隆一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2011189308A priority Critical patent/JP5794041B2/en
Publication of JP2013050409A publication Critical patent/JP2013050409A/en
Application granted granted Critical
Publication of JP5794041B2 publication Critical patent/JP5794041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、試料液中に検知極を挿入して試料液中の測定対象成分濃度に対応する電解電流又は検知極電位を計測する濃度測定装置及び濃度測定方法に関するものである。さらに詳しくは、試料液中の挟雑物質等に関わらず、安定してポーラログラフ方式又はガルバニ電池方式の酸化還元電流(電解電流)計測や酸化還元電位(検知極電位)計測が可能な濃度測定装置及び濃度測定方法に関するものである。   The present invention relates to a concentration measurement apparatus and a concentration measurement method for measuring an electrolytic current or a detection electrode potential corresponding to a concentration of a measurement target component in a sample solution by inserting a detection electrode into the sample solution. More specifically, a concentration measurement device that can stably measure the oxidation-reduction current (electrolysis current) and oxidation-reduction potential (detection electrode potential) of the polarographic method or galvanic cell method regardless of the interstitial substances in the sample solution. And a concentration measuring method.

従来から、残留塩素、溶存オゾン、塩素要求量、二酸化塩素等の測定を目的として、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定装置が用いられている。これらの測定方式は、試料液に、白金、金などの貴金属やグラシーカーボンなどからなる検知極と、検知極に対して充分に大きい表面積をもつ銀などからなる対極とを浸漬し、両極間の間に適当な一定電圧を印加して検知極近傍において測定対象成分の電解還元(又は酸化)を起こさせることで電解電流を得、これを測定することにより所定成分の濃度を求めるものである。
この電解電流は、拡散による物質移動のために試料液と濃度勾配を生じている薄い層(拡散層)の中において、検知極表面に運ばれた測定対象成分が酸化還元されるときに流れる電流であり、拡散電流とも呼ばれる。測定対象成分の濃度に応じた拡散電流を得るためには、拡散層が常に新しく入れ替わるようにしなければならない。
このため、試料液を検知極表面に対して相対的に流動させることが行われている。試料液を検知極表面に対して相対的に流動させるには、検知極を具備した検知極支持体をモータで回転または振動(歳差運動)する電極(以下「回転電極」という。)を用いる方式がある。
Conventionally, a polarographic method or a galvanic cell type oxidation-reduction current measuring device has been used for the purpose of measuring residual chlorine, dissolved ozone, chlorine demand, chlorine dioxide, and the like. In these measurement methods, a detection electrode made of a noble metal such as platinum or gold or glassy carbon and a counter electrode made of silver or the like having a sufficiently large surface area with respect to the detection electrode are immersed in the sample solution. An appropriate constant voltage is applied during the period to cause electrolytic reduction (or oxidation) of the component to be measured in the vicinity of the detection pole, thereby obtaining an electrolytic current and measuring this to obtain the concentration of the predetermined component. .
This electrolytic current is a current that flows when the component to be measured transported to the surface of the sensing electrode is oxidized and reduced in a thin layer (diffusion layer) that forms a concentration gradient with the sample solution due to mass transfer due to diffusion. And is also called a diffusion current. In order to obtain a diffusion current according to the concentration of the component to be measured, the diffusion layer must always be newly replaced.
For this reason, the sample liquid is caused to flow relative to the detection electrode surface. In order to cause the sample liquid to flow relative to the surface of the detection electrode, an electrode (hereinafter referred to as “rotating electrode”) that rotates or vibrates (precesses) a detection electrode support provided with the detection electrode with a motor is used. There is a method.

このような方式では、試料液の通常の流速よりもはるかに大きい線速度で回転電極が回転(振動)する。このため、試料液の流速とは無関係に安定な拡散層を得ることができ、試料液の流速の変動による測定値への影響が生じにくい。
しかし、検知極表面には、対極で生成される電解物質や試料液中の挟雑物等の汚れが付着しやすく、これらの汚れが付着すると、検知極と対極の間に流れる電流値が減少し、測定対象成分の濃度指示値の低下を招く。
このため、従来から、研磨ビーズが収納されたキャップを回転電極に装着し、研磨ビーズの中で回転電極を回転(振動)させることで、一定の線速度を得るとともに、検知極を研磨して汚れの付着を防止し、安定した測定を行うことができるようにしている(特許文献1、特許文献2、特許文献3参照)。
In such a system, the rotating electrode rotates (vibrates) at a linear velocity much higher than the normal flow rate of the sample liquid. For this reason, a stable diffusion layer can be obtained regardless of the flow rate of the sample liquid, and the measurement value is hardly affected by fluctuations in the flow rate of the sample liquid.
However, the detection electrode surface is likely to be contaminated with electrolytes generated at the counter electrode and contaminants in the sample solution, and if these stains adhere, the current value flowing between the detection electrode and the counter electrode decreases. As a result, the concentration instruction value of the measurement target component is lowered.
For this reason, conventionally, by attaching a cap containing abrasive beads to a rotating electrode and rotating (vibrating) the rotating electrode in the abrasive beads, a constant linear velocity is obtained and the sensing electrode is polished. The adhesion of dirt is prevented and stable measurement can be performed (see Patent Document 1, Patent Document 2, and Patent Document 3).

実開平6−30764号公報Japanese Utility Model Publication No. 6-30764 特開2002−90339号公報JP 2002-90339 A 特開2004−340762号公報JP 2004-340762 A

しかし、安定な拡散層を得るために回転電極の回転(振動)速度を上げていくと、研磨ビーズが飛散して清浄化効果が低下したり、検知極近傍の試料液が回転電極と共に移動してしまい、見かけ上、試料液が動いていないのと同じこととなって安定した拡散層が得られなくなったりする。その結果、電極出力が小さくなったり、電極の応答速度が遅くなり測定が不安定になったりするという不具合が生じ得る。   However, if the rotation (vibration) speed of the rotating electrode is increased in order to obtain a stable diffusion layer, the polishing beads are scattered to reduce the cleaning effect, or the sample solution near the detection electrode moves with the rotating electrode. As a result, it appears that the sample solution is not moving, and a stable diffusion layer cannot be obtained. As a result, there may be a problem that the electrode output becomes small or the response speed of the electrode becomes slow and the measurement becomes unstable.

本発明は、以上のような技術的課題を解決するためになされたものであり、その目的とするところは、回転電極の回転(振動)速度を上げても、検知極の清浄効果が低下せず、また、安定した拡散層を得ることが可能な濃度測定装置および濃度測定方法を提供することにある。   The present invention has been made to solve the technical problems as described above. The purpose of the present invention is to reduce the cleaning effect of the detection electrode even if the rotation (vibration) speed of the rotating electrode is increased. Moreover, it is providing the density | concentration measuring apparatus and density | concentration measuring method which can obtain the stable diffused layer.

かかる目的のもと、本発明が適用される濃度測定装置は、試料液中に検知極を挿入して当該試料液の測定対象成分濃度に対応する電解電流または検知極電位を計測する濃度測定装置であって、回転または振動する支持体の下端面に前記検知極が設けられると共に、当該検知極の下方に位置して当該検知極を研磨する透水性の研磨材と、前記研磨材の下方に位置する浮力材により構成されまたは当該研磨材を浮力のある材質で形成することにより構成され、当該研磨材を前記検知極に浮力をもって押し付ける浮力押し付け手段と、前記研磨材が前記支持体の回転または振動に連動して回転することを規制する回転規制手段と、を備えることを特徴とするものである。 For this purpose, a concentration measuring device to which the present invention is applied is a concentration measuring device that inserts a detection electrode into a sample solution and measures an electrolytic current or a detection electrode potential corresponding to the concentration of a component to be measured in the sample solution. The detection electrode is provided on the lower end surface of the rotating or vibrating support, and a water-permeable abrasive that is located below the detection electrode and polishes the detection electrode; and below the abrasive is constituted by a position constituted by buoyant material or the abrasive to form a material with a buoyant, and buoyant pressing means presses with buoyancy the abrasive to the sensing electrode, wherein the abrasive is the rotation of the support or And a rotation restricting means for restricting the rotation in conjunction with the vibration .

ここで、前記回転規制手段は、前記浮力押し付け手段が前記浮力材により構成される場合に当該浮力材と係合することで前記研磨材の回転を規制するガイドピンを含み、当該浮力押し付け手段が当該研磨材を浮力のある材質で形成することにより構成される場合に当該研磨材を収容する容器と係合することで当該研磨材の回転を規制するガイドピンを含むことを特徴とすることができる。また、前記検知極が挿入される前記試料液の通路は横断面矩形形状に形成された内周面を持ち、前記回転規制手段は、前記浮力押し付け手段が前記浮力材により構成される場合に当該浮力材が前記通路の前記内周面と係合する横断面矩形形状であり、当該浮力押し付け手段が当該研磨材を浮力のある材質で形成することにより構成される場合に当該研磨材が前記通路の前記内周面と係合する横断面矩形形状であることを特徴とすることができる。さらに、前記透水性の研磨材は、上面に形成された窪み形状部で前記検知極を研磨することを特徴とすることができる。 Here, the rotation restricting means includes a guide pin for restricting the rotation of the abrasive by engaging with the buoyancy material when the buoyancy pressing means is constituted by the buoyancy material, In the case where the abrasive is made of a material having buoyancy, it includes a guide pin that regulates the rotation of the abrasive by engaging with a container that accommodates the abrasive. it can. Further, the passage of the sample solution into which the detection electrode is inserted has an inner peripheral surface formed in a rectangular shape in cross section, and the rotation restricting means is provided when the buoyancy pressing means is constituted by the buoyancy material. When the buoyancy material has a rectangular shape in cross section that engages with the inner peripheral surface of the passage, and the buoyancy pressing means is formed by forming the abrasive material from a material having buoyancy, the abrasive material is the passage. the rectangular cross section shape der Rukoto for engagement with the inner peripheral surface can be characterized. Further, the permeability of the abrasive can be characterized that you polishing the sensing electrode in the depression-shaped portion formed on the upper surface.

また、本発明が適用される濃度測定方法は、請求項1ないし請求項4のいずれか1項に記載の濃度測定装置を用いて、試料液の測定対象成分濃度に対応する電解電流または検知極電位を計測することを特徴とするものである。   Moreover, the concentration measuring method to which the present invention is applied uses the concentration measuring apparatus according to any one of claims 1 to 4 and uses an electrolytic current or a sensing electrode corresponding to the concentration of a measurement target component in a sample solution. It is characterized by measuring a potential.

本発明によれば、回転電極の回転(振動)速度を上げても、検知極の清浄効果が低下せず、また、安定した拡散層を得ることが可能になる。   According to the present invention, even if the rotation (vibration) speed of the rotating electrode is increased, the cleaning effect of the detection electrode is not lowered, and a stable diffusion layer can be obtained.

本実施の形態に係る濃度測定装置の構成を説明する図である。It is a figure explaining the structure of the density | concentration measuring apparatus which concerns on this Embodiment. 図1の濃度測定装置の横断面図である。It is a cross-sectional view of the concentration measuring apparatus of FIG. 第1の変形例の構成を説明する図である。It is a figure explaining the structure of the 1st modification. 図3の線IV−IVによる断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. 第2の変形例を説明する図である。It is a figure explaining the 2nd modification. 第3の変形例を説明する図である。It is a figure explaining the 3rd modification.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
本実施の形態に係る濃度測定装置1について説明する。
図1は、本実施の形態に係る濃度測定装置1の構成を説明する図であり、説明の便宜上、部分的に縦断面にて示している。
図1に示すように、濃度測定装置1は、検出部10および変換器40を含んで構成されている。この検出部10は、測定する試料液の通路を備える試料液通路部20と、試料液中の測定対象成分の濃度に応じた拡散電流を検出するための手段を備える回転電極30と、を有する。また、変換器40は、検出部10が有する回転電極30の出力値を演算して試料液の測定対象成分の濃度に変換するものである。
より具体的には、試料液通路部20には上方に開口する凹部が形成され、この凹部に回転電極30の下側部分が挿入され、そして、これら試料液通路部20と回転電極30とが互いに一体的に固定されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
The concentration measuring apparatus 1 according to the present embodiment will be described.
FIG. 1 is a diagram for explaining the configuration of the concentration measuring apparatus 1 according to the present embodiment, and is partially shown in a vertical section for convenience of explanation.
As shown in FIG. 1, the concentration measuring device 1 includes a detection unit 10 and a converter 40. The detection unit 10 includes a sample solution passage unit 20 having a sample solution passage to be measured, and a rotating electrode 30 having means for detecting a diffusion current corresponding to the concentration of the measurement target component in the sample solution. . Moreover, the converter 40 calculates the output value of the rotating electrode 30 which the detection part 10 has, and converts it into the density | concentration of the measuring object component of a sample liquid.
More specifically, a concave portion that opens upward is formed in the sample liquid passage portion 20, and a lower portion of the rotating electrode 30 is inserted into the concave portion, and the sample liquid passage portion 20 and the rotating electrode 30 are connected to each other. They are fixed integrally with each other.

濃度測定装置1の回転電極30は、長手形状の電極ボディ31と、電極ボディ31に保持されてモータ32aの駆動力により回転または振動をする検知極32と、電極ボディ31に配設された対極33と、を備えている。この検知極32は、モータ32aから下方に突出する回転シャフト32bの回転軸(略垂直軸)32c上に取り付けられ、あるいは、回転軸32cに対して例えば3度傾斜して取り付けられている検知極支持体32dの下端面に配置されており、これによって検知極32の回転ないし振動(歳差運動、すりこぎ動作)が実現される。
なお、検知極32は、例えば金、白金、合金、グラシーカーボン等で形成することが考えられ、また、対極33は、例えば白金、銀/塩化銀等で形成することが考えられる。
The rotating electrode 30 of the concentration measuring apparatus 1 includes an elongated electrode body 31, a detection electrode 32 that is held by the electrode body 31 and rotates or vibrates by a driving force of a motor 32 a, and a counter electrode disposed on the electrode body 31. 33. The detection pole 32 is mounted on a rotation shaft (substantially vertical shaft) 32c of a rotation shaft 32b that protrudes downward from the motor 32a, or is mounted at an inclination of, for example, 3 degrees with respect to the rotation shaft 32c. It is disposed on the lower end surface of the support 32d, and thereby the rotation or vibration (precession movement, precession movement) of the detection pole 32 is realized.
The detection electrode 32 may be formed of, for example, gold, platinum, an alloy, glassy carbon, or the like, and the counter electrode 33 may be formed of, for example, platinum, silver / silver chloride, or the like.

濃度測定装置1の変換器40は、電解電流を計測する場合、検知極32と対極33との間に所定の一定電圧を付与する加電圧機構および電流計が設けられる。ここにいう加電圧機構は、具体的には所定の電圧に設定可能な電源である。ここで、印加される所定の印加電圧の値にはゼロも含まれる。この場合、電流計を介して検知極と対極とを繋ぐ単なる配線によって加電圧機構を構成することができる。一般的には、印加電圧がゼロでない場合はポーラログラフ方式と呼ばれ、印加電圧がゼロの場合はガルバニ電池方式と呼ばれる。両方式とも、被還元物質等が一定の厚さの拡散層と呼ばれる層の中において、濃度勾配による自然拡散によってのみ検知極表面に運ばれ、その表面で酸化還元されるときに流れる拡散電流(酸化還元電流)を捉える点において共通しており、本質的な差違はない。
また、変換器40は、検知極電位を計測する場合、電圧計が設けられる。
変換器40にはさらに、計測した電解電流又は検知極電位を測定対象成分の濃度に換算する濃度換算回路が設けられる。また、計測した電解電流又は検知極電位、換算した濃度等を表示及び/又は出力する機能を有している。
なお、測定原理に応じて、試料液に試薬や希釈液等を適宜添加しておくことが考えられる。
The converter 40 of the concentration measuring apparatus 1 is provided with a voltage applying mechanism and an ammeter for applying a predetermined constant voltage between the detection electrode 32 and the counter electrode 33 when measuring the electrolytic current. Specifically, the applied voltage mechanism is a power supply that can be set to a predetermined voltage. Here, zero is included in the value of the predetermined applied voltage to be applied. In this case, the applied voltage mechanism can be configured by a simple wiring that connects the detection electrode and the counter electrode via an ammeter. Generally, when the applied voltage is not zero, it is called a polarographic method, and when the applied voltage is zero, it is called a galvanic cell method. In both types, the diffusion current (flowing when the substance to be reduced, etc. is transported to the surface of the sensing electrode only by natural diffusion due to the concentration gradient in the layer called the diffusion layer having a constant thickness, and flows when it is oxidized and reduced on the surface) (Redox current) is common and there is no essential difference.
Moreover, the converter 40 is provided with a voltmeter when measuring the detection electrode potential.
The converter 40 is further provided with a concentration conversion circuit that converts the measured electrolytic current or detected electrode potential into the concentration of the component to be measured. Further, it has a function of displaying and / or outputting the measured electrolytic current or detected electrode potential, converted concentration, and the like.
Depending on the measurement principle, it is conceivable to add a reagent, a diluent or the like to the sample solution as appropriate.

濃度測定装置1の試料液通路部20は、上方に開口する凹部が形成されているフローセル21と、フローセル21の凹部内に位置する研磨材22と、フローセル21の凹部内にて研磨材22の下方に位置し、上下方向に直線的に貫通する貫通穴23aを有する浮力材23と、を備えている。また、試料液通路部20は、浮力材23の貫通穴23aに挿入されて浮力材23の回り止めとして機能するガイドピン24と、フローセル21と回転電極30の電極ボディ31との間の空間を水密に閉鎖するためのシール部材25と、を備えている。浮力材23は、浮力押し付け手段の一例である。
研磨材22は、検知極32の表面を研磨し清浄化するためのものであり、試料液がしみ出す透過性のものである。研磨材22は、例えば多孔質の樹脂などにより形成されている。研磨材22は、浮力材23に固着される。このため、ガイドピン24は、浮力材23のみならず、研磨材22の回り止めも行う。ガイドピン24は、回転規制手段の一例である。なお、ガイドピン24は、回り止めの作用を実現すべく、少なくとも2つ配設することになる。
The sample liquid passage portion 20 of the concentration measuring apparatus 1 includes a flow cell 21 having a recess opening upward, an abrasive 22 positioned in the recess of the flow cell 21, and an abrasive 22 in the recess of the flow cell 21. And a buoyancy material 23 having a through hole 23a that is positioned below and linearly penetrates in the vertical direction. In addition, the sample solution passage portion 20 is inserted into the through hole 23 a of the buoyancy material 23, and a space between the guide pin 24 that functions as a detent of the buoyancy material 23 and the electrode body 31 of the flow cell 21 and the rotary electrode 30. And a sealing member 25 for watertight closing. The buoyancy material 23 is an example of a buoyancy pressing means.
The abrasive 22 is for polishing and cleaning the surface of the detection electrode 32, and is permeable to the sample liquid. The abrasive 22 is made of, for example, a porous resin. The abrasive 22 is fixed to the buoyancy material 23. For this reason, the guide pin 24 not only rotates the abrasive 22 but also the buoyancy material 23. The guide pin 24 is an example of a rotation restricting unit. It should be noted that at least two guide pins 24 are provided in order to achieve a detent action.

浮力材23は、浮き輪ないしフロート(float)として機能するものであり、試料液通路部20の凹部が試料液で満たされたときには研磨材22を上方に押し上げるように作用し、結果として、常に研磨材22の上面22aが検知極32の下面に接触する。なお、研磨材22を浮力のある材質で構成することも考えられる。
さらに説明すると、フローセル21には、凹部に連通する流入口21aおよび流出口21bが形成されている。流入口21aは凹部の下側に位置し、また、流出口21bは凹部の上側に位置する。すなわち、流入口21aから流入した試料液は、主に浮力材23の貫通穴23aを通って凹部を上昇した後に研磨材22を透過し、流出口21bから流出する。このような試料液の上方に向かう流れ(試料液の水圧)は、研磨材22を上方に押し上げるという作用を奏するものであり、浮力材23による浮力と共に、研磨材22の上面22aを常に検知極32の下面に押し付けることが可能になる。
The buoyancy material 23 functions as a floating ring or a float, and acts to push up the abrasive 22 upward when the concave portion of the sample liquid passage 20 is filled with the sample liquid. The upper surface 22 a of the abrasive 22 contacts the lower surface of the detection electrode 32. It is also conceivable that the abrasive 22 is made of a material having buoyancy.
More specifically, the flow cell 21 has an inflow port 21a and an outflow port 21b communicating with the recess. The inflow port 21a is located below the recess, and the outflow port 21b is located above the recess. That is, the sample liquid that has flowed in from the inflow port 21a mainly passes through the through hole 23a of the buoyancy material 23, rises in the recess, passes through the abrasive 22, and flows out from the outflow port 21b. Such upward flow of the sample liquid (water pressure of the sample liquid) has the effect of pushing up the abrasive 22 upward, and together with the buoyancy by the buoyancy material 23, the upper surface 22a of the abrasive 22 is always detected. It becomes possible to press against the lower surface of 32.

図2は、図1の濃度測定装置1の横断面図であり、(a)は、検知極支持体32dが回転軸32cに対して傾斜して取り付けられている場合における図1の線IIa−IIaによる断面図であり、(b)は図1の線IIb−IIbによる横断面図である。
図2の(a)に示すように、検知極支持体32dが歳差運動(すりこぎ動作)をすると、研磨材22の上面22aにおいて回転軸32cの回りを円を描くように振れ回る(矢印A参照)。このため、検知極支持体32dが回転軸32c上に取り付けられている場合と比べ、検知極32が接触する研磨材22の上面22aの領域がより広くなる。
ここで、検知極32が浮力材23の浮力等によって研磨材22に常に接触している状態では、モータ32aの駆動力により検知極支持体32dを歳差運動(すりこぎ動作)させることで、透水性の研磨材22により検知極32の研磨および清浄化が行われる際に、検知極32がより広い領域にて研磨材22に接触することになる。このため、研磨材22の摩耗や変形等に起因する研磨効果の低下を防止することが可能になる。
2 is a cross-sectional view of the concentration measuring apparatus 1 in FIG. 1, and FIG. 2A is a diagram taken along line IIa- in FIG. 1 when the detection electrode support 32d is attached to be inclined with respect to the rotating shaft 32c. It is sectional drawing by IIa, (b) is a cross-sectional view by line IIb-IIb of FIG.
As shown in FIG. 2 (a), when the detection pole support 32d performs precession (grinding operation), the upper surface 22a of the abrasive 22 swings around the rotating shaft 32c so as to draw a circle (arrow). A). For this reason, compared with the case where the detection pole support body 32d is attached on the rotating shaft 32c, the area | region of the upper surface 22a of the abrasive 22 which the detection pole 32 contacts becomes wider.
Here, in a state in which the detection pole 32 is always in contact with the abrasive 22 due to the buoyancy of the buoyancy material 23 or the like, the detection pole support 32d is caused to precess by a driving force of the motor 32a (precession operation). When the detection electrode 32 is polished and cleaned by the water-permeable polishing material 22, the detection electrode 32 comes into contact with the polishing material 22 in a wider area. For this reason, it is possible to prevent a reduction in the polishing effect due to wear or deformation of the abrasive 22.

図2の(b)に示すように、浮力材23の貫通穴23aは中心寄りに2つ形成され、また、2つの貫通穴23aの各々にガイドピン24が挿入される。このような2本のガイドピン24により、研磨材22の上面22aに接触する検知極支持体32dが回転または振動(歳差運動)することに伴って浮力材23および研磨材22が回転することを規制している。
付言すると、これら2つの貫通穴23aは、検知極32が接触する研磨材22の上面22aの領域(図2の(a)参照)に対応する位置に形成されることが好ましい。また、試料液は、主に浮力材23の貫通穴23aとガイドピン24との間の空間を流れる。なお、貫通穴23aをガイドピン24の数よりも多い数を設け、ガイドピン24が挿入されない貫通穴23aを試料液の通路としてのみ用いることも考えられる。
As shown in FIG. 2B, two through holes 23a of the buoyancy material 23 are formed closer to the center, and a guide pin 24 is inserted into each of the two through holes 23a. By such two guide pins 24, the buoyancy material 23 and the abrasive 22 rotate as the detection pole support 32d contacting the upper surface 22a of the abrasive 22 rotates or vibrates (precession). Is regulated.
In addition, these two through holes 23a are preferably formed at positions corresponding to the region of the upper surface 22a of the abrasive 22 (see FIG. 2A) with which the detection electrode 32 contacts. Further, the sample liquid mainly flows in the space between the through hole 23 a of the buoyancy material 23 and the guide pin 24. It is also conceivable that the number of through holes 23a is greater than the number of guide pins 24, and the through holes 23a into which the guide pins 24 are not inserted are used only as the sample solution passages.

このように、本実施の形態によれば、回転電極の回転(振動)速度を高くしても研磨材による検知極清浄効果の低下を抑制することが可能になる。また、回転電極の回転(振動)速度を高くしても安定した拡散層を得られる仕組みとすることが可能になる。   Thus, according to the present embodiment, it is possible to suppress a decrease in the detection electrode cleaning effect due to the abrasive even if the rotation (vibration) speed of the rotary electrode is increased. In addition, a stable diffusion layer can be obtained even if the rotation (vibration) speed of the rotating electrode is increased.

上述した本実施の形態について種々の変形例が考えられる。なお、以下説明する種々の変形例は、本実施の形態の場合と共通する構成を有することから、共通する個所には同じ符号を用い、その説明を省略することがある。
図3は、第1の変形例の構成を説明する図であり、図4は、図3の線IV−IVによる断面図である。図3は図1に対応するものであり、図4は図2に対応するものである。
図3に示すように、第1の変形例に係る濃度測定装置1は、浮力材23の貫通穴23aに挿入されるガイドピン24(図1参照)を備えていない。また、図4に示すように、第1の変形例に係る濃度測定装置1では、フローセル21に内周面の横断面が矩形形状の凹部を形成し、かつ、浮力材23の外周面の横断面が矩形形状になるように形成している。
すなわち、上述の本実施の形態では、ガイドピン24は、浮力材23の貫通穴23aに挿入されることで浮力材23の回転止めとして作用するが(図2の(b)参照)、第1の変形例では、フローセル21の凹部の内周面と浮力材23の外周面とを互いに対応する矩形形状とすることにより浮力材23の回転止めとしている(図4参照)。なお、浮力材23の貫通穴23aは、試料液が流れる流路として用いられる。
第1の変形例によれば、構成を簡略化することが可能になる。
Various modifications can be considered for the above-described embodiment. Since various modifications described below have the same configuration as that of the present embodiment, the same reference numerals are used for common portions, and the description thereof may be omitted.
FIG. 3 is a diagram for explaining the configuration of the first modification, and FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. FIG. 3 corresponds to FIG. 1, and FIG. 4 corresponds to FIG.
As shown in FIG. 3, the concentration measuring apparatus 1 according to the first modification does not include a guide pin 24 (see FIG. 1) that is inserted into the through hole 23 a of the buoyancy material 23. Further, as shown in FIG. 4, in the concentration measuring apparatus 1 according to the first modification, the flow cell 21 has a concave portion having a rectangular cross section on the inner peripheral surface, and the transverse cross section of the outer peripheral surface of the buoyancy material 23. The surface is formed in a rectangular shape.
That is, in the above-described embodiment, the guide pin 24 functions as a rotation stopper for the buoyancy material 23 by being inserted into the through hole 23a of the buoyancy material 23 (see FIG. 2B). In the modified example, the buoyancy material 23 is prevented from rotating by making the inner peripheral surface of the recess of the flow cell 21 and the outer peripheral surface of the buoyancy material 23 have corresponding rectangular shapes (see FIG. 4). The through hole 23a of the buoyancy material 23 is used as a flow path through which the sample solution flows.
According to the first modification, the configuration can be simplified.

図5は、第2の変形例の構成を説明する図である。図5は図1または図3に対応するものである。
図5に示すように、第2の変形例に係る濃度測定装置1は、研磨材22自身が浮力を有するものであり、このために、浮力材23(図1参照)を備えていない。すなわち、研磨材22自身による浮力により、研磨材22の上面22aを常に検知極32の下面に押し付けている。この場合の研磨材22は、浮力押し付け手段の一例である。
FIG. 5 is a diagram illustrating the configuration of the second modification. FIG. 5 corresponds to FIG. 1 or FIG.
As shown in FIG. 5, the concentration measuring apparatus 1 according to the second modified example is one in which the abrasive 22 itself has buoyancy, and therefore does not include the buoyancy material 23 (see FIG. 1). That is, the upper surface 22 a of the abrasive 22 is always pressed against the lower surface of the detection electrode 32 by the buoyancy caused by the abrasive 22 itself. The abrasive 22 in this case is an example of a buoyancy pressing means.

研磨材22は、比較的軽量のケース51に収容されている。このケース51は、ガイドピン24と係合する穴51aが底部に形成されている。付言すると、試料液が主に、ケース51の穴51aから研磨材22の上面22aに供給される。
第2の変形例によれば、構成を簡略化することが可能になる。
The abrasive 22 is accommodated in a relatively lightweight case 51. The case 51 is formed with a hole 51 a that engages with the guide pin 24 at the bottom. In other words, the sample solution is mainly supplied from the hole 51 a of the case 51 to the upper surface 22 a of the abrasive 22.
According to the second modification, the configuration can be simplified.

なお、第2の変形例に上述の第1の変形例を適用することも考えられる。すなわち、第1の変形例のようにガイドピン24(図1参照)を省略すると共に、第2の変形例のように浮力材23(図1参照)を省略し、さらにケース51(図5参照)をも省略する構成である。この場合には、フローセル21の凹部の内周面と研磨材22の外周面とを互いに対応する矩形形状とすることにより研磨材22の回転止めとする。
また、貫通穴23aおよびガイドピン24を互いに対応する矩形形状とすることや、十字形状とすることにより、研磨材22の回転止めとすることも考えられる。
It is also conceivable to apply the above-described first modification to the second modification. That is, the guide pin 24 (see FIG. 1) is omitted as in the first modification, the buoyancy material 23 (see FIG. 1) is omitted as in the second modification, and the case 51 (see FIG. 5) is further omitted. ) Is also omitted. In this case, the abrasive 22 is prevented from rotating by making the inner peripheral surface of the recess of the flow cell 21 and the outer peripheral surface of the abrasive 22 have rectangular shapes corresponding to each other.
It is also conceivable to prevent the abrasive 22 from rotating by making the through hole 23a and the guide pin 24 have a rectangular shape corresponding to each other or a cross shape.

図6は、第3の変形例の構成を説明する図である。同図は、濃度測定装置1の検知極支持体32dが回転軸32cに対して傾斜して取り付けられている場合における研磨材22周辺を拡大して示す断面図である。
図6に示すように、第3の変形例に係る濃度測定装置1では、研磨材22の上面22aに窪み形状部61が形成されている。この窪み形状部61は、すり鉢状に形成されている。かかる窪み形状部61により、歳差運動をする検知極支持体32dの下端面に設けられた検知極32が研磨材22の上面22aに接触する際に、より確実に接触させることが可能になり、また、検知極32の下面と上面22aとの接触面積をより広く確保することが可能になる。
このように、第3の変形例によれば、検知極32と研磨材22との接触がより確実になると共に、接触面積をより広く確保することが可能になる。
FIG. 6 is a diagram illustrating the configuration of the third modification. This figure is an enlarged cross-sectional view of the periphery of the abrasive 22 when the detection electrode support 32d of the concentration measuring apparatus 1 is attached to be inclined with respect to the rotating shaft 32c.
As shown in FIG. 6, in the concentration measuring device 1 according to the third modified example, a recessed portion 61 is formed on the upper surface 22 a of the abrasive 22. The hollow portion 61 is formed in a mortar shape. Such a recessed portion 61 makes it possible to more reliably contact the detection electrode 32 provided on the lower end surface of the detection electrode support 32d that precesses with the upper surface 22a of the abrasive 22. In addition, it is possible to secure a wider contact area between the lower surface of the detection electrode 32 and the upper surface 22a.
As described above, according to the third modified example, the contact between the detection electrode 32 and the abrasive 22 becomes more reliable, and a wider contact area can be secured.

1…濃度測定装置、10…検出部、20…試料液通路部、21…フローセル、22…研磨材、22a…上面、23…浮力材、23a…貫通穴、24…ガイドピン、25…シール部材、30…回転電極、31…電極ボディ、32…検知極、32a…モータ、32b…回転シャフト、32c…回転軸、32d…検知極支持体、33…対極、40…変換器、51…ケース、51a…穴、61…窪み形状部、A…矢印 DESCRIPTION OF SYMBOLS 1 ... Concentration measuring apparatus, 10 ... Detection part, 20 ... Sample liquid passage part, 21 ... Flow cell, 22 ... Abrasive material, 22a ... Upper surface, 23 ... Buoyancy material, 23a ... Through-hole, 24 ... Guide pin, 25 ... Seal member 30 ... rotating electrode, 31 ... electrode body, 32 ... sensing electrode, 32a ... motor, 32b ... rotating shaft, 32c ... rotating shaft, 32d ... sensing electrode support, 33 ... counter electrode, 40 ... converter, 51 ... case, 51a ... hole, 61 ... indented portion, A ... arrow

Claims (5)

試料液中に検知極を挿入して当該試料液の測定対象成分濃度に対応する電解電流または検知極電位を計測する濃度測定装置であって、
回転または振動する支持体の下端面に前記検知極が設けられると共に、当該検知極の下方に位置して当該検知極を研磨する透水性の研磨材と、
前記研磨材の下方に位置する浮力材により構成されまたは当該研磨材を浮力のある材質で形成することにより構成され、当該研磨材を前記検知極に浮力をもって押し付ける浮力押し付け手段と、
前記研磨材が前記支持体の回転または振動に連動して回転することを規制する回転規制手段と、
を備えることを特徴とする濃度測定装置。
A concentration measuring device that inserts a detection electrode into a sample solution and measures an electrolytic current or a detection electrode potential corresponding to the concentration of a measurement target component of the sample solution,
The detection electrode is provided on the lower end surface of the rotating or vibrating support, and a water-permeable abrasive that polishes the detection electrode located below the detection electrode.
A buoyancy pressing means configured to form a buoyancy material located below the abrasive or by forming the abrasive from a material having buoyancy, and pressing the abrasive to the detection electrode with buoyancy;
A rotation restricting means for restricting the abrasive from rotating in conjunction with rotation or vibration of the support;
A concentration measuring device comprising:
前記回転規制手段は、前記浮力押し付け手段が前記浮力材により構成される場合に当該浮力材と係合することで前記研磨材の回転を規制するガイドピンを含み、当該浮力押し付け手段が当該研磨材を浮力のある材質で形成することにより構成される場合に当該研磨材を収容する容器と係合することで当該研磨材の回転を規制するガイドピンを含むことを特徴とする請求項1に記載の濃度測定装置。 The rotation restricting means includes a guide pin that restricts rotation of the abrasive by engaging with the buoyancy material when the buoyancy pressing means is constituted by the buoyancy material, and the buoyancy pressure means is the abrasive material. 2. A guide pin that restricts rotation of the abrasive by engaging with a container that accommodates the abrasive when it is formed of a material having buoyancy. Concentration measuring device. 前記検知極が挿入される前記試料液の通路は横断面矩形形状に形成された内周面を持ち、
前記回転規制手段は、前記浮力押し付け手段が前記浮力材により構成される場合に当該浮力材が前記通路の前記内周面と係合する横断面矩形形状であり、当該浮力押し付け手段が当該研磨材を浮力のある材質で形成することにより構成される場合に当該研磨材が前記通路の前記内周面と係合する横断面矩形形状であることを特徴とする請求項1に記載の濃度測定装置。
The passage of the sample solution into which the detection electrode is inserted has an inner peripheral surface formed in a rectangular cross section,
When the buoyancy pressing means is constituted by the buoyancy material, the rotation restricting means has a rectangular cross section that engages the inner peripheral surface of the passage, and the buoyancy pressing means is the abrasive. the concentration measurement according to claim 1, wherein the cross-sectional rectangular shape der Rukoto which the abrasive is engaged with the inner peripheral surface of said passage when constituted by forming a material with buoyant apparatus.
前記透水性の研磨材は、上面に形成された窪み形状部で前記検知極を研磨することを特徴とする請求項1ないし3のいずれか1項に記載の濃度測定装置。 The permeability of abrasive concentration measuring apparatus according to any one of claims 1 to 3, wherein that you polishing the sensing electrode in the depression-shaped portion formed on the upper surface. 請求項1ないし請求項4のいずれか1項に記載の濃度測定装置を用いて、試料液の測定対象成分濃度に対応する電解電流または検知極電位を計測することを特徴とする濃度測定方法。   5. A concentration measuring method, comprising: using the concentration measuring apparatus according to claim 1 to measure an electrolysis current or a detection electrode potential corresponding to a concentration of a measurement target component of a sample solution.
JP2011189308A 2011-08-31 2011-08-31 Concentration measuring device and concentration measuring method Active JP5794041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189308A JP5794041B2 (en) 2011-08-31 2011-08-31 Concentration measuring device and concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189308A JP5794041B2 (en) 2011-08-31 2011-08-31 Concentration measuring device and concentration measuring method

Publications (2)

Publication Number Publication Date
JP2013050409A JP2013050409A (en) 2013-03-14
JP5794041B2 true JP5794041B2 (en) 2015-10-14

Family

ID=48012549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189308A Active JP5794041B2 (en) 2011-08-31 2011-08-31 Concentration measuring device and concentration measuring method

Country Status (1)

Country Link
JP (1) JP5794041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181320A (en) * 2014-09-12 2014-12-03 上海泽铭环境科技有限公司 Method for detecting chemical oxygen demand by using solar power water-borne monitoring buoy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535386Y2 (en) * 1991-03-27 1997-05-14 京都電子工業株式会社 Residual chlorine meter
JP2005283287A (en) * 2004-03-29 2005-10-13 Horiba Ltd Water quality measuring instrument with zero water refining part
JP4022609B2 (en) * 2005-06-03 2007-12-19 独立行政法人 日本原子力研究開発機構 Cleaning device for rod electrode

Also Published As

Publication number Publication date
JP2013050409A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
Kikura-Hanajiri et al. Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection
Sassa et al. Electrochemical techniques for microfluidic applications
JP7197961B2 (en) pH control device, sensor device and method for controlling pH for analyte detection
JP5622063B1 (en) Chemical oxygen consumption (COD) automatic measuring device
JP6663782B2 (en) Reference electrode with porous membrane
US10809223B2 (en) Sensor
Andreasen et al. Integrating electrochemical detection with centrifugal microfluidics for real-time and fully automated sample testing
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
CN107271525A (en) A kind of integrated form ampere detection sensor for micro-total analysis system chip
JP5794041B2 (en) Concentration measuring device and concentration measuring method
CN103210306B (en) Vital information measurement device and vital information measurement method employing same
JP2016080573A (en) Free residual chlorine measurement device
Zhu et al. Electrochemical determination of reversible redox species at interdigitated array micro/nanoelectrodes using charge injection method
JP4365086B2 (en) Concentration measuring device and concentration measuring method
CN105277600A (en) Peracetic acid concentration meter
US20180172619A1 (en) Device for determining a measurand correlated with a concentration of an analyte in a measuring medium, and a method
JP4216846B2 (en) Electrodes for electrochemical measurements and electrochemical measurement methods
JP6337459B2 (en) Redox current measuring device
Seo et al. Comparison of micro-and nano-pore platinum working electrodes for CMOS integrated nondisposable biosensor applications
JP6098427B2 (en) Electrode unit for redox current measurement and redox current measuring device
CN107850562B (en) Electrochemical measuring cell for measuring the content of chlorine compounds in water
JP2015232508A (en) Sensor for measuring in medium for cell culture and measuring method
Kojima et al. Microanalysis system for pO/sub 2/, pCO/sub 2/, and pH constructed with stacked modules
Westbroek Fundamentals of electrochemistry
JP5975744B2 (en) Ion selective electrode and analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5794041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250