JP5793922B2 - Heterogeneous liquid phase reaction method - Google Patents

Heterogeneous liquid phase reaction method Download PDF

Info

Publication number
JP5793922B2
JP5793922B2 JP2011084656A JP2011084656A JP5793922B2 JP 5793922 B2 JP5793922 B2 JP 5793922B2 JP 2011084656 A JP2011084656 A JP 2011084656A JP 2011084656 A JP2011084656 A JP 2011084656A JP 5793922 B2 JP5793922 B2 JP 5793922B2
Authority
JP
Japan
Prior art keywords
liquid
reaction
phase
water
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011084656A
Other languages
Japanese (ja)
Other versions
JP2012219042A (en
Inventor
遠藤 透
透 遠藤
大輔 富川
大輔 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011084656A priority Critical patent/JP5793922B2/en
Publication of JP2012219042A publication Critical patent/JP2012219042A/en
Application granted granted Critical
Publication of JP5793922B2 publication Critical patent/JP5793922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、不均一液相反応方法に関する。   The present invention relates to a heterogeneous liquid phase reaction method.

従来、互いに溶解しない液相同士を反応させる不均一液相反応方法が知られている。
不均一液相反応は、液相同士が界面を形成した状態で反応が進行するが、両相の接触が不十分であるため、十分な反応速度が得られにくい。
また、触媒として固体触媒を使用したとしても、不均一液相反応の反応場は液−液−個の三相となるため、各相の接触は制限されやすく、工業的に十分な反応速度を得ることは困難であった。
そのため、所望の反応速度を得るためには触媒を大量に使用する必要があり、コストがかかりやすかった。また、反応成績が各相の接触状態に大きく依存するため、反応工程を安定に運転することが困難であった。
Conventionally, a heterogeneous liquid phase reaction method in which liquid phases that do not dissolve each other are reacted is known.
In the heterogeneous liquid phase reaction, the reaction proceeds in a state where the liquid phases form an interface. However, since the contact between both phases is insufficient, it is difficult to obtain a sufficient reaction rate.
Moreover, even if a solid catalyst is used as the catalyst, the reaction field of the heterogeneous liquid phase reaction is liquid-liquid-three-phase, so contact of each phase is likely to be limited, and an industrially sufficient reaction rate is achieved. It was difficult to get.
Therefore, in order to obtain a desired reaction rate, it is necessary to use a large amount of catalyst, which is costly. In addition, since the reaction results greatly depend on the contact state of each phase, it is difficult to stably operate the reaction process.

固体触媒を充填した反応器内での不均一液相反応方法としては、例えば、固体触媒として強酸性陽イオン交換樹脂の存在下に、液状イソブチレンと水とを反応させて第3級ブチルアルコールを製造する方法が知られている(例えば特許文献1、2参照。)。
特許文献1には、有機相(イソブチレン)を連続相とし、水相を分散相として、反応器に充填された固体触媒粒子表面を水が線速度1m/hr以上で流下する状態で、イソブチレンと水とを反応させる方法が開示されている。
一方、特許文献2には、反応液組成が特定の均一液相と不均一液相の領域を含む状態で、イソブチレンと水とを反応させる方法が開示されている。
As a heterogeneous liquid phase reaction method in a reactor filled with a solid catalyst, for example, liquid isobutylene and water are reacted in the presence of a strongly acidic cation exchange resin as a solid catalyst to produce tertiary butyl alcohol. A manufacturing method is known (for example, refer to Patent Documents 1 and 2).
In Patent Document 1, an organic phase (isobutylene) is used as a continuous phase, an aqueous phase is used as a dispersed phase, and water is allowed to flow on the surface of solid catalyst particles packed in a reactor at a linear velocity of 1 m / hr or more. A method of reacting with water is disclosed.
On the other hand, Patent Document 2 discloses a method of reacting isobutylene and water in a state where the composition of the reaction solution includes a region of a specific homogeneous liquid phase and a heterogeneous liquid phase.

特開昭54−30104号公報JP 54-30104 A 特開昭56−10124号公報JP-A-56-10124

しかしながら、特許文献1には有機相中における水相の分散状態については何ら言及しておらず、水相が大きな塊状になっている場合には、有機相との接触面積が小さくなり、反応速度が著しく低下するという問題があった。なお、特許文献1では、反応物である水を、分散器を経て反応器上部に連続的に供給させているが、具体的な分散手法や分散状態については何ら言及されていない。   However, Patent Document 1 does not mention anything about the dispersion state of the aqueous phase in the organic phase. When the aqueous phase is in a large lump, the contact area with the organic phase is reduced, and the reaction rate is reduced. There was a problem that the remarkably decreased. In Patent Document 1, water as a reaction product is continuously supplied to the upper part of the reactor through the disperser, but nothing is said about a specific dispersion method or dispersion state.

特許文献2には反応液組成が不均一液相の領域にある場合の具体的な反応方法については言及されていない。従って、特許文献2で開示されている組成領域において反応を実施したとしても、組成が不均一液相の領域にあり、不均一液相が反応器内で十分に分散されていない場合には、液−液−個の接触状態が不良であり、反応速度が著しく低下するという問題点があった。   Patent Document 2 does not mention a specific reaction method in the case where the composition of the reaction solution is in the region of a heterogeneous liquid phase. Therefore, even when the reaction is carried out in the composition region disclosed in Patent Document 2, if the composition is in the region of the heterogeneous liquid phase and the heterogeneous liquid phase is not sufficiently dispersed in the reactor, There was a problem that the liquid-liquid-piece contact state was poor, and the reaction rate was significantly reduced.

本発明は上記事情に鑑みてなされたもので、互いに溶解しない液相同士を高い反応速度で反応させる不均一液相反応方法を提供する。   The present invention has been made in view of the above circumstances, and provides a heterogeneous liquid phase reaction method in which liquid phases that do not dissolve each other are reacted at a high reaction rate.

本発明者らは鋭意検討した結果、不均一液相の液分散状態が均一であれば、不均一液相反応における液−液−固の接触状態が改善され、反応速度が高まることに着目した。そして、不均一液相の液分散状態は、固体触媒が充填された反応器に反応液を供給する液供給手段の前後で生じる差圧で制御でき、特定の差圧で反応液を反応器に供給することで液分散状態が均一となることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have focused on the fact that the liquid-liquid-solid contact state in the heterogeneous liquid phase reaction is improved and the reaction rate is increased if the liquid dispersion state of the heterogeneous liquid phase is uniform. . The liquid dispersion state of the heterogeneous liquid phase can be controlled by the differential pressure generated before and after the liquid supply means for supplying the reaction liquid to the reactor filled with the solid catalyst, and the reaction liquid is supplied to the reactor with a specific differential pressure. As a result of the supply, the liquid dispersion state was found to be uniform, and the present invention was completed.

すなわち、本発明の不均一液相反応方法は、固体触媒を充填した流通型反応器に液供給部から反応液を供給し、互いに溶解しない液相同士を反応させる不均一液相反応方法において、前記反応が、水を含有する親水性相と、イソブチレンを含む炭化水素を含有する親油性相との水和反応であり、前記液供給部の前後で生じる差圧を0.04kg/cm以上とすることを特徴とする。
ここで、前記流通型反応器の同一高さにおいて、該流通型反応器内の固体触媒の温度を複数点測定し、反応中の不均一液相の液分散状態を管理することが好ましい
That is, the heterogeneous liquid phase reaction method of the present invention is a heterogeneous liquid phase reaction method in which a reaction solution is supplied from a liquid supply unit to a flow reactor filled with a solid catalyst, and liquid phases that do not dissolve each other react with each other. The reaction is a hydration reaction between a hydrophilic phase containing water and a lipophilic phase containing a hydrocarbon containing isobutylene, and a differential pressure generated before and after the liquid supply unit is 0.04 kg / cm 2 or more. It is characterized by.
Here, at the same height of the flow reactor, it is preferable to measure the temperature of the solid catalyst in the flow reactor at a plurality of points to manage the liquid dispersion state of the heterogeneous liquid phase during the reaction .

本発明によれば、互いに溶解しない液相同士を高い反応速度で反応させる不均一液相反応方法を提供できる。   According to the present invention, it is possible to provide a heterogeneous liquid phase reaction method in which liquid phases that do not dissolve each other are reacted at a high reaction rate.

本発明に用いる反応装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the reaction apparatus used for this invention. 図1に示す反応装置に備わる液供給手段の部分拡大図である。It is the elements on larger scale of the liquid supply means with which the reaction apparatus shown in FIG. 1 is equipped. 試験例で用いた反応装置を示す概略構成図である。It is a schematic block diagram which shows the reaction apparatus used by the test example. 図3に示す反応装置の液供給部に取り付けられたノズルを示す図であり、(a)は側面図、(b)は(a)のA−A線に沿う断面図である。It is a figure which shows the nozzle attached to the liquid supply part of the reactor shown in FIG. 3, (a) is a side view, (b) is sectional drawing which follows the AA line of (a).

本発明は、互いに溶解しない液相同士を反応させる不均一液相反応方法である。
本発明の不均一液相反応方法が適用できる不均一液相としては特に限定されないが、例えば二種類の液体(液相)が互いに溶解せず、界面を形成する二液相を挙げることができ、具体的には一方の液相(連続相)中に他方の液相(分散相)が分散している二液相が挙げられる。
なお、本発明において「液分散状態」とは、一方の液相(連続相)中に分散している他方の液相(分散相)の分散状態のことである。また、「互いに溶解しない」とは、任意の組成液体が二相に分離することで液液界面が形成されている状態を示す。
The present invention is a heterogeneous liquid phase reaction method in which liquid phases that do not dissolve each other are reacted.
The heterogeneous liquid phase to which the heterogeneous liquid phase reaction method of the present invention can be applied is not particularly limited, and examples thereof include two liquid phases in which two types of liquids (liquid phases) do not dissolve each other and form an interface. Specifically, a two-liquid phase in which the other liquid phase (dispersed phase) is dispersed in one liquid phase (continuous phase) can be mentioned.
In the present invention, the “liquid dispersion state” means a dispersion state of the other liquid phase (dispersed phase) dispersed in one liquid phase (continuous phase). Further, “does not dissolve in each other” indicates a state in which a liquid-liquid interface is formed by separating an arbitrary composition liquid into two phases.

二液相としては、例えば親水性相と親油性相の組み合わせが挙げられる。
親水性相を形成する物質としては特に限定されないが、水や、水への溶解性が高い化合物と水との混合物が挙げられる。
水への溶解性が高い化合物としては、アルコール類や酸類が挙げられる。
アルコール類としては、例えばメタノール、エタノール、ブタノールなどが挙げられる。また、エチレングリコール等の多価アルコールを用いてもよい。
酸類としては、例えば酢酸、蟻酸などが挙げられる。
Examples of the two-liquid phase include a combination of a hydrophilic phase and a lipophilic phase.
The substance that forms the hydrophilic phase is not particularly limited, and examples thereof include water and a mixture of water and a compound having high solubility in water.
Examples of the compound having high solubility in water include alcohols and acids.
Examples of alcohols include methanol, ethanol, butanol and the like. Moreover, you may use polyhydric alcohols, such as ethylene glycol.
Examples of the acids include acetic acid and formic acid.

一方、親油性相を形成する物質としては特に限定されないが、例えば炭化水素類や芳香族炭化水素類などが挙げられる。   On the other hand, the substance forming the lipophilic phase is not particularly limited, and examples thereof include hydrocarbons and aromatic hydrocarbons.

不均一液相としては、水を含有する親水性相と、イソブチレンを含む炭化水素を含有する親油性相の組み合わせである二液相が特に好ましい。   The heterogeneous liquid phase is particularly preferably a two-liquid phase that is a combination of a hydrophilic phase containing water and a lipophilic phase containing a hydrocarbon containing isobutylene.

本発明の不均一液相反応方法が適用できる反応としては特に限定されないが、水和反応、脱水反応、加水分解反応、酸化反応、エステル化反応、重合反応、縮合反応に適している。これらの反応は単独で実施されてもよいし、二つ以上が同時に実施されてもよい。
これらの反応の中でも、本発明は水を含有する親水性相と、イソブチレンを含む炭化水素を含有する親油性相との水和反応に特に好適であり、高い反応速度で経済的にイソブチレンの水和反応を実施することができる。なお、親水性相、親油性相には生成物である第3級ブチルアルコールや他の物質が含まれていてもよい。
The reaction to which the heterogeneous liquid phase reaction method of the present invention can be applied is not particularly limited, but is suitable for hydration reaction, dehydration reaction, hydrolysis reaction, oxidation reaction, esterification reaction, polymerization reaction, and condensation reaction. These reactions may be carried out singly or two or more may be carried out simultaneously.
Among these reactions, the present invention is particularly suitable for a hydration reaction between a hydrophilic phase containing water and a lipophilic phase containing a hydrocarbon containing isobutylene, and economically water of isobutylene at a high reaction rate. The sum reaction can be carried out. The hydrophilic phase and the lipophilic phase may contain tertiary butyl alcohol as a product and other substances.

以下、本発明の不均一液相反応方法について、イソブチレンと水の水和反応を例にとり、図1を用いて詳細に説明する。
図1は、本発明の不均一液相反応方法に用いる反応装置の一例を示す概略構成図である。この例の反応装置10は、固体触媒を充填した流通型反応器11と、該流通型反応器11に反応液を供給する液供給手段12を具備して構成されている。
Hereinafter, the heterogeneous liquid phase reaction method of the present invention will be described in detail with reference to FIG. 1, taking the hydration reaction of isobutylene and water as an example.
FIG. 1 is a schematic configuration diagram showing an example of a reaction apparatus used in the heterogeneous liquid phase reaction method of the present invention. The reaction apparatus 10 in this example includes a flow reactor 11 filled with a solid catalyst and a liquid supply means 12 for supplying a reaction liquid to the flow reactor 11.

流通型反応器11としては、固体触媒を充填できるものであれば特に限定されず、例えば竪型多管式、竪型円管式、横型多管式、横型円管式などを使用できる。これらの中でも、製作の容易さや経済的な観点から、竪型円管式が好ましい。
竪型円管式反応器の具体的な形状は特に限定されない。
また、流通型反応器11に固体触媒を充填することで形成された触媒層13内に反応液を通液した際に生じる圧力損失の観点から、竪型円管式反応器の高さと内径の比率(高さ/内径比)は小さい方が好ましい。一方、固体触媒活性点付近への物質移動を効率的に実施する観点からは、通液時の線速度は高い方が好ましく、すなわち高さ/内径比は大きい方が好ましい。双方の効果を総合的に勘案すると、高さ/内径比は0.2〜3が好ましく、0.5〜2.5がより好ましい。
The flow reactor 11 is not particularly limited as long as it can be filled with a solid catalyst. For example, a vertical multitubular type, a vertical circular tube type, a horizontal multitubular type, a horizontal circular tube type, or the like can be used. Among these, a vertical tube type is preferable from the viewpoint of ease of manufacture and economical viewpoint.
The specific shape of the vertical tube reactor is not particularly limited.
From the viewpoint of pressure loss that occurs when the reaction solution is passed through the catalyst layer 13 formed by filling the flow type reactor 11 with the solid catalyst, the height and inner diameter of the vertical tube reactor are A smaller ratio (height / inner diameter ratio) is preferable. On the other hand, from the viewpoint of efficiently carrying out mass transfer to the vicinity of the solid catalyst active point, it is preferable that the linear velocity at the time of liquid passing is high, that is, it is preferable that the height / inner diameter ratio is large. Taking both effects into consideration, the height / inner diameter ratio is preferably 0.2 to 3, and more preferably 0.5 to 2.5.

流通型反応器11の個数については特に制限されず、1個でもよいし2個以上でもよい。流通型反応器11を2個以上用いる場合、これらは並列に配置されていてもよいし、直列に配置されていてもよいが、直列に配置されていることが好ましい。2個以上の流通型反応器11が直列に配置されていれば、反応器間での温度調整がしやすくなり、運転上の自由度が高まる。特に平衡反応の場合には到達転化率は温度の影響を著しく受けるため、反応器間に熱交換器を設置し流体の温度を調整することが好ましい。   The number of flow reactors 11 is not particularly limited, and may be one or two or more. When two or more flow reactors 11 are used, these may be arranged in parallel or in series, but are preferably arranged in series. If two or more flow reactors 11 are arranged in series, it becomes easy to adjust the temperature between the reactors, and the degree of freedom in operation increases. In particular, in the case of an equilibrium reaction, the ultimate conversion rate is significantly affected by temperature. Therefore, it is preferable to adjust the temperature of the fluid by installing a heat exchanger between the reactors.

流通型反応器11に充填される固体触媒は、触媒として反応に寄与するものであれば特に限定されない。
イソブチレンと水の水和反応を行う場合、固体触媒としては、酸性を示す触媒が好ましく、例えば強酸性陽イオン交換樹脂、ゼオライト、ヘテロポリ酸などが挙げられる。これらの中でも経済的な観点から、強酸性陽イオン交換樹脂が好ましい。強酸性陽イオン交換樹脂としては、例えばランクセス社製の「レバチットK2431」や「レバチットK2621」;ロームアンドハース社製の「アンバーリスト15J」等の市販品を使用することができる。
触媒は単独で使用してもよく、二種類以上を混合して使用してもよい。
The solid catalyst filled in the flow reactor 11 is not particularly limited as long as it contributes to the reaction as a catalyst.
When the hydration reaction of isobutylene and water is performed, the solid catalyst is preferably an acid catalyst, and examples thereof include strongly acidic cation exchange resins, zeolites, and heteropoly acids. Among these, a strong acidic cation exchange resin is preferable from an economical viewpoint. As the strongly acidic cation exchange resin, for example, commercially available products such as “Levacit K2431” and “Levacit K2621” manufactured by LANXESS and “Amberlyst 15J” manufactured by Rohm and Haas can be used.
A catalyst may be used independently and may mix and use two or more types.

流通型反応器11内に固体触媒を保持する方法は特に限定されないが、製作の容易さと経済的な観点から金網状の支持体(図示略)を利用することが好ましい。金網状の支持体の形状としては、例えばシート状、シート状の金網を折り曲げたもの、筒状、箱状などが挙げられる。金網状の支持体としては市販品を使用でき、例えばジョンソンスクリーンズ社製の「ジョンソンスクリーン」などが挙げられる。   The method for holding the solid catalyst in the flow reactor 11 is not particularly limited, but it is preferable to use a wire mesh-like support (not shown) from the standpoint of ease of production and economics. Examples of the shape of the metal mesh support include a sheet shape, a sheet metal mesh bent, a cylindrical shape, a box shape, and the like. A commercially available product can be used as the wire mesh-like support, and examples thereof include “Johnson Screen” manufactured by Johnson Screens.

液供給手段12としては、不均一液相を形成する液体(反応液)が分散されうるものであれば特に限定されない。
液供給手段12としては、例えば多孔板、ノズル、先端に絞り機構が付与されたノズル、図2に示すような胴部121aに複数の液供給孔121bが設けられた円管121、該円管121を二本以上配置したものなどが挙げられる。また、市販品としてジョンソンスクリーンズ社製の「ジョンソンスクリーン」なども使用できる。これらの中でも経済的な観点および液分散性の観点から、図2に示すような胴部121aに複数の液供給孔121bが設けられた円管121を二本以上配置したものが好ましい。
The liquid supply means 12 is not particularly limited as long as a liquid (reaction liquid) that forms a heterogeneous liquid phase can be dispersed.
As the liquid supply means 12, for example, a perforated plate, a nozzle, a nozzle provided with a throttling mechanism at the tip, a circular pipe 121 provided with a plurality of liquid supply holes 121b in the body 121a as shown in FIG. 2, the circular pipe For example, two or more 121 pieces may be arranged. Further, “Johnson Screen” manufactured by Johnson Screens Inc. can be used as a commercial product. Among these, from the economical viewpoint and the liquid dispersibility viewpoint, it is preferable to arrange two or more circular pipes 121 each having a plurality of liquid supply holes 121b in the body 121a as shown in FIG.

二本以上の円管を配置する方法としては特に限定されないが、並列に配置する方法、格子状に配置する方法、一本の円管に対して複数本の円管が直交するように配置する方法などが挙げられる。これらの中でも、構造の容易さから二本以上の円管を並列に配置する方法が好ましい。
図1に示す液供給手段12は、中空状の軸管122に複数本の円管121が互いに並列になるように接続された(軸管122に対しては直交するように接続された)1対の供給部123が、一方の供給部123の円管121の間に他方の供給部123の円管121が納まるように対向配置され構成されている。
The method of arranging two or more circular tubes is not particularly limited, but a method of arranging them in parallel, a method of arranging them in a lattice shape, and arranging so that a plurality of circular tubes are orthogonal to a single circular tube. The method etc. are mentioned. Among these, the method of arranging two or more circular pipes in parallel is preferable because of the ease of structure.
The liquid supply means 12 shown in FIG. 1 has a hollow shaft tube 122 connected to a plurality of circular tubes 121 in parallel with each other (connected to the shaft tube 122 so as to be orthogonal). The pair of supply parts 123 are arranged so as to face each other so that the circular pipe 121 of the other supply part 123 fits between the circular pipes 121 of one supply part 123.

図2に示す円管121の液供給孔121bの形状については特に限定されないが、加工が容易である観点から、円形が好ましい。
また、液供給孔121bの大きさについても特に限定されないが、大きすぎると反応液の供給時の圧力損失が生じにくくなるため、上述した二液相の分散には小さい方が好ましい。具体的には、液供給孔121bの形状が円形である場合、その直径(孔径)は10mm以下が好ましく、8mm以下がより好ましい。
Although the shape of the liquid supply hole 121b of the circular pipe 121 shown in FIG. 2 is not particularly limited, a circular shape is preferable from the viewpoint of easy processing.
Also, the size of the liquid supply hole 121b is not particularly limited, but if it is too large, pressure loss during the supply of the reaction liquid is difficult to occur. Specifically, when the shape of the liquid supply hole 121b is circular, the diameter (hole diameter) is preferably 10 mm or less, and more preferably 8 mm or less.

液供給孔121bは、液分散性の観点から、流通型反応器内の触媒層に面した部分に配置することが好ましく、胴部121aの同心円断面においては複数配置することが好ましい。
また、液供給孔121bの数は流通型反応器の断面積に応じて定めることができる。液分散性の観点から、断面積(1m)あたり10個以上が好ましく、20個以上がさらに好ましい。一方、円管121の加工容易性や円管数の観点から、断面積(1m)あたり100個以下が好ましく、50個以下がさらに好ましい。
From the viewpoint of liquid dispersibility, the liquid supply holes 121b are preferably disposed in a portion facing the catalyst layer in the flow type reactor, and a plurality of liquid supply holes 121b are preferably disposed in the concentric cross section of the body 121a.
The number of liquid supply holes 121b can be determined according to the cross-sectional area of the flow reactor. From the viewpoint of liquid dispersibility, 10 or more per cross-sectional area (1 m 2 ) is preferable, and 20 or more is more preferable. On the other hand, from the viewpoint of ease of processing of the circular pipe 121 and the number of circular pipes, 100 or less per cross-sectional area (1 m 2 ) is preferable and 50 or less is more preferable.

また、液供給孔121bは外力によって可動する構造であってもよい。例えば、二枚の重なった多孔板のうち一枚が外力によって可動し、孔数や孔形状が変わる構造などが挙げられる。液供給孔121bがこのような構造をとることにより、不均一液相反応の最中に流通型反応器を開放することなく、後述の液供給手段で生じる差圧を制御することができる。すなわち、反応中に液分散状態を容易に制御することができるという利点がある。   Further, the liquid supply hole 121b may be configured to be movable by an external force. For example, a structure in which one of two overlapping perforated plates can be moved by an external force to change the number of holes and the shape of the holes can be used. By adopting such a structure for the liquid supply hole 121b, it is possible to control the differential pressure generated in the liquid supply means described later without opening the flow reactor during the heterogeneous liquid phase reaction. That is, there is an advantage that the liquid dispersion state can be easily controlled during the reaction.

図1に示すように、液供給手段12を構成する円管121に設けられた液供給孔(図示略)から触媒層13の上面(最上部)13aまでの距離は3m以下が好ましく、2m以下がさらに好ましい。距離が長すぎると、触媒層13に到達するまでに反応液(二液相)の液分散状態が低下する場合がある。一方、距離が短すぎると、液供給孔から供給された反応液により触媒が浮遊してしまう問題がある。液供給孔から触媒層13の上面13aまでの距離は0.1m以上が好ましく、0.2m以上がより好ましい。   As shown in FIG. 1, the distance from the liquid supply hole (not shown) provided in the circular tube 121 constituting the liquid supply means 12 to the upper surface (uppermost portion) 13a of the catalyst layer 13 is preferably 3 m or less, and 2 m or less. Is more preferable. If the distance is too long, the liquid dispersion state of the reaction liquid (two liquid phases) may decrease before reaching the catalyst layer 13. On the other hand, if the distance is too short, there is a problem that the catalyst floats due to the reaction liquid supplied from the liquid supply hole. The distance from the liquid supply hole to the upper surface 13a of the catalyst layer 13 is preferably 0.1 m or more, and more preferably 0.2 m or more.

液供給手段12の内部には、さらに絞り機構(図示略)を設けてもよい。絞り機構としては特に限定されないが、オリフィスプレートが好ましい。絞り機構は単独でもよく複数段階設置してもよいが、複数段設置することが好ましい。絞り機構を複数段階設置すれば、後述する反応液の供給時の差圧を複数段階で生じさせることが可能となり、液分散状態がさらに向上し、反応速度のさらなる向上が期待できる。   A throttle mechanism (not shown) may be further provided inside the liquid supply means 12. The diaphragm mechanism is not particularly limited, but an orifice plate is preferable. The diaphragm mechanism may be installed alone or in a plurality of stages, but it is preferable to install a plurality of stages. If the throttle mechanism is installed in a plurality of stages, a differential pressure at the time of supplying the reaction liquid described later can be generated in a plurality of stages, the liquid dispersion state can be further improved, and further improvement in the reaction rate can be expected.

このような反応装置10を用いた本発明の不均一液相反応方法では、反応液を流通型反応器11に供給する際に液供給手段12で生じる差圧を0.04kg/cm(ゲージ圧、以下同じ)以上とする。
ここで、「液供給手段で生じる差圧」とは、液供給手段の前後で生じる差圧、液供給手段内の配管またはバルブで生じる差圧、液供給孔で生じる差圧、液供給手段内の絞り機構で生じる差圧のことである。
In the heterogeneous liquid phase reaction method of the present invention using such a reactor 10, the differential pressure generated in the liquid supply means 12 when the reaction liquid is supplied to the flow reactor 11 is 0.04 kg / cm 2 (gauge). Pressure, the same shall apply hereinafter).
Here, “the differential pressure generated in the liquid supply means” means the differential pressure generated before and after the liquid supply means, the differential pressure generated in the pipe or valve in the liquid supply means, the differential pressure generated in the liquid supply hole, This is the differential pressure generated by the throttle mechanism.

差圧が0.04kg/cm以上であれば、不均一液相(反応液)の液分散状態が均一で良好となり、流通型反応器11内の固体触媒と不均一液相との接触が十分に行われ、反応速度が高まる。差圧は0.1kg/cm以上が好ましく、0.2kg/cm以上がより好ましい。
なお、差圧が高くなるほど液分散状態は良好となるが、高すぎると反応装置10に高度な耐圧性能が求められたり、高揚程の液供給ポンプが必要となったりし、コストが高くなる傾向にある。従って、経済的な観点から、差圧は5kg/cm以下が好ましく、2kg/cm以下がより好ましい。
If the differential pressure is 0.04 kg / cm 2 or more, the liquid dispersion state of the heterogeneous liquid phase (reaction liquid) becomes uniform and good, and the contact between the solid catalyst in the flow reactor 11 and the heterogeneous liquid phase is improved. Well done and increases the reaction rate. Differential pressure is preferably 0.1 kg / cm 2 or more, 0.2 kg / cm 2 or more is more preferable.
The higher the differential pressure, the better the liquid dispersion state. However, if the pressure is too high, the reactor 10 is required to have high pressure resistance performance, or a high-pump liquid supply pump is required, and the cost tends to increase. It is in. Therefore, from an economic point of view, the differential pressure is preferably 5 kg / cm 2 or less, 2 kg / cm 2 or less being more preferred.

液供給手段12で生じる差圧を所望の値に調整するための方法としては特に制限されないが、例えば反応液の流量を調整したり、反応液の流量に対して適切な大きさとなるように液供給孔の孔径を決定しておいたり、液供給孔を外力によって可動する構造とし、液供給孔の孔径を調整したりする方法などが挙げられる。
流量に対して適切な液供給孔の孔径を決定する際には、差圧及び液分散状態を確認できる小スケールのモデル実験を予め行い、流量と孔径に対して生じる差圧の関係を明らかにしておくことが好ましい。
The method for adjusting the differential pressure generated in the liquid supply means 12 to a desired value is not particularly limited. For example, the flow rate of the reaction liquid is adjusted, or the liquid is adjusted to have an appropriate size with respect to the flow rate of the reaction liquid. For example, the diameter of the supply hole may be determined, or the liquid supply hole may be moved by an external force to adjust the diameter of the liquid supply hole.
When determining the appropriate hole diameter of the liquid supply hole with respect to the flow rate, a small-scale model experiment that can confirm the differential pressure and the liquid dispersion state is performed in advance to clarify the relationship between the flow rate and the generated differential pressure with respect to the hole diameter. It is preferable to keep it.

また、反応液の供給時に生じる差圧を管理するため、流通型反応器11の内部と液供給手段12の上流側に圧力計(図示略)を設置することが好ましい。圧力計の種類は特に限定されない。   In order to manage the differential pressure generated during the supply of the reaction liquid, it is preferable to install a pressure gauge (not shown) inside the flow reactor 11 and upstream of the liquid supply means 12. The type of pressure gauge is not particularly limited.

なお、流通型反応器11に供給されるときの反応液(不均一液相)における分散相の液滴の粒径については特に制限されないが、2mm以下が好ましく、1mm以下がより好ましい。さらに好ましくは、流通型反応器11に充填された固体触媒の粒子径よりも小さい粒径とすることである。分散相の液滴の粒径が固体触媒の粒子径よりも大きいと、液−固間の接触が不十分となり、触媒の機能が十分に発現されず反応速度が低下する場合がある。
分散相の液滴は、液供給手段12で生じる差圧を調整することで制御できる。具体的には、差圧を大きくすれば、分散相の液滴は小さくなる傾向にある。
The particle size of the dispersed phase droplets in the reaction liquid (heterogeneous liquid phase) supplied to the flow reactor 11 is not particularly limited, but is preferably 2 mm or less, and more preferably 1 mm or less. More preferably, the particle diameter is smaller than the particle diameter of the solid catalyst packed in the flow reactor 11. If the particle size of the droplets of the dispersed phase is larger than the particle size of the solid catalyst, the contact between the liquid and the solid becomes insufficient, and the function of the catalyst may not be sufficiently exhibited, thereby reducing the reaction rate.
The droplets in the dispersed phase can be controlled by adjusting the differential pressure generated in the liquid supply means 12. Specifically, when the differential pressure is increased, the droplets in the dispersed phase tend to become smaller.

本発明の不均一液相反応方法では、流通型反応器11の同一高さにおいて、流通型反応器11内の個体触媒の温度を複数点測定することが好ましい。
一般的に知られている化学反応の多くは、熱移動が伴う。特に不均一液相反応では、液分散状態だけでなく触媒層13への反応液の供給状態によって反応の進行程度が著しく異なるため、温度差が生じやすい。
In the heterogeneous liquid phase reaction method of the present invention, it is preferable to measure a plurality of temperatures of the solid catalyst in the flow reactor 11 at the same height of the flow reactor 11.
Many commonly known chemical reactions involve heat transfer. In particular, in a heterogeneous liquid phase reaction, the progress of the reaction varies significantly depending not only on the liquid dispersion state but also on the supply state of the reaction liquid to the catalyst layer 13, and therefore a temperature difference is likely to occur.

不均一液相の液分散状態が良好な場合は、反応が流通型反応器11の半径方向で均一に行われやすく、複数点測定される個体触媒の温度差は小さくなる傾向にある。一方、液分散状態が悪い場合は、反応が半径方向で均一に行われにくいため、固体触媒の温度差は大きくなる傾向にある。
従って、固体触媒の温度差を指標として、液分散状態および触媒層13への反応液の均一な供給状態を判断することができるので、同一高さにおける固体触媒の温度を複数点測定することで液分散状態を管理でき、反応の進行状態を容易に知ることができる。
When the liquid dispersion state of the heterogeneous liquid phase is good, the reaction tends to be performed uniformly in the radial direction of the flow reactor 11, and the temperature difference of the solid catalyst measured at a plurality of points tends to be small. On the other hand, when the liquid dispersion state is poor, the reaction is difficult to be performed uniformly in the radial direction, and thus the temperature difference of the solid catalyst tends to increase.
Accordingly, it is possible to determine the liquid dispersion state and the uniform supply state of the reaction liquid to the catalyst layer 13 by using the temperature difference of the solid catalyst as an index. Therefore, by measuring the temperature of the solid catalyst at the same height at a plurality of points. The liquid dispersion state can be managed, and the progress of the reaction can be easily known.

流通型反応器11内の固体触媒の温度を測定する際の位置については、同一の高さであれば特に限定されないが、液供給手段12から可能な限り離れた位置が好ましい。液供給手段12から離れた位置では、反応液がより偏流しやすく触媒層13への均一な供給が困難になる傾向にあるため、この位置での測定結果から反応器内全体の触媒層13への均一な供給状態を推測し、液分散状態を管理することが好ましい。
同一高さでの測定点は2点以上が好ましく、4点以上がより好ましい。
また、流通型反応器11の半径方向における測定点の位置については特に制限されず、同一半径位置の円周上に測定点を複数配置してもよいし、互いに異なる半径位置に測定点を配置してもよい。液分散性をより詳細に評価できる観点から、互いに異なる半径位置に測定点を配置するのが好ましい。
The position at which the temperature of the solid catalyst in the flow reactor 11 is measured is not particularly limited as long as it is the same height, but a position as far as possible from the liquid supply means 12 is preferable. At a position away from the liquid supply means 12, the reaction liquid tends to drift more easily and uniform supply to the catalyst layer 13 tends to be difficult. From the measurement result at this position to the catalyst layer 13 in the entire reactor. It is preferable to estimate the uniform supply state and manage the liquid dispersion state.
The number of measurement points at the same height is preferably 2 or more, more preferably 4 or more.
The position of the measurement point in the radial direction of the flow reactor 11 is not particularly limited, and a plurality of measurement points may be arranged on the circumference of the same radial position, or the measurement points are arranged at different radial positions. May be. From the viewpoint of evaluating liquid dispersibility in more detail, it is preferable to arrange measurement points at different radial positions.

不均一液相反応が経済的に実施される条件であれば、同一高さにおいて複数点測定される固体触媒の温度差は特に限定されないが、温度差が小さくなるほど液分散状態が良好であることを意味するため、5℃以下が好ましく、3℃以下がより好ましい。
個体触媒の温度差は液供給手段12で生じる差圧を調整することで制御できる。例えば温度差を小さくするためには、液供給手段12で生じる差圧を高くすればよいが、差圧を高くするほどコストがかかりやすくなる傾向にもある。
As long as the heterogeneous liquid phase reaction is economically implemented, the temperature difference of the solid catalyst measured at multiple points at the same height is not particularly limited, but the liquid dispersion state is better as the temperature difference is smaller. Is preferably 5 ° C. or lower, more preferably 3 ° C. or lower.
The temperature difference of the solid catalyst can be controlled by adjusting the differential pressure generated in the liquid supply means 12. For example, in order to reduce the temperature difference, the differential pressure generated in the liquid supply unit 12 may be increased. However, as the differential pressure is increased, the cost tends to increase.

なお、流通型反応器11の内径が大きくなるにつれて理想的な反応液の押出流れの形成が困難となる傾向にあり、半径方向における固体触媒の温度分布が生じやすくなる。
しかし、本発明の不均一液相反応方法であれば、液供給手段で生じる差圧を規定することで液分散状態を良好に維持できるので、内径が大きい反応器を用いても固体触媒の温度分布が生じにくく、理想的な反応液の押出し流れを形成できるため、高い反応速度が得られる。このような本発明の効果は反応器の内径が大きいほど得られやすく、本発明は内径が1m以上の反応器を用いる場合に特に好適である。
Note that, as the inner diameter of the flow reactor 11 increases, it becomes difficult to form an ideal extrusion flow of the reaction solution, and the temperature distribution of the solid catalyst in the radial direction tends to occur.
However, in the case of the heterogeneous liquid phase reaction method of the present invention, the liquid dispersion state can be satisfactorily maintained by defining the differential pressure generated by the liquid supply means. Since the distribution hardly occurs and an ideal extruded flow of the reaction liquid can be formed, a high reaction rate can be obtained. Such an effect of the present invention is more easily obtained as the inner diameter of the reactor is larger, and the present invention is particularly suitable when a reactor having an inner diameter of 1 m or more is used.

また、本発明の不均一液相反応方法は、上述したように、水和反応、脱水反応など、各種反応に適しており、中でもイソブチレンと水の水和反応に好適である。
原料となるイソブチレンとしては、イソブチレンを単独で用いてもよく、イソブチレンを含む炭化水素(イソブチレン含有炭化水素)からなる液化ガスを使用してもよい。イソブチレン含有炭化水素としては、例えばイソブチレンを含むブテン類(1−ブテン、2−ブテンなど)、ブタン類(n−ブタン、イソブタンなど)などの炭素数が4である炭化水素混合物が挙げられる。これらイソブチレン含有炭化水素は、ナフサを水蒸気存在下で熱分解しエチレンを得る際の副生成物、重質油の触媒接触分解した際の副生成物、好ましくはこれらからブタジエンを除去したものとして得られる。
Further, as described above, the heterogeneous liquid phase reaction method of the present invention is suitable for various reactions such as a hydration reaction and a dehydration reaction, and is particularly suitable for a hydration reaction of isobutylene and water.
As isobutylene used as a raw material, isobutylene may be used alone, or a liquefied gas composed of a hydrocarbon containing isobutylene (isobutylene-containing hydrocarbon) may be used. Examples of the isobutylene-containing hydrocarbon include hydrocarbon mixtures having 4 carbon atoms such as butenes containing isobutylene (such as 1-butene and 2-butene) and butanes (such as n-butane and isobutane). These isobutylene-containing hydrocarbons are obtained as a by-product when naphtha is pyrolyzed in the presence of water vapor to obtain ethylene, a by-product when catalytic decomposition of heavy oil is catalyzed, preferably obtained by removing butadiene from these. It is done.

イソブチレン含有炭化水素中のイソブチレン濃度は特に限定されるものではないが、5〜95質量%が好ましく、10〜90質量%がより好ましい。イソブチレン濃度が極端に低くなると工業的に必要な反応速度が得られにくくなり、イソブチレン濃度が高くなると工業的に入手することが困難となる。   Although the isobutylene density | concentration in isobutylene containing hydrocarbon is not specifically limited, 5-95 mass% is preferable and 10-90 mass% is more preferable. When the isobutylene concentration is extremely low, it is difficult to obtain an industrially required reaction rate, and when the isobutylene concentration is high, it is difficult to obtain industrially.

一方、原料となる水としては特に限定されるものではないが、脱イオン水、蒸留水などが好ましく、脱イオン水がより好ましい。水中の不純物は触媒の失活や製品品質に悪影響を与える可能性があり、できるだけ取り除いておくことが好ましい。
イソブチレンと水の水和反応における水の量は特に限定されるものではないが、原料(反応液)中のイソブチレン1グラムモルに対して水のモル比は0.1〜50が好ましく、0.5〜30がより好ましい。水のモル比が小さすぎるとイソブチレンの二量体、三量体が生成しやすくなり、水のモル比が大きすぎると水和反応の反応速度が低くなる傾向にある。
On the other hand, although it does not specifically limit as water used as a raw material, Deionized water, distilled water, etc. are preferable and deionized water is more preferable. Impurities in water may adversely affect catalyst deactivation and product quality, and are preferably removed as much as possible.
The amount of water in the hydration reaction of isobutylene and water is not particularly limited, but the molar ratio of water to 1 gram mole of isobutylene in the raw material (reaction solution) is preferably 0.1 to 50, 0.5 ~ 30 is more preferred. If the water molar ratio is too small, isobutylene dimers and trimers are likely to be formed, and if the water molar ratio is too large, the reaction rate of the hydration reaction tends to be low.

イソブチレンと水の水和反応には、必要に応じて、反応液中に有機溶剤や他の添加剤を含有させてもよい。
また、水和反応における温度は特に限定されないが、25〜100℃が好ましく、45〜80℃がより好ましい。温度が低すぎると十分な水和反応の反応速度が得られにくくなる傾向にあり、温度が高すぎると原料イソブチレンの二量化、三量化や他の不純物が生成しやすくなる傾向にある。
In the hydration reaction of isobutylene and water, an organic solvent and other additives may be contained in the reaction solution as necessary.
Moreover, although the temperature in a hydration reaction is not specifically limited, 25-100 degreeC is preferable and 45-80 degreeC is more preferable. If the temperature is too low, it is difficult to obtain a sufficient hydration reaction rate, and if the temperature is too high, dimerization, trimerization and other impurities of the raw isobutylene tend to be easily generated.

また、水和反応における圧力は特に限定されないが、イソブチレンやイソブチレン含有炭化水素ガスを液化させるのに十分な圧力が好ましい。具体的には2〜20kg/cmが好ましく、4〜16kg/cmがより好ましい。
水和反応中の圧力を維持するために、水和反応に関与しない不活性ガスを流通型反応器11に導入してもよい。不活性ガスとしては窒素、アルゴンなどが挙げられるが特に限定されるものではない。
Moreover, the pressure in the hydration reaction is not particularly limited, but a pressure sufficient to liquefy isobutylene or isobutylene-containing hydrocarbon gas is preferable. Specifically, 2 to 20 kg / cm 2 is preferable, and 4 to 16 kg / cm 2 is more preferable.
In order to maintain the pressure during the hydration reaction, an inert gas that does not participate in the hydration reaction may be introduced into the flow reactor 11. Examples of the inert gas include nitrogen and argon, but are not particularly limited.

不均一液相反応の後には、必要に応じて精製工程を設けてもよい。例えばイソブチレンと水の水和反応においては、反応で得られるイソブチレン、水、第3級ブチルアルコールの混合物を蒸留、膜分離、デカンテーションなど任意の方法により精製することができる。中でも経済的な観点から、蒸留が好ましい。   After the heterogeneous liquid phase reaction, a purification step may be provided as necessary. For example, in the hydration reaction of isobutylene and water, a mixture of isobutylene, water, and tertiary butyl alcohol obtained by the reaction can be purified by any method such as distillation, membrane separation, and decantation. Of these, distillation is preferred from an economical viewpoint.

なお、上述したように、流通型反応器11を2個以上用いる場合、各反応器内の反応液(不均一液相)の組成は、反応器群の全てで同じであってもよいし、反応器群のうちのそれぞれで異なっていてもよいし、反応器群のうちの一部だけが不均一液相であってもよい。
また、流通型反応器11への通液方向は特に制限されないが、固体触媒を流通型反応器11内に保持しやすいという観点から、下向き流れが好ましい。上向き流れの場合は固体触媒粒子の流通型反応器11外への流出を防止するため空間部を設けたり、流出防止用の金網を設けたりすればよいが、この場合はコストがかかりやすくなる。
As described above, when two or more flow reactors 11 are used, the composition of the reaction liquid (non-uniform liquid phase) in each reactor may be the same in all of the reactor groups, Each of the reactor groups may be different, or only a part of the reactor group may be a heterogeneous liquid phase.
Further, the flow direction to the flow reactor 11 is not particularly limited, but a downward flow is preferable from the viewpoint that the solid catalyst is easily held in the flow reactor 11. In the case of upward flow, it is sufficient to provide a space portion or a metal net for preventing outflow in order to prevent the solid catalyst particles from flowing out of the flow type reactor 11, but in this case, the cost tends to increase.

以上説明した本発明の不均一液相反応方法によれば、液供給手段で生じる差圧を規定することで、不均一液相反応の液分散状態を均一化させることができ、反応速度を高めることができる。よって、使用する触媒量を低減できるので、経済的である。
特に、流通型反応器の同一高さにおいて固体触媒の温度も複数点測定すれば、液分散状態を管理できるので、液供給手段で生じる差圧の調整による液分散状態の改善や変更がしやすくなり、反応速度をより容易に高めることができる。
According to the heterogeneous liquid phase reaction method of the present invention described above, the liquid dispersion state of the heterogeneous liquid phase reaction can be made uniform by regulating the differential pressure generated in the liquid supply means, and the reaction rate is increased. be able to. Therefore, the amount of catalyst used can be reduced, which is economical.
In particular, if the temperature of the solid catalyst is measured at multiple points at the same height of the flow reactor, the liquid dispersion state can be managed, so it is easy to improve or change the liquid dispersion state by adjusting the differential pressure generated in the liquid supply means. Thus, the reaction rate can be increased more easily.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

[試験例]
以下、試験例について説明する。なお、以下の試験例1〜4は、液分散状態を確認する目的で実施した。
不均一液相のモデル物質として、脱イオン水50Lとn−ヘキサン(和光純薬工業株式会社製の試薬特級)100Lを使用し、図3に示す反応装置20を用いて試験を実施した。
図3に示す反応装置20は、アクリル製の角型の水槽(奥行き:100mm、横幅:1040mm、高さ:2300mm、内容量:240L)21と、水槽21の下部に設けられた液吸い込み口21aと、水槽21の上部に設置された液供給部22と、液吸い込み口21aから水相の一部を抜き出し、抜き出した水相を液供給部22から水槽21に再供給するための水相循環ポンプ23と、液供給部22の上流に設置された圧力計24とを備えている。また、水相循環ポンプ23と液供給部22の間には、流量計25が設置されている。
液供給部22の液吹き出し口22aには、図4(a)、(b)に示すような、内径:34mm、長さ:76mmのT字状のノズルであって両末端部が閉じたノズル22bが取り付けられている。このノズル22bには、長さ方向38mmの位置に内径5mmの液供給孔22cが水平方向に2箇所、下向き45°方向に2箇所の合計4箇所に設けられている。このノズル22bは、2相分離により生じた上相(n−ヘキサン相)中に浸かっており、n−ヘキサン相の上部液面から200mm下の高さに水平方向の液供給孔22cが位置するように設置した。
[Test example]
Hereinafter, test examples will be described. In addition, the following test examples 1-4 were implemented in order to confirm a liquid dispersion state.
As a model substance of a heterogeneous liquid phase, 50 L of deionized water and 100 L of n-hexane (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) were used, and the test was performed using the reaction apparatus 20 shown in FIG.
The reactor 20 shown in FIG. 3 includes an acrylic square water tank (depth: 100 mm, width: 1040 mm, height: 2300 mm, internal volume: 240 L) 21 and a liquid suction port 21 a provided at the bottom of the water tank 21. And a water supply circulation unit for extracting a part of the water phase from the liquid supply unit 22 installed in the upper part of the water tank 21 and the liquid suction port 21a and re-supplying the extracted water phase from the liquid supply part 22 to the water tank 21. A pump 23 and a pressure gauge 24 installed upstream of the liquid supply unit 22 are provided. A flow meter 25 is installed between the water phase circulation pump 23 and the liquid supply unit 22.
The liquid outlet 22a of the liquid supply section 22 is a T-shaped nozzle having an inner diameter of 34 mm and a length of 76 mm, as shown in FIGS. 4A and 4B, with both ends closed. 22b is attached. The nozzle 22b is provided with four liquid supply holes 22c having an inner diameter of 5 mm at a position of 38 mm in the length direction, two in the horizontal direction and two in the downward 45 ° direction. The nozzle 22b is immersed in the upper phase (n-hexane phase) generated by the two-phase separation, and the horizontal liquid supply hole 22c is located at a height of 200 mm below the upper liquid surface of the n-hexane phase. Was installed.

この反応装置20を用い、以下のようにして試験を実施した。
水槽21にモデル物質を張り込み、静置させた後、二相分離により生じた水相の一部を水槽21の下部に設けられた液吸い込み口21aより水相循環ポンプ23で抜出し、水槽21の上部に設置された液供給部22から水槽21に再供給した。
なお、水槽21の上部に蓋は設けず、水槽21内は大気圧とした。液供給部22の上流に設けた圧力計24により計測されたゲージ圧を液供給部22で生じる圧力損失と見なした。
Using this reactor 20, the test was carried out as follows.
After placing the model substance in the water tank 21 and allowing it to stand, a part of the water phase generated by the two-phase separation is extracted from the liquid suction port 21a provided in the lower part of the water tank 21 with the water phase circulation pump 23, and the water tank 21 It was resupplied to the water tank 21 from the liquid supply part 22 installed in the upper part.
In addition, the lid was not provided in the upper part of the water tank 21, but the inside of the water tank 21 was made into atmospheric pressure. The gauge pressure measured by the pressure gauge 24 provided upstream of the liquid supply unit 22 was regarded as a pressure loss generated in the liquid supply unit 22.

本試験では不均一状態の液を直接液供給部22から水槽21へ供給するのではなく、水槽21中に存在するn−へキサン相に対して液供給部22から水相のみ供給する。液の分散には液供給部22で生じる差圧以外に、液の粘度と表面張力に大きく依存することが知られている。水は粘度、表面張力が高いため、粘度、表面張力が低いn−へキサン相を含む不均一状態の液を供給した場合と比較すると液分散状態は悪くなる。具体的には、分散後に得られる粒径が大きくなる傾向にある。
しかしながら、実際に不均一状態の液を供給する場合において、連続相と分散相の割合は常に一定というわけではなく、ばらつきのある不安定な状態となる。従って、液分散状態が最も悪くなると推測される水相供給の状態において、液分散状態の優劣を比較するべきである。この条件は液分散状態に対して最も評価が厳しい条件の一つであり、水よりも粘度・表面張力が高い物質を含まない不均一液相系に適用した場合は確実に良好な液分散状態が得られる。
なお、本発明に適した不均一液相の一例である、水を含有する親水性相(水相)と、イソブチレンを含む炭化水素を含有する親油性相(イソブチレン相)の組み合わせにおいて、イソブチレンは通常、大気圧下で気体である。従って、試験例のような可視化状態で試験を実施するためには、イソブチレンが液化する圧力まで加圧する必要があり、また耐圧性の大型透明容器が必要になるため、非常に困難である。よって本試験は、不均一液相のモデル物質として脱イオン水(水相)とn−ヘキサン(n−へキサン相)の組み合わせで実施した。
In this test, the liquid in a non-uniform state is not directly supplied from the liquid supply unit 22 to the water tank 21, but only the aqueous phase is supplied from the liquid supply unit 22 to the n-hexane phase existing in the water tank 21. It is known that the dispersion of the liquid greatly depends on the viscosity and surface tension of the liquid in addition to the differential pressure generated in the liquid supply unit 22. Since water has a high viscosity and surface tension, the liquid dispersion state is worse than when a liquid in a non-uniform state containing an n-hexane phase having a low viscosity and surface tension is supplied. Specifically, the particle size obtained after dispersion tends to increase.
However, in the case of actually supplying a liquid in a non-uniform state, the ratio between the continuous phase and the dispersed phase is not always constant, and the state becomes unstable with variations. Therefore, the superiority and inferiority of the liquid dispersion state should be compared in the state of the aqueous phase supply in which the liquid dispersion state is estimated to be the worst. This condition is one of the most severely evaluated conditions for the liquid dispersion state. When applied to a heterogeneous liquid phase system that does not contain substances with higher viscosity and surface tension than water, the liquid dispersion state is definitely good. Is obtained.
In the combination of a hydrophilic phase (water phase) containing water and a lipophilic phase (isobutylene phase) containing a hydrocarbon containing isobutylene, which is an example of a heterogeneous liquid phase suitable for the present invention, isobutylene is: Usually a gas at atmospheric pressure. Therefore, in order to carry out the test in the visualization state as in the test example, it is necessary to pressurize to a pressure at which isobutylene liquefies, and a large pressure-resistant transparent container is required, which is very difficult. Therefore, this test was carried out with a combination of deionized water (aqueous phase) and n-hexane (n-hexane phase) as a model substance of a heterogeneous liquid phase.

[試験例1]
液供給部22で生じる圧力損失が0.04kg/cmとなるように水相の流量を水相循環ポンプ23にて調節し、水槽21に再供給した。
その結果、液供給部22の液吹き出し口22aから下方向230mmのn−ヘキサン相中であって、水槽21の横幅の中心から300mmの範囲において、水相は直径1mm以下で目視霧状のものが多く、良好な液分散状態であった。
[Test Example 1]
The flow rate of the water phase was adjusted by the water phase circulation pump 23 so that the pressure loss generated in the liquid supply unit 22 was 0.04 kg / cm 2, and the water was supplied again to the water tank 21.
As a result, in the n-hexane phase 230 mm downward from the liquid outlet 22 a of the liquid supply unit 22, the water phase has a diameter of 1 mm or less and a visible mist in the range of 300 mm from the center of the width of the water tank 21. There were many, and it was the favorable liquid dispersion state.

[試験例2]
液供給部22で生じる圧力損失が0.1kg/cmとなるように水相の流量を水相循環ポンプ23にて調節し、水槽21に再供給した。
その結果、液供給部22の液吹き出し口22aから下方向240mmのn−ヘキサン相中であって、水槽21の横幅の中心から350mmの範囲において、水相は全て直径1mm以下で目視霧状であり、良好な液分散状態であった。
[Test Example 2]
The flow rate of the water phase was adjusted by the water phase circulation pump 23 so that the pressure loss generated in the liquid supply unit 22 was 0.1 kg / cm 2, and the water was supplied again to the water tank 21.
As a result, in the n-hexane phase 240 mm downward from the liquid outlet 22 a of the liquid supply unit 22, the water phase is all in the range of 350 mm from the center of the lateral width of the water tank 21, and the water phase is all visually 1 mm in diameter. There was a good liquid dispersion state.

[試験例3]
液供給部22で生じる圧力損失が0.01kg/cmとなるように水相の流量を水相循環ポンプ23にて調節し、水槽21に再供給した。
その結果、液供給部22の液吹き出し口22aから下方向200mmのn−ヘキサン相中であって、水槽21の横幅の中心から200mmの範囲において、水相のほとんどは直径1mmを超えるものであり、液分散状態が悪かった。
[Test Example 3]
The flow rate of the water phase was adjusted by the water phase circulation pump 23 so that the pressure loss generated in the liquid supply unit 22 was 0.01 kg / cm 2, and the water tank 21 was re-supplied.
As a result, in the n-hexane phase 200 mm downward from the liquid outlet 22 a of the liquid supply unit 22, most of the aqueous phase exceeds 1 mm in diameter in the range of 200 mm from the center of the width of the water tank 21. The liquid dispersion state was bad.

[試験例4]
液供給部22で生じる圧力損失が0.25kg/cmとなるように水相の流量を水相循環ポンプ23にて調節し、水槽21に再供給した。
その結果、液供給部22の液吹き出し口22aから下方向340mmのn−ヘキサン相中であって、水槽21の横幅の中心から520mmの範囲において、水相は全て直径1mm以下で目視霧状であり、良好な液分散状態であった。
[Test Example 4]
The flow rate of the water phase was adjusted by the water phase circulation pump 23 so that the pressure loss generated in the liquid supply unit 22 was 0.25 kg / cm 2, and the water tank 21 was supplied again.
As a result, in the n-hexane phase that is 340 mm downward from the liquid outlet 22 a of the liquid supply unit 22, and within the range of 520 mm from the center of the lateral width of the water tank 21, all the water phases are 1 mm or less in diameter and are visually mist-like. There was a good liquid dispersion state.

[実施例1]
図1に示す反応装置10を用い、イソブチレンと水の水和反応を行った。反応装置10を構成する円管121(図2参照)における、流通型反応器11の単位断面積に対する液供給孔121bの個数は、37個/mであり、流通型反応器11の半径の長さを1とした場合の液供給孔121bの孔直径は、0.0022である。
流通型反応器11として竪型円筒反応器を使用し、この反応器に固体触媒として強酸性陽イオン交換樹脂(ロームアンドハース社製、「アンバーリスト15J」)を充填し、触媒層13を形成させた。
また、反応液として、表1に示す組成のイソブチレン含有炭化水素66質量%と、脱イオン水3.4質量%と、第三級ブチルアルコール30.6質量%とからなる二液相(不均一液相、ゲージ圧0.9メガパスカル)を用いた。
[Example 1]
The hydration reaction of isobutylene and water was performed using the reaction apparatus 10 shown in FIG. In the circular pipe 121 (see FIG. 2) constituting the reaction apparatus 10, the number of the liquid supply holes 121 b with respect to the unit cross-sectional area of the flow reactor 11 is 37 / m 2, which is the radius of the flow reactor 11. The hole diameter of the liquid supply hole 121b when the length is 1 is 0.0022.
A vertical cylindrical reactor is used as the flow reactor 11, and the reactor is filled with a strong acidic cation exchange resin (Rum & Haas, “Amberlyst 15J”) as a solid catalyst to form a catalyst layer 13. I let you.
Further, as a reaction liquid, a two-liquid phase (non-uniformity) composed of 66% by mass of isobutylene-containing hydrocarbons having the composition shown in Table 1, 3.4% by mass of deionized water, and 30.6% by mass of tertiary butyl alcohol. (Liquid phase, gauge pressure 0.9 megapascal).

Figure 0005793922
Figure 0005793922

図1に示す反応装置10を用い、液供給手段12の前後で生じる差圧が0.1kg/cmとなるように流量を調節しながら、反応液を流通型反応器11に供給した。通液方向は下向きとした。
流通型反応器11内の固体触媒の温度を測定した。結果を表2に示す。なお、表2中、「高さ方向の位置」とは、高さ方向における温度測定点の位置のことであり、液供給手段12の高さ(位置)を始点とし、触媒層13の下面(最下部)13bの高さ(位置)を終点としたときの始点から終点までの長さを1とし、この長さに対する液供給手段12から各測定点までの長さの割合で表した。また、「半径方向の位置」とは、流通型反応器11の横断面円の半径方向における温度測定点の位置のことであり、この横断面円の中心を始点とし、外周を終点としたときの始点から終点までの長さ(半径)を1とし、この半径に対する円の中心から各測定点までの長さの割合で表した。
Using the reaction apparatus 10 shown in FIG. 1, the reaction liquid was supplied to the flow reactor 11 while adjusting the flow rate so that the differential pressure generated before and after the liquid supply means 12 was 0.1 kg / cm 2 . The liquid flow direction was downward.
The temperature of the solid catalyst in the flow reactor 11 was measured. The results are shown in Table 2. In Table 2, the “position in the height direction” refers to the position of the temperature measurement point in the height direction. The height (position) of the liquid supply means 12 is the starting point, and the lower surface of the catalyst layer 13 ( The length from the start point to the end point when the height (position) of the lowermost part 13b is the end point is 1, and the length is expressed as a ratio of the length from the liquid supply means 12 to each measurement point with respect to this length. The “radial position” means the position of the temperature measurement point in the radial direction of the cross-sectional circle of the flow reactor 11, and the center of this cross-sectional circle is the starting point and the outer periphery is the end point. The length (radius) from the start point to the end point was set to 1, and the ratio from the center of the circle to each measurement point with respect to this radius was expressed as a ratio.

Figure 0005793922
Figure 0005793922

表2から明らかなように、流通型反応器11の同一高さで測定した6箇所の測定点3A、3B、3C、3D、3E、3F(A〜CとD〜Fは軸対称位置)の温度差は最大1.42℃であり、本実施例の条件では反応器の半径方向において、ほぼ均一に反応が進行し、不均一液相の液分散状態が良好であることが示された。   As is apparent from Table 2, the measurement points 3A, 3B, 3C, 3D, 3E, and 3F (A to C and D to F are axially symmetric positions) measured at the same height of the flow reactor 11 are used. The maximum temperature difference was 1.42 ° C., and under the conditions of this example, the reaction proceeded almost uniformly in the radial direction of the reactor, indicating that the liquid dispersion state of the heterogeneous liquid phase was good.

10 反応装置
11 流通型反応器
12 液供給手段
13 触媒層
DESCRIPTION OF SYMBOLS 10 Reactor 11 Flow type reactor 12 Liquid supply means 13 Catalyst layer

Claims (2)

固体触媒を充填した流通型反応器に液供給部から反応液を供給し、互いに溶解しない液相同士を反応させる不均一液相反応方法において、
前記反応が、水を含有する親水性相と、イソブチレンを含む炭化水素を含有する親油性相との水和反応であり、
前記液供給部の前後で生じる差圧を0.04kg/cm以上とする不均一液相反応方法。
In a heterogeneous liquid phase reaction method in which a reaction liquid is supplied from a liquid supply unit to a flow-type reactor filled with a solid catalyst, and liquid phases that do not dissolve each other react with each other.
The reaction is a hydration reaction between a hydrophilic phase containing water and a lipophilic phase containing a hydrocarbon containing isobutylene,
A heterogeneous liquid phase reaction method in which a differential pressure generated before and after the liquid supply unit is 0.04 kg / cm 2 or more.
前記流通型反応器の同一高さにおいて、該流通型反応器内の固体触媒の温度を複数点測定し、反応中の不均一液相の液分散状態を管理する、請求項1に記載の不均一液相反応方法。   The non-uniformity according to claim 1, wherein the temperature of the solid catalyst in the flow reactor is measured at a plurality of points at the same height of the flow reactor to manage the liquid dispersion state of the heterogeneous liquid phase during the reaction. Homogeneous liquid phase reaction method.
JP2011084656A 2011-04-06 2011-04-06 Heterogeneous liquid phase reaction method Active JP5793922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084656A JP5793922B2 (en) 2011-04-06 2011-04-06 Heterogeneous liquid phase reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084656A JP5793922B2 (en) 2011-04-06 2011-04-06 Heterogeneous liquid phase reaction method

Publications (2)

Publication Number Publication Date
JP2012219042A JP2012219042A (en) 2012-11-12
JP5793922B2 true JP5793922B2 (en) 2015-10-14

Family

ID=47270940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084656A Active JP5793922B2 (en) 2011-04-06 2011-04-06 Heterogeneous liquid phase reaction method

Country Status (1)

Country Link
JP (1) JP5793922B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048939B2 (en) * 2018-03-27 2022-04-06 鹿児島県 Sucrose recovery method and sucrose recovery device
KR20220143085A (en) * 2020-03-31 2022-10-24 미쯔비시 케미컬 주식회사 Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
WO2023190038A1 (en) * 2022-03-28 2023-10-05 三菱ケミカル株式会社 Method for producing tertiary butyl alcohol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430104A (en) * 1977-08-08 1979-03-06 Nippon Oil Co Ltd Continuous production of tertiary butyl alcohol
JPS5610124A (en) * 1979-07-05 1981-02-02 Sumitomo Chem Co Ltd Preparation of tert-butyl alcohol
CN1052468C (en) * 1992-12-25 2000-05-17 旭化成工业株式会社 Method for hydrating a cycloolefin
DE10222023A1 (en) * 2002-05-17 2003-11-27 Bayer Ag Process for the preparation of isocyanates in the gas phase

Also Published As

Publication number Publication date
JP2012219042A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
CN100358852C (en) Process for the preparation of tert.-butanol
JP5192688B2 (en) Process for the production of ethyl tert-butyl ether from an industrial mixture of C4 hydrocarbons
TWI784094B (en) Method for obtaining alcohols from aldehydes iii
JP5793922B2 (en) Heterogeneous liquid phase reaction method
JP2010513375A (en) Method for transferring heat to a liquid mixture comprising at least one (meth) acrylic monomer
JP5877067B2 (en) Gas phase reaction method
EP2387553B1 (en) Process for the production of lower alcohols by olefin hydration
CN103619785A (en) Method for producing diisobutylene starting from mixed C4 fraction
CN102516036A (en) Process method for preparing methyl tert-butyl ether by differential reaction rectification and equipment for same
CN105561617A (en) Efficient catalysis rectification apparatus and applications thereof
US10550052B2 (en) Method for separating and purifying isobutylene and method for producing isobutylene
CN107457001B (en) A kind of polystyrene sulfonic acid resin catalyst and its preparation method and application
JPWO2005019146A1 (en) Method for producing tertiary butyl alcohol
JP2023100734A (en) Method for producing unsaturated carboxylic acid ester
US10829435B2 (en) Method for production of methyl methacrylate by oxidative esterification using a heterogeneous catalyst
CN112441996A (en) Process for preparing tetrahydrofuran
CN202844981U (en) Reactor of multistage fixed catalyst bed
TWI357407B (en) Method for producing tert-butyl alcohol
WO2021205900A1 (en) Method for producing alcohol
KR20180059541A (en) Olefin hydration process using vibration baffle reactor
WO2023190038A1 (en) Method for producing tertiary butyl alcohol
CN105062554B (en) Reactor for synthesis of alkylate oil
CN102361838B (en) Dehydration of 1-phenyl ethanol
RU2792186C2 (en) Method for production of unsaturated carboxylic acid ether
CN105001904A (en) Device for alkylate oil synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R151 Written notification of patent or utility model registration

Ref document number: 5793922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250