JP5787846B2 - Receiving device, spread spectrum communication device, and communication system - Google Patents

Receiving device, spread spectrum communication device, and communication system Download PDF

Info

Publication number
JP5787846B2
JP5787846B2 JP2012185755A JP2012185755A JP5787846B2 JP 5787846 B2 JP5787846 B2 JP 5787846B2 JP 2012185755 A JP2012185755 A JP 2012185755A JP 2012185755 A JP2012185755 A JP 2012185755A JP 5787846 B2 JP5787846 B2 JP 5787846B2
Authority
JP
Japan
Prior art keywords
signal
replica
spread
unit
spread code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012185755A
Other languages
Japanese (ja)
Other versions
JP2014045283A (en
Inventor
浩志 富塚
浩志 富塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012185755A priority Critical patent/JP5787846B2/en
Publication of JP2014045283A publication Critical patent/JP2014045283A/en
Application granted granted Critical
Publication of JP5787846B2 publication Critical patent/JP5787846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、受信装置、スペクトル拡散通信装置および通信システムに関する。   The present invention relates to a receiving device, a spread spectrum communication device, and a communication system.

スペクトル拡散技術は、耐干渉性・妨害性、秘匿性に優れた特徴を有し、通信だけでなく、レーダー、距離測定、時刻同期などさまざまな分野で利用されている。スペクトル拡散技術の一つである直接スペクトル拡散方式は、送信側でPSK(Phase Shift Keying)やFSK(Frequency Shift Keying)などで一次変調されたシンボルレート信号を、そのシンボルレートと比較して高速なレートの拡散符号で広帯域に拡散して伝送する。受信側では、送信側で用いた拡散符号と同じ拡散符号とスライディング相関器を用いて、逆拡散することにより、同期捕捉の確立及び送信情報データ系列の再生を行うことができる(例えば、下記特許文献1参照)。   Spread spectrum technology has excellent characteristics of anti-interference / disturbance and confidentiality, and is used not only for communication but also in various fields such as radar, distance measurement, and time synchronization. Direct spread spectrum, which is one of the spread spectrum techniques, is a high-speed comparison of a symbol rate signal that is primarily modulated by PSK (Phase Shift Keying) or FSK (Frequency Shift Keying) on the transmission side. It is spread over a wide band with a rate spreading code and transmitted. On the receiving side, synchronization acquisition can be established and a transmission information data sequence can be reproduced by despreading using the same spreading code as the spreading code used on the transmitting side and a sliding correlator (for example, the following patents) Reference 1).

特許第3441301号公報Japanese Patent No. 3441301

しかしながら、上記従来の直接スペクトル拡散方式は、拡散符号長が長くなるにしたがい、同期捕捉に用いるスライディング相関器の回路規模が増大するという課題があった。特に一次変調にFSK変調を用いた場合、上記特許文献1に記載の構成では変調多値数分のスライディング相関器を用意する必要があり、拡散符号長に加えて変調多値数の増加に伴い、相関器の回路規模あるいは演算量が増大するという課題があった。   However, the conventional direct spread spectrum system has a problem in that the circuit scale of the sliding correlator used for synchronization acquisition increases as the spreading code length increases. In particular, when FSK modulation is used for primary modulation, it is necessary to prepare a sliding correlator for the number of modulation multilevels in the configuration described in Patent Document 1, and as the number of modulation multilevels increases in addition to the spreading code length, There has been a problem that the circuit scale of the correlator or the amount of calculation increases.

本発明は、上記に鑑みてなされたものであって、変調多値数が増大しても回路規模を増大させることなく同期補足を実現することができる受信装置、スペクトル拡散通信装置および通信システムを得ることを目的とする。   The present invention has been made in view of the above, and provides a receiving apparatus, a spread spectrum communication apparatus, and a communication system that can realize synchronization supplement without increasing the circuit scale even when the modulation multi-level number increases. The purpose is to obtain.

上述した課題を解決し、目的を達成するために、本発明は、送信側で拡散符号により拡散された拡散符号信号を受信信号として受信する受信装置であって、前記受信信号に対して前記拡散符号に基づいて逆拡散を行うことにより逆拡散信号を生成する逆拡散部と、前記逆拡散信号に基づいて送信信号のレプリカをレプリカ信号として生成するレプリカ生成部と、前記レプリカ信号と前記逆拡散信号との相関値を算出する相関値算出部と、前記相関値に基づいて前記拡散符号に対する同期タイミングを検出する同期判定部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a receiving apparatus that receives a spread code signal spread by a spread code on a transmission side as a reception signal, and the spread signal is spread with respect to the reception signal. A despreading unit that generates a despread signal by performing despreading based on a code; a replica generation unit that generates a replica of a transmission signal as a replica signal based on the despread signal; and the replica signal and the despreading A correlation value calculation unit that calculates a correlation value with a signal, and a synchronization determination unit that detects a synchronization timing for the spreading code based on the correlation value.

本発明によれば、変調多値数が増大しても回路規模を増大させることなく同期補足を実現することができるという効果を奏する。   According to the present invention, there is an effect that synchronization supplement can be realized without increasing the circuit scale even if the modulation multi-level number increases.

図1は、本発明にかかるスペクトル拡散通信装置の機能構成例を示す図である。FIG. 1 is a diagram illustrating a functional configuration example of a spread spectrum communication apparatus according to the present invention. 図2は、スペクトル拡散通信装置におけるFSK変調信号の周波数配置の例を示す図である。FIG. 2 is a diagram illustrating an example of the frequency arrangement of the FSK modulated signal in the spread spectrum communication apparatus. 図3は、拡散変調処理後のスペクトルの一例を示す図である。FIG. 3 is a diagram illustrating an example of a spectrum after spread modulation processing. 図4は、同期捕捉部の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the synchronization capturing unit. 図5は、4FSK変調のキャリア信号の配置例を示す図である。FIG. 5 is a diagram illustrating an arrangement example of carrier signals of 4FSK modulation. 図6は、FSKデータキャリア信号におけるIch成分の時間波形を示す図である。FIG. 6 is a diagram showing a time waveform of the Ich component in the FSK data carrier signal.

以下に、本発明にかかる受信装置、スペクトル拡散通信装置および通信システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a receiving device, a spread spectrum communication device, and a communication system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明にかかるスペクトル拡散通信装置の機能構成例を示す図である。スペクトル拡散通信装置1(送信装置)は、送信側の装置であり、スペクトル拡散通信装置2(受信装置)は受信側の装置である。なお、ここでは、スペクトル拡散通信装置1からスペクトル拡散通信装置2への送信が行われる例を説明するため、送信装置としての構成要素を示し、スペクトル拡散通信装置2では受信装置としての構成要素を示している。一般にはスペクトル拡散通信装置は送受信機能を有していることが多く、この場合、スペクトル拡散通信装置1がスペクトル拡散通信装置2と同様に受信装置としての機能も有し、スペクトル拡散通信装置2がスペクトル拡散通信装置1と同様に送信装置としての機能も有している。送受信機能を有する場合、共通化できる部分を有する構成要素(たとえば、拡散符号生成部12)を送信と受信で個別に備えず、1つの構成要素として共有するようにしてもよい。
Embodiment.
FIG. 1 is a diagram illustrating a functional configuration example of a spread spectrum communication apparatus according to the present invention. The spread spectrum communication device 1 (transmission device) is a transmission device, and the spread spectrum communication device 2 (reception device) is a reception device. Here, in order to explain an example in which transmission from the spread spectrum communication apparatus 1 to the spread spectrum communication apparatus 2 is performed, the component as a transmission apparatus is shown. In the spread spectrum communication apparatus 2, the component as a reception apparatus is shown. Show. In general, the spread spectrum communication apparatus often has a transmission / reception function. In this case, the spread spectrum communication apparatus 1 has a function as a reception apparatus in the same manner as the spread spectrum communication apparatus 2, and the spread spectrum communication apparatus 2 Similar to the spread spectrum communication apparatus 1, it also has a function as a transmission apparatus. In the case of having a transmission / reception function, a component having a portion that can be shared (for example, the spread code generation unit 12) may be shared as one component without being separately provided for transmission and reception.

スペクトル拡散通信装置1は、図1に示すように送信する情報データに基づいてFSK変調を行うFSK変調部11と、拡散符号を生成して記憶しておく拡散符号生成部12と、FSK変調信号に対して拡散符号により拡散変調を行う拡散変調部13と、拡散変調信号を送信する送信処理部14と、を備える。   As shown in FIG. 1, the spread spectrum communication apparatus 1 includes an FSK modulation unit 11 that performs FSK modulation based on information data to be transmitted, a spread code generation unit 12 that generates and stores a spread code, and an FSK modulated signal. Are provided with a spread modulation unit 13 that performs spread modulation with a spread code, and a transmission processing unit 14 that transmits a spread modulation signal.

スペクトル拡散通信装置2は、スペクトル拡散通信装置1から送信された信号(拡散変調信号)を受信する受信処理部21と、受信信号から拡散符号の同期タイミングを検出する同期捕捉部22と、送信側と同一の拡散符号を生成して記憶しておく拡散符号生成部23と、拡散符号を用いて逆拡散を行う逆拡散部24と、逆拡散信号を用いてFSK復調を行うFSK復調部25と、を備える。   The spread spectrum communication device 2 includes a reception processing unit 21 that receives a signal (spread modulation signal) transmitted from the spread spectrum communication device 1, a synchronization acquisition unit 22 that detects a synchronization timing of a spread code from the received signal, and a transmission side A spread code generator 23 that generates and stores the same spread code, a despreader 24 that performs despreading using the spread code, an FSK demodulator 25 that performs FSK demodulation using the despread signal, and .

図2は、本実施の形態のスペクトル拡散通信装置1におけるFSK変調信号の周波数配置の例を示す図である。ここでは、4値FSKの例を示しており、図2に示すように、FSK変調信号は、拡散帯域幅Bw内に、4値にそれぞれ対応したf0,f1,f2,f3の4つの周波数(FSK変調キャリア周波数)のFSKデータキャリア信号(FSK変調キャリア信号)201,202,203,204として配置される。 FIG. 2 is a diagram showing an example of the frequency arrangement of the FSK modulated signal in the spread spectrum communication apparatus 1 of the present embodiment. Here, an example of quaternary FSK is shown, and as shown in FIG. 2, the FSK modulated signal has f 0 , f 1 , f 2 , and f 3 corresponding to the quaternary values in the spreading bandwidth Bw. It is arranged as FSK data carrier signals (FSK modulated carrier signals) 201, 202, 203, 204 of four frequencies (FSK modulated carrier frequencies).

図3は、本実施の形態のスペクトル拡散通信装置1における拡散変調処理後のスペクトルの一例を示す図である。図3において、スペクトル300は拡散変調後のスペクトルの一例を示している。   FIG. 3 is a diagram illustrating an example of a spectrum after spread modulation processing in the spread spectrum communication apparatus 1 of the present embodiment. In FIG. 3, a spectrum 300 shows an example of a spectrum after spread modulation.

次に本実施の形態の動作について説明する。ここでは、情報系列に対する一次変調としてFSK変調を適用し、拡散符号を用いて広帯域に拡散を行う直接スペクトル拡散方法を採用する例に説明する。まず、送信側(図1のスペクトル拡散通信装置1)の動作を説明する。   Next, the operation of the present embodiment will be described. Here, an example will be described in which FSK modulation is applied as primary modulation for an information sequence, and a direct spread spectrum method is used in which spreading is performed over a wide band using a spreading code. First, the operation of the transmission side (spread spectrum communication apparatus 1 in FIG. 1) will be described.

一次変調処理を行うFSK変調部11は、情報データa(t)(tは時間を示す)に基づいて情報データの値ごとに異なるキャリア周波数遷移を与えてFSK変調データを生成する。例えば、図2に示すように4値FSKを例にすると、情報データの値00、01、10、11を拡散帯域幅Bw内のそれぞれf0,f,f2,f3に対応させて、周波数変換を行いFSK変調データを生成する。 The FSK modulation unit 11 that performs primary modulation processing generates FSK modulation data by giving different carrier frequency transitions for each value of information data based on the information data a (t) (t indicates time). For example, as shown in FIG. 2, when four-value FSK is taken as an example, information data values 00, 01, 10, and 11 are associated with f 0 , f 1 , f 2 , and f 3 in the spreading bandwidth Bw, respectively. Then, frequency conversion is performed to generate FSK modulation data.

拡散符号生成部12は、拡散符号c(t)を生成し、メモリ等に記憶しておく。拡散変調部13は、FSK変調データb(t)と拡散符号c(t)とを式(1)に示すように掛け合わせて、図3に例示したような拡散変調データs(t)を生成する。
s(t)=b(t)×c(t) …(1)
The spread code generation unit 12 generates a spread code c (t) and stores it in a memory or the like. The spread modulation unit 13 generates the spread modulation data s (t) as illustrated in FIG. 3 by multiplying the FSK modulation data b (t) and the spread code c (t) as shown in Expression (1). To do.
s (t) = b (t) × c (t) (1)

次に、受信側(図1のスペクトル拡散通信装置2)の動作を説明する。受信信号r(t)は、同期捕捉部22および逆拡散部24に入力される。同期捕捉部22は、受信信号r(t)と送信側と同一の拡散符号c(t)を用いて、受信信号に乗算されている拡散符号の同期タイミングを抽出し、同期捕捉を行う。   Next, the operation of the receiving side (spread spectrum communication apparatus 2 in FIG. 1) will be described. The received signal r (t) is input to the synchronization acquisition unit 22 and the despreading unit 24. The synchronization acquisition unit 22 uses the received signal r (t) and the same spread code c (t) as that on the transmission side to extract the synchronization timing of the spread code multiplied by the received signal, and performs synchronization acquisition.

図4は、本実施の形態のスペクトル拡散通信装置1における同期捕捉部22の構成例を示す図である。図4に示すように、同期捕捉部22は、受信信号に対して拡散符号を用いて逆拡散を行う逆拡散部31と、逆拡散後の受信信号を用いて送信された一次変調信号(送信信号)のレプリカを生成するレプリカ生成部32と、逆拡散後の受信信号とレプリカ生成部32により生成されたレプリカ信号との相関電力を算出する相関電力算出部(相関値算出部)33と、相関電力の最大値を検出する相関電力ピーク検出部34と、拡散符号の同期判定を行う同期判定部35と、を備える。   FIG. 4 is a diagram illustrating a configuration example of the synchronization capturing unit 22 in the spread spectrum communication apparatus 1 of the present embodiment. As shown in FIG. 4, the synchronization acquisition unit 22 performs a despreading unit 31 that performs despreading on a received signal using a spreading code, and a primary modulation signal (transmission) transmitted using the despread received signal. A replica of the signal), a correlation power calculation unit (correlation value calculation unit) 33 that calculates correlation power between the received signal after despreading and the replica signal generated by the replica generation unit 32, A correlation power peak detection unit 34 that detects the maximum value of the correlation power and a synchronization determination unit 35 that performs synchronization determination of the spread code are provided.

図4を用いて、同期捕捉部22の動作を説明する。逆拡散部31は、受信信号r(t)と送信側で用いた拡散符号c(t)に基づいて生成した逆拡散符号c*(t)とに基づいて逆拡散した信号(逆拡散信号)x’(t)を算出する。
x’(t)=r(t)×c*(t) …(2)
The operation of the synchronization capturing unit 22 will be described with reference to FIG. The despreading unit 31 despreads the signal (despread signal) based on the received signal r (t) and the despread code c * (t) generated based on the spread code c (t) used on the transmission side. x ′ (t) is calculated.
x ′ (t) = r (t) × c * (t) (2)

レプリカ生成部32は、本実施の形態のポイントである同期捕捉に用いるFSK変調信号共通のレプリカ信号rep(t)を逆拡散信号x’(t)から生成する。レプリカ生成方法について、図5、図6を用いて説明する。   The replica generation unit 32 generates a replica signal rep (t) common to the FSK modulation signal used for synchronization acquisition, which is a point of the present embodiment, from the despread signal x ′ (t). The replica generation method will be described with reference to FIGS.

図5は、4FSK変調のキャリア信号の配置例を示す図である。図5において、F0は拡散帯域幅Bwを16等分した周波数帯域幅を示し、周波数0は拡散帯域幅の中心周波数を表している。本実施の形態では、図5に示すように、拡散帯域幅Bwを16F0とし、キャリア周波数−8F0,−4F0,0,4F0の4つのFSKデータキャリア信号501,502,503,504が用いられる。 FIG. 5 is a diagram illustrating an arrangement example of carrier signals of 4FSK modulation. In FIG. 5, F 0 represents a frequency bandwidth obtained by dividing the spreading bandwidth Bw into 16 equal parts, and frequency 0 represents the center frequency of the spreading bandwidth. In this embodiment, as shown in FIG. 5, the spread bandwidth Bw and 16F 0, carrier frequency -8F 0, -4F 0, 4 single FSK data carrier signal 0,4F 0 501,502,503,504 Is used.

図6は、図5で周波数軸上にFSK変調マッピングされたときの各FSKデータキャリア信号におけるIch成分の時間波形を示している。図6の縦軸は周波数を示し、横軸は時間(1サンプル時間で離散値)を示している。拡散符号長Nは、拡散符号の周期に相当するサンプル長を示している。本実施の形態では、レプリカ観測周期Mは、4つのキャリア周波数の周期のそれぞれ整数倍となる周期とする。図6の例では、拡散符号長Nは、4つのレプリカ観測周期Mに分割されている。   FIG. 6 shows a time waveform of the Ich component in each FSK data carrier signal when FSK modulation mapping is performed on the frequency axis in FIG. The vertical axis in FIG. 6 indicates the frequency, and the horizontal axis indicates time (a discrete value at one sample time). The spreading code length N indicates a sample length corresponding to the cycle of the spreading code. In the present embodiment, the replica observation period M is set to a period that is an integral multiple of each of the four carrier frequency periods. In the example of FIG. 6, the spreading code length N is divided into four replica observation periods M.

図6の例では、レプリカ観測周期Mは、以下の式(3)を満足するものとする。
0/f0=u1/f1=u2/f2=u3/f3 …(3)
ここで、f0=−8F0,f1=−4F0,f2=0,f3=4F0とし、u0〜u3は0より大きい整数を表している。すなわち、各FSKデータキャリア信号はレプリカ観測周期Mを単位とするくり返し信号になっていることを示している。また、Qch成分についてもIch成分をπ/2だけ位相を進めた信号であり、同様にレプリカ観測周期Mでくり返し信号となる特徴は変わらない。
In the example of FIG. 6, it is assumed that the replica observation period M satisfies the following formula (3).
u 0 / f 0 = u 1 / f 1 = u 2 / f 2 = u 3 / f 3 ... (3)
Here, f 0 = −8F 0 , f 1 = −4F 0 , f 2 = 0, f 3 = 4F 0, and u 0 to u 3 represent integers greater than zero. That is, each FSK data carrier signal is a repeated signal with the replica observation period M as a unit. Further, the Qch component is also a signal obtained by advancing the phase of the Ich component by π / 2, and the characteristic of being a repeated signal in the replica observation period M is not changed.

これらの特徴を利用して、レプリカ生成部32は以下の式(4)〜(6)に示す計算を行い、レプリカ信号rep(n)を生成する。
rep(n)=R(m) …(4)
m=mod(n、M) …(5)
R(m)=A(m)+B(m)+C(m)+D(m) …(6)
ここで、A(m)、B(m)、C(m)、D(m)は逆拡散信号x’(t)をレプリカ観測周期Mでのくり返し周期毎に分割したものである。また、nは、拡散符号周期内のサンプル番号を示し0≦n≦N−1であり、mはレプリカ観測周期M内のサンプル番号を示し0≦m≦M−1である。mod(p、q)はp/qの剰余を表している。上記式(6)からわかるとおり、R(m)は、レプリカ観測周期M毎のFSKデータキャリア信号を加算したものであり、レプリカ観測周期M毎のFSKデータキャリア信号の平均値に相当する。なお、レプリカ信号の生成方法は、上記の例に限定されず、逆拡散信号x’(t)に基づいて生成する方法であればよい。例えば、上記式(6)において、平均化の方法として重み付き平均を適用してもよい。また、上記のR(m)をレプリカ観測周期M毎のFSKデータキャリア信号の位相差の平均値とすることにより、拡散前送信信号のレプリカ観測周期M毎の位相差に相当するレプリカ信号を生成することができる。
Using these features, the replica generation unit 32 performs calculations shown in the following equations (4) to (6) to generate a replica signal rep (n).
rep (n) = R (m) (4)
m = mod (n, M) (5)
R (m) = A (m) + B (m) + C (m) + D (m) (6)
Here, A (m), B (m), C (m), and D (m) are obtained by dividing the despread signal x ′ (t) for each repetition period in the replica observation period M. Further, n indicates a sample number in the spreading code period and 0 ≦ n ≦ N−1, and m indicates a sample number in the replica observation period M and 0 ≦ m ≦ M−1. mod (p, q) represents the remainder of p / q. As can be seen from the above equation (6), R (m) is the sum of the FSK data carrier signals for each replica observation period M, and corresponds to the average value of the FSK data carrier signals for each replica observation period M. The method for generating the replica signal is not limited to the above example, and any method may be used as long as it is generated based on the despread signal x ′ (t). For example, in the above equation (6), a weighted average may be applied as an averaging method. Further, by setting R (m) above as an average value of the phase difference of the FSK data carrier signal for each replica observation period M, a replica signal corresponding to the phase difference for each replica observation period M of the transmission signal before spreading is generated. can do.

ここでは、一次変調としてFSK変調が実施されている例について説明したが、一次変調の種類はこれに限定されない。送信信号の周期性に基づいて送信信号の繰り返し周期を求め、この繰り返し周期をレプリカ観測周期として逆拡散信号x’(t)を分割すればよい。   Here, an example in which FSK modulation is performed as primary modulation has been described, but the type of primary modulation is not limited to this. What is necessary is just to obtain | require the repetition period of a transmission signal based on the periodicity of a transmission signal, and to divide | segment despread signal x '(t) by making this repetition period into a replica observation period.

相関電力算出部33は、レプリカ信号rep(t)と逆拡散信号x’(t)との相関値を求め、その電力P(t)を計算する。なお、ここでは、tをサンプル時間単位で表すとしrep(t)=rep(n)とする。   The correlation power calculation unit 33 obtains a correlation value between the replica signal rep (t) and the despread signal x ′ (t), and calculates the power P (t). Here, assuming that t is expressed in units of sample time, rep (t) = rep (n).

P(t)=|x’(t)rep(0)+x’(t−1/Bw)rep(1)
+・・・+x’(t−(N−1)/Bw)rep(N−1)|2 …(7)
P (t) = | x ′ (t) rep (0) + x ′ (t−1 / Bw) rep (1)
+ ... + x ′ (t− (N−1) / Bw) rep (N−1) | 2 (7)

相関電力ピーク検出部34は、上記式(7)により計算された拡散符号周期内のサンプル時刻毎の相関電力の中で最も相関電力の高いもの(相関電力ピーク値)と対応するサンプル時刻(相関電力ピーク時刻)を検出する。ここでは、必要に応じて受信電力等で正規化した相関電力値を用いることもできる。   The correlation power peak detection unit 34 has a sample time (correlation) corresponding to the highest correlation power (correlation power peak value) among the correlation powers at each sample time within the spreading code period calculated by the above equation (7). Power peak time) is detected. Here, a correlation power value normalized with received power or the like can be used as necessary.

同期判定部35は、相関電力ピーク検出部34から出力される相関電力ピーク値と対応するサンプル時刻を用いて同期判定を行う。すなわち、同期判定部35は、相関電力ピーク値に基づいて拡散符号に対する同期タイミングを検出する。ここでは、同期判定方法に制約はないが、例えば、相関電力のしきい値を設け、相関電力ピーク値がしきい値を上回った場合に同期と判定する方法等がある。同期と判定された場合は、その相関電力ピーク値に対応するサンプル時刻lを同期タイミングとして出力する。   The synchronization determination unit 35 performs synchronization determination using the sample time corresponding to the correlation power peak value output from the correlation power peak detection unit 34. That is, the synchronization determination unit 35 detects the synchronization timing for the spreading code based on the correlation power peak value. Here, although there is no restriction on the synchronization determination method, for example, there is a method of determining a synchronization when a correlation power threshold value is provided and the correlation power peak value exceeds the threshold value. If it is determined to be synchronized, the sample time l corresponding to the correlation power peak value is output as the synchronization timing.

逆拡散部24は、同期捕捉部22により同期と判定されたサンプル時刻lにしたがって受信信号r(t)と拡散符号c(t)の位相を調整し、調整後の受信信号r(t)と拡散符号c(t)を用いて、式(2)と同様の計算を行って逆拡散信号x(t)を求める。   The despreading unit 24 adjusts the phase of the received signal r (t) and the spread code c (t) according to the sample time l determined to be synchronized by the synchronization capturing unit 22, and the received signal r (t) after adjustment By using the spread code c (t), the same calculation as in the equation (2) is performed to obtain the despread signal x (t).

FSK復調部25は、逆拡散信号x(t)に対して復調行い、復調データを出力する。ここで実施するFSK復調方法に制約はなく、一般的なFSK復調を行えばよい。   The FSK demodulator 25 demodulates the despread signal x (t) and outputs demodulated data. There is no restriction on the FSK demodulation method implemented here, and general FSK demodulation may be performed.

以上のように、本実施の形態では一次変調で適用した多値FSK変調における各FSKデータキャリア信号間で共通のレプリカ信号を受信信号から生成し、そのレプリカ信号と逆拡散信号の相関電力ピークを検出する。そして、相関電力ピークを用いて同期判定を行うことにより、拡散符号の同期タイミングを検出することができる。すなわち、本実施の形態によれば、パイロット信号等の既知信号を用いずに拡散符号の同期捕捉を確立することができる。また、従来技術では、多値FSK変調では多値数分のFSKデータキャリア毎用のレプリカ信号と受信信号との相関をとるための整合フィルタを予め用意しておく必要があり、拡散符号長に加えて変調多値数の増加に伴い、相関器の回路規模、あるいは演算量が増大するという問題があった。これに対し、本実施の形態では、多値数分のFSKデータキャリア信号毎に個別に必要だった逆拡散用の信号レプリカの代わりに、受信信号から生成した1つのレプリカ信号を生成する。そして、このレプリカ信号をFSKデータキャリア信号の同期捕捉に共通に使用できるようにしたので、同期捕捉に用いる整合フィルタの回路規模、あるいは演算量を大幅に削減しつつ、同期捕捉を可能にすることができる。   As described above, in the present embodiment, a common replica signal is generated from each received signal in each FSK data carrier signal in the multilevel FSK modulation applied in the primary modulation, and the correlation power peak between the replica signal and the despread signal is obtained. To detect. The synchronization timing of the spread code can be detected by performing synchronization determination using the correlation power peak. In other words, according to the present embodiment, synchronization acquisition of a spread code can be established without using a known signal such as a pilot signal. In the prior art, in multilevel FSK modulation, it is necessary to prepare in advance a matched filter for correlating the replica signal for each FSK data carrier corresponding to the multilevel number and the received signal. In addition, there is a problem that the circuit scale of the correlator or the amount of calculation increases as the number of modulation multilevels increases. On the other hand, in the present embodiment, one replica signal generated from the received signal is generated instead of the despread signal replica that is individually required for each FSK data carrier signal corresponding to the multivalued number. Since this replica signal can be commonly used for FSK data carrier signal synchronization acquisition, it is possible to achieve synchronization acquisition while greatly reducing the circuit scale or the amount of calculation of the matched filter used for synchronization acquisition. Can do.

以上のように、本発明にかかる受信装置、スペクトル拡散通信装置および通信システムは、直接スペクトル拡散を行う通信システムに有用であり、特に、変調多値数が多い通信システムに適している。   As described above, the receiving apparatus, the spread spectrum communication apparatus, and the communication system according to the present invention are useful for a communication system that performs direct spread spectrum, and are particularly suitable for a communication system with a large number of modulation multilevels.

1,2 スペクトル拡散通信装置、11 FSK変調部、12 拡散符号生成部、13 拡散変調部、14 送信処理部、21 受信処理部、22 同期捕捉部、23 拡散符号生成部、24 逆拡散部、25 FSK復調部、31 逆拡散部、32 レプリカ生成部、33 相関電力算出部、34 相関電力ピーク検出部、35 同期判定部、201〜204,501〜504 FSKデータキャリア信号、300 スペクトル。   1, 2 spread spectrum communication apparatus, 11 FSK modulation unit, 12 spread code generation unit, 13 spread modulation unit, 14 transmission processing unit, 21 reception processing unit, 22 synchronization acquisition unit, 23 spread code generation unit, 24 despreading unit, 25 FSK demodulating unit, 31 despreading unit, 32 replica generating unit, 33 correlation power calculating unit, 34 correlation power peak detecting unit, 35 synchronization determining unit, 201-204, 501-504 FSK data carrier signal, 300 spectrum.

Claims (7)

送信側で拡散符号により拡散された拡散符号信号を受信信号として受信する受信装置であって、
前記受信信号に対して前記拡散符号に基づいて逆拡散を行うことにより逆拡散信号を生成する逆拡散部と、
前記逆拡散信号に基づいて送信信号のレプリカをレプリカ信号として生成するレプリカ生成部と、
前記レプリカ信号と前記逆拡散信号との相関値を算出する相関値算出部と、
前記相関値に基づいて前記拡散符号に対する同期タイミングを検出する同期判定部と、
を備えることを特徴とする受信装置。
A receiving device that receives a spread code signal spread by a spread code on the transmission side as a received signal,
A despreading unit that generates a despread signal by despreading the received signal based on the spread code;
A replica generation unit that generates a replica of a transmission signal as a replica signal based on the despread signal;
A correlation value calculation unit for calculating a correlation value between the replica signal and the despread signal;
A synchronization determination unit that detects a synchronization timing for the spreading code based on the correlation value;
A receiving apparatus comprising:
前記レプリカ生成部は、前記拡散符号の1周期分の前記受信信号を、前記送信信号の繰り返し周期ごとに分割し、分割した前記受信信号の平均値に基づいて前記レプリカ信号を生成する、ことを特徴とする請求項1に記載の受信装置。   The replica generation unit divides the reception signal for one period of the spreading code for each repetition period of the transmission signal, and generates the replica signal based on an average value of the divided reception signals; The receiving device according to claim 1. 前記拡散符号信号を、FSK変調により一次変調された後に前記拡散符号により拡散された信号とし、
前記レプリカ生成部は、前記レプリカ信号として一次変調信号のレプリカを生成することを特徴とする請求項1または2に記載の受信装置。
The spread code signal is a signal that is first modulated by FSK modulation and then spread by the spread code,
The receiving apparatus according to claim 1, wherein the replica generation unit generates a replica of a primary modulation signal as the replica signal.
前記FSK変調におけるFSK変調キャリアの周波数は、拡散帯域幅内で選択された任意の2つ以上の周波数とすることを特徴とする請求項3に記載の受信装置。   The receiving apparatus according to claim 3, wherein the frequency of the FSK modulation carrier in the FSK modulation is any two or more frequencies selected within a spreading bandwidth. 前記繰り返し周期を、前記変調キャリア周波数のそれぞれについて、前記FSK変調キャリアの周期の整数倍とすることを特徴とする請求項3または4に記載の受信装置。   5. The receiving apparatus according to claim 3, wherein the repetition period is an integral multiple of the period of the FSK modulation carrier for each of the modulation carrier frequencies. 6. 拡散符号により拡散された拡散符号信号を送信する送信部と他の装置から受信した前記拡散符号により拡散された拡散符号信号を受信信号として受信する受信部とを備えるスペクトル拡散通信装置であって、
前記受信部は、
前記受信信号に対して前記拡散符号に基づいて逆拡散を行うことにより逆拡散信号を生成する逆拡散部と、
前記逆拡散信号に基づいて送信信号のレプリカをレプリカ信号として生成するレプリカ生成部と、
前記レプリカ信号と前記逆拡散信号との相関値を算出する相関値算出部と、
前記相関値に基づいて前記拡散符号に対する同期タイミングを検出する同期判定部と、
を備えることを特徴とするスペクトル拡散通信装置。
A spread spectrum communication apparatus comprising: a transmission unit that transmits a spread code signal spread by a spread code; and a reception unit that receives a spread code signal spread by the spread code received from another device as a reception signal;
The receiver is
A despreading unit that generates a despread signal by despreading the received signal based on the spread code;
A replica generation unit that generates a replica of a transmission signal as a replica signal based on the despread signal;
A correlation value calculation unit for calculating a correlation value between the replica signal and the despread signal;
A synchronization determination unit that detects a synchronization timing for the spreading code based on the correlation value;
A spread spectrum communication apparatus comprising:
拡散符号により拡散された拡散符号信号を送信する送信装置と、
前記拡散符号信号を受信信号として受信する受信装置と、
を備える通信システムであって、
前記受信装置は、
前記受信信号に対して前記拡散符号に基づいて逆拡散を行うことにより逆拡散信号を生成する逆拡散部と、
前記逆拡散信号に基づいて送信信号のレプリカをレプリカ信号として生成するレプリカ生成部と、
前記レプリカ信号と前記逆拡散信号との相関値を算出する相関値算出部と、
前記相関値に基づいて前記拡散符号に対する同期タイミングを検出する同期判定部と、
を備えることを特徴とする通信システム。
A transmission device for transmitting a spread code signal spread by a spread code;
A receiving device for receiving the spread code signal as a received signal;
A communication system comprising:
The receiving device is:
A despreading unit that generates a despread signal by despreading the received signal based on the spread code;
A replica generation unit that generates a replica of a transmission signal as a replica signal based on the despread signal;
A correlation value calculation unit for calculating a correlation value between the replica signal and the despread signal;
A synchronization determination unit that detects a synchronization timing for the spreading code based on the correlation value;
A communication system comprising:
JP2012185755A 2012-08-24 2012-08-24 Receiving device, spread spectrum communication device, and communication system Expired - Fee Related JP5787846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185755A JP5787846B2 (en) 2012-08-24 2012-08-24 Receiving device, spread spectrum communication device, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185755A JP5787846B2 (en) 2012-08-24 2012-08-24 Receiving device, spread spectrum communication device, and communication system

Publications (2)

Publication Number Publication Date
JP2014045283A JP2014045283A (en) 2014-03-13
JP5787846B2 true JP5787846B2 (en) 2015-09-30

Family

ID=50396274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185755A Expired - Fee Related JP5787846B2 (en) 2012-08-24 2012-08-24 Receiving device, spread spectrum communication device, and communication system

Country Status (1)

Country Link
JP (1) JP5787846B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810839B2 (en) * 1988-01-21 1996-01-31 宣夫 御子柴 Spread spectrum communication device
JPH0446422A (en) * 1990-06-13 1992-02-17 Daihen Corp Distribution line carrying communication system for spread spectrum signal
JPH11331031A (en) * 1998-05-08 1999-11-30 Nec Corp Optimum demodulation circuit for cdma communication system, optimum demodulation method and paging system
JP5634354B2 (en) * 2011-08-26 2014-12-03 三菱電機株式会社 Communication system and receiver

Also Published As

Publication number Publication date
JP2014045283A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
US6614864B1 (en) Apparatus for and method of adaptive synchronization in a spread spectrum communications receiver
KR100547758B1 (en) Preamble transmitting and receiving device and method of ultra wideband communication system
JP4771646B2 (en) Spread spectrum digital communication method, transmitter and receiver by Golay complementary sequence modulation
US20070041348A1 (en) Transmitting/receiving apparatus and method for cell search in a broadband wireless communications system
RU2658625C1 (en) Spread spectrum signal generating method, generating apparatus, receiving method and receiving apparatus
CN103905085B (en) One is burst hybrid spread spectrum underwater sound concealed communication method
JP2006197375A (en) Method for receiving and receiver
JP2007524267A (en) Parallel spread spectrum communication system and method
EP3261306A1 (en) Data transmission method and device
US6674790B1 (en) System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
WO2007052355A1 (en) Method of acquiring initial synchronization in impulse wireless communication and receiver
EP0806079B1 (en) Transmission and reception of cpm spread-spectrum communications
Li et al. Novel modulation detection scheme for underwater acoustic communication signal through short-time detailed cyclostationary features
JP5634354B2 (en) Communication system and receiver
Zhang et al. Experimental demonstration of spread spectrum communication over long range multipath channels
CN112134820A (en) Modulation method, modulator, demodulation method, demodulator, communication method and system
JP2002164810A (en) Cyclic shift code division multiplex communication system
JP5787846B2 (en) Receiving device, spread spectrum communication device, and communication system
JPH1098497A (en) Correlative transmission system due to sampling function waveform
JP2001223674A (en) Spread spectrum demodulator
JPH07202751A (en) Spread spectrum transmission method and spread spectrum transmitter
JP2999368B2 (en) Synchronizer
Zhang et al. An efficient spread spectrum pulse position modulation scheme for point-to-point underwater acoustic communication
JP2006013994A (en) Receiver, and communication apparatus using the same
JP4701840B2 (en) Spread spectrum communication system and demodulation circuit used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5787846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees