JP5787287B2 - Anion exchange membrane CO2 sensor - Google Patents

Anion exchange membrane CO2 sensor Download PDF

Info

Publication number
JP5787287B2
JP5787287B2 JP2011126465A JP2011126465A JP5787287B2 JP 5787287 B2 JP5787287 B2 JP 5787287B2 JP 2011126465 A JP2011126465 A JP 2011126465A JP 2011126465 A JP2011126465 A JP 2011126465A JP 5787287 B2 JP5787287 B2 JP 5787287B2
Authority
JP
Japan
Prior art keywords
anion exchange
electrode
exchange membrane
counter electrode
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011126465A
Other languages
Japanese (ja)
Other versions
JP2012251940A (en
Inventor
清水 康博
康博 清水
兵頭 健生
健生 兵頭
長英 石橋
長英 石橋
伸 渡辺
伸 渡辺
柳 裕之
裕之 柳
兼安 一成
一成 兼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Nagasaki University
Tokuyama Corp
Original Assignee
Figaro Engineering Inc
Nagasaki University
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Nagasaki University, Tokuyama Corp filed Critical Figaro Engineering Inc
Priority to JP2011126465A priority Critical patent/JP5787287B2/en
Publication of JP2012251940A publication Critical patent/JP2012251940A/en
Application granted granted Critical
Publication of JP5787287B2 publication Critical patent/JP5787287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明はアニオン交換膜を用いたCO2センサに関する。 The present invention relates to a CO 2 sensor using an anion exchange membrane.

特許文献1(特許3391422)では、KClとKHCO3とを含む電解液に、PtOからなる検知極と銀線から成る対極とを電気化学的に接続し、CO2センサとする。そしてCO2が電解液に溶解すると、
CO2+H2O→H2CO3 (1)
H2CO3→H++HCO3 (2)
の反応が生じる。生成したHを検知極のPtOと(3)のように反応させて、その反応電流からCO2を検出する。
2H++PtO+2e→Pt+H2O (3)
しかしながら特許文献1のCO2センサは電解液を必要とするため扱いにくい。
In Patent Document 1 (Patent 3391422), a detection electrode made of PtO and a counter electrode made of silver wire are electrochemically connected to an electrolytic solution containing KCl and KHCO 3 to form a CO 2 sensor. And when CO 2 dissolves in the electrolyte,
CO 2 + H 2 O → H 2 CO 3 (1)
H 2 CO 3 → H + + HCO 3 (2)
Reaction occurs. The produced H + is reacted with PtO of the sensing electrode as shown in (3), and CO 2 is detected from the reaction current.
2H + + PtO + 2e → Pt + H 2 O (3)
However, the CO 2 sensor of Patent Document 1 is difficult to handle because it requires an electrolyte.

特許文献2(USP7811433)では、塩素イオン型のアニオン交換膜の一面にPt2O3,PtO等からなる検知極を、反対面に銀から成る対極を設ける。アニオン交換膜では上記の(1),(2)の反応が生じ、生成したHを検知極のPt2O3と(4)のように反応させて、反応電流が発生する。
2H++Pt2O3+2e→2PtO+H2O (4)
アニオン交換膜では、(2)の反応で生じた炭酸水素イオンにより交換膜中の塩素イオンが(5)のように置換され、
R-Cl-+HCO3 -→R+HCO3 -+Cl- (5)
塩素イオンは対極の銀電極と反応する。特許文献2も、特許文献1と同様に、検知極と対極とでの反応電流からCO2を検出する。しかしながら特許文献1,2のPt酸化物電極はCO2の検出により消耗し、銀電極も同様に塩素イオンとの反応で消耗する。このため、CO2の検出電流とは逆向きの電流を例えば周期的に加え、電極を再生する必要がある。
In Patent Document 2 (USP 7811433), a detection electrode made of Pt 2 O 3 , PtO or the like is provided on one surface of a chloride ion type anion exchange membrane, and a counter electrode made of silver is provided on the opposite surface. In the anion exchange membrane, the above reactions (1) and (2) occur, and the generated H + reacts with Pt 2 O 3 of the detection electrode as in (4) to generate a reaction current.
2H + + Pt 2 O 3 + 2e → 2PtO + H 2 O (4)
In the anion exchange membrane, the chlorine ions in the exchange membrane are replaced as shown in (5) by the hydrogen carbonate ions generated in the reaction of (2),
R + -Cl - + HCO 3 - → R + HCO 3 - + Cl - (5)
Chlorine ions react with the counter silver electrode. Similarly to Patent Document 1, Patent Document 2 also detects CO 2 from the reaction current between the detection electrode and the counter electrode. However, the Pt oxide electrodes of Patent Documents 1 and 2 are consumed by the detection of CO 2 , and the silver electrode is also consumed by reaction with chloride ions. For this reason, it is necessary to regenerate the electrode by periodically applying a current in the direction opposite to the CO 2 detection current, for example.

特許3391422Patent 3391422 USP7811433USP7811433

この発明の課題は、電解液を用いず、かつ電極の再生等が不要なCO2センサを提供することにある。 An object of the present invention is to provide a CO 2 sensor that does not use an electrolyte and does not require electrode regeneration.

この発明は、強塩基性で水酸化物イオン伝導性のアニオン交換樹脂をイオン伝導性成分とするアニオン交換膜の少なくとも一面に設けられた検知極と対極とから成り、検知極と対極間の起電力からCO2濃度を検出するように構成され、さらに前記起電力とは正負が逆の電圧を検知極と対極間に加える手段を備えず、かつCO 2 との反応で消耗する活物質を備えていないアニオン交換膜CO2センサにある。 The present invention comprises a sensing electrode and a counter electrode provided on at least one surface of an anion exchange membrane comprising a strongly basic and hydroxide ion conductive anion exchange resin as an ion conductive component. It is configured to detect CO 2 concentration from electric power, and further includes an active material that does not have a means for applying a voltage that is opposite in polarity to the electromotive force between the detection electrode and the counter electrode, and that is consumed by reaction with CO 2. Not in the anion exchange membrane CO 2 sensor .

この発明のアニオン交換膜CO2センサでは、アニオン交換膜に達したCO2から例えば(6)
CO2+H2O+2e-→CO+2OH- (6)
により水酸化物イオンが生成する。この反応に対するネルンストの式による起電力EMFは、
EMF=RT/2F・ln((PCO2S・PH2OS・PCOC)/(PCO2C・PH2OC・PCOS)) (7)
で表され、式中Sは検知極をCは対極を表し、PCO2はCO2の分圧を、PH2Oは水蒸気の分圧を、PCOはCOの分圧を示す。またRはガス定数、Tは絶対温度で、実施例では室温あるいは戸外の環境温度であり、Fはファラデー定数である。
The anion exchange membrane CO 2 sensor of the present invention, for example, from the CO 2 reaches the anion exchange membrane (6)
CO 2 + H 2 O + 2e - → CO + 2OH - (6)
As a result, hydroxide ions are generated. The electromotive force EMF according to the Nernst equation for this reaction is
EMF = RT / 2F ・ ln ((PCO 2 S ・ PH 2 OS ・ PCOC) / (PCO 2 C ・ PH 2 OC ・ PCOS)) (7)
In the formula, S represents the detection electrode, C represents the counter electrode, PCO 2 represents the partial pressure of CO 2 , PH 2 O represents the partial pressure of water vapor, and PCO represents the partial pressure of CO. Further, R is a gas constant, T is an absolute temperature, and in the embodiment, it is a room temperature or an outdoor environmental temperature, and F is a Faraday constant.

発明者の実験結果では、
・ 検知極のCO2濃度を高めると、対極に対する検知極の電位(以下単に「起電力」という)は正となり、
・ 起電力のCO2濃度依存性から、CO2に関する2電子反応が生じており、
・ 酸素分圧は起電力に影響せず、
・ COに対して起電力はCO2とは逆向きに応答することが判明している。これらの結果は、(6)式による反応を支持するが、(1),(2)の反応が生じている可能性もある。ただしそのように仮定すると、アニオン交換膜中を水素イオンが拡散できる必要がある。
According to the inventor's experimental results,
・ Increasing the CO 2 concentration of the detection electrode makes the potential of the detection electrode with respect to the counter electrode (hereinafter simply referred to as “electromotive force”) positive.
・ Due to the CO 2 concentration dependence of the electromotive force, a two-electron reaction related to CO 2 has occurred.
・ The oxygen partial pressure does not affect the electromotive force,
· Electromotive force with respect to CO has been found to respond in the opposite direction to the CO 2. These results support the reaction according to the equation (6), but the reactions (1) and (2) may occur. However, assuming that, hydrogen ions must be able to diffuse through the anion exchange membrane.

この発明でのCO2の検出機構の詳細は未確認であるが、実験では、Ptをアニオン交換樹脂またはカーボンブラックに担持した検知極と対極とにより起電力が得られ、特許文献1,2のような白金酸化物電極も銀電極も不要であった。また実験に用いたアニオン交換膜は水酸化物イオン導電型で、塩素イオンが反応に関与する余地はなかった。そしてこの発明では電解液を用いず、貴金属酸化物からなる検知極も、銀の対極も用いずに、CO2を検出できる。また貴金属酸化物の代わりに、水素イオンを水に還元するための活物質を用いる必要もない。この明細書において、%及びppmは容積%と容積ppmとを表す。カーボンブラックを記号CBで表し、アニオン交換膜と同質のアニオン交換樹脂を記号AERで表す。
Although details of the CO 2 detection mechanism in the present invention are unconfirmed, in the experiment, an electromotive force was obtained by a detection electrode and a counter electrode in which Pt was supported on an anion exchange resin or carbon black. Neither a platinum oxide electrode nor a silver electrode was required. The anion exchange membrane used in the experiment was a hydroxide ion conductive type, and there was no room for chlorine ions to participate in the reaction. In the present invention, CO 2 can be detected without using an electrolytic solution and without using a sensing electrode made of a noble metal oxide or a silver counter electrode. Further, it is not necessary to use an active material for reducing hydrogen ions to water instead of the noble metal oxide. In this specification,% and ppm represent volume% and volume ppm. Carbon black is represented by the symbol CB, and an anion exchange resin having the same quality as the anion exchange membrane is represented by the symbol AER.

アニオン交換膜センサでの、アニオン交換膜と検知極とを示す平面図Plan view showing anion exchange membrane and sensing electrode in anion exchange membrane sensor 実施例のアニオン交換膜センサの断面図Sectional view of anion exchange membrane sensor of Example 変形例のアニオン交換膜センサの断面図Sectional view of a modified anion exchange membrane sensor 2%のCO2へのアニオン交換膜センサの応答波形を示す図で、CO2の導入前は検知極/対極とも395ppmCO2と20%O2とを含むN2ガスの雰囲気に置かれ、対極側のCO2濃度を固定し検知極側のCO2濃度を変化させて、測定温度は30℃で相対湿度は57%である。The figure shows the response waveform of an anion exchange membrane sensor to 2% CO 2. Before CO 2 was introduced, the sensing electrode / counter electrode was placed in an N 2 gas atmosphere containing 395 ppm CO 2 and 20% O 2. secure the CO 2 concentration in the side by changing the concentration of CO 2 sensing electrode side, the relative humidity at measurement temperature 30 ° C. is 57%. アニオン交換膜センサの起電力のCO2濃度依存性を示す図で、測定温度は30℃、相対湿度は57%、対極のCO2濃度は395ppmである。A diagram showing a CO 2 concentration dependence of the electromotive force of the anion exchange membrane sensors, measurement temperature 30 ° C., relative humidity 57%, the CO 2 concentration of the counter electrode is 395Ppm. 1000ppmのCOへのアニオン交換膜センサの応答波形を示す図で、COの導入前は検知極/対極とも20%O2を含むN2ガスの雰囲気に置かれ、対極側の雰囲気を固定して、検知極側のCO濃度を変化させ、測定温度は21℃で相対湿度は50%である。The figure shows the response waveform of an anion exchange membrane sensor to 1000 ppm CO. Before introducing CO, the sensing electrode / counter electrode is placed in an N 2 gas atmosphere containing 20% O 2 and the counter electrode side atmosphere is fixed. The CO concentration on the detection electrode side is changed, the measurement temperature is 21 ° C, and the relative humidity is 50%. O2濃度を20%から0%,10%及び30%へ変化させた際のアニオン交換膜センサの応答波形を示す図で、O2濃度の変化前は検知極側は2%CO2と20%O2とを含むN2ガスの雰囲気に、対極側は395ppmCO2と20%O2とを含むN2ガスの雰囲気に置かれ、対極側の雰囲気を固定し検知極側のO2濃度を変化させ、測定温度は30℃で相対湿度は57%である。It is a figure showing the response waveform of the anion exchange membrane sensor when changing the O 2 concentration from 20% to 0%, 10% and 30%. Before the change of the O 2 concentration, the detection electrode side is 2% CO 2 and 20 % O 2 and the atmosphere of N 2 gas containing, counter electrode side is placed in an atmosphere of N2 gas containing 395PpmCO 2 and 20% O 2, to secure the atmosphere of the counter electrode side change of O 2 concentration of the sensing electrode side The measurement temperature is 30 ° C. and the relative humidity is 57%. 相対湿度を変化させた際の2%のCO2へのアニオン交換膜センサの応答波形を示す図で、検知極側と対極側とを20%O2を含む、相対湿度が0〜80%のN2ガスの雰囲気(30℃)に置き、検知極側の雰囲気に2%のCO2を加えた際の応答波形を示す。It is a figure showing the response waveform of an anion exchange membrane sensor to 2% CO 2 when changing the relative humidity, including 20% O 2 on the detection electrode side and the counter electrode side, with a relative humidity of 0 to 80% Response waveform when 2% CO 2 is added to the atmosphere on the detection electrode side in an N 2 gas atmosphere (30 ° C).

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図8に、実施例のアニオン交換膜CO2センサ2,22とその特性とを示す。図1はCO2センサ2,22のセンサ本体4を示し、アニオン交換膜6の一面に検知極8を、反対面に対極を設け、Au線等のリード線11,12を接続する。アニオン交換膜6は例えば強塩基性の水酸化物イオン伝導性の合成樹脂膜であり、例えば株式会社アストム製のネオセプタ(ネオセプタは登録商標)を用いる。なおアニオン交換膜6での伝導陰イオンの種類は任意である。検知極8と対極10の材料は、Ptペーストもしくはカーボンブラック(CB)に担持したPtを、アニオン交換膜6と同質のアニオン交換樹脂(AER)と混合したもの等を用いるが、例えばPtの薄膜電極などでもよい。またPtに代えて、Au,Rh,Ir,Ruなどの他の貴金属電極(厚膜または薄膜)を用いてもよく、さらにLaCoO3,LaNiO3などの卑金属の酸化物電極などを用いてもよい。また対極はCBから成る炭素電極、もしくは炭素の薄膜電極などでもよい。 1 to 8 show anion exchange membrane CO 2 sensors 2 and 22 and their characteristics according to the examples. FIG. 1 shows the sensor body 4 of the CO 2 sensors 2 and 22, where a detection electrode 8 is provided on one surface of the anion exchange membrane 6 and a counter electrode is provided on the opposite surface, and lead wires 11 and 12 such as Au wires are connected. The anion exchange membrane 6 is, for example, a strongly basic hydroxide ion conductive synthetic resin membrane, and for example, Neoceptor (Neoceptor is a registered trademark) manufactured by Astom Co., Ltd. is used. In addition, the kind of conductive anion in the anion exchange membrane 6 is arbitrary. The material of the detection electrode 8 and the counter electrode 10 is a mixture of Pt supported on Pt paste or carbon black (CB) and an anion exchange resin (AER) of the same quality as the anion exchange membrane 6. An electrode etc. may be sufficient. Further, in place of Pt, other noble metal electrodes (thick film or thin film) such as Au, Rh, Ir, and Ru may be used, and base metal oxide electrodes such as LaCoO 3 and LaNiO 3 may be used. . The counter electrode may be a carbon electrode made of CB or a carbon thin film electrode.

図2にアニオン交換膜CO2センサ2の構造を示し、アニオン交換膜6の検知極8とは反対面に対極10が設けられ、検知極8側がCO2濃度を測定する雰囲気(被検ガス)に曝され、対極10側がCO2濃度が既知の雰囲気(参照ガス)に曝される。そして検知極8と対極10間の起電力を測定する。 FIG. 2 shows the structure of the anion exchange membrane CO 2 sensor 2. An atmosphere in which the counter electrode 10 is provided on the surface opposite to the detection electrode 8 of the anion exchange membrane 6 and the CO 2 concentration is measured on the detection electrode 8 side (test gas). The counter electrode 10 side is exposed to an atmosphere (reference gas) having a known CO 2 concentration. Then, the electromotive force between the detection electrode 8 and the counter electrode 10 is measured.

図8に示すように、CO2センサ2には相対湿度依存性があるので、水溜を備えたアニオン交換膜CO2センサ22(図3)を用いてもよい。24は容器で水を収容し、26はPTFE膜などの多孔質膜で、検知極8を覆うことにより外部から保護し、多孔質膜26は容器24に固定されて、これらの隙間からリード線11,12を引き出す。 As shown in FIG. 8, since the CO 2 sensor 2 is dependent on relative humidity, an anion exchange membrane CO 2 sensor 22 (FIG. 3) having a water reservoir may be used. Reference numeral 24 denotes a container for containing water, 26 is a porous film such as a PTFE film, and is protected from the outside by covering the detection electrode 8, and the porous film 26 is fixed to the container 24 and leads from these gaps to the lead wire Pull out 11 and 12.

センサ本体4の製造方法を説明する。塩化白金酸の水溶液をCBと混合し、60分間超音波照射した後、70℃に加熱して乾燥した後、350℃で1時間水素雰囲気中で還元することにより、PtをCB量に対して10wt%担持させたPt/CBを調製した。強塩基性で水酸化物イオン伝導性のアニオン交換樹脂(4級アンモニウム基をアニオン交換基として有するアニオン交換樹脂で、イオン交換容量は1.5mmol/g)の有機溶媒溶液に、前記のPt/CBを混合し、電極材料とした。この電極材料を用いた電極をPt/CB-AERと呼び、その組成は質量比でAER:CB:Pt=1.1:1:0.1である。他の電極材料として、田中貴金属株式会社製の市販のPtペースト(TR-7905)を前記のアニオン交換樹脂の溶液と混合し、アニオン交換樹脂とPtとを33:1の質量比で含むペーストを調製した。このペースト用いた電極をPt-AERと呼ぶ。強塩基性で水酸化物イオン伝導性のアニオン交換膜(4級アンモニウム基をアニオン交換基として有するアニオン交換樹脂で、イオン交換容量は1.8mmol/g)の表裏両面に、Pt/CB-AERを塗布し、検知極と対極とを作製すると共に、Auからなるリード線11,12を固定した。同様にPt-AERの電極材料を、前記のアニオン交換膜の表裏両面に塗布すると共に、リード線11,12を取り付けた。製造したセンサ本体4の構成を表1に示す。図2のセンサ2を用いて特性を測定し、対極10側には参照ガスを、検知極8側には被検ガスを供給し、リード線11,12間の起電力を測定した。   A method for manufacturing the sensor body 4 will be described. An aqueous solution of chloroplatinic acid is mixed with CB, irradiated with ultrasonic waves for 60 minutes, heated to 70 ° C, dried, and then reduced in a hydrogen atmosphere at 350 ° C for 1 hour to reduce Pt to the amount of CB. Pt / CB supported on 10 wt% was prepared. A strongly basic hydroxide ion conductive anion exchange resin (anion exchange resin having a quaternary ammonium group as an anion exchange group, the ion exchange capacity is 1.5 mmol / g) is added to the above Pt / CB in an organic solvent solution. Were mixed to obtain an electrode material. An electrode using this electrode material is called Pt / CB-AER, and its composition is AER: CB: Pt = 1.1: 1: 0.1 by mass ratio. As another electrode material, a commercially available Pt paste (TR-7905) manufactured by Tanaka Kikinzoku Co., Ltd. is mixed with the above anion exchange resin solution, and a paste containing the anion exchange resin and Pt in a mass ratio of 33: 1 is used. Prepared. The electrode using this paste is called Pt-AER. Pt / CB-AER is applied on both sides of the strong and hydroxide ion conductive anion exchange membrane (anion exchange resin with quaternary ammonium group as anion exchange group, ion exchange capacity is 1.8 mmol / g). Coating was performed to produce a detection electrode and a counter electrode, and lead wires 11 and 12 made of Au were fixed. Similarly, an electrode material of Pt-AER was applied to both the front and back surfaces of the anion exchange membrane, and lead wires 11 and 12 were attached. Table 1 shows the configuration of the manufactured sensor body 4. The characteristics were measured using the sensor 2 of FIG. 2, the reference gas was supplied to the counter electrode 10 side, the test gas was supplied to the detection electrode 8 side, and the electromotive force between the lead wires 11 and 12 was measured.

なおアニオン交換膜は一般にアニオン交換基を有する樹脂の膜であり、アニオン交換基は例えば4級アンモニウム基、4級ホスホニウム基等である。アニオン交換膜は、例えばポリスチレン、ポリビニルピリジン、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリベンズイミダゾール等の樹脂を基材として、アニオン交換基等の官能基を導入し、キャスト成膜等により成膜したものである。アニオン交換膜は通常0.2〜3mmol/g、好ましくは0.5〜2.5mmol/gのアニオン交換容量を有し、乾燥によりアニオン伝導性が低下しないように、25℃における含水率は7wt%以上で、好ましくは10〜90wt%である。膜厚は、電気抵抗が低く、かつ必要な機械的強度を保つために、5〜200μmが好ましく、より好ましくは10〜100μmとする。またアニオン交換膜は、25℃で0.5mol/LのNaCl水溶液中での膜抵抗が例えば0.05〜1.5Ωcm2であり、好ましくは0.1〜0.5Ωcm2である。 The anion exchange membrane is generally a resin membrane having an anion exchange group, and the anion exchange group is, for example, a quaternary ammonium group or a quaternary phosphonium group. An anion exchange membrane is formed by casting a film or the like by introducing a functional group such as an anion exchange group using a resin such as polystyrene, polyvinyl pyridine, polysulfone, polyether ketone, polyether ether ketone, or polybenzimidazole as a base material. It is a film. The anion exchange membrane usually has an anion exchange capacity of 0.2 to 3 mmol / g, preferably 0.5 to 2.5 mmol / g, and the water content at 25 ° C. is preferably 7 wt% or more so that the anion conductivity is not reduced by drying. Is 10 to 90 wt%. The film thickness is preferably 5 to 200 μm, more preferably 10 to 100 μm, in order to keep the electrical resistance low and necessary mechanical strength. The anion exchange membrane is a membrane resistance e.g. 0.05~1.5Omucm 2 in an NaCl aqueous solution of 0.5 mol / L at 25 ° C., preferably 0.1~0.5Ωcm 2.

表1 センサ本体の構成
アニオン交換膜 水酸化物イオン伝導性強塩基性アニオン交換膜
検知極と対極(Pt/CB-AER) Pt:カーボンブラック:アニオン交換樹脂=0.1:1:1.1
検知極と対極(Pt-AER) Pt:アニオン交換樹脂=1:33
Table 1 Structure of sensor body Anion exchange membrane Hydroxide ion conductive strong base anion exchange membrane sensing electrode and counter electrode (Pt / CB-AER) Pt: Carbon black: Anion exchange resin = 0.1: 1: 1.1
Detection electrode and counter electrode (Pt-AER) Pt: Anion exchange resin = 1:33

図4は2%のCO2への応答波形を示し、最初は検知極/対極とも395ppmCO2と20%O2とを含むN2ガスの雰囲気に置かれ、対極側のCO2濃度を固定し検知極側のCO2濃度を変化させて、測定温度は30℃で相対湿度は57%である。対極側のCO2濃度を395ppmに固定したまま、検知極側のCO2濃度を395ppmと2%との間で変化させた。Pt/CB-AER電極とPt-AER電極とを比較すると、Pt-AER電極では起電力の変化が大きいが、雰囲気への応答はPt/CB-AER電極の方が速いことが分かる。図5は、被検ガス中のCO2濃度を395ppmから2%までの範囲で変化させた際の起電力を示し、最初は検知極/対極とも395ppmCO2と20%O2とを含むN2ガスの雰囲気に置かれ、測定温度は30℃、相対湿度は57%、対極のCO2濃度は395ppmに固定した。起電力の勾配をネルンストの式と比較すると、Pt-AER電極では反応の電子数は1.6、Pt/CB-AER電極では反応の電子数は2であることが分かる。 Figure 4 shows the response waveform to 2% CO 2. Initially, the sensing electrode / counter electrode is placed in an N 2 gas atmosphere containing 395 ppm CO 2 and 20% O 2 to fix the CO 2 concentration on the counter electrode side. By changing the CO 2 concentration on the detection electrode side, the measurement temperature is 30 ° C. and the relative humidity is 57%. While fixing the CO 2 concentration of the counter electrode side 395Ppm, and the CO 2 concentration of the sensing electrode side varied between 395Ppm 2%. Comparing the Pt / CB-AER electrode with the Pt-AER electrode, it can be seen that the Pt-AER electrode has a large change in electromotive force, but the response to the atmosphere is faster with the Pt / CB-AER electrode. FIG. 5 shows the electromotive force when the CO2 concentration in the test gas is changed in the range from 395 ppm to 2%, and initially N 2 gas containing 395 ppm CO 2 and 20% O 2 for both the detection electrode and the counter electrode. The measurement temperature was fixed at 30 ° C., the relative humidity was 57%, and the CO 2 concentration at the counter electrode was fixed at 395 ppm. Comparing the gradient of electromotive force with the Nernst equation, it can be seen that the number of reaction electrons is 1.6 at the Pt-AER electrode and the number of reaction electrons is 2 at the Pt / CB-AER electrode.

前記の(6)の CO2+H2O+2e-→CO+2OH- の電極反応では、センサ2はCOに対してCO2とは逆向きに応答するはずである。1000ppmのCOへの応答波形(Pt-AER電極)を図6に示し、検知極と対極は共に20%のO2を含み、相対湿度が50%で残余がN2ガスの雰囲気に置かれ、測定温度は21℃である。この条件で被検ガスに1000ppmのCOを導入した際の結果を図6に示す。センサ2はCOに対して、CO2とは逆向きに応答している。 In the electrode reaction of (6) CO 2 + H 2 O + 2e → CO + 2OH , the sensor 2 should respond to CO in the opposite direction to CO 2 . The response waveform to 1000ppm CO (Pt-AER electrode) is shown in Fig. 6. Both the detection electrode and counter electrode contain 20% O 2 , the relative humidity is 50%, and the rest is placed in N 2 gas atmosphere. The measurement temperature is 21 ° C. FIG. 6 shows the results when 1000 ppm of CO was introduced into the test gas under these conditions. Sensor 2 for CO, responding to a direction opposite to the CO 2.

図7はO2濃度を0%,20%,30%に変化させた際の応答波形(Pt-AER電極)を示し、最初検知極を2%のCO2と20%のO2を含むN2ガスの雰囲気に置き、O2濃度を0%、10%及び30%に変化させる。対極は395ppmのCO2と20%のO2を含むN2ガスの雰囲気に置かれている。測定温度は30℃で、検知極側も対極側も共に相対湿度を57%とした。図7からO2濃度の変化に対する応答がごく僅かで、O2はCO2の検出反応に関与しないことが分かり、このことは(6)の電極反応を支持している。 Fig. 7 shows the response waveform (Pt-AER electrode) when the O 2 concentration is changed to 0%, 20%, and 30%. The first detection electrode is N containing 2% CO 2 and 20% O 2. Place in 2 gas atmosphere and change O 2 concentration to 0%, 10% and 30%. The counter electrode is placed in an atmosphere of N 2 gas containing 395 ppm CO 2 and 20% O 2 . The measurement temperature was 30 ° C., and the relative humidity was 57% on both the detection electrode side and the counter electrode side. FIG. 7 shows that the response to changes in O 2 concentration is negligible, and that O 2 is not involved in the CO 2 detection reaction, which supports the electrode reaction of (6).

図8は30℃で相対湿度が0〜80%の各雰囲気での、2%のCO2に対する応答波形(Pt-AER電極)を示し、検知極と対極は共に20%のO2を含むN2ガスの雰囲気に置かれている。またCO2の導入前は検知極と対極は共に395ppmのCO2を含んでいる。相対湿度が低いほど応答は大きくなるが、回復が遅くなる。相対湿度が低いと起電力の変化が大きくなることは、アニオン交換膜中に溶解したCO2濃度が相対湿度が低いほど高くなることを示している。 Fig. 8 shows the response waveform (Pt-AER electrode) to 2% CO 2 in an atmosphere with a relative humidity of 0 to 80% at 30 ° C. Both the detection electrode and the counter electrode contain 20% O 2. 2 gas atmosphere. Also prior to the introduction of CO 2 is sensing electrode and the counter electrode are both contain CO 2 in 395Ppm. The lower the relative humidity, the greater the response but the slower the recovery. The increase in electromotive force when the relative humidity is low indicates that the concentration of CO 2 dissolved in the anion exchange membrane increases as the relative humidity decreases.

図4〜図7から、起電力はCO2に対して正に応答し、CO2に対してほぼ2電子反応であり、O2は応答に関与せず、COに対して負に応答することが分かる。これらのことは、電極反応が(6)に沿ったものであることを支持している。実施例では検知極8と対極10をアニオン交換膜6の両面に設けたが、これらを同一面に設けて、対極10を気密な樹脂等で被検ガスから遮断しても良い。
From 4 to 7, an electromotive force is positively respond to CO 2, is approximately 2 electron reaction to CO 2, O 2 is not involved in the response, negative to respond to CO I understand. These facts support that the electrode reaction is along (6). In the embodiment, the detection electrode 8 and the counter electrode 10 are provided on both surfaces of the anion exchange membrane 6, but these may be provided on the same surface and the counter electrode 10 may be shielded from the test gas with an airtight resin or the like.

2,22 アニオン交換膜CO2センサ
4 センサ本体
6 アニオン交換膜
8 検知極
10 対極
11,12 リード線
14 ハウジング
24 容器
26 多孔質膜
2,22 Anion exchange membrane CO 2 sensor 4 Sensor body 6 Anion exchange membrane 8 Detection electrode 10 Counter electrode 11, 12 Lead wire
14 Housing 24 Container 26 Porous membrane

Claims (1)

強塩基性で水酸化物イオン伝導性のアニオン交換樹脂をイオン伝導性成分とするアニオン交換膜の少なくとも一面に設けられた検知極と対極とから成り、検知極と対極間の起電力からCO2濃度を検出するように構成され、さらに前記起電力とは正負が逆の電圧を検知極と対極間に加える手段を備えず、かつCO 2 との反応で消耗する活物質を備えていないアニオン交換膜CO2センサ。
It consists of a sensing electrode and a counter electrode provided on at least one surface of an anion exchange membrane comprising a strongly basic, hydroxide ion-conducting anion exchange resin as an ion-conducting component. From the electromotive force between the sensing electrode and the counter electrode, CO 2 Anion exchange that is configured to detect the concentration , and that does not include a means for applying a voltage that is opposite to the electromotive force in the positive and negative directions between the detection electrode and the counter electrode, and that does not include an active material that is consumed by reaction with CO 2. Membrane CO 2 sensor.
JP2011126465A 2011-06-06 2011-06-06 Anion exchange membrane CO2 sensor Expired - Fee Related JP5787287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011126465A JP5787287B2 (en) 2011-06-06 2011-06-06 Anion exchange membrane CO2 sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126465A JP5787287B2 (en) 2011-06-06 2011-06-06 Anion exchange membrane CO2 sensor

Publications (2)

Publication Number Publication Date
JP2012251940A JP2012251940A (en) 2012-12-20
JP5787287B2 true JP5787287B2 (en) 2015-09-30

Family

ID=47524873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126465A Expired - Fee Related JP5787287B2 (en) 2011-06-06 2011-06-06 Anion exchange membrane CO2 sensor

Country Status (1)

Country Link
JP (1) JP5787287B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075872B2 (en) * 2013-05-23 2017-02-08 国立大学法人 長崎大学 CO sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284462A (en) * 1987-05-15 1988-11-21 Figaro Eng Inc Gas sensor
US6241873B1 (en) * 1997-02-20 2001-06-05 Tdk Corporation Sold electrolytes, carbon dioxide sensors and method for correcting the output of sensors
JPH11237364A (en) * 1998-02-18 1999-08-31 Tdk Corp Carbon dioxide sensor
JP4353773B2 (en) * 2003-11-13 2009-10-28 株式会社トクヤマ Gas sensor element and electrochemical gas sensor
US7811433B2 (en) * 2004-10-15 2010-10-12 Giner, Inc. Electrochemical carbon dioxide sensor

Also Published As

Publication number Publication date
JP2012251940A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
Stetter et al. Amperometric gas sensors a review
Han et al. Effect of nanoporous structure on enhanced electrochemical reaction
US8840775B2 (en) Regenerative gas sensor
US9518952B2 (en) Gas sensor
US20150014167A1 (en) Electrochemical gas sensor comprising an anion-exchange membrane
US11231389B2 (en) Method and apparatus for electrolyte concentration measurement in an electrochemical sensor
CN110741247A (en) Improved electrochemical sensor and method for detecting formaldehyde by adjusting voltage to reduce cross-sensitivity
US20190265190A1 (en) Method and apparatus of electrolyte concentration measurement
JP2021193386A (en) Electrochemical element
JP2005134248A (en) Electrochemical gas sensor
JP4248475B2 (en) Ionic liquid electrolyte gas sensor
JP2005530994A (en) Electrochemical gas detection apparatus and method including a permeable membrane and an aqueous electrolyte
WO2015060328A1 (en) Potentiostatic electrolytic gas sensor
WO2015002060A1 (en) Co sensor and method for manufacturing co sensor
JP4562131B2 (en) Separator for working electrode of electrochemical gas sensor for detecting nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2)
Mayo et al. Electrochemical response to H2, O2, CO2 and NH3 of a solid-state cell based on a cation-or anion-exchange membrane serving as a solid polymer electrolyte
JP5787287B2 (en) Anion exchange membrane CO2 sensor
Li et al. Electrochemical determination of nitrite and iodate based on Pt nanoparticles self-assembled on a chitosan modified glassy carbon electrode
JPH0640092B2 (en) Humidity measurement method
JP2015083924A (en) Constant potential electrolysis type gas sensor
JP3881540B2 (en) Constant potential electrolysis gas sensor and gas detector
JP6209327B2 (en) Constant potential electrolytic gas sensor
JP4202179B2 (en) Electrochemical gas sensor
TW201831891A (en) Controlled potential electrolysis gas sensor
JP2014199233A (en) Electrochemical gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150721

R150 Certificate of patent or registration of utility model

Ref document number: 5787287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees