JP5785791B2 - Sleep state determination device - Google Patents

Sleep state determination device Download PDF

Info

Publication number
JP5785791B2
JP5785791B2 JP2011132175A JP2011132175A JP5785791B2 JP 5785791 B2 JP5785791 B2 JP 5785791B2 JP 2011132175 A JP2011132175 A JP 2011132175A JP 2011132175 A JP2011132175 A JP 2011132175A JP 5785791 B2 JP5785791 B2 JP 5785791B2
Authority
JP
Japan
Prior art keywords
component
ratio
sleep
heart rate
body movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011132175A
Other languages
Japanese (ja)
Other versions
JP2012020117A (en
Inventor
木村 文雄
文雄 木村
和明 江見
和明 江見
康則 大谷
康則 大谷
一郎 藤岡
一郎 藤岡
近藤 雅之
雅之 近藤
一浩 寺西
一浩 寺西
生仁 植山
生仁 植山
富田 誠次郎
誠次郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2011132175A priority Critical patent/JP5785791B2/en
Publication of JP2012020117A publication Critical patent/JP2012020117A/en
Application granted granted Critical
Publication of JP5785791B2 publication Critical patent/JP5785791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被験者の生体信号を非装着且つ非拘束で検出して、入眠状態をリアルタイムに判定する入眠状態判定装置に関する。   The present invention relates to a sleep state determination device that detects a biological signal of a subject without wearing and unconstrained and determines a sleep state in real time.

従来の睡眠状態を判定する判定装置としては、脳波を検出する脳波計、心電波形を検出する心電計、あるいは眼球の動きを検出する筋電計等の各種計器を用いて、これら各種計器によって検出した生体信号に基づいて睡眠状態を判定するものが知られている。   As a conventional determination apparatus for determining a sleep state, various instruments such as an electroencephalograph that detects an electroencephalogram, an electrocardiograph that detects an electrocardiogram, or an electromyograph that detects the movement of an eyeball are used. What determines a sleep state based on the biological signal detected by this is known.

ところが、上記判定装置においては、各種計器として、生体の電位変化を皮膚に直接電極を取り付けて検出するものを使用していることから、被験者の動作を拘束して、測定中は被験者に大きなストレスを与え、連続測定には適さず、電極の取り付け作業や取り扱いにも熟練を要するといった不具合があった。また、被験者が動くと計器の位置がずれて、生体信号を精度良く検出できないことがあった。さらに、睡眠状態の判定に際して、各種計器によって検出した睡眠時の生体信号データを一旦保存した後、コンピュータ等を用いてデータ解析を行うようにしていることから、リアルタイム性に乏しいといった不具合もあった。   However, in the above-described determination device, since various instruments are used that detect a change in the potential of a living body by directly attaching an electrode to the skin, the movement of the subject is restrained and a large stress is applied to the subject during the measurement. In other words, it is not suitable for continuous measurement, and it requires a skill in electrode mounting work and handling. In addition, when the subject moves, the position of the instrument shifts and the biological signal may not be detected with high accuracy. Furthermore, when the sleep state is determined, the biological signal data at the time of sleep detected by various instruments is temporarily stored, and then data analysis is performed using a computer or the like. .

そこで、近年では、被験者の生体信号を非装着且つ非拘束で検出して、睡眠状態をリアルタイムに判定する判定装置が提案されている。例えば特許文献1には、被験者に対して非装着且つ非拘束で検出した心拍信号に基づいて睡眠状態を判定する装置が開示され、特許文献2には、被験者に対して非装着且つ非拘束で検出した体動信号に基づいて睡眠状態を判定する装置が開示されている。しかしながら、特にリアルタイム性が要求される入眠タイミングを瞬時に判定可能な入眠状態判定装置については、未だ実現されていないのが現状であった。   Therefore, in recent years, a determination device has been proposed in which a biological signal of a subject is detected without wearing and unconstrained, and a sleep state is determined in real time. For example, Patent Document 1 discloses an apparatus for determining a sleep state based on a heartbeat signal detected without being worn and unconstrained with respect to a subject, and Patent Document 2 is unworn and unconstrained with respect to a subject. An apparatus for determining a sleep state based on a detected body motion signal is disclosed. However, the current state of the art is that a sleep state determination device that can instantaneously determine the sleep timing that requires real-time characteristics has not been realized yet.

特開2005−152310号公報JP 2005-152310 A 特開2006−181263号公報JP 2006-181263 A

この発明は、かかる現状に鑑み創案されたものであって、その目的とするところは、被験者の生体信号を非装着且つ非拘束でリアルタイムに検出して、入眠タイミングを瞬時に判定可能とする入眠状態判定装置を提供することにある。   The present invention was devised in view of the current situation, and the purpose of the present invention is to detect a subject's biological signal in real time without attachment and without restraint, and to make it possible to instantaneously determine the sleep timing. The object is to provide a state determination device.

この発明の入眠状態判定装置は、被験者に対して非装着且つ非拘束で、前記被験者の体動信号及び心拍信号を検出する生体信号検出手段(1)と、前記体動信号から体動の有無を検出する体動有無検出手段(12)と、前記心拍信号から心拍数を求める心拍数検出手段(10)と、前記心拍信号の時系列データを周波数解析して、心拍の揺らぎ成分に占める交感神経成分であるLF成分の割合及び副交感神経成分であるHF成分の割合を求める周波数解析手段(11)と、これら体動の有無、心拍数、LF成分の割合及びHF成分の割合に基づいて、入眠タイミングを判定する入眠判定手段(13)とを備え、前記入眠判定手段(13)は、2分間以上連続して無体動であって、前記心拍数が同時間連続して下降傾向にあって、さらに前記LF成分の割合と前記HF成分の割合が等しくなった拮抗状態を経過した後に、前記LF成分の割合が前記HF成分の割合よりも低くて、前記LF成分の割合が減少傾向、且つ、前記HF成分の割合が増加傾向にあって、これらLF成分の割合とHF成分の割合との差が60%以上となった時点を、入眠タイミングと判定することを特徴とする。
The sleep state determining apparatus according to the present invention includes a biological signal detection unit (1) that detects a body motion signal and a heartbeat signal of the subject without wearing and unconstrained with respect to the subject, and presence / absence of body motion from the body motion signal Body motion presence / absence detecting means (12) for detecting heart rate, heart rate detecting means (10) for obtaining a heart rate from the heartbeat signal, frequency analysis of the time series data of the heartbeat signal, and sympathy occupying the heartbeat fluctuation component Based on the frequency analysis means (11) for determining the ratio of the LF component that is a nerve component and the ratio of the HF component that is a parasympathetic nerve component, the presence or absence of body movement, the heart rate, the ratio of the LF component, and the ratio of the HF component, A sleep onset determining means (13) for determining a sleep onset timing, wherein the sleep onset determining means (13) is continuously inactive for 2 minutes or more, and the heart rate continuously decreases for the same time. And said L After an antagonistic state in which the ratio of the F component and the ratio of the HF component have become equal, the ratio of the LF component is lower than the ratio of the HF component, the ratio of the LF component tends to decrease, and the HF It is characterized in that the point in time when the ratio of the components is increasing and the difference between the ratio of the LF component and the ratio of the HF component is 60% or more is determined as a sleep timing .

具体的に、前記入眠判定手段13は、一定時間連続して無体動であって、前記心拍数が下降傾向にあって、さらに前記LF成分の割合と前記HF成分の割合が等しくなった拮抗状態を経過した後に、前記LF成分の割合が前記HF成分の割合よりも低くて、前記LF成分の割合が減少傾向、且つ、前記HF成分の割合が増加傾向にあって、これらLF成分の割合とHF成分の割合との差が所定値以上となった時点を、入眠タイミングと判定している。   Specifically, the sleep onset determination means 13 is an antagonistic state in which there is no body movement continuously for a certain time, the heart rate tends to decrease, and the ratio of the LF component and the ratio of the HF component are equal. The ratio of the LF component is lower than the ratio of the HF component, the ratio of the LF component is decreasing, and the ratio of the HF component is increasing. The point in time when the difference from the ratio of the HF component is equal to or greater than a predetermined value is determined as the sleep timing.

また、前記入眠判定手段13は、一定時間連続して無体動であって、前記心拍数が下降傾向にあって、さらに前記LF成分の割合と前記HF成分の割合が等しくなった拮抗状態を経過した後に、前記LF成分の割合が前記HF成分の割合よりも低くて、前記LF成分の割合が減少傾向から増加傾向へ切り換わる直前で、且つ、前記HF成分の割合が増加傾向から減少傾向へ切り換わる直前の時点を、入眠タイミングと判定している。   Further, the sleep onset judging means 13 has passed an antagonistic state in which there is no body movement continuously for a certain time, the heart rate tends to decrease, and the ratio of the LF component is equal to the ratio of the HF component. Then, immediately before the ratio of the LF component is lower than the ratio of the HF component, the ratio of the LF component switches from a decreasing trend to an increasing trend, and the ratio of the HF component shifts from an increasing trend to a decreasing trend. The time immediately before switching is determined as the sleep timing.

さらに、前記生体信号検出手段1は、内部に発泡性樹脂材並びに空気を封入してなり、前記被験者が横臥する寝床2に設置したセンサーパッド3・・と、このセンサーパッド3・・内の空気圧の変化を検知する圧電センサー4とを備えている。   Further, the biosignal detecting means 1 is provided with a foaming resin material and air sealed therein, and a sensor pad 3... Installed on the bed 2 on which the subject lies, and the air pressure in the sensor pad 3. And a piezoelectric sensor 4 for detecting the change of.

さらにまた、前記入眠判定手段13の判定結果に基づいて、照明機器や空調機器等の住宅設備機器15の駆動を制御する機器制御手段14を備えている。   Furthermore, the apparatus control means 14 which controls the drive of the housing equipment 15 such as a lighting apparatus and an air conditioner based on the determination result of the sleep onset determination means 13 is provided.

ここで、上記の「心拍の揺らぎ」とは、具体的には心拍周期の変動(心拍信号のR−R間隔の変動)を意味しており、自律神経の活動を反映している。自律神経は、緊張状態において亢進する交感神経と、リラックス状態において亢進する副交感神経の2つの神経系からなる。   Here, the above-mentioned “heartbeat fluctuation” specifically means a fluctuation of the heartbeat period (fluctuation of the RR interval of the heartbeat signal), and reflects the activity of the autonomic nerve. The autonomic nerve is composed of two nervous systems: a sympathetic nerve that increases in a tension state and a parasympathetic nerve that increases in a relaxed state.

この「心拍の揺らぎ」を周波数解析(高速フーリエ変換)して、例えばパワースペクトル密度を導き出すことで、0.1Hz前後をピークとする交感神経成分(LF成分)の活性度(強度)と、0.3Hz前後をピークとする副交感神経成分(HF成分)の活性度(強度)をそれぞれ定量化することは公知の技術である。以下、定量化された交感神経成分(LF成分)の活性度(強度)を、「LF成分の値」と称し、定量化された副交感神経成分(HF成分)の活性度(強度)を、「HF成分の値」と称する。   By performing frequency analysis (fast Fourier transform) on this “beat fluctuation” and deriving, for example, the power spectral density, the activity (intensity) of the sympathetic nerve component (LF component) having a peak at around 0.1 Hz and 0 It is a known technique to quantify the activity (intensity) of the parasympathetic nerve component (HF component) having a peak at around 3 Hz. Hereinafter, the activity (intensity) of the quantified sympathetic nerve component (LF component) is referred to as “value of LF component”, and the activity (intensity) of the quantified parasympathetic nerve component (HF component) is expressed as “ This is referred to as “the value of the HF component”.

そして、上記の「心拍の揺らぎ成分に占める交感神経成分であるLF成分の割合」とは、具体的にはLF成分の値とHF成分の値との合計値に対するLF成分の値の比率すなわち「LF/(HF+LF)」を意味しており、上記の「心拍の揺らぎ成分に占める副交感神経成分であるHF成分の割合」とは、具体的にはLF成分の値とHF成分の値との合計値に対するHF成分の値の比率すなわち「HF/(HF+LF)」を意味している。心拍の揺らぎ成分全体としての割合は、LF成分の割合とHF成分の割合の合計であって100%であり、例えばLF成分の割合が20%の場合には、HF成分の割合は80%になるといった関係にある。したがって、上記の「LF成分の割合とHF成分の割合が等しくなった拮抗状態」とは、LF成分及びHF成分の割合がともに50%となった状態すなわち交感神経と副交感神経とが均衡している状態を意味している。   The above-mentioned “ratio of the LF component that is a sympathetic nerve component in the heartbeat fluctuation component” is specifically the ratio of the value of the LF component to the total value of the value of the LF component and the value of the HF component, that is, “ LF / (HF + LF) ”, and the above-mentioned“ ratio of the HF component that is a parasympathetic nerve component in the heartbeat fluctuation component ”is specifically the sum of the value of the LF component and the value of the HF component. The ratio of the value of the HF component to the value, that is, “HF / (HF + LF)” is meant. The ratio of the heartbeat fluctuation component as a whole is the sum of the ratio of the LF component and the ratio of the HF component and is 100%. For example, when the ratio of the LF component is 20%, the ratio of the HF component is 80%. It is in a relationship such as Therefore, the above-mentioned “antagonized state in which the ratio of the LF component and the ratio of the HF component are equal” means that the ratio of the LF component and the HF component is both 50%, that is, the sympathetic nerve and the parasympathetic nerve are balanced. It means that there is.

この発明の入眠状態判定装置によれば、被験者の生体信号を非装着且つ非拘束でリアルタイムに検出して、被験者にストレスを与えることなく、入眠タイミングを瞬時に精度良く判定することができる。しかも、この入眠判定を利用して、住宅設備機器を入眠タイミングに応じてリアルタイムに制御することができ、省エネルギー対策や安全・安心対策に応用することができる。   According to the sleep state determining apparatus of the present invention, a biological signal of a subject can be detected in real time without wearing, and the sleep timing can be instantaneously and accurately determined without applying stress to the subject. In addition, by using this sleep determination, the housing equipment can be controlled in real time according to the sleep timing, and can be applied to energy saving measures and safety / safety measures.

この発明の一実施形態に係る入眠状態判定装置の概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the sleep state determination apparatus which concerns on one Embodiment of this invention. 生体信号検出手段の概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of a biosignal detection means. 入眠判定手段の判定ステップを示す説明図である。It is explanatory drawing which shows the determination step of a sleep determination means. 心拍周期周波数解析のLF成分とHF成分の概略的な分布を示す説明図である。It is explanatory drawing which shows schematic distribution of the LF component of a heartbeat period frequency analysis, and an HF component. 入眠状態判定装置を使用した入眠判定の実験結果を睡眠状態把握計測による実験結果と併せて表示した図である。It is the figure which displayed the experimental result of the sleep determination using the sleep state determination apparatus with the experimental result by sleep state grasping | ascertainment measurement.

以下、この発明の実施形態を図面に基づいて詳細に説明する。この発明の一実施形態に係る入眠状態判定装置は、図1に示すように、被験者に対して非装着且つ非拘束で、被験者の生体信号を検出する生体信号検出手段1を備え、この生体信号検出手段1によって検出した生体信号に基づいて、被験者の入眠タイミングをリアルタイムに判定するように構成されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the sleep state determining apparatus according to an embodiment of the present invention includes a biological signal detection unit 1 that detects a biological signal of a subject without wearing and unconstrained with respect to the subject. Based on the biological signal detected by the detection means 1, the sleep timing of the subject is determined in real time.

生体信号検出手段1は、図2に示すように、被験者が横臥する寝床2に、被験者を横切るように適宜間隔をあけて略平行に設置した複数のセンサーパッド3・・を備えている。各センサーパッド3は、内部に発泡性樹脂材並びに空気を封入してなる弾性を有する袋体であって、寝床2上の被験者の生体活動により生じる体表面の音又は/及び圧変化に伴って、内部の空気圧が変化するようになっている。   As shown in FIG. 2, the biological signal detection means 1 includes a plurality of sensor pads 3... Installed on a bed 2 on which a subject lies on a substantially parallel basis at appropriate intervals so as to cross the subject. Each sensor pad 3 is an elastic bag formed by enclosing a foamed resin material and air inside, and accompanying a change in sound or / and pressure on the body surface caused by the biological activity of the subject on the bed 2. The internal air pressure is changed.

これらセンサーパッド3・・には、センサーパッド3・・内の空気圧の変化を検知する圧電センサー(pick-up)4が接続されている。そして、この圧電センサー(pick-up)4からの出力信号を信号処理回路5で増幅・濾波し、この増幅・濾波した信号を信号分離回路6で心拍信号、呼吸信号、体動信号に分離し、これら心拍信号、呼吸信号、体動信号をA/D変換回路7でA/D変換し、このA/D変換後のデータを用いて周期算出回路8で周期を算出し、これら周期データ(時系列データ)を出力するように構成されている。また、これら周期データから被験者の着床状態、離床状態を判別し、着床信号、離床信号も合わせて出力するようになっている。   A piezoelectric sensor (pick-up) 4 for detecting a change in air pressure in the sensor pads 3 is connected to the sensor pads 3. The output signal from the piezoelectric sensor (pick-up) 4 is amplified and filtered by a signal processing circuit 5, and the amplified and filtered signal is separated into a heartbeat signal, a respiratory signal, and a body motion signal by a signal separation circuit 6. The heartbeat signal, the respiratory signal, and the body motion signal are A / D converted by the A / D conversion circuit 7, the period is calculated by the period calculation circuit 8 using the data after the A / D conversion, and the period data ( (Time series data) is output. Further, the subject's landing state and leaving state are discriminated from these periodic data, and the landing signal and the leaving signal are also output together.

なお、上記生体信号検出手段1における圧電センサー(pick-up)4、信号処理回路5、信号分離回路6、A/D変換回路7、周期算出回路8は、センサーユニット9内に一纏めに配置されている。   Note that the piezoelectric sensor (pick-up) 4, signal processing circuit 5, signal separation circuit 6, A / D conversion circuit 7, and period calculation circuit 8 in the biological signal detection means 1 are arranged together in the sensor unit 9. ing.

また、入眠状態判定装置は、図1に示すように、生体信号検出手段1から出力された体動信号の周期データから体動の有無を検出する体動有無検出手段12と、生体信号検出手段1から出力された心拍信号の周期データから心拍数を求める心拍数検出手段10と、生体信号検出手段1から出力された心拍信号の周期データ(心拍の揺らぎ)を高速フーリエ変換(FFT)して、図4に示すような0.1Hz前後の交感神経成分(LF成分)及び0.3Hz前後の副交感神経成分(HF成分)の値をそれぞれ算出し、心拍の揺らぎ成分に占める交感神経成分(LF成分)の割合「LF/(HF+LF)」、及び、心拍の揺らぎ成分に占める副交感神経成分(HF成分)の割合「HF/(HF+LF)」を求める周波数解析手段11と、これら体動の有無、心拍数、LF成分の割合及びHF成分の割合に基づいて、入眠タイミングを判定する入眠判定手段13と、この入眠判定手段13の判定結果に基づいて、住宅設備機器15の駆動を制御する機器制御手段(制御出力回路)14とを備えている。   Further, as shown in FIG. 1, the sleep state determination device includes body movement presence / absence detection means 12 for detecting the presence / absence of body movement from periodic data of body movement signals output from the biological signal detection means 1, and biological signal detection means. The heart rate detection means 10 for obtaining the heart rate from the period data of the heartbeat signal output from 1 and the period data (heartbeat fluctuation) of the heartbeat signal output from the biological signal detection means 1 are subjected to fast Fourier transform (FFT). 4, the values of the sympathetic nerve component (LF component) around 0.1 Hz and the parasympathetic nerve component (HF component) around 0.3 Hz are respectively calculated, and the sympathetic nerve component (LF) occupying the heartbeat fluctuation component is calculated. Component) ratio “LF / (HF + LF)” and the parasympathetic nerve component (HF component) ratio “HF / (HF + LF)” in the heartbeat fluctuation component, and frequency analysis means 11 for determining the presence of these body movements. None, heart rate, LF component ratio, and HF component ratio based on sleep onset determination means 13 for determining sleep onset timing, and on the basis of the determination result of the sleep onset determination means 13, the driving of the housing equipment 15 is controlled. Device control means (control output circuit) 14.

なお、心拍の揺らぎ、心拍の揺らぎ成分に占める交感神経成分(LF成分)の割合「LF/(HF+LF)」、心拍の揺らぎ成分に占める副交感神経成分(HF成分)の割合「HF/(HF+LF)」の意味するところは、上記において説明した通りであり、重複を避けるためにここでの説明は省略する。   Note that the heart rate fluctuation, the ratio of the sympathetic nerve component (LF component) to the heart rate fluctuation component “LF / (HF + LF)”, and the ratio of the parasympathetic nerve component (HF component) to the heart rate fluctuation component “HF / (HF + LF)” The meaning of "" is as described above, and the description thereof is omitted to avoid duplication.

図3は、入眠判定手段13による入眠判定ステップを示している。まず、体動有無検出手段12によって検出した体動の有無に基づいて、一定時間(例えば2分間以上)連続して無体動であるか否かを判別する(S1)。これと同時に、心拍数検出手段10によって求めた心拍数に基づいて、心拍数の所定時間毎(例えば1分間毎)の平均値を算出し(S2)、心拍数が下降傾向にあるか否かを判別する(S3)。さらに、周波数解析手段11によって求めたLF成分の割合とHF成分の割合に基づいて、LF成分、HF成分の割合の所定時間毎(例えば1分間毎)の平均値を算出し(S4)、LF成分の割合とHF成分の割合が等しくなった最初の拮抗状態(LF成分及びHF成分の割合がともに50%となった状態)を経過したか否かを判別する(S5)。そして、最初の拮抗状態を経過している場合には、LF成分の割合がHF成分の割合よりも低いか否かを判別して(S6)、低い場合には、LF成分の割合が減少傾向から増加傾向へ切り換わる直前(境目付近)で、且つ、HF成分の割合が増加傾向から減少傾向へ切り換わる直前(境目付近)であるか否かを判別する(S7)。   FIG. 3 shows a sleep determination step performed by the sleep detection means 13. First, based on the presence / absence of body motion detected by the body motion presence / absence detecting means 12, it is determined whether or not the body motion is in a continuous state for a certain time (for example, 2 minutes or more) (S1). At the same time, based on the heart rate obtained by the heart rate detection means 10, an average value of the heart rate every predetermined time (for example, every minute) is calculated (S2), and whether or not the heart rate is in a downward trend. Is discriminated (S3). Further, based on the ratio of the LF component and the ratio of the HF component obtained by the frequency analyzing means 11, an average value of the ratio of the LF component and the HF component is calculated every predetermined time (for example, every 1 minute) (S4). It is determined whether or not the first antagonistic state in which the ratio of the component and the ratio of the HF component are equal (the state in which the ratios of the LF component and the HF component are both 50%) has passed (S5). If the first antagonistic state has elapsed, it is determined whether or not the ratio of the LF component is lower than the ratio of the HF component (S6). If the ratio is low, the ratio of the LF component tends to decrease. It is determined whether or not it is immediately before switching to an increasing trend (near the boundary) and immediately before the ratio of the HF component switches from increasing trend to a decreasing trend (near the boundary) (S7).

そして、一定時間(例えば2分間以上)連続した無体動であることを基準とする第1判定要素と、心拍数が下降傾向にあることを基準とする第2判定要素と、LF成分の割合とHF成分の割合が等しくなった最初の拮抗状態を経過した後に、LF成分の割合がHF成分の割合よりも低くて、LF成分の割合が減少傾向から増加傾向へ切り換わる直前(境目付近)で、且つ、HF成分の割合が増加傾向から減少傾向へ切り換わる直前(境目付近)であることを基準とする第3判定要素のすべてを満たした時点を、入眠タイミングと判定している(S8)。   And, a first determination element based on the fact that the body movement is continuous for a certain period of time (for example, 2 minutes or more), a second determination element based on the tendency that the heart rate tends to decrease, and the ratio of the LF component Immediately after the first antagonistic state in which the ratio of the HF component becomes equal, the ratio of the LF component is lower than the ratio of the HF component and immediately before the ratio of the LF component switches from a decreasing trend to an increasing trend (near the boundary) In addition, the time point when all the third determination elements based on the fact that the ratio of the HF component is immediately before the change from the increasing tendency to the decreasing tendency (near the boundary) is satisfied is determined as the sleep timing (S8). .

これら第1〜第3判定要素のうち、第3判定要素としては、拮抗状態の有無にかかわらず、LF成分の割合がHF成分の割合よりも低くて、LF成分の割合が減少傾向、且つ、HF成分の割合が増加傾向にあることのみを基準としても良い。   Among these first to third determination elements, as the third determination element, the ratio of the LF component is lower than the ratio of the HF component regardless of the presence or absence of the antagonistic state, and the ratio of the LF component tends to decrease, and Only the ratio of the HF component tends to increase may be used as a reference.

さらに、第3判定要素としては、LF成分の割合とHF成分の割合が等しくなった最初の拮抗状態を経過した後に、LF成分の割合がHF成分の割合よりも低くて、LF成分の割合が減少傾向、且つ、HF成分の割合が増加傾向にあって、これらLF成分の割合とHF成分の割合との差が所定値(例えば60%)以上となったことを基準としても良い。   Further, as a third determination factor, after the first antagonistic state in which the ratio of the LF component and the ratio of the HF component are equal, the ratio of the LF component is lower than the ratio of the HF component, and the ratio of the LF component is It may be based on a decreasing tendency and an increase in the ratio of the HF component, and the difference between the ratio of the LF component and the ratio of the HF component is a predetermined value (for example, 60%) or more.

そして、この入眠状態判定装置においては、入眠判定手段13の判定結果、すなわち、上記のようにして判定された入眠タイミング(入眠タイミングから想定される入眠前の居眠り状態や睡眠・覚睡の拮抗状態等を含む)に基づいて、機器制御手段14が照明機器や空調機器、その他各種家電機器等の住宅設備機器15の駆動を制御して、被験者の睡眠にとって快適な住空間を提供するようになっている。   In this sleep state determination device, the determination result of the sleep sleep determination means 13, that is, the sleep time determined as described above (the sleep state before sleep and the sleep / wakefulness antagonistic state assumed from the sleep time) Etc.), the device control means 14 controls the driving of the housing equipment 15 such as lighting equipment, air conditioning equipment, and other various home appliances to provide a comfortable living space for the sleep of the subject. ing.

上記の入眠状態判定装置による入眠判定精度を確認するために、次のような実験を行った。すなわち、寝床に横臥した被験者に対して、入眠状態判定装置による入眠判定を実施しながら、同時に脳波、眼球運動、筋電図などを計測して睡眠状態を把握した。   In order to confirm the sleep detection accuracy by the sleep state determination device, the following experiment was performed. That is, for the test subject lying on the bed, the sleep state was grasped by measuring the electroencephalogram, eye movement, electromyogram and the like at the same time while performing the sleep determination by the sleep state determination device.

図5は、その実験結果を示している。図5において、上から1番目のグラフAは体動量の時系列変化、上から2番目のグラフBは心拍数の時系列変化、上から3番目のグラフCはLF成分の割合とHF成分の割合の時系列変化、上から4番目のグラフDは睡眠状態把握計測からの判定結果をそれぞれ示している。また、図5の各グラフを通る縦線は、入眠状態判定装置において入眠タイミングが判定された時点を示している。   FIG. 5 shows the experimental results. In FIG. 5, the first graph A from the top is the time series change of the body movement amount, the second graph B from the top is the time series change of the heart rate, and the third graph C from the top is the ratio of the LF component and the HF component. The time series change of the ratio, and the fourth graph D from the top respectively show the determination results from the sleep state grasping measurement. Moreover, the vertical line which passes through each graph of FIG. 5 has shown the time when the sleep timing was determined in the sleep state determination apparatus.

この実験結果から明らかなように、入眠状態判定装置が入眠タイミングであると判定した時点は、実験開始から10分後の時点であり、この10分後の時点では、グラフAに示すように2分間以上連続した無体動状態にあり、グラフBに示すように心拍数が下降傾向にあり、グラフCに示すようにLF成分の割合とHF成分の割合がともに50%となった最初の拮抗状態(1分後付近)を経過した後であって、LF成分の割合がHF成分の割合よりも低くて、LF成分の割合が減少傾向から増加傾向へ切り換わる直前(境目付近)で、且つ、HF成分の割合が増加傾向から減少傾向へ切り換わる直前(境目付近)の時点となっている。   As is apparent from the experimental results, the time point when the sleep state determination device determines that it is the sleep time is the time point 10 minutes after the start of the experiment. The first antagonistic state where the body is in a state of continuous inactivity for more than a minute, the heart rate tends to decrease as shown in graph B, and the ratio of the LF component and the ratio of HF component are both 50% as shown in graph C (Near one minute later), immediately before the ratio of the LF component is lower than the ratio of the HF component and the ratio of the LF component is changed from a decreasing tendency to an increasing tendency (near the boundary), and The time is immediately before the ratio of the HF component switches from an increasing tendency to a decreasing tendency (near the boundary).

また、実験開始から10分後の時点は、グラフCに示すようにLF成分の割合がHF成分の割合よりも低くて、LF成分の割合が減少傾向、且つ、HF成分の割合が増加傾向にある時点であるとも言える。さらには、グラフCに示すようにLF成分の割合とHF成分の割合がともに50%となった最初の拮抗状態(1分後付近)を経過した後であって、LF成分の割合がHF成分の割合よりも低くて、LF成分の割合が減少傾向、且つ、HF成分の割合が増加傾向にあって、これらLF成分の割合とHF成分の割合との差が60%以上となっている時点であるとも言える。   Further, at the time point 10 minutes after the start of the experiment, as shown in graph C, the ratio of the LF component is lower than the ratio of the HF component, the ratio of the LF component tends to decrease, and the ratio of the HF component tends to increase. It can be said that it is a certain point. Further, as shown in graph C, after the first antagonistic state (near 1 minute later) in which both the ratio of the LF component and the ratio of the HF component are 50%, the ratio of the LF component is the HF component. The ratio of the LF component is decreasing and the ratio of the HF component is increasing, and the difference between the ratio of the LF component and the ratio of the HF component is 60% or more. It can be said that.

この実験開始から10分後の時点は、睡眠状態把握計測において、覚醒(Awake)からステージ1(Stage1)に移行したと判定された時点である。よって、入眠状態判定装置によって判定した入眠タイミングと、睡眠状態把握計測によって判定した入眠タイミングとは、ほぼ一致していることになり、入眠状態判定装置による入眠判定精度は良好であって、実用的に問題ないレベルに達していると言える。   The time point 10 minutes after the start of the experiment is the time point when it is determined that the state has shifted from awake to stage 1 (Stage 1) in the sleep state grasp measurement. Therefore, the sleep timing determined by the sleep state determination device and the sleep timing determined by the sleep state grasp measurement are almost the same, and the sleep detection accuracy by the sleep state determination device is good and practical. It can be said that it has reached a level where there is no problem.

この発明は、上記実施形態に限定されるものではなく、この発明の範囲内で上記実施形態に多くの修正及び変更を加え得ることは勿論である。   The present invention is not limited to the above embodiment, and it is needless to say that many modifications and changes can be made to the above embodiment within the scope of the present invention.

1・・生体信号検出手段、2・・寝床、3・・センサーパッド、4・・圧電センサー、10・・心拍数検出手段、11・・周波数解析手段、12・・体動有無検出手段、13・・入眠判定手段、14・・機器制御手段、15・・住宅設備機器   1 ·· Biological signal detection means 2 ·· Bed bed 3 ·· Sensor pad 4 ·· Piezoelectric sensor 10 ·· Heart rate detection means 11 ·· Frequency analysis means 12 ·· Body motion presence / absence detection means 13 ..Sleep determination means, 14 ... Equipment control means, 15 ... Housing equipment

Claims (4)

被験者に対して非装着且つ非拘束で、前記被験者の体動信号及び心拍信号を検出する生体信号検出手段(1)と、前記体動信号から体動の有無を検出する体動有無検出手段(12)と、前記心拍信号から心拍数を求める心拍数検出手段(10)と、前記心拍信号の時系列データを周波数解析して、心拍の揺らぎ成分に占める交感神経成分であるLF成分の割合及び副交感神経成分であるHF成分の割合を求める周波数解析手段(11)と、これら体動の有無、心拍数、LF成分の割合及びHF成分の割合に基づいて、入眠タイミングを判定する入眠判定手段(13)とを備え、前記入眠判定手段(13)は、2分間以上連続して無体動であって、前記心拍数が同時間連続して下降傾向にあって、さらに前記LF成分の割合と前記HF成分の割合が等しくなった拮抗状態を経過した後に、前記LF成分の割合が前記HF成分の割合よりも低くて、前記LF成分の割合が減少傾向、且つ、前記HF成分の割合が増加傾向にあって、これらLF成分の割合とHF成分の割合との差が60%以上となった時点を、入眠タイミングと判定することを特徴とする入眠状態判定装置。 Biological signal detection means (1) for detecting the body movement signal and heartbeat signal of the subject without wearing and unconstrained with respect to the subject, and body movement presence / absence detection means for detecting the presence or absence of body movement from the body movement signal ( 12), a heart rate detection means (10) for obtaining a heart rate from the heartbeat signal, frequency analysis of the time series data of the heartbeat signal, and a ratio of an LF component which is a sympathetic nerve component in a heartbeat fluctuation component, and Frequency analysis means (11) for determining the proportion of the HF component which is a parasympathetic nerve component, and sleep onset determination means for determining the sleep onset timing based on the presence or absence of body movement, the heart rate, the ratio of the LF component and the ratio of the HF component ( 13), and the sleep determination means (13) is inactive continuously for 2 minutes or more, the heart rate is continuously decreasing for the same time, and the ratio of the LF component and the HF component discount After passing the antagonistic state in which the ratio is equal, the ratio of the LF component is lower than the ratio of the HF component, the ratio of the LF component is decreasing, and the ratio of the HF component is increasing A sleep state determination apparatus characterized in that a time point when the difference between the ratio of the LF component and the ratio of the HF component is 60% or more is determined as a sleep timing . 被験者に対して非装着且つ非拘束で、前記被験者の体動信号及び心拍信号を検出する生体信号検出手段(1)と、前記体動信号から体動の有無を検出する体動有無検出手段(12)と、前記心拍信号から心拍数を求める心拍数検出手段(10)と、前記心拍信号の時系列データを周波数解析して、心拍の揺らぎ成分に占める交感神経成分であるLF成分の割合及び副交感神経成分であるHF成分の割合を求める周波数解析手段(11)と、これら体動の有無、心拍数、LF成分の割合及びHF成分の割合に基づいて、入眠タイミングを判定する入眠判定手段(13)とを備え、前記入眠判定手段(13)は、2分間以上連続して無体動であって、前記心拍数が同時間連続して下降傾向にあって、さらに前記LF成分の割合と前記HF成分の割合が等しくなった拮抗状態を経過した後に、前記LF成分の割合が前記HF成分の割合よりも低くて、前記LF成分の割合が減少傾向から増加傾向へ切り換わる直前で、且つ、前記HF成分の割合が増加傾向から減少傾向へ切り換わる直前の時点を、入眠タイミングと判定することを特徴とする入眠状態判定装置。 Biological signal detection means (1) for detecting the body movement signal and heartbeat signal of the subject without wearing and unconstrained with respect to the subject, and body movement presence / absence detection means for detecting the presence or absence of body movement from the body movement signal ( 12), a heart rate detection means (10) for obtaining a heart rate from the heartbeat signal, frequency analysis of the time series data of the heartbeat signal, Frequency analysis means (11) for determining the proportion of the HF component which is a parasympathetic nerve component, and sleep onset determination means for determining the sleep onset timing based on the presence or absence of body movement, the heart rate, the ratio of the LF component and the ratio of the HF component ( 13), and the sleep determination means (13) is inactive continuously for 2 minutes or more, the heart rate is continuously decreasing for the same time, and the ratio of the LF component and the HF component discount After the antagonizing state in which the ratio is equal, the ratio of the LF component is lower than the ratio of the HF component, and immediately before the ratio of the LF component switches from a decreasing trend to an increasing trend, and the HF component A sleep state determination apparatus , characterized in that a time point immediately before the percentage of the change from an increase trend to a decrease trend is determined as a sleep timing . 前記生体信号検出手段(1)は、内部に発泡性樹脂材並びに空気を封入してなり、前記被験者が横臥する寝床(2)に設置したセンサーパッド(3・・)と、このセンサーパッド(3・・)内の空気圧の変化を検知する圧電センサー(4)とを備えた請求項1乃至のいずれかに記載の入眠状態判定装置。 The biological signal detection means (1) includes a foamed resin material and air sealed therein, a sensor pad (3...) Installed on a bed (2) on which the subject lies, and the sensor pad (3 A sleep state determination device according to any one of claims 1 to 2 , further comprising a piezoelectric sensor (4) for detecting a change in air pressure in the inside. 前記入眠判定手段(13)の判定結果に基づいて、照明機器や空調機器等の住宅設備機器(15)の駆動を制御する機器制御手段(14)を備えた請求項1乃至のいずれかに記載の入眠状態判定装置。 The apparatus control means (14) according to any one of claims 1 to 3 , further comprising a device control means (14) for controlling the driving of a housing equipment (15) such as a lighting device or an air conditioner based on a determination result of the sleep detection means (13). The sleep state determination device described.
JP2011132175A 2010-06-15 2011-06-14 Sleep state determination device Active JP5785791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132175A JP5785791B2 (en) 2010-06-15 2011-06-14 Sleep state determination device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010136010 2010-06-15
JP2010136010 2010-06-15
JP2011132175A JP5785791B2 (en) 2010-06-15 2011-06-14 Sleep state determination device

Publications (2)

Publication Number Publication Date
JP2012020117A JP2012020117A (en) 2012-02-02
JP5785791B2 true JP5785791B2 (en) 2015-09-30

Family

ID=45774888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132175A Active JP5785791B2 (en) 2010-06-15 2011-06-14 Sleep state determination device

Country Status (1)

Country Link
JP (1) JP5785791B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103976717B (en) * 2014-04-15 2016-08-17 惠州市德赛工业研究院有限公司 A kind of various dimensions sleep quality monitoring method and system
TWI663936B (en) * 2016-12-16 2019-07-01 床的世界股份有限公司 Smart bed and its controlling process
CN114027799B (en) * 2021-12-13 2023-03-14 珠海格力电器股份有限公司 Method and device for determining time point of falling asleep
CN116616721B (en) * 2023-07-24 2023-10-13 北京中科心研科技有限公司 Work and rest information determining method and device based on PPG (program G) signal and wearable equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299443A (en) * 1995-05-12 1996-11-19 Seiko Epson Corp Doze preventing device
JP4023429B2 (en) * 2003-10-07 2007-12-19 株式会社デンソー Portable biological information monitor device
JP2009297455A (en) * 2008-06-17 2009-12-24 Panasonic Electric Works Co Ltd Sleeping state estimating device

Also Published As

Publication number Publication date
JP2012020117A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP6516846B2 (en) Device and method for sleep monitoring
JP4901309B2 (en) Biological state detection device, control device, and pulse wave sensor mounting device
US9655532B2 (en) Wearable physiological monitoring and notification system based on real-time heart rate variability analysis
KR102090968B1 (en) System and method for determining sleep and sleep stages of a person
JP4469746B2 (en) Heart rate measuring device and method of operating heart rate measuring device
US8292819B2 (en) Sleep analysis system and method for analyzing sleep thereof
JP4611206B2 (en) Fatigue degree measuring device, fatigue detecting device, and computer program
Baek et al. Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and health state
JP5209545B2 (en) Biopsy device, program, and recording medium
JP6757532B2 (en) Sleep stage determination device, sleep stage determination method, sleep stage determination program
WO2014091916A1 (en) Device for determining biological state during driving, and computer program
TW201538127A (en) Method and device of sleep detection
US7250029B2 (en) Human condition evaluation system, computer program, and computer-readable record medium
JP2012125382A (en) Autonomic nervous function diagnostic apparatus, living body monitoring system and program
US10980489B2 (en) Method and device for quantifying a respiratory sinus arrhythmia and use of said type of method or said type of device
JP2009297474A (en) Sleep stage determining device
JP2013121489A (en) Sleep stage detection device, sleep stage calculation device, and sleep stage detection system
JP2016073527A (en) Sleep state determination device, sleep state determination method, and sleep management system
JP5785791B2 (en) Sleep state determination device
JP2013013542A (en) Apparatus and program for estimating state of consciousness
WO2004107978A1 (en) Sleep stage judgment method and judgment device
JP2011160852A (en) Wakefulness state detector
JP6627112B2 (en) Biological function testing device, method of operating biological function testing device, and program
JP2001204714A (en) Mental stress judging device
WO2020166260A1 (en) Physical condition determination device, computer program, and recording medium

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5785791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250