JP5783522B2 - Fish GTH protein and fish maturation induction method using the protein - Google Patents

Fish GTH protein and fish maturation induction method using the protein Download PDF

Info

Publication number
JP5783522B2
JP5783522B2 JP2010036050A JP2010036050A JP5783522B2 JP 5783522 B2 JP5783522 B2 JP 5783522B2 JP 2010036050 A JP2010036050 A JP 2010036050A JP 2010036050 A JP2010036050 A JP 2010036050A JP 5783522 B2 JP5783522 B2 JP 5783522B2
Authority
JP
Japan
Prior art keywords
fish
gth
sugar chain
protein
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010036050A
Other languages
Japanese (ja)
Other versions
JP2011168562A (en
Inventor
浩一郎 玄
浩一郎 玄
行紀 風藤
行紀 風藤
和晴 野村
和晴 野村
田中 秀樹
秀樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisheries Research Agency
Original Assignee
Fisheries Research Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisheries Research Agency filed Critical Fisheries Research Agency
Priority to JP2010036050A priority Critical patent/JP5783522B2/en
Publication of JP2011168562A publication Critical patent/JP2011168562A/en
Application granted granted Critical
Publication of JP5783522B2 publication Critical patent/JP5783522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、魚類GTHタンパク質および該タンパク質を用いる魚類の成熟誘導方法に関する。さらに詳しくは、哺乳類型糖鎖が付加された魚類GTHタンパク質、および生体内寿命が延長化された該タンパク質を用いる魚類の成熟誘導方法に関する。   The present invention relates to a fish GTH protein and a method for inducing fish maturation using the protein. More specifically, the present invention relates to a fish GTH protein to which a mammalian sugar chain is added, and a method for inducing fish maturation using the protein with an extended in vivo life span.

魚類の完全養殖のためには人工種苗の生産が不可欠である。しかし、飼育環境下では、ある一定の段階から生殖腺が発達しなくなる成熟停止が起こりやすい。魚種によって成熟停止の段階は異なるが、いずれにおいても、人為催熟を続けるには、成熟停止に至った段階で、外因性の成熟誘導ホルモン(例えば、生殖腺刺激ホルモン Gonadotropin(以下、「GTH」とする)等)を投与することが必須となる。
しかし、GTHは複雑な構造を持つ糖タンパク質ホルモンであるため化学合成が難しく、哺乳類のGTH(ヒト絨毛性ゴナドトロピン、Human chorionic gonadotropin(以下、「hCG」とする))や魚のGTHを含む組織抽出物が代用品として用いられているのが現状である。
Production of artificial seedlings is indispensable for the complete aquaculture of fish. However, in the breeding environment, maturation is stopped because the gonads do not develop from a certain stage. Although the stage of maturation differs depending on the fish species, in any case, in order to continue artificial ripening, at the stage of reaching maturation, an exogenous maturation-inducing hormone (for example, gonadotropin (hereinafter referred to as “GTH”) And the like) is essential.
However, GTH is a glycoprotein hormone having a complex structure, so that chemical synthesis is difficult, and tissue extracts containing mammalian GTH (human chorionic gonadotropin (hereinafter referred to as “hCG”)) and fish GTH. Is currently used as a substitute.

ウナギ等の卵原細胞から卵黄形成の初期の段階で成熟停止してしまう魚種においては、このような人為催熟によって完全養殖を行うことがかなり難しく、より有効な方法の提供が望まれていた。
そこで、近年、海水養殖池環境中において、養殖関係を構成する水流や温度などの要素を周期的に変動させることによって、外因性の成熟誘導ホルモンを投与することなく、ウナギ雌魚を催熟する方法が開発されている(例えば、特許文献1参照)。
また、ゼブラフィッシュ由来の細胞を用いて、魚類のホルモンを産生する細胞を作製し、この細胞を移植することで、ウナギ等の魚類の成熟を促進する方法が開発されている(例えば、特許文献2参照)。さらに、金魚やウナギ由来の遺伝子からGTHを合成し、これを投与することでウナギの人為催熟を行う方法も検討されている(例えば、非特許文献1,2参照)。しかし、これらの方法においても、ウナギ等の人為催熟が困難な魚類においては、特に成熟誘導率が低い、卵質が不安定、仔魚の生残率が低い等、十分な結果が得られていない。
In fish species that ripen at the early stage of egg yolk formation from eel and other oocyte cells, it is quite difficult to carry out complete aquaculture by artificial ripening, and it is desired to provide a more effective method. It was.
Therefore, in recent years, eel female fish are ripened without administering exogenous maturation-inducing hormone by periodically changing the water flow and temperature that make up the aquaculture relationship in the seawater pond environment. A method has been developed (see, for example, Patent Document 1).
Also, a method for promoting the maturation of fish such as eel has been developed by producing cells that produce fish hormones using cells derived from zebrafish and transplanting the cells (for example, patent documents). 2). Furthermore, a method for artificially ripening eels by synthesizing GTH from a gene derived from goldfish or eel and administering it has been studied (for example, see Non-Patent Documents 1 and 2). However, even in these methods, sufficient results have been obtained such as low induction of maturation, unstable egg quality, and low survival rate of larvae, especially in fish that are difficult to artificially ripen, such as eels. Absent.

ヒト、ラット等の哺乳類のホルモン合成において、糖鎖結合部位を付加した各ホルモン遺伝子をチャイニーズハムスター等の哺乳類を由来とする細胞で合成することにより、哺乳類型糖鎖が付加された哺乳類GTHやエリスロポエチン等を合成する方法が行われている。そして、この方法によって得られたホルモンが、ヒト、ラット等において生体内寿命が延長化され、生物活性が高められたことが確認されている(非特許文献3〜6)。
近年、魚類においても、糖鎖結合部位を付加したGTH遺伝子をマイクロインジェクション法により導入することで、魚類の成熟を調節する方法や、これを昆虫細胞に発現させて得た昆虫型糖鎖が付加された魚類GTHを魚類に導入することで、ウナギ等の人為催熟を行うことが検討されているが、十分な結果は得られておらず、有用な魚類の成熟誘導方法の提供が望まれている。
In the synthesis of hormones in mammals such as humans and rats, mammalian GTH and erythropoietin to which mammalian sugar chains are added by synthesizing each hormone gene with a sugar chain binding site in cells derived from mammals such as Chinese hamsters. Etc. are synthesized. And it has been confirmed that the hormone obtained by this method has an extended in-vivo life and increased biological activity in humans, rats and the like (Non-Patent Documents 3 to 6).
In recent years, in fish, GTH gene with added sugar chain-binding site has been introduced by microinjection method to control the maturation of fish and insect-type sugar chains obtained by expressing it in insect cells have been added. Although artificial ripening of eels and the like has been studied by introducing the fish GTH thus prepared into fish, sufficient results have not been obtained, and provision of a useful fish maturation induction method is desired. ing.

特開2008−154459号公報JP 2008-15459 A 特開2008−528207号公報JP 2008-528207 A

Hayakawa et al., 2009Hayaka et al. , 2009 Kazeto et al., 2008Kazeto et al. , 2008 Devroey et al., 2004Devroyy et al. , 2004 Fuas et al., 1992Fuas et al. , 1992 Fares et al., 2007Fares et al. , 2007 Lapolt et al., 1992Lapolt et al. , 1992

本発明は、魚類GTHタンパク質の提供および該タンパク質を用いる魚類の成熟誘導方法を提供することを課題とする。   It is an object of the present invention to provide a fish GTH protein and a method for inducing fish maturation using the protein.

本発明者らは上記課題を解決するために鋭意検討した結果、哺乳類細胞を用いて魚類GTHタンパク質を発現させることにより、哺乳類型糖鎖が付加された魚類GTHタンパク質を得られることを見出した。この哺乳類型糖鎖が付加された魚類GTHタンパク質は、生体内寿命が延長化された魚類体内において長期間の安定性を有する分解されにくいタンパク質であり、本発明者らはこのタンパク質を用いることによって魚類の成熟誘導が可能であることを見出し、本発明を完成方するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that fish GTH protein to which a mammalian sugar chain is added can be obtained by expressing fish GTH protein using mammalian cells. The fish GTH protein to which the mammalian sugar chain is added is a protein that has long-term stability and is difficult to be degraded in the fish body with an extended in-vivo life. The present inventors have found that fish maturation can be induced and have completed the present invention.

即ち、本発明は次の(1)〜(9)の魚類GTHタンパク質、魚類の成熟誘導方法および成熟が誘導された魚類等に関する。
(1)哺乳類型糖鎖が付加された魚類GTHタンパク質。
(2)糖鎖結合部位を付加した魚類GTHを哺乳類細胞によって合成することにより得られる哺乳類型糖鎖が付加された魚類GTHタンパク質。
(3)糖鎖結合部位を2つ以上付加した魚類GTHを合成することにより得られる上記(2)に記載の哺乳類型糖鎖が付加された魚類GTHタンパク質。
(4)糖鎖結合部位が配列表配列番号1あるいは2で示されるアミノ酸配列またはこれらのアミノ酸配列が保存的修飾された配列からなる部位である上記(1)または(2)に記載の哺乳類型糖鎖が付加された魚類GTHタンパク質。
(5)魚類GTHがウナギ由来のGTHである上記(1)〜(4)のいずれかに記載の哺乳類型糖鎖が付加された魚類GTHタンパク質。
(6)上記(1)〜(5)のいずれかに記載の哺乳類型糖鎖が付加された魚類GTHタンパク質を用いる魚類の成熟誘導方法。
(7)上記(6)に記載の魚類の成熟誘導方法によって成熟が誘導された魚類。
(8)上記(6)に記載の魚類の成熟誘導方法によって成熟が誘導されたウナギ。
(9)上記(8)に記載のウナギより得られる精子または卵。
That is, the present invention relates to the following fish GTH proteins (1) to (9), a method for inducing maturation of fish, a fish in which maturation has been induced, and the like.
(1) Fish GTH protein to which a mammalian sugar chain is added.
(2) A fish GTH protein to which a mammalian sugar chain is added, which is obtained by synthesizing fish GTH to which a sugar chain binding site has been added, using mammalian cells.
(3) The fish GTH protein to which the mammalian sugar chain is added according to (2) above, which is obtained by synthesizing fish GTH to which two or more sugar chain binding sites are added.
(4) The mammalian type according to (1) or (2) above, wherein the sugar chain binding site is a site comprising the amino acid sequence shown in SEQ ID NO: 1 or 2 in the sequence listing or a sequence in which these amino acid sequences are conservatively modified. Fish GTH protein with added sugar chain.
(5) The fish GTH protein to which the mammalian sugar chain is added according to any one of (1) to (4) above, wherein the fish GTH is GTH derived from eel.
(6) A method for inducing fish maturation using a fish GTH protein to which the mammalian sugar chain is added according to any one of (1) to (5) above.
(7) Fish whose maturity has been induced by the method for inducing maturity of fish according to (6) above.
(8) An eel whose maturity has been induced by the method for inducing maturity of fish according to (6) above.
(9) A sperm or egg obtained from the eel described in (8) above.

本発明の魚類GTHタンパク質は、魚類における生体内寿命が延長化されていることから、安定して魚類の性成熟を誘導することができる。本発明の魚類の成熟誘導方法を用いることにより、ウナギ等の人為催熟が困難であった魚種についても、人工種苗が生産でき、完全養殖を行うことが可能となる。   The fish GTH protein of the present invention has a prolonged in vivo life in fish, and thus can stably induce sexual maturation of fish. By using the fish maturation inducing method of the present invention, artificial seedlings can be produced and complete aquaculture can be performed for fish species such as eel that have been difficult to artificially ripen.

組換えGTHの発現を確認した図である(実施例1)。It is the figure which confirmed the expression of recombinant GTH (Example 1). 精製組換えGTHの糖鎖解析の結果を示した図である(実施例1)。It is the figure which showed the result of the sugar chain analysis of purified recombinant GTH (Example 1). 精子形成誘導ステロイド産生量を示した図である(実施例2)。It is the figure which showed the spermatogenesis induction steroid production amount (Example 2). 精巣の組織観察の結果を示した図である(実施例2)。It is the figure which showed the result of the structure | tissue observation of a testis (Example 2).

本発明の「哺乳類型糖鎖が付加された魚類GTHタンパク質」とは、糖鎖結合部位を付加した魚類GTHを哺乳類細胞によって合成することにより得られる哺乳類型糖鎖が付加された魚類GTHタンパク質のことをいい、哺乳類型糖鎖が付加された魚類GTHタンパク質であればいずれのものも含まれる。
ここで、「GTHタンパク質」には、濾胞刺激ホルモン(Follicle stimulating hormone;以下、「FSH」とする)、黄体形成ホルモン(Luteinizing hormone;以下、「LH」とする)が挙げられ、これらのホルモンを分泌する魚類であればいずれの魚類由来のGTHタンパク質も含まれる。
また、「哺乳類型糖鎖」としては、哺乳類細胞がタンパク質合成を行う際に、タンパク質に付加する糖鎖であればいずれのものも含まれるが、例えば、マンノース、ガラクトース、N-アセチルグルコサミンおよびノイラミン酸で構成されるN型糖鎖、ガラクトース、N-アセチルグルコサミン、N-アセチルガラクトサミンおよびノイラミン酸で構成されるO型糖鎖等が挙げられる。
The “fish GTH protein to which a mammalian sugar chain is added” of the present invention refers to a fish GTH protein to which a mammalian sugar chain is added, which is obtained by synthesizing a fish GTH to which a sugar chain binding site has been added by a mammalian cell. That is, any fish GTH protein to which a mammalian sugar chain is added is included.
Here, examples of the “GTH protein” include follicle stimulating hormone (hereinafter referred to as “FSH”) and luteinizing hormone (hereinafter referred to as “LH”). GTH proteins derived from any fish are included as long as they are secreted fish.
The “mammalian sugar chain” includes any sugar chain that is added to a protein when a mammalian cell synthesizes the protein. For example, mannose, galactose, N-acetylglucosamine, and neuramin Examples include N-type sugar chains composed of acids, galactose, N-acetylglucosamine, N-acetylgalactosamine, and O-type sugar chains composed of neuraminic acid.

本発明の「哺乳類型糖鎖が付加された魚類GTHタンパク質」は、糖鎖結合部位を付加した魚類GTHを哺乳類細胞によって合成することにより得られるものである。
「糖鎖結合部位を付加した魚類GTH」とは、タンパク質合成の対象となる魚類GTHの塩基配列に、糖鎖結合部位の塩基配列を付加したもののことをいう。
「糖鎖結合部位」には、哺乳類細胞が糖鎖を結合し得る部位であればいずれのものも含まれるが、例えば、配列表配列番号1で示されるアミノ酸配列からなるCarboxyl-terminal peptide of human chorionic gonadotropin β(ヒト絨毛性生殖腺刺激ホルモンβサブユニットC-末端ペプチド、以下「CTP」とする)(配列番号3にCTPの塩基配列を示す)や、配列表配列番号2で示されるアミノ酸配列からなるGlycosilation site of rainbow trout polysialoglycoprotein(ニジマスポリシアロ糖タンパク質糖鎖結合部位)の糖鎖結合部位と推定された部分等が挙げられる。本発明においては、この配列表配列番号2で示されるアミノ酸配列からなる糖鎖結合部位と推定された部分をPSGPとする。配列番号4にこのPSGPの塩基配列を示す。
本発明の「糖鎖結合部位」は、これらの配列表配列番号1または2に示されたアミノ酸配列のみならず、これらの保存的修飾されたアミノ酸配列によって示される、哺乳類細胞が糖鎖を結合し得る部位であってもよい。ここで「保存的修飾されたアミノ酸配列」とは、CTPまたはPSGPのアミノ酸配列において1個またはそれ以上のアミノ酸の置換、欠失、挿入、および/または付加されたアミノ酸配列修飾を示し、かつ正常に哺乳類型糖鎖が付加されるアミノ酸配列のことをいう。
The “fish GTH protein to which a mammalian sugar chain is added” of the present invention is obtained by synthesizing a fish GTH to which a sugar chain binding site has been added by a mammalian cell.
“Fish GTH to which a sugar chain-binding site has been added” refers to a fish GTH to which a protein synthesis target has been added with the base sequence of the sugar chain-binding site.
The “sugar chain binding site” includes any site where mammalian cells can bind sugar chains. For example, a carboxy-terminal peptide of human consisting of the amino acid sequence shown in SEQ ID NO: 1 from chorionic gonadotropin β (human chorionic gonadotropin β subunit C-terminal peptide, hereinafter referred to as “CTP”) (SEQ ID NO: 3 shows the base sequence of CTP) and the amino acid sequence shown in SEQ ID NO: 2 Examples include a portion presumed to be a sugar chain binding site of a glycosylation site of rainbow bow polysialoglycoprotein (rainbow trout polysialoglycoglycoprotein sugar chain binding site). In the present invention, a portion estimated as a sugar chain binding site consisting of the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing is referred to as PSGP. SEQ ID NO: 4 shows the base sequence of this PSGP.
The “sugar chain binding site” of the present invention is not limited to the amino acid sequence shown in SEQ ID NO: 1 or 2 in these Sequence Listings, but is expressed by these conservatively modified amino acid sequences, and mammalian cells bind sugar chains. It may be a possible part. As used herein, a “conservatively modified amino acid sequence” refers to an amino acid sequence modification in which one or more amino acid substitutions, deletions, insertions, and / or additions are made in the amino acid sequence of CTP or PSGP, and normal An amino acid sequence to which a mammalian sugar chain is added.

更に、本発明の「糖鎖結合部位を付加した魚類GTH」には、タンパク質合成の対象となる魚類GTHの塩基配列に、上記の糖鎖結合部位の塩基配列を2種類付加したり、同じ糖鎖結合部位の塩基配列を2つ以上付加したりしたものも含まれる。   Furthermore, in the “fish GTH to which a sugar chain binding site is added” of the present invention, two types of base sequences of the above-mentioned sugar chain binding sites are added to the base sequence of fish GTH to be subjected to protein synthesis. Also included are those obtained by adding two or more base sequences of chain binding sites.

「哺乳類型糖鎖が付加された魚類GTHタンパク質」を合成する「哺乳類細胞」は、「哺乳類型糖鎖が付加された魚類GTHタンパク質」を合成し得る哺乳類細胞であればいずれの細胞も用いることができる。例えば、ヒト腎臓由来293細胞またはチャイニーズハムスター卵巣由来の細胞(CHO)等が挙げられ、これらの細胞はさらに大量培養が可能であり好ましい。   “Mammalian cells” that synthesize “fish GTH proteins with added mammalian sugar chains” should be any mammalian cells that can synthesize “fish GTH proteins with added mammalian sugar chains”. Can do. Examples thereof include human kidney-derived 293 cells or Chinese hamster ovary-derived cells (CHO), and these cells are preferable because they can be further cultured in large quantities.

哺乳類細胞による「哺乳類型糖鎖が付加された魚類GTHタンパク質」の合成においては、従来知られているいずれのタンパク質合成方法も用いることができる。
例えば、「糖鎖結合部位を付加した魚類GTH」を組み込んだベクターをリポソーマルまたはノンリポソーマルの市販のトランスフェクション試薬を用いる方法やDEAE-デキストラン法やリン酸カルシウム沈降法等によって哺乳類細胞に導入し、この哺乳類細胞を培養することで「哺乳類型糖鎖が付加された魚類GTHタンパク質」を合成する方法などが挙げられる。また、動物細胞のゲノム上に魚類GTHタンパク質をコードする遺伝子を組み込んだ哺乳類細胞(ステーブルセルライン)を作製し、この細胞によって恒常的に「哺乳類型糖鎖が付加された魚類GTHタンパク質」を合成させる方法なども挙げられる。
この方法において使用するベクターとしては、哺乳類由来の株化細胞で発現するタンパク質発現ベクターであればいずれのものも用いることができるが、例えば、pCAGGSベクター(Niwa et al. Gene 1991)、pcDNA6/V5-Hisベクター(Invitrogen社)等を用いることが好ましい。
In the synthesis of “fish GTH protein with added mammalian sugar chain” by mammalian cells, any conventionally known protein synthesis method can be used.
For example, a vector incorporating a “fish GTH with an added sugar chain binding site” is introduced into a mammalian cell by a method using a commercially available transfection reagent such as liposomal or non-liposomal, DEAE-dextran method, calcium phosphate precipitation method, etc. And a method of synthesizing “fish GTH protein to which a mammalian sugar chain is added”. In addition, a mammalian cell (stable cell line) in which a gene encoding a fish GTH protein is incorporated on the genome of the animal cell is produced, and a “fish GTH protein to which a mammalian sugar chain is added” is constantly added. The method of synthesizing is also mentioned.
As a vector used in this method, any protein expression vector can be used as long as it is a protein expression vector expressed in a mammalian cell line. For example, pCAGGS vector (Niwa et al. Gene 1991), pcDNA6 / V5. It is preferable to use a His vector (Invitrogen) or the like.

本発明の「魚類の成熟誘導方法」は、魚類の性成熟を誘導する方法のことをいい、「哺乳類型糖鎖が付加された魚類GTHタンパク質」を用いる方法であればいずれの方法も含まれる。本発明の「哺乳類型糖鎖が付加された魚類GTHタンパク質」を、性成熟の対象とする魚類に投与することで、成熟誘導を行う方法等が挙げられる。
性成熟の対象となる魚種と、「哺乳類型糖鎖が付加された魚類GTHタンパク質」におけるGTHの由来となる魚種が同一である方が、成熟誘導の効率がよく好ましい。
The “fish maturation induction method” of the present invention refers to a method for inducing sexual maturation of fish, and includes any method as long as it uses a “fish GTH protein to which a mammalian sugar chain is added”. . Examples thereof include a method for inducing maturation by administering the “fish GTH protein to which a mammalian sugar chain is added” of the present invention to a fish to be sexually matured.
It is preferable that the fish species to be sexually matured and the fish species from which GTH is derived in the “fish GTH protein to which a mammalian sugar chain is added” are the same in terms of efficiency of maturation induction.

以下、実施例をあげて本発明をさらに詳細に説明するが,本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

<哺乳類型糖鎖が付加された魚類GTHタンパク質の産生>
1.発現ベクターの構築
1−1:サンプル
愛知県水産試験場より譲渡された実験用の雌ニホンウナギを用いて、サケ脳下垂体抽出液をウナギの体重1kgあたりサケ脳下垂体アセトン乾燥品20mgの割合で、週1回投与することにより、人為催熟を施した(参考文献1、参照)。人為催熟により成熟期に達したウナギおよび未処理の未熟なウナギから脳下垂体を摘出した。また、前卵黄形成期のニジマスより卵巣を摘出し同様にサンプルとした。
[参考文献1] Ohta H., Kagawa H., Tanaka H., Okuzawa K., Iinuma N., Hirose K., Fish Physiology and Biochemistry, 17:163−169,1997
<Production of fish GTH protein with added mammalian sugar chain>
1. Construction of Expression Vector 1-1: Sample Using a female eel for experiments transferred from the Aichi Prefectural Fisheries Experiment Station, the salmon pituitary extract was used at a ratio of 20 mg of dried salmon pituitary acetone per kg of eel body weight. Then, artificial ripening was performed by administering once a week (see Reference 1). The pituitary gland was extracted from eels that reached maturity by artificial ripening and untreated immature eels. In addition, ovaries were extracted from rainbow trout in the pre-yolk formation phase and used as samples.
[Reference 1] Ohta H. et al. , Kagawa H .; , Tanaka H. , Okuzawa K. et al. , Iinuma N .; Hirose K .; , Fish Physiology and Biochemistry, 17: 163-169, 1997.

1−2:RNAの調整
未熟および成熟雌ウナギの脳下垂体、ニジマスの前卵黄形成期の卵巣から、TRIzol試薬(Invitrogen社)を用いて全RNAをそれぞれ抽出した(参考文献2、参照)。
[参考文献2] Chomczynski P, Sacchi N., Analytical Biochemistry, 162:156−159,1987
1-2: Preparation of RNA Total RNA was extracted from the pituitary gland of immature and mature female eels, and from the ovary of the rainbow trout in the pre-yolk formation phase using TRIzol reagent (Invitrogen) (see Reference Document 2).
[Reference 2] Chomczynski P, Sacchi N. et al. , Analytical Biochemistry, 162: 156-159, 1987.

1−3:cDNAライブラリーの作製
ウナギ脳下垂体およびニジマス卵巣から得られた全RNAから、SuperScript II reverse transcriptase(Invitrogen社)を用いて逆転写を行い、それぞれのcDNAライブラリーを作製した。
1-3: Preparation of cDNA library Reverse transcription was performed from total RNA obtained from eel pituitary gland and rainbow trout ovary using SuperScript II reverse transcriptase (Invitrogen) to prepare each cDNA library.

1−4:Polymerase chain reaction(PCR)によるcDNAの増幅および発現ベクターの構築
既に単離されている濾胞刺激ホルモンβサブユニット(以下、「FSHβ」とする:参考文献3、参照)をコードするcDNA(配列表配列番号5)を未熟脳下垂体cDNAから、黄体形成ホルモンβサブユニット(以下、「LHβ」とする)をコードするcDNA(配列表配列番号6)および糖タンパクホルモンαサブユニット(以下、「GPHα」とする:参考文献4、参照)をコードするcDNA(配列表配列番号7)をそれぞれ成熟脳下垂体cDNAから、AccuPrime Pfx DNA polymerase(Invitrogen社)を用いたPCRにより増幅した。またPCRの際に、GPHαに関してはC末端に6つのヒスチヂンからなるタグ(Hisタグ)を付加した。
1-4: Amplification of cDNA by Polymerase chain reaction (PCR) and construction of an expression vector cDNA encoding an already isolated follicle stimulating hormone β subunit (hereinafter referred to as “FSHβ”: Reference 3) (SEQ ID NO: 5) was prepared from immature pituitary cDNA, cDNA encoding luteinizing hormone β subunit (hereinafter referred to as “LHβ”) and glycoprotein hormone α subunit (hereinafter referred to as “LHβ”). , Which is referred to as “GPHα” (see Reference 4), was amplified from the mature pituitary cDNA by PCR using AccuPrime Pfx DNA polymerase (Invitrogen). During PCR, a tag consisting of six histidines (His tags) was added to the C-terminal of GPHα.

増幅されたFSHβをコードするcDNAまたはLHβcDNAをコードするcDNAと、GPHαをコードするcDNAとをそれぞれ混合して鋳型としたオーバーラッピングPCR(参考文献5、参照)により、FSHβをコードするcDNAまたはLHβcDNAをコードするcDNAの次にGPHαをコードするcDNAとなる順番で連結した一本鎖キメラcDNAを増幅した。
即ち、オーバーラッピングPCRによって、1)FSHβの配列より設計したフォワードプライマーと、これに連結したいGpHαの上流部分の配列より選択したリバースプライマーを用いてFSHβの最後にGpHαの配列が少し含まれるcDNAを増幅し、2)GpHαの前に連結したいFSHβの下流部分の配列より選択したフォワードプライマーと、GpHαの配列より設計したリバースプライマーを用いてGpHαの最初にFSHβの配列が少し含まれるcDNAを増幅し、3)これら2種のPCR産物を混合して、FSHβの配列のみ設計したフォワードプライマーとGpHαの配列のみで設計リバースプライマーを用いてPCRを行なうことにより、FSHβをコードするcDNAの次にGPHαをコードするcDNAが連結した一本鎖キメラcDNAを得た。以下、同様に、LHβcDNAをコードするcDNAの次にGPHαをコードするcDNAが連結した一本鎖キメラcDNAを得た。
これを、それぞれpCAGGSベクター(参考文献6、参照、大阪大学大学院医学系研究科の宮崎純一先生より譲受)に挿入し、魚類GTHタンパク質を発現するための発現ベクターとした。
By using overlapping PCR (see Reference 5), a mixture of the cDNA encoding the amplified FSHβ or cDNA encoding LHβ cDNA and the cDNA encoding GPHα, respectively, the cDNA or LHβ cDNA encoding FSHβ The single-stranded chimeric cDNA linked in the order of cDNA encoding GPHα next to the encoding cDNA was amplified.
That is, by overlapping PCR, 1) a cDNA containing a little GpHα sequence at the end of FSHβ using a forward primer designed from the sequence of FSHβ and a reverse primer selected from the sequence of the upstream portion of GpHα to be linked to this. 2) Amplify a cDNA containing a little FSHβ sequence at the beginning of GpHα using a forward primer selected from the sequence of the downstream portion of FSHβ to be ligated before GpHα and a reverse primer designed from the GpHα sequence. 3) By mixing these two PCR products and performing PCR using a forward primer designed only with the sequence of FSHβ and a reverse primer designed with only the sequence of GpHα, GPHα is added next to the cDNA encoding FSHβ. One linked cDNA encoding To obtain a chimeric cDNA. Hereinafter, similarly, a single-stranded chimeric cDNA in which a cDNA encoding LPHβ cDNA and a cDNA encoding GPHα were linked was obtained.
Each of these was inserted into a pCAGGS vector (reference document 6, reference, assigned by Prof. Junichi Miyazaki, Osaka University Graduate School of Medicine) to obtain an expression vector for expressing fish GTH protein.

また市販のヒトゲノムDNA(Clontech社)からCTPをコードするcDNA断片(配列表配列番号3)を、ニジマス卵巣cDNAからはPSGP(参考文献7、参照(糖鎖結合部位))をコードするcDNA断片(配列表配列番号4)を同様にPCRにより増幅した。
得られたCTPをコードするcDNA断片またはPSGPをコードするcDNA断片を、上述のFSHβをコードするcDNAまたはLHβをコードするcDNAとGPHαをコードするcDNAとをそれぞれ混合して鋳型としたオーバーラッピングPCRにより、FSHβをコードするcDNAとCTPあるいはPSGPをコードするcDNAの次にGPHαをコードするcDNA、またはLHβをコードするcDNAとCTPあるいはPSGPをコードするcDNAの次にGPHαをコードするcDNAとなる順番で連結した一本鎖キメラcDNAを増幅した。これを、それぞれpCAGGSベクターに挿入し、哺乳類型糖鎖が付加された魚類GTHタンパク質を発現するための発現ベクターとした。
[参考文献3]
Yoshiura Y., Suetake H., Aida K., General and Comparative Endocrinology,114:121−131, 1999
[参考文献4]
Nagae M., Todo T., Gen K., Kato Y., Young G., Adachi S., Yamauchi K., Journal of Molecular Endocrinology, 16:171−181, 1996
[参考文献5]
Sugahara T., Pixley MR., Minami S., Perlas E., Ben-Menahem D., Hsueh AJW., Boime I., Proceedings of National Academic Science USA, 92:2041−2045, 1995
[参考文献6]
Niwa H., Yamamura K., Miyazaki J., Gene, 108: 193−200, 1991
[参考文献7]
Sorimachi H., Emori Y., Kawasaki H., Kitajima K.,Inoue S.,Suzuki K., Inoue Y., Journal of Biological Chemistry, 263:17678−17684, 1988
Further, a cDNA fragment (SEQ ID NO: 3) encoding CTP from commercially available human genomic DNA (Clontech), and a cDNA fragment encoding PSGP (reference document 7, reference (sugar chain binding site)) from rainbow trout ovary cDNA ( Sequence listing SEQ ID NO: 4) was similarly amplified by PCR.
The obtained CTP-encoding cDNA fragment or PSGP-encoding cDNA fragment was subjected to overlapping PCR using the above FSHβ-encoding cDNA or LHβ-encoding cDNA and GPHα-encoding cDNA as templates, respectively. , CDNA encoding FSHβ and cDNA encoding CTP or PSGP, followed by cDNA encoding GPHα, or cDNA encoding LHβ and cDNA encoding CTP or PSGP, followed by cDNA encoding GPHα The single stranded chimeric cDNA was amplified. These were each inserted into a pCAGGS vector and used as an expression vector for expressing a fish GTH protein to which a mammalian sugar chain was added.
[Reference 3]
Yoshiura Y. et al. , Suetake H. , Aida K. , General and Comparative Endocrinology, 114: 121-131, 1999.
[Reference 4]
Nagae M.M. , Todo T. , Gen K. , Kato Y. et al. Young G. , Adachi S. , Yamauchi K .; , Journal of Molecular Endocrinology, 16: 171-181, 1996.
[Reference 5]
Sugahara T. , Pixley MR. , Minami S. Perlas E .; Ben-Menahem D. , Hsue AJW. , Boime I. , Proceedings of National Academic Science USA, 92: 2041-2045, 1995.
[Reference 6]
Niwa H. , Yamamura K .; Miyazaki J .; Gene, 108: 193-200, 1991.
[Reference 7]
Sorimachi H. , Emori Y. et al. , Kawasaki H. et al. Kitajima K. , Inoue S. , Suzuki K. , Inoue Y. , Journal of Biological Chemistry, 263: 17678-17684, 1988.

2. 組換えGTHの発現、精製および性状解析
2−1:哺乳類細胞の培養および発現ベクターの導入
組換えGTHを発現させる細胞としてはヒト腎臓由来293F細胞(293細胞:Invitrogen社)を用いた。細胞は、37度、8%のCO2存在下、130回転毎分で、2-3x106細胞/ml-培養液になるまで懸濁培養し、適宜2-5倍に希釈することで経代を繰り返した。経代培養を5回以上行なった後、1x106細胞/mlに希釈した細胞に、FreeStyle Max Reagent(Invitrogen社)を用いて構築したウナギGTHの発現ベクターおよびウナギGTHの発現ベクターの発現活性を高めるために哺乳動物発現促進ベクターとしてpAdVantage Vector(Promega社)を導入した。遺伝子を導入した細胞を5-6日間懸濁培養した後、遠心操作により細胞と培養液に分離、得られた培養液を組換えGTHの精製のためのサンプルとした。
2. Expression, purification and characterization of recombinant GTH 2-1: Culture of mammalian cells and introduction of expression vector Human kidney-derived 293F cells (293 cells: Invitrogen) were used as cells for expressing recombinant GTH. Cells are cultured in suspension at 37 ° C. in the presence of 8% CO 2 at 130 rpm for 2 to 3 × 10 6 cells / ml-culture solution, and diluted to 2-5 times as appropriate. Was repeated. After 5 or more subcultures, increase the expression activity of eel GTH expression vector and eel GTH expression vector constructed using FreeStyle Max Reagent (Invitrogen) in cells diluted to 1 × 10 6 cells / ml Therefore, pAdVantage Vector (Promega) was introduced as a mammalian expression promoting vector. The cells into which the gene was introduced were suspended and cultured for 5-6 days, and then separated into cells and a culture solution by centrifugation, and the resulting culture solution was used as a sample for purification of recombinant GTH.

2−2:組換えGTHの精製
組換えGTHを含む培養液を10kDa以下の物質を排除する限外濾過膜により濃縮し、高分子物質のみを含む濃縮培養液を調整した。得られた濃縮液は50mM NaH2PO4、300mM NaCl、10mM imidazole(pH8.0)で透析した後、Ni-NTA Agarose(Qiagen社)を用いた固相化金属アフィニティークロマトグラフィーに供し、組換えGTHを含むHisタグタンパク質を精製した。更に得られたサンプルを、50mM Phosphate Buffer Saline(PBS)、1.5M 硫酸アンモニウムで透析することにより塩析した。塩析後、析出したタンパク質を遠心分離し、得られた上清をPBSにより再度透析し、精製組換えウナギGTHとした。
2-2: Purification of recombinant GTH A culture solution containing recombinant GTH was concentrated by an ultrafiltration membrane that excludes substances of 10 kDa or less, and a concentrated culture solution containing only a polymer substance was prepared. The obtained concentrated solution was dialyzed with 50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole (pH 8.0), and then subjected to solid phase metal affinity chromatography using Ni-NTA Agarose (Qiagen), followed by recombination. His tag protein containing GTH was purified. Furthermore, the obtained sample was salted out by dialyzing with 50 mM Phosphate Buffer Saline (PBS) and 1.5 M ammonium sulfate. After salting out, the precipitated protein was centrifuged, and the resulting supernatant was dialyzed again with PBS to obtain purified recombinant eel GTH.

2−3:精製組換えGTHの生化学的解析
FSHβあるいはLHβとαサブユニットのみの一本鎖組換えGTH(FSHおよびLH)の生化学的解析の結果を一例として示す(図1)。先ず組換えFSHおよびLHをSodium Dodecyl Sulfate-Polyacrylamide Gel 電気泳動(SDS-PAGE)に供したのち、クマシーブリリアントブルーにより染色した(図1A)。その結果、FSH、LH共に30-35kDa程度のタンパク質が高度に精製されている事が示された。更に、独自に作製したαサブユニットまたは各βサブユニットに対する特異抗体を用いたウェスタンブロット解析を行なった。αサブユニットに対する特異抗体は、大腸菌で発現させた組換えタンパク(GpHα)を抗原として、各βサブユニットに対する特異抗体は、ショウジョウバエS2細胞で発現させた各組換えタンパク(FSHβ抗体またはLHβを抗原として、それぞれ家兎に免疫することにより作製した(参考文献8、参照)。
その結果、FSHおよびLHに共通して含まれるGPHαの抗体に対してはFSH、LH共に陽性反応を示した(図1B)のに対し、各抗β抗体を用いた場合では、それぞれ対応するGTHのみが陽性反応を示した(図1CおよびD)。以上の事から、組換えFSHおよびLHは設計通り正しく発現しており、且つ上述の方法で高度に精製される事が明らかとなった。また、CTPあるいはPSGPを各βおよびGPHαの間に挿入したFSH(FSH-CTPおよびFSH-PSGP)およびLH(LH-CTPおよびLH-PSGP)に関しても同様の解析を行なった結果、糖鎖結合配列を挿入したために分子量が5-10kDa程度大きくなるものの、同様の結果が得られた。
[参考文献8]
Kazeto Y., Kohara M., Miura T., Miura C., Yamaguchi S., Trant JM., Adachi S., Yamauchi K., Biology of Reproduction, 79:938−946, 2008
2-3: Biochemical analysis of purified recombinant GTH The results of biochemical analysis of single-chain recombinant GTH (FSH and LH) only with FSHβ or LHβ and α subunit are shown as an example (FIG. 1). First, recombinant FSH and LH were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then stained with Coomassie brilliant blue (FIG. 1A). As a result, it was shown that a protein of about 30-35 kDa was highly purified for both FSH and LH. Furthermore, Western blot analysis was performed using specific α-subunits or specific antibodies against each β-subunit. The specific antibody for α subunit is a recombinant protein (GpHα) expressed in E. coli, and the specific antibody for each β subunit is each recombinant protein (FSHβ antibody or LHβ expressed in Drosophila S2 cells). Each of these was prepared by immunizing rabbits (see Reference 8).
As a result, both FSH and LH showed positive reaction with respect to the antibody of GPHα contained in both FSH and LH (FIG. 1B), whereas when each anti-β antibody was used, the corresponding GTH Only showed a positive reaction (FIGS. 1C and D). From the above, it has been clarified that recombinant FSH and LH are correctly expressed as designed and highly purified by the method described above. In addition, as a result of the same analysis for FSH (FSH-CTP and FSH-PSGP) and LH (LH-CTP and LH-PSGP) in which CTP or PSGP is inserted between β and GPHα, the sugar chain binding sequence Similar results were obtained although the molecular weight was increased by about 5-10 kDa due to the insertion of.
[Reference 8]
Kazeto Y. et al. , Kohara M .; , Miura T. , Miura C.I. , Yamaguchi S., et al. , Trant JM. , Adachi S. , Yamauchi K .; , Biology of Reproduction, 79: 938-946, 2008.

2−4:精製組換えGTHの糖鎖解析
各種組換えGTHをSDS-PAGEに供したのち、DIG Glycan Differentiation kit(Roche Diagnostics社)を用いたレクチンブロットを行ない、付加されている糖鎖を解析した(図2)。
FSHおよびLHの糖鎖は、Sambucus nigra凝集素(SNA:下記(1)参照)およびDatura stramonium凝集素(DSA:下記(2)参照)に対し強い陽性反応を示したことから、ガラクトースあるいはN-アセチルガラクトサミンを含み、その末端にノイラミン酸が位置する糖鎖およびN-アセチルガラクトサミンを含み、その末端にガラクトースが位置する糖鎖など、哺乳類型の糖鎖を多く含むことが明らかとなった。
また、Galanthus nivalis凝集素(GNA:下記(3)参照)およびMaackia amurensis凝集素(MAA:下記(4)参照)に対しても弱いながら陽性反応を示したことから、無脊椎動物の糖タンパクに典型的なハイマンノース型の糖鎖や、ガラクトースに糖鎖の末端で結合しているノイラミン酸も存在することが示された。
また、FSH、LHともに脱ノイラミン酸処理の有無にかかわらずPeanut凝集素(PNA:下記(5)参照)に対しては陰性であることから、O-型糖鎖は含んでいないことが明らかとなった。一方、FSH-CTPおよびLH-CTPでは脱ノイラミン酸処理前はPNAに陰性であったのに対し、ノイラミン酸除去後は非常に強い陽性シグナルが検出された。このことから、挿入したCTPにN-アセチルガラクトサミンと結合しているガラクトースの末端にノイラミン酸が存在するO-型糖鎖が多量に結合していることが明らかとなった。
<参考>各凝集素の結合特異性
(1)SNA:ガラクトースあるいはN-アセチルガラクトサミンに[2-6]の位置で結合しているノイラミン酸を認識する。
(2)DSA:N-アセチルグルコサミンに[1-4]の位置で結合しているガラクトースを認識する。
(3)GNA:ハイマンノース型糖鎖(無脊椎動物の糖タンパク質に典型的)を認識する。
(4)MAA:ガラクトースに[2-3]の位置で結合しているノイラミン酸を認識する。
(5)PNA:N-アセチルガラクトサミンとこれに[1-3]の位置で結合しているガラクトース(哺乳類のO-型糖鎖の典型的な核の構造)を認識する。
2-4: Sugar chain analysis of purified recombinant GTH After subjecting various recombinant GTH to SDS-PAGE, lectin blotting using DIG Glycan Differentiation kit (Roche Diagnostics) was performed and the added sugar chain was analyzed (FIG. 2).
Since the sugar chains of FSH and LH showed strong positive reactions to Sambucus nigra agglutinin (SNA: see (1) below) and Datatra stronumium agglutinin (DSA: see (2) below), galactose or N- It has been clarified that it contains many mammalian sugar chains such as a sugar chain containing acetylgalactosamine, including a sugar chain in which neuraminic acid is located at the terminal and N-acetylgalactosamine, and a sugar chain in which galactose is located at the terminal.
Moreover, since it showed a weak positive reaction against Galanthus nivaris agglutinin (GNA: see (3) below) and Macackia amurensis agglutinin (MAA: see (4) below), It was also shown that typical high-mannose sugar chains and neuraminic acid bound to galactose at the sugar chain ends were also present.
In addition, since both FSH and LH are negative for Peant agglutinin (PNA: see (5) below) regardless of whether or not deneuraminic acid treatment is performed, it is clear that O-type sugar chains are not included. became. On the other hand, FSH-CTP and LH-CTP were negative for PNA before deneuraminic acid treatment, whereas a very strong positive signal was detected after neuraminic acid removal. This revealed that a large amount of O-type sugar chain having neuraminic acid at the terminal of galactose bound to N-acetylgalactosamine is bound to the inserted CTP.
<Reference> Binding specificity of each agglutinin (1) SNA: Recognizes neuraminic acid bound to galactose or N-acetylgalactosamine at position [2-6].
(2) DSA: Recognizes galactose bound to N-acetylglucosamine at position [1-4].
(3) GNA: Recognizes a high-mannose sugar chain (typical for invertebrate glycoproteins).
(4) MAA: Recognizes neuraminic acid bound to galactose at the position [2-3].
(5) PNA: Recognizes N-acetylgalactosamine and galactose (a typical nuclear structure of mammalian O-type sugar chains) bound to this at the [1-3] position.

<組換えGTHの生物活性の検討>
3.生体外実験系における生物活性
3−1:未熟ウナギ精巣の培養
未熟なウナギの精巣、約30mgを、ホルモン未添加(対照群)あるいは様々な濃度の各種組換えGTH(FSH、LH、FSH-CTPおよびLH-CTP)を添加した培養液、L-15、10mM Hepes、pH7.4、250μl中で、20度、18時間培養した。
<Examination of biological activity of recombinant GTH>
3. Biological activity in in vitro experimental system 3-1: Culture of immature eel testis About 30 mg of immature eel testis, no hormone added (control group) or various concentrations of various recombinant GTH (FSH, LH, FSH-CTP) And LH-CTP) were added in a culture solution, L-15, 10 mM Hepes, pH 7.4, 250 μl, and cultured at 20 degrees for 18 hours.

3−2:精子形成誘導ステロイド産生量の測定
培養液中の精子形成誘導ステロイド、11-ケトテストステロン(11KT)量の測定は時間分解蛍光免疫測定法で行なった。その結果、FSHで200ng/mL、LHで500ng/mL以上の濃度で11KT産生が有意に促進された。また、CTPを挿入したGTHでも有意な11KT産生の促進効果が認められ、特にLH-CTPでは20ng/mLの低濃度でも効果が認められると共に、高濃度投与群では11KT産生量は対照群に比べ最高で100倍程度に達した(図3)。
3-2: Measurement of spermatogenesis-inducing steroid production The amount of spermatogenesis-inducing steroid, 11-ketotestosterone (11KT) in the culture solution was measured by a time-resolved fluorescence immunoassay. As a result, 11KT production was significantly promoted at a concentration of 200 ng / mL with FSH and 500 ng / mL or more with LH. GTH with CTP inserted also has a significant effect of promoting 11KT production, particularly LH-CTP has an effect even at a low concentration of 20 ng / mL, and the amount of 11KT produced in the high concentration administration group is higher than that in the control group. The maximum reached about 100 times (FIG. 3).

4.生体内実験系における生物活性
4−1:未熟雄ウナギへの組換えGTHの投与
未熟雄ウナギに対して、FSH-CTPを200μg/kg-体重で週1回、8週間投与した。また、対照群として、FSH-CTPを溶解しているPBSのみの投与も行なった。
4). Biological activity in in vivo experimental system 4-1: Administration of recombinant GTH to immature male eels FSH-CTP was administered to immature male eels at a dose of 200 μg / kg-body weight once a week for 8 weeks. Moreover, only PBS which melt | dissolved FSH-CTP was also administered as a control group.

4−2:精巣のサンプリング、生殖腺体指数の算出および精巣の組織観察
投与実験終了3日後、実験魚の体重および摘出した精巣の重量を測定、生殖腺体指数(GSI:生殖腺重量/体重)を算定した。精巣に関してはブアン氏液により固定したのち常法により組織切片を作製、光学顕微鏡により観察を行なった。その結果、対照群のGSIは約0.2であったのに対し、FSH-CTPを投与した場合、そのGSIは約4.4と非常に高い値を示した。また、組織観察の結果、対照群の精巣では増殖前の精原細胞のみが存在するのに対し、FSH-CTPを投与した個体の精巣では精子を含む様々な発達段階の生殖細胞が観察された(図4)。この結果より、遺伝子工学的手法を用いて作製した魚類自身の組換えGTHがその人為催熟に有効である事が、本発明により初めて示された。
4-2: Testicular sampling, calculation of gonadal index and testicular tissue observation Three days after the completion of the administration experiment, the body weight of the experimental fish and the weight of the extracted testis were measured, and the gonadal index (GSI: gonadal weight / body weight) was calculated. . The testis was fixed with Bouin's solution, and then a tissue section was prepared by a conventional method and observed with an optical microscope. As a result, the GSI of the control group was about 0.2, whereas when FSH-CTP was administered, the GSI showed a very high value of about 4.4. In addition, as a result of tissue observation, only the spermatogonia before growth were present in the testis of the control group, whereas in the testis of the individual administered with FSH-CTP, germ cells at various developmental stages including sperm were observed. (FIG. 4). From this result, it was demonstrated for the first time by the present invention that fish's own recombinant GTH produced using genetic engineering techniques is effective for artificial ripening.

本発明の魚類の成熟誘導方法を用いることにより、ウナギ等の人為催熟が困難であった魚種についても、人工種苗が生産でき、完全養殖を行うことが可能となる。また、本発明の哺乳類型糖鎖が付加された魚類GTHタンパク質は、生体内寿命が延長化された効果的なホルモンであることから、魚類の成熟誘導にも有効に利用することができる。   By using the fish maturation inducing method of the present invention, artificial seedlings can be produced and complete aquaculture can be performed for fish species such as eel that have been difficult to artificially ripen. In addition, since the fish GTH protein to which the mammalian sugar chain of the present invention is added is an effective hormone with an extended in vivo life, it can be effectively used for inducing fish maturation.

Claims (8)

配列表配列番号1で示されるアミノ酸配列またはこれらのアミノ酸配列が保存的修飾された配列からなる部位である糖鎖結合部位をC末端に付加した魚類GTHを哺乳類細胞によって合成することにより得られる哺乳類型糖鎖が付加された魚類GTHタンパク質であって、哺乳類型糖鎖としてO型糖鎖が付加された魚類GTHタンパク質。 Mammals obtained by synthesizing fish GTH, to which a sugar chain binding site, which is a site consisting of the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing or a sequence consisting of conservative modifications of these amino acid sequences, is added at the C-terminus with mammalian cells A fish GTH protein to which a type sugar chain is added, and a fish GTH protein to which an O type sugar chain is added as a mammalian type sugar chain. 配列表配列番号1で示されるアミノ酸配列またはこれらのアミノ酸配列が保存的修飾された配列からなる部位である糖鎖結合部位を2つ以上C末端に付加した魚類GTHを哺乳類細胞によって合成することにより得られる請求項に記載の哺乳類型糖鎖としてO型糖鎖が付加された魚類GTHタンパク質。 By synthesizing a fish GTH to which two or more sugar chain binding sites, which are amino acid sequences shown in SEQ ID NO: 1 in the sequence listing or a sequence comprising these amino acid sequences conservatively modified, are added to the C-terminal by mammalian cells. The fish GTH protein to which an O-type sugar chain is added as the mammalian-type sugar chain according to claim 1 to be obtained. 魚類GTHがウナギ由来のGTHである請求項1または2に記載の哺乳類型糖鎖としてO型糖鎖が付加された魚類GTHタンパク質。 The fish GTH protein to which an O-type sugar chain is added as a mammalian sugar chain according to claim 1 or 2 , wherein the fish GTH is an eel-derived GTH. 魚類GTHがFSHまたはLHである請求項1〜3のいずれかに記載の哺乳類型糖鎖としてO型糖鎖が付加された魚類GTHタンパク質。The fish GTH protein to which an O-type sugar chain is added as a mammalian sugar chain according to any one of claims 1 to 3, wherein the fish GTH is FSH or LH. FSHをコードするcDNAまたはLHをコードするcDNAと、配列表配列番号1で示されるアミノ酸配列またはこれらのアミノ酸配列が保存的修飾された配列からなる部位である糖鎖結合部位をコードするcDNA、となる順番で連結したキメラcDNAを発現ベクターに挿入し、概発現ベクターを哺乳類細胞に導入し、概哺乳類細胞によって合成することにより得られる請求項1〜4のいずれかに記載のO型糖鎖が付加された魚類GTHタンパク質。CDNA encoding FSH or cDNA encoding LH, and cDNA encoding a sugar chain binding site which is a site consisting of the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing or a conservatively modified sequence of these amino acid sequences, The O-type sugar chain according to any one of claims 1 to 4, which is obtained by inserting a chimeric cDNA linked in the following order into an expression vector, introducing the approximate expression vector into a mammalian cell, and synthesizing the approximate expression vector with the mammalian cell. Added fish GTH protein. 請求項1〜5のいずれかに記載の哺乳類型糖鎖としてO型糖鎖が付加された魚類GTHタンパク質を用いる魚類の成熟誘導方法。 A method for inducing fish maturation using a fish GTH protein to which an O-type sugar chain is added as the mammalian sugar chain according to any one of claims 1 to 5. 成熟誘導される魚類がウナギである請求項6に記載の魚類の成熟誘導方法。 The fish maturation induction method according to claim 6, wherein the fish that is induced to mature is an eel. 未熟ウナギの精巣を成熟誘導する請求項6に記載の魚類の成熟誘導方法。 The method for inducing maturity of fish according to claim 6, wherein the testis of immature eel is induced to mature.
JP2010036050A 2010-02-22 2010-02-22 Fish GTH protein and fish maturation induction method using the protein Active JP5783522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036050A JP5783522B2 (en) 2010-02-22 2010-02-22 Fish GTH protein and fish maturation induction method using the protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036050A JP5783522B2 (en) 2010-02-22 2010-02-22 Fish GTH protein and fish maturation induction method using the protein

Publications (2)

Publication Number Publication Date
JP2011168562A JP2011168562A (en) 2011-09-01
JP5783522B2 true JP5783522B2 (en) 2015-09-24

Family

ID=44683060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036050A Active JP5783522B2 (en) 2010-02-22 2010-02-22 Fish GTH protein and fish maturation induction method using the protein

Country Status (1)

Country Link
JP (1) JP5783522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060743A (en) * 2014-09-17 2016-04-25 大韓民国 国立水産科学院Republic Of Korea(National Fisheries Research And Development Institute) Single-strand follicle-stimulating hormone polypeptide of anguilla japonica, antibodies to the same, and applications thereof
CN104430067B (en) * 2014-09-24 2016-07-06 全椒县花溪湖特种水产合作社 A kind of propagation method of Monopterus albus (Zuiew)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154459A (en) * 2006-12-20 2008-07-10 Irago Institute Co Ltd Method for accelerating maturation of eel

Also Published As

Publication number Publication date
JP2011168562A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
CN101981046B (en) Insulin-like gene in prawns and uses thereof
KR20100014457A (en) Germ cell marker using fish vasa gene
WO1998015627A1 (en) Production of recombinant peptide by transgenic fish
JP5783522B2 (en) Fish GTH protein and fish maturation induction method using the protein
CN104862318A (en) Method for producing monoclonal antibodies by using transgenic animal mammary gland bioreactor
CN107760650A (en) A kind of Chinese hamster ovary celI of transformation and application thereof
CN109504709A (en) The albumin expression vectors of albumin promoter driving
CN111304256B (en) Solution for prolonging opening time of sperm receiving hole of roe and method for introducing exogenous gene by utilizing sperm receiving hole
US7291711B2 (en) Fluorescent proteins from aquatic species
CN106978416B (en) Gene positioning integration expression system and application thereof
KR101292894B1 (en) Transgenic Animal Overexpressing Luciferase Gene and Preparation Method Thereof
CN101289671B (en) Method for preparing transgenic animal
KR100864127B1 (en) The peptide having gonadotropic activity and its synthesis
KR20010006657A (en) Beta,beta-carotene 15,15&#39;-dioxygenases
YOSHIZAKI Gene transfer in salmonidae: applications to aquaculture
Arenal et al. Gene transfer in shrimp (Litopenaeus schmitti) by electroporation of single-cell embryos and injection of naked DNA into adult muscle
CN107267511B (en) RNAi interference fragment, interference vector, preparation method and application thereof
CN107840875B (en) Plutella xylostella cotesia ruber neuropeptide Cv-sNPF and receptor thereof and application of plutella xylostella cotesia ruber neuropeptide Cv-sNPF in increasing trehalose content in plutella xylostella
Chengfei et al. Establishing a zebrafish transgenic line expressing tilapia lysozyme with enhanced antibacterial activity
EP1558735B1 (en) Porcine uroplakin ii promoter and the production method of useful proteins using said promoter
Choi et al. Molecular analysis and bioactivity of luteinizing hormone from Japanese eel, Anguilla japonica, produced in silkworm pupae
Thuy et al. Generation of transgenic medaka Oryzias curvinotus (Nichols & Pope, 1927) carrying a cyan fluorescent protein gene driven by Alpha Actin promoter
CN114686524B (en) Method for producing 1-year-old female yellow-fin sparus by gene editing
CN109439688A (en) A kind of recombined lentivirus vector, recombinant slow virus and its application
CN110904105B (en) MSX promoter capable of being inhibited by pinctada martensii SMAD1/5 gene and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5783522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350