JP2008154459A - Method for accelerating maturation of eel - Google Patents

Method for accelerating maturation of eel Download PDF

Info

Publication number
JP2008154459A
JP2008154459A JP2006343314A JP2006343314A JP2008154459A JP 2008154459 A JP2008154459 A JP 2008154459A JP 2006343314 A JP2006343314 A JP 2006343314A JP 2006343314 A JP2006343314 A JP 2006343314A JP 2008154459 A JP2008154459 A JP 2008154459A
Authority
JP
Japan
Prior art keywords
eel
female
seawater
temperature
maturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006343314A
Other languages
Japanese (ja)
Inventor
Satoru Tanaka
悟 田中
Noriyuki Horie
則行 堀江
Yoshiro Yamada
祥朗 山田
Akihiro Okamura
明浩 岡村
Tomoko Iida
朋子 飯田
Naomi Mikawa
直美 三河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRAGO INST CO Ltd
IRAGO INSTITUTE CO Ltd
Original Assignee
IRAGO INST CO Ltd
IRAGO INSTITUTE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRAGO INST CO Ltd, IRAGO INSTITUTE CO Ltd filed Critical IRAGO INST CO Ltd
Priority to JP2006343314A priority Critical patent/JP2008154459A/en
Publication of JP2008154459A publication Critical patent/JP2008154459A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accelerating the maturation of female eels, by which the female eel can be matured without having to administer exogenous hormone. <P>SOLUTION: The method for accelerating the maturation of the eel is the one for accelerating the maturation of the eel, by making the ovary of the female eel, whose ovary is not matured, mature to a state in which an egg can be laid. The method includes a step for maturing the ovary of the female eel by growing the female eel, while periodically changing elements constituting a cultivation environment in a cultivation pond according to a prescribed time cycle, and the elements to be periodically changed includes the temperature of sea water changing within a specific range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はウナギの養殖技術に関し、特に、雌ウナギの卵巣を成熟させるための催熟方法に関する。   The present invention relates to eel aquaculture technology, and more particularly to a ripening method for maturing a female eel ovary.

ニホンウナギ(学名Anguilla japonica)は、水産養殖産業において重要な魚種の1つであり、東アジアで広く養殖されている。しかし、未だ種苗生産技術が確立されていないため、養殖用の種苗は全て天然で捕獲されるシラスウナギでまかなわれている。しかしながら、ここ約30年の間にシラスウナギの捕獲量は減少し、その価格上昇がウナギの養殖産業に深刻な影響を及ぼしている。そのため、日本では1960年代から種苗生産技術の確立を目指し、ウナギを人為的に成熟させる研究が始まった。ウナギは飼育条件下では成熟しないため、外因性ホルモンを多回投与する方法が開発された。その結果、1973年に世界で初めて受精卵および仔魚を得ることに成功した。その後、外因性ホルモンの投与方法が改良され、現在ではコンスタントに受精卵および仔魚を得ることが可能になっている。そして、2003年にはついに、ホルモン投与法によって得られた仔魚をシラスウナギにまで成長させることに成功している。   The Japanese eel (scientific name Anguilla Japana) is one of the important fish species in the aquaculture industry and is widely cultivated in East Asia. However, since seed production technology has not yet been established, all seedlings for aquaculture are covered with white eels that are naturally captured. However, the catch of glass eels has declined over the last 30 years, and the price increase has had a serious impact on the eel aquaculture industry. For this reason, research aimed at artificially maturing eels began in Japan in the 1960s with the aim of establishing seedling production technology. Since eels do not mature under rearing conditions, methods have been developed to administer multiple exogenous hormones. As a result, in 1973, we succeeded in obtaining fertilized eggs and larvae for the first time in the world. Thereafter, the method of exogenous hormone administration has been improved, and now it is possible to obtain fertilized eggs and larvae constantly. Finally, in 2003, larvae obtained by the hormone administration method were successfully grown to glass eels.

上記の現在行われているウナギの実用種苗を得る方法を要約すると、天然のシラスウナギを雌化養成して採卵用親魚を得る段階1と、この産卵用親魚をホルモン催熟させて産卵させることにより養殖用ウナギ卵を得る段階2と、このウナギ卵を受精、孵化および飼育して、実用種苗としての養殖用シラスウナギを得る段階3と、この実用種苗を育成して商業的ウナギ成体を得る段階4に分けられる。ウナギは無作為に飼育すると全て雄化するので、段階1では、産卵用の雌魚を得るために、既述のように雌性ホルモン(例えばエストラジオール17β)を飼料に混入して投与することにより、雌化処理を行なうことが必要とされる。こうして得られた雌魚も、そのまま飼育したのでは産卵可能な状態にまで成熟しない。そこで、次の段階2でも、生殖腺刺激ホルモン(GTH)を投与することにより催熟させて、卵巣を産卵可能な状態にまで発達させなければならない。こうして催熟された雌魚から採卵を行い、雄魚から採取した精液と混合して受精させ、得られた受精卵を孵化および成長させることにより、商業的養殖用のシラスウナギ(実用種苗)が得られる。   Summarizing the above-described methods for obtaining practical seedlings of eel, the first step is to obtain a parent fish for egg collection by feminizing natural white eels, and by laying the parent fish for egg laying by hormonal ripening. Stage 2 of obtaining an eel egg for aquaculture, Stage 3 of fertilizing, hatching and breeding the eel egg to obtain a glass eel for cultivation as a practical seedling, and Stage 4 of growing this practical seedling and obtaining a commercial eel adult It is divided into. Since eels all become male when they are randomly raised, in Step 1, in order to obtain female eggs for egg laying, a female hormone (for example, estradiol 17β) is mixed in the feed and administered as described above. A feminization treatment is required. The female fish thus obtained will not mature to a state where they can lay eggs if reared as they are. Therefore, in the next stage 2, gonad stimulating hormone (GTH) must be ripened to develop the ovary to a state where it can lay eggs. Eggs are collected from ripened female fish, mixed with semen collected from male fish, fertilized, and the resulting fertilized eggs are hatched and grown to obtain glass eel (practical seedlings) for commercial aquaculture. It is done.

しかし、受精率および孵化率が安定しない問題、および仔魚の生残率が低い等の問題は解決されておらず、未だシラスウナギの量産化が難しい状況にある。これらの問題は、催熟のために投与された外因性ホルモンが、卵の質に悪影響を及ぼした結果であることが懸念されている。その一つの根拠として、外因性ホルモンを投与している間、成熟に関与するステロイドホルモンの血中プロファイルが、成熟過程にある他魚種のもとはかなり異なっているとの調査結果が報告されていることが挙げられる。さらに、ホルモン投与に対する消費者のイメージを考慮すると、現在のホルモン催熟技術で生産したシラスウナギの商品価値についても懸念される。以上のことから、外因性ホルモンを使用することなしにウナギの成熟を促進する技術を開発することが強く求められている。   However, problems such as inferior fertilization rate and hatching rate and problems such as low survival rate of larvae have not been solved, and mass production of glass eels is still difficult. There are concerns that these problems are the result of exogenous hormones administered for ripening adversely affecting egg quality. One of the reasons for this is that during the administration of exogenous hormones, it was reported that the blood profile of steroid hormones involved in maturation is significantly different from that of other fish species in the process of maturation. It is mentioned. Furthermore, considering the consumer's image of hormone administration, there is concern about the commercial value of white eel produced by current hormone ripening technology. From the above, there is a strong demand to develop a technique for promoting eel maturation without using exogenous hormones.

本発明は、上記事情に鑑みてなされたものであり、外因性ホルモンを投与することなく雌ウナギを成熟させることにより、ウナギの養殖に不可欠な良質の受精卵および仔魚を得ることを可能にする、ウナギ雌魚の催熟方法を提供するものである。   The present invention has been made in view of the above circumstances, and makes it possible to obtain high-quality fertilized eggs and larvae essential for eel farming by maturing female eels without administering exogenous hormones. It provides a method for ripening eel female fish.

上記課題を達成するために、本発明によるウナギの催熟方法は、成熟開始の引き金が引かれ且つ卵巣が産卵可能な状態にまで成熟していない雌ウナギを、海水養殖池環境中において、該養殖池の養殖環境を構成する要素を所定の時間サイクルに従って周期的に変動させながら前記雌ウナギを飼育することにより、該雌ウナギの卵巣を成熟させる工程を含み、前記周期的に変動される要素には、所定の温度範囲で変化する前記海水の温度が含まれることを特徴とするものである。   In order to achieve the above object, the method of ripening eels according to the present invention includes a female eel that is triggered to start maturation and has not matured to a state where the ovaries can lay eggs in the seawater pond environment. An element that periodically fluctuates elements constituting the aquaculture environment of the aquaculture pond while cultivating the female eel while periodically fluctuating according to a predetermined time cycle, and the element that is periodically fluctuated Includes the temperature of the seawater that changes within a predetermined temperature range.

好ましくは、上記一定の条件には、前記海水の温度に加えて前記海水養殖池環境の光条件が含まれ、該光条件は、所定の時間サイクルに従って、遮光し且つ光照射を用いない状態(暗状態)と所定の光照射状態(明状態)との間で変化させることが含まれる。   Preferably, the constant condition includes a light condition of the seawater pond environment in addition to the temperature of the seawater, and the light condition is a state in which light is shielded and light irradiation is not used according to a predetermined time cycle ( It includes changing between a dark state) and a predetermined light irradiation state (bright state).

更に好ましくは、前記海水養殖池の中の水流を制御して、下りウナギの回遊環境をシミュレートすることが含まれる。   More preferably, the water flow in the seawater pond is controlled to simulate the migratory environment of the descending eel.

本発明によれば、従来のように外因性ホルモンを投与することなく雌ウナギを成熟させることができるので、健康な卵、健康な仔魚、および健康なシラスウナギを得ることが可能となり、従って商業的ウナギ養殖の生産効率向上に寄与する。   According to the present invention, a female eel can be matured without administering an exogenous hormone as in the prior art, so that it is possible to obtain healthy eggs, healthy larvae, and healthy white eels. Contributes to the improvement of eel aquaculture production efficiency.

ニホンウナギの産卵場はマリアナ諸島西方海域(北緯15度,東経140度あたり)であることが明らかとなっている。そして、ここで生まれた仔魚(レプトケファルス)は、北赤道海流に乗って西へ運ばれた後、黒潮に乗り換えて東アジアまでやってくる過程でシラスウナギへと変態し、黒潮を離脱して接岸すると考えられている。その後、河川や池沼などで5〜15年かけて成長したウナギは、秋から初冬に産卵のため降海し、回遊をはじめる。この時期に捕獲されるウナギは下りウナギ(または銀ウナギ)と呼ばれ、すでに成熟開始の引き金が引かれており、そのほとんどの個体において卵母細胞の発達段階は第一次卵黄球期に達している。現在のところ、下りウナギの産卵回遊ルートおよび遊泳水深は解明されておらず、沿岸域で捕獲される以上に成熟の進んだウナギも見つかっていないため、産卵回遊中どのような環境条件を経験することにより成熟が進展しているのかは全く不明である。このことは、雌ウナギの人工的催熟の研究を困難にしている一つの原因でもある。   It has been clarified that the spawning ground for Japanese eels is in the western Mariana Islands (15 degrees north latitude and 140 degrees east longitude). And the larvae born here (Leptocephalus) were transported to the west on the North Equatorial Current, then transformed into the white eel in the process of switching to the Kuroshio Current and coming to East Asia. It is considered. After that, eels that have grown in rivers and ponds and marshes for five to fifteen years fall from the autumn to early winter to spawn and begin migratory. Eels captured at this time are called descending eels (or silver eels) and have already been triggered to mature, and in most individuals the developmental stage of the oocyte reaches the primary yolk stage. ing. At present, the laying migratory route and swimming depth of descending eels have not been elucidated, and no matured eels have been found beyond being caught in the coastal area. It is completely unknown whether maturity is progressing. This is one of the causes that makes research on artificial ripening of female eels difficult.

発明者等は、雌ウナギを海水養殖池環境で飼育する際の水温および/または光の影響を研究する過程において、これらの環境因子の周期的変動が、雌ウナギの卵巣発達に影響することを突き止め、その知見に基づいて本発明に至ったものである。   The inventors have found that in the process of studying the effects of water temperature and / or light on the breeding of female eels in a seawater pond environment, the periodic fluctuations of these environmental factors affect the ovary development of female eels. The present invention has been determined and based on the findings.

本発明による催熟方法の適用対象、即ち、成熟開始の引き金が引かれ且つ卵巣が産卵可能な状態にまで成熟していない雌ウナギとは、その卵母細胞が油球期から第一次卵黄球期の段階にある雌ウナギである。なお、ウナギの卵形成ステージ(成熟段階)は、卵巣の組織標本観察により、以下の8段階(A〜H)に区分されている。下りウナギの場合、卵形成ステージは油球期〜第一次卵黄球期である(大部分が第一次卵黄球期)。   An object to which the ripening method according to the present invention is applied, that is, a female eel that has been triggered to start maturation and has not matured to a state where the ovaries can lay eggs, is that the oocyte is from the primary stage to the primary yolk It is a female eel in the stage of the ball stage. The eel egg formation stage (maturity stage) is divided into the following 8 stages (A to H) by observation of ovarian tissue specimens. In the case of descending eels, the oogenesis stage is from the oilball phase to the primary yolk bulb phase (mostly the primary yolk bulb phase).

1)第一次成長期
A.染色仁期
B.周辺仁期
2)第二次成長期
C.油球期:直径約70〜200μm
D.第一次卵黄球期:直径約200〜400μm
E.第二次卵黄球期:直径約400〜600μm
F.第三次卵黄球期:直径約600〜800μm
3)成熟期
G.核移動期
H.成熟期
本発明において、海水養殖池環境とは、通常の組成を有する海水を満たした養殖環境を意味し、池、生簀、タンク、桶など、その種類および大きさを問わない。しかし、以下で詳述するように、環境条件を周期的に変化させるための手段を設ける必要がある。また、養殖池は、その中でウナギが円滑に回遊できるような形状が好ましく、特に円筒形が好ましい。特に好ましい培養池は、深さ2.4m、直径3.0mの円筒形のタンクである。
1) First growth period
A. Dyeing stage
B. Peripheral period 2) Second growth period
C. Oil ball period: Diameter of about 70 to 200 μm
D. Primary yolk bulb phase: about 200-400 μm in diameter
E. Secondary yolk bulb phase: diameter of about 400-600 μm
F. The third yolk sphere stage: Diameter of about 600 to 800 μm
3) Maturity
G. Nuclear migration period
H. Maturity Period In the present invention, the seawater aquaculture pond environment means a culture environment filled with seawater having a normal composition, regardless of the type and size of ponds, ginger, tanks, corals, and the like. However, as described in detail below, it is necessary to provide means for periodically changing the environmental conditions. The aquaculture pond is preferably shaped so that eels can move around smoothly, and is preferably cylindrical. A particularly preferable culture pond is a cylindrical tank having a depth of 2.4 m and a diameter of 3.0 m.

本発明において、一定の周期的変動条件に含まれる要素には、温度、光等が含まれる。その中で決定的に重要な環境条件は温度である。即ち、本発明において最も重要な要件は、養殖池環境の水温を周期的に変動させることである。水温の変動範囲は、好ましくは高温と低温との差が約8℃〜約12℃の範囲であり、好ましくは温度差が約10℃になるようにする。また、変動周期は、通常は24時間を1周期とするが、これに限定されない。コスト的な観点からは、催熟が達成される範囲内においてできるだけ長い周期が好ましい。このような水温制御は、例えば当業者に周知の温度制御機能を備えた加熱装置、および冷水添加による温度制御方法等を組合せて行えばよい。   In the present invention, elements included in the constant periodic variation condition include temperature, light, and the like. Among them, a critical environmental condition is temperature. That is, the most important requirement in the present invention is to periodically change the water temperature of the culture pond environment. The variation range of the water temperature is preferably such that the difference between the high temperature and the low temperature is about 8 ° C. to about 12 ° C., and preferably the temperature difference is about 10 ° C. In addition, the fluctuation cycle is normally set to one cycle of 24 hours, but is not limited thereto. From the viewpoint of cost, a period that is as long as possible within the range where ripening is achieved is preferable. Such water temperature control may be performed by combining, for example, a heating device having a temperature control function well known to those skilled in the art and a temperature control method by adding cold water.

上記のような周期的な温度変化の中で飼育された雌ウナギは、成熟を促され、卵巣が成熟することが確認された。しかし、15℃を越える温度での飼育では、成熟は促進されずに卵母細胞は退行してしまうことが分かった。一方、5℃以下の低水温で飼育すると、退行卵の出現は抑制されるが、成熟は進展しなかいことが分かった。従って、周期的に変動させる温度範囲は、5℃〜15℃が最適と考えられる。なお、退行卵とは、卵黄を蓄積した卵母細胞が退行、崩壊し、周辺の体細胞に吸収される過程の卵をいう。   It was confirmed that female eels reared in the periodic temperature changes as described above were promoted to mature and the ovaries matured. However, it was found that in breeding at a temperature exceeding 15 ° C., maturation was not promoted and the oocyte regressed. On the other hand, it was found that when rearing at a low water temperature of 5 ° C. or lower, the appearance of degenerated eggs was suppressed, but maturation did not progress. Therefore, it is considered that 5 to 15 ° C. is optimal for the temperature range that is periodically changed. In addition, a degenerated egg means the egg of the process in which the oocyte which accumulated egg yolk retreats, collapses, and is absorbed by the surrounding somatic cell.

本発明においては、上記のように飼育温度を周期的に変動させることに加えて、光による照明条件も周期的に変化させるのが好ましい。このような光条件の変化は、前記海水養殖池環境を遮光すると共に、遮光領域内に設けた適切な光源を周期的に点灯することにより、点灯状態(明状態)と消灯状態(暗状態)の間での切替えを行うことにより達成することができる。なお、ここでの明状態および暗状態は、必ずしも太陽周期による昼間および夜間と同期させる必要はない。更に好ましくは、明状態では低温を経験させ、暗状態では高温を経験させるように、温度および光条件の周期的変動を同期させるのがよい。例えば、昼間は照明を点灯して明状態とし、夜間は消灯して暗状態とする。この場合の照明は、好ましくは青色光源(波長400〜500nm)を用いて行い、調光器で明るさを制御する。明るさは、水槽内の最も明るい所(光源の直下)で200ルクス以下が好ましい。このような照明装置は当業者に周知である。ここでの明度は、市販の照度計(株式会社トプコン、型式IM-5)を用いて測定した値である。   In the present invention, in addition to periodically changing the breeding temperature as described above, it is preferable to periodically change the illumination conditions with light. Such a change in light conditions is achieved by shielding the seawater aquaculture pond environment and periodically turning on an appropriate light source provided in the light shielding area, thereby turning on (bright) and off (dark). Can be achieved by switching between the two. The bright state and the dark state here do not necessarily need to be synchronized with daytime and nighttime due to the solar cycle. More preferably, the periodic fluctuations in temperature and light conditions are synchronized so that low temperatures are experienced in the bright state and high temperatures are experienced in the dark state. For example, the light is turned on during the daytime to be in a bright state, and the nighttime is turned off to be in a dark state. The illumination in this case is preferably performed using a blue light source (wavelength 400 to 500 nm), and the brightness is controlled by a dimmer. The brightness is preferably 200 lux or less at the brightest place in the aquarium (just below the light source). Such lighting devices are well known to those skilled in the art. The brightness here is a value measured using a commercially available illuminometer (Topcon Corporation, model IM-5).

更に、本発明においては、前記海水養殖池の中の水流を制御して、下りウナギの回遊環境をシミュレートすることが好ましい。この場合の水流は、特に周期的に変動させることなく、流速10〜20cm/秒の一定の水流を維持するのがよい。   Furthermore, in the present invention, it is preferable to simulate the migratory environment of the descending eel by controlling the water flow in the seawater pond. In this case, the water flow is preferably maintained at a constant flow rate of 10 to 20 cm / second without being periodically changed.

以下の実施例で説明するように、本発明の方法によれば、生殖腺指数(GSI)および卵形成ステージ(成熟段階)で見た場合の雌ウナギの成熟を促進することができる。   As will be described in the following examples, the method of the present invention can promote maturation of female eels when viewed at the gonad index (GSI) and the oogenesis stage (maturity stage).

以下、実施例に従って本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<材料および方法>
供試魚として、2005年11〜12月に愛知県三河湾の定置網で捕獲された雌の下りウナギ(銀ウナギ)108尾を用いた。この108尾のウナギのうち15尾は、捕獲時の成熟状態を把握するために、捕獲当日に解剖を行った(無処理区)。これらの個体は、2−フェノキシエタノールで麻酔後、体重を計測した。次いで卵巣を摘出して重量を測定し、生殖腺指数(GSI:生殖腺重量/魚体重×100)を算出した。また卵巣の一部は、卵母細胞直径(以下卵径)の測定、および卵母細胞の成熟段階を判定するための組織標本作成に用いた。
<Materials and methods>
As a test fish, 108 female descending eels (silver eels) captured in a stationary net in Mikawa Bay, Aichi Prefecture in November to December 2005 were used. Of these 108 eels, 15 were dissected on the day of capture in order to grasp the mature state at the time of capture (untreated section). These individuals were anesthetized with 2-phenoxyethanol and then weighed. The ovaries were then removed and weighed to calculate the gonad index (GSI: gonad weight / fish body weight × 100). A part of the ovary was used for measurement of oocyte diameter (hereinafter referred to as egg diameter) and preparation of a tissue specimen for determining the maturation stage of the oocyte.

残り93尾のウナギは16〜20尾ずつを、図1に示すように5つの実験区に分け、実験開始までは三河湾の水温および日長条件下で飼育した。飼育には屋内の円形水槽(直径3m;深さ2.4m)を使用し、水槽内に意図的に強制水流は形成しなかった。但し、ヒートポンプで温調するというシステム上の不可避的水流は排除しなかった。また、実験前および実験期間中ともに無給餌とした。実験は、2006年1月20日に開始した。各実験区における、実験期間中の海水(塩分濃度:30〜31‰)の温度および光周期(照明条件)は、図2および3に示した通りである。図中の曲線に付した番号は対応する実験区の番号を示しており、そのうち、3〜5(a)は2006年1月20日〜2006年2月16日までの実験区3〜5を示し、3〜5(b)は2006年2月17日〜2006年6月20日までの実験区3〜5を示している。   The remaining 93 eels, 16-20, were divided into 5 experimental zones as shown in FIG. 1, and were reared under the water temperature and day length conditions in Mikawa Bay until the start of the experiment. An indoor circular aquarium (diameter 3 m; depth 2.4 m) was used for breeding, and no forced water flow was intentionally formed in the aquarium. However, the inevitable water flow on the system of temperature control with a heat pump was not excluded. In addition, no feeding was performed both before and during the experiment. The experiment started on January 20, 2006. The temperature and photoperiod (illumination conditions) of seawater (salt concentration: 30 to 31 ‰) during the experiment period in each experimental group are as shown in FIGS. The numbers given to the curves in the figure indicate the numbers of the corresponding experimental sections, among which 3 to 5 (a) indicate the experimental sections 3 to 5 from January 20, 2006 to February 16, 2006. 3 to 5 (b) show experimental sections 3 to 5 from February 17, 2006 to June 20, 2006.

なお、温度管理は三菱重工(株)社製のヒートポンプ(型式FDCSP140HD3)を使用して行った。また、照明には住友スリーエム(株)社製のLBH150SB(100V、1.6A)を用いた。図3における縦軸は、この使用した光源の最大能力での照射を100%とした、相対的な数値で表した照明強度を示している。   The temperature control was performed using a heat pump (model FDCSP140HD3) manufactured by Mitsubishi Heavy Industries, Ltd. In addition, LBH150SB (100V, 1.6A) manufactured by Sumitomo 3M Limited was used for lighting. The vertical axis in FIG. 3 shows the illumination intensity expressed as a relative numerical value, assuming that the irradiation at the maximum capacity of the used light source is 100%.

図2に示すように、実験区1(曲線1)および実験区2(曲線2)では、それぞれ5〜15℃および10〜20℃の水温変動を、24時間周期で与えて飼育した。実験区3〜5(曲線3〜5)では、それぞれ5、15および20℃の一定水温条件下で飼育した。また、図3に示すように、昼間は照明を点灯し、夜間は暗黒とした。また、実験区3〜5では、照明の点灯および消灯時間を2月17日に変更した(図3の3〜5(a)、3〜5(b))。照明は全区とも青色光源(波長400〜500nm)を用い、調光器で明るさを制御した。実験開始後3ヵ月目(4月20日)、4ヵ月目(5月18日)、および5ヵ月目(6月20日)に、それぞれの実験区からランダムに4〜10尾を取り上げて解剖し、GSI(生殖腺指数)および卵径の測定値に基づいて成熟進展の有無を調べた。   As shown in FIG. 2, in Experimental Group 1 (Curve 1) and Experimental Group 2 (Curve 2), water temperature fluctuations of 5 to 15 ° C. and 10 to 20 ° C. were given in a 24-hour cycle, respectively. In experimental groups 3 to 5 (curves 3 to 5), the animals were reared under constant water temperature conditions of 5, 15 and 20 ° C, respectively. In addition, as shown in FIG. 3, the lighting was turned on during the daytime and darkness was performed at nighttime. In the experimental groups 3 to 5, the lighting on and off times were changed on February 17 (3 to 5 (a) and 3 to 5 (b) in FIG. 3). The illumination was controlled using a blue light source (wavelength: 400 to 500 nm) in all sections, and the brightness was controlled with a dimmer. At 3 months (April 20), 4th month (May 18), and 5th month (June 20) after the start of the experiment, 4-10 fish were randomly taken from each experimental section and dissected The presence or absence of maturation was examined based on the measured values of GSI (gonad index) and egg diameter.

GSIおよび卵径のデータは、平均値±標準偏差で示した。比較する実験区のデータすべてに正規性かつ等分散性が認められなかったため、Kruskal−Wallis検定を用いて平均値の差を検定した。平均値に有意差が認められた場合は、多重比較法(Steel検定)により、無処理区と各実験区間との比較を行った。すべての統計解析において、有意水準は5%とした。   GSI and egg diameter data are shown as mean ± standard deviation. Since all the data of the experimental plots to be compared did not show normality and equivariance, the difference in mean values was tested using the Kruskal-Wallis test. When a significant difference was recognized in the average value, the untreated section and each experimental section were compared by a multiple comparison method (Steel test). In all statistical analyses, the significance level was 5%.

<結果>
実験開始から3ヵ月目(4月)、4ヵ月目(5月)、および5ヵ月目(6月)に解剖を行い、各実験区のウナギの成熟度を調べたが、図4〜図7および下記の表1に示すように、捕獲時(無処理区)に比べ有意に成熟が進んでいた(即ち、GSIおよび卵径の値が大きくなった)実験区はなかった。

Figure 2008154459
<Result>
Dissection was performed at the 3rd month (April), 4th month (May), and 5th month (June) from the start of the experiment, and the maturity of eels in each experimental group was examined. As shown in Table 1 below, there was no experimental group in which maturation was significantly advanced (that is, the values of GSI and egg diameter were increased) compared to the time of capture (no treatment group).
Figure 2008154459

しかしながら、図4および図6に示したように、実験区1(5〜15℃変動)においては、GSIが8.49で卵径が412μmに達していた個体が、1尾ではあったが3ヵ月目の解剖時に確認できた。また、卵巣の組織学的観察によりこの個体の卵母細胞の発達段階を調べたところ、第二次卵黄球期に達していた。出願人の研究所では、1997年10月から2006年1月にかけて三河湾で捕獲された雌の下りウナギを約700尾解剖しているが、それらのGSIおよび卵径の平均値は、それぞれ約2.5(1.0〜5.2)および230μm(150〜340μm)であり、卵母細胞の発達段階は、油球期から第一次卵黄球期(大部分は第一次卵黄球期)であった。これらのことから、実験区1の飼育条件が成熟促進効果をもたらし、上述のような個体が出現したと考えられる。   However, as shown in FIG. 4 and FIG. 6, in experimental group 1 (fluctuation between 5 and 15 ° C.), there was one individual whose GSI was 8.49 and the egg diameter reached 412 μm, but 3 It was confirmed at the time of dissection of the month. Further, when the developmental stage of the oocyte of this individual was examined by histological observation of the ovary, the secondary yolk bulb stage was reached. The applicant's laboratory dissects approximately 700 female descending eels captured in Mikawa Bay from October 1997 to January 2006. The average values of their GSI and egg diameter are approximately 2.5 (1.0-5.2) and 230 [mu] m (150-340 [mu] m), and the developmental stage of the oocyte is from the oil bulb phase to the primary yolk phase (mostly the primary yolk phase) )Met. From these facts, it is considered that the breeding conditions in Experimental Zone 1 brought a maturation promoting effect, and the above-mentioned individuals appeared.

さらに、解剖した全個体の卵巣の組織標本を観察したところ、下記の表2に示すように、実験区1では、3ヵ月目および4ヵ月目の解剖時においては、退行卵(水温、光周期、溶存酸素量などの環境条件の変動により引き起こされることが知られている)が観察された個体は20%と低かったが、5ヵ月目になると80%に増加していた(表2)。

Figure 2008154459
Furthermore, when the ovarian tissue specimens of all the dissected individuals were observed, as shown in Table 2 below, in the experimental group 1, at the time of dissection at the 3rd and 4th months, regressed eggs (water temperature, photoperiod) It was known that it was caused by fluctuations in environmental conditions such as the amount of dissolved oxygen), but it was as low as 20%, but increased to 80% at the 5th month (Table 2).
Figure 2008154459

実験区2(10〜20℃変動)は、実験区1と同様に10℃の幅で水温を変動させ飼育を行ったが、水温帯を5℃高く設定したことが影響したためか、3ヵ月目の時点で既に80%の個体の卵巣に退行卵が観察された。   Experiment Group 2 (10-20 ° C fluctuation) was reared by changing the water temperature in the range of 10 ° C as in Experiment Group 1, but it was because the water temperature zone was set higher by 5 ° C. At this point, 80% of the ovaries were observed in the ovaries of individuals.

また、高水温で飼育した実験区4(15℃一定)、および実験区5(20℃一定)では、3ヵ月目の解剖時にすべての個体の卵巣において退行卵が観察され、4ヵ月目および5ヵ月目も同様であった。一方、実験区3(5℃一定)で退行卵が観察されたのは、4ヵ月目および5ヵ月目に1尾ずつだけであった。このことから、15℃以上の一定水温飼育では成熟は促進されずに卵母細胞は退行してしまうが、実験区3のように低水温で飼育することにより、退行卵の出現が抑制および遅延されることがわかった。しかしながら、低水温一定条件下では成熟は進展しなかった。   In experimental group 4 (constant at 15 ° C.) and experimental group 5 (constant at 20 ° C.) reared at high water temperature, regressed eggs were observed in the ovaries of all individuals at the time of dissection at the third month. The same was true for the month. On the other hand, in the experimental group 3 (constant at 5 ° C.), only one egg was observed in the 4th and 5th month. From this, maturation is not promoted in breeding at a constant water temperature of 15 ° C. or higher, and the oocyte regresses. However, breeding at low water temperature as in Experimental Zone 3 suppresses and delays the appearance of degenerated eggs. I found out that However, maturation did not progress under constant low water temperature conditions.

以上の結果から、周期的な水温変化がウナギの成熟促進に必要な条件であり、卵母細胞の退行を抑制するためには水温帯も重要であるとの結論が得られる。   From the above results, it can be concluded that periodic water temperature change is a necessary condition for promoting eel maturation, and that the water temperature zone is also important for suppressing oocyte regression.

図1は、実施例で説明したウナギの催熟実験における各実験区の分類を示す図である。FIG. 1 is a diagram showing the classification of each experimental section in the eel ripening experiment described in the examples. 図2は、各実験区における海水温の周期的変動を示す図である。FIG. 2 is a diagram showing periodic fluctuations in seawater temperature in each experimental section. 図3は、各実験区における照明制御を示す図である。FIG. 3 is a diagram showing illumination control in each experimental section. 図4は、各実験区の各ウナギ個体における生殖腺指数(GSI)の測定結果を示す図である。FIG. 4 is a diagram showing the results of measuring the gonad index (GSI) in each eel individual in each experimental section. 図5は、各実験区におけるウナギ個体のGSI(平均値±標準偏差)を示す図である。FIG. 5 is a diagram showing GSI (average value ± standard deviation) of eel individuals in each experimental group. 図6は、各実験区における各ウナギ個体の卵径の測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of the egg diameter of each eel individual in each experimental section. 図7は、各実験区の各ウナギ個体における卵径(平均値±標準偏差)を示す図である。FIG. 7 is a diagram showing the egg diameter (average value ± standard deviation) in each eel individual in each experimental section.

Claims (4)

成熟開始の引き金が引かれ且つ卵巣が産卵可能な状態にまで成熟していない雌ウナギの卵巣を成熟させるためのウナギの催熟方法であって:
海水養殖池環境中において、該養殖池の養殖環境を構成する要素を所定の時間サイクルに従って周期的に変動させながら前記雌ウナギを飼育することにより、該雌ウナギの卵巣を成熟させる工程を含み、前記周期的に変動される要素には、所定の温度範囲で変化する前記海水の温度が含まれることを特徴とする方法。
An eel ripening method for maturing an ovary of a female eel that has been triggered to start maturation and has not matured to the point where the ovaries can lay eggs:
In the seawater aquaculture pond environment, including the step of maturing the ovary of the female eel by breeding the female eel while periodically changing the elements constituting the aquaculture environment of the aquaculture pond according to a predetermined time cycle, The cyclically varying element includes the temperature of the seawater that varies in a predetermined temperature range.
前記周期的に変動される要素に明暗条件を含める共に、前記雌ウナギが明状態では低温を経験し暗状態では高温を経験するように、前記明暗条件および前記海水の温度条件の周期的変動を同期させることを特徴とする、請求項1に記載の方法。   In addition to including light and dark conditions in the periodically fluctuating elements, periodic fluctuations in the light and dark conditions and the temperature conditions of the seawater are such that the female eel experiences low temperatures in the light state and high temperatures in the dark state. The method according to claim 1, wherein synchronization is performed. 前記海水の温度を5℃〜15℃の間で変化させることを特徴とする、請求項2に記載の方法。   The method according to claim 2, wherein the temperature of the seawater is changed between 5 ° C. and 15 ° C. 前記海水養殖池環境において、流速10〜20cm/秒の一定の水流を維持することを特徴とする、請求項1〜3の何れか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein a constant water flow having a flow rate of 10 to 20 cm / sec is maintained in the seawater aquaculture pond environment.
JP2006343314A 2006-12-20 2006-12-20 Method for accelerating maturation of eel Pending JP2008154459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343314A JP2008154459A (en) 2006-12-20 2006-12-20 Method for accelerating maturation of eel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343314A JP2008154459A (en) 2006-12-20 2006-12-20 Method for accelerating maturation of eel

Publications (1)

Publication Number Publication Date
JP2008154459A true JP2008154459A (en) 2008-07-10

Family

ID=39656049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343314A Pending JP2008154459A (en) 2006-12-20 2006-12-20 Method for accelerating maturation of eel

Country Status (1)

Country Link
JP (1) JP2008154459A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041979A (en) * 2008-08-18 2010-02-25 Hachiyo Engneering Kk Heat retention system of aquaculture pond for eel
JP2011168562A (en) * 2010-02-22 2011-09-01 Fisheries Research Agency Fish gth protein and method for inducing maturation of fish by using the protein
CN103688881A (en) * 2013-10-14 2014-04-02 叶金明 Cultivation method for pelteobagrus fulvidraco summerlings fish fries
CN103858801A (en) * 2014-03-20 2014-06-18 苏州市阳澄湖现代农业产业园特种水产养殖有限公司 Culture method of finless eel
CN104206324A (en) * 2014-08-07 2014-12-17 广东省实验动物监测所 Gonad development and breeding method for mugilogobius chulae or ctenogobius gymnauchen
WO2014200305A1 (en) * 2013-06-15 2014-12-18 구골홀딩스 주식회사 Method for inducing artificial ovulation and spawning of fresh-water eels
KR101609906B1 (en) * 2013-06-05 2016-04-07 구골홀딩스 주식회사 Method for inducing maturation of broodstork of eel
JP2016182096A (en) * 2015-03-26 2016-10-20 国立大学法人 鹿児島大学 Eel breeding device, eel breeding method, and eel bred by breeding method
KR101854607B1 (en) 2016-04-01 2018-05-08 제이제이구골홀딩스 주식회사 Method for inducing artificial ovulation and spawn of eel
JP2018143182A (en) * 2017-03-07 2018-09-20 国立大学法人 鹿児島大学 Eel rearing method
CN110199922A (en) * 2019-07-05 2019-09-06 深圳华大海洋科技有限公司 A method of silver eel being changed by yellow eel for induction Female Japanese eel
CN110754400A (en) * 2019-10-28 2020-02-07 长江大学 Method for improving artificial hatchability of finless eel fries
CN112868604A (en) * 2021-01-19 2021-06-01 上海市农业科学院 Method for controlling egg laying of propylaea japonica
CN112931310A (en) * 2021-02-05 2021-06-11 大连海洋大学 Temperature and light regulation and control method for promoting maturity of parent fish of takifugu rubripes
JP2021524979A (en) * 2018-05-23 2021-09-16 ジェージェーアンドグゴルホールディングス株式会社Jj&Googol Holdings Co., Ltd. Integrated management platform for artificial eel seedlings and eels
CN115250970A (en) * 2022-07-08 2022-11-01 西双版纳云博水产养殖开发有限公司 Artificial propagation method and system for Chinese knot fish
CN115443930A (en) * 2022-08-31 2022-12-09 渤海水产育种(海南)有限公司 Parent shrimp breeding method for litopenaeus vannamei with stable spawning period
CN117958185A (en) * 2024-03-13 2024-05-03 中国科学院水生生物研究所 Method for cultivating yellow river carp for four seasons to spawn

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041979A (en) * 2008-08-18 2010-02-25 Hachiyo Engneering Kk Heat retention system of aquaculture pond for eel
JP2011168562A (en) * 2010-02-22 2011-09-01 Fisheries Research Agency Fish gth protein and method for inducing maturation of fish by using the protein
KR101609906B1 (en) * 2013-06-05 2016-04-07 구골홀딩스 주식회사 Method for inducing maturation of broodstork of eel
US9930870B2 (en) 2013-06-15 2018-04-03 Googol Holdings Co., Ltd Method for inducing artificial ovulation and spawning of fresh-water eels
WO2014200305A1 (en) * 2013-06-15 2014-12-18 구골홀딩스 주식회사 Method for inducing artificial ovulation and spawning of fresh-water eels
KR101575930B1 (en) 2013-06-15 2015-12-09 구골홀딩스 주식회사 Method for inducing artificial ovulation and spawn of eel
CN105377025A (en) * 2013-06-15 2016-03-02 古高尔控股有限公司 Method for inducing artificial ovulation and spawning of fresh-water eels
US20160135436A1 (en) * 2013-06-15 2016-05-19 Googol Holdings Co., Ltd Method for inducing artificial ovulation and spawning of fresh-water eels
JP2016521570A (en) * 2013-06-15 2016-07-25 グゴルホールディングス株式会社Googol Holdings Co., Ltd Artificial ovulation and egg-laying induction method for freshwater eel
CN103688881A (en) * 2013-10-14 2014-04-02 叶金明 Cultivation method for pelteobagrus fulvidraco summerlings fish fries
CN103858801A (en) * 2014-03-20 2014-06-18 苏州市阳澄湖现代农业产业园特种水产养殖有限公司 Culture method of finless eel
CN104206324A (en) * 2014-08-07 2014-12-17 广东省实验动物监测所 Gonad development and breeding method for mugilogobius chulae or ctenogobius gymnauchen
JP2016182096A (en) * 2015-03-26 2016-10-20 国立大学法人 鹿児島大学 Eel breeding device, eel breeding method, and eel bred by breeding method
KR101854607B1 (en) 2016-04-01 2018-05-08 제이제이구골홀딩스 주식회사 Method for inducing artificial ovulation and spawn of eel
JP2018143182A (en) * 2017-03-07 2018-09-20 国立大学法人 鹿児島大学 Eel rearing method
JP2021524979A (en) * 2018-05-23 2021-09-16 ジェージェーアンドグゴルホールディングス株式会社Jj&Googol Holdings Co., Ltd. Integrated management platform for artificial eel seedlings and eels
CN110199922A (en) * 2019-07-05 2019-09-06 深圳华大海洋科技有限公司 A method of silver eel being changed by yellow eel for induction Female Japanese eel
CN110754400A (en) * 2019-10-28 2020-02-07 长江大学 Method for improving artificial hatchability of finless eel fries
CN110754400B (en) * 2019-10-28 2022-04-26 长江大学 Method for improving artificial hatchability of finless eel fries
CN112868604A (en) * 2021-01-19 2021-06-01 上海市农业科学院 Method for controlling egg laying of propylaea japonica
CN112931310A (en) * 2021-02-05 2021-06-11 大连海洋大学 Temperature and light regulation and control method for promoting maturity of parent fish of takifugu rubripes
CN115250970A (en) * 2022-07-08 2022-11-01 西双版纳云博水产养殖开发有限公司 Artificial propagation method and system for Chinese knot fish
CN115250970B (en) * 2022-07-08 2023-06-02 西双版纳云博水产养殖开发有限公司 Artificial propagation method and system for Chinese nodakers
CN115443930A (en) * 2022-08-31 2022-12-09 渤海水产育种(海南)有限公司 Parent shrimp breeding method for litopenaeus vannamei with stable spawning period
CN115443930B (en) * 2022-08-31 2023-09-05 渤海水产育种(海南)有限公司 Parent shrimp cultivation method for litopenaeus vannamei with stable spawning period
CN117958185A (en) * 2024-03-13 2024-05-03 中国科学院水生生物研究所 Method for cultivating yellow river carp for four seasons to spawn

Similar Documents

Publication Publication Date Title
JP2008154459A (en) Method for accelerating maturation of eel
CN100506033C (en) Bionics artificial reproduction method of large salamander
CN101919359B (en) Method for comprehensively regulating and controlling gonad mature ovulation of cheilinus undulates
CN103355230B (en) Schizothorax intensified and quick breeding method
CN103621442B (en) The indoor full artificial breeding method of a kind of jellyfish
CN101669452A (en) Mimic ecological propagation method for breeding parent fish of American hilsa herring
CN101715747A (en) Method for promoting Yangtze River saury to naturally spawn
CN101103706B (en) Reproduction method for American reeves shad artificial cultivation parent fish
CN102440204B (en) Mixed breeding method for spotted maigre and large yellow croaker
KR100872327B1 (en) Spawning induction by maturation management of Gizzard shad, Konosirus punctatus, and Hatchery technique
CN102742530A (en) Method for nature spawning and fertilization of scatophagus argus by artificial induction
CN104335938A (en) Siganus guttatus fry breeding method
CN103444605B (en) Natural reeves shad breeding method
CN100488357C (en) Pond cultivation technology of East China Sea lefteye flounder
CN104054597A (en) Nibea albiflora fry artificial mixed feed domestication method
CN1748658A (en) Temperature, the light regulation and control Cynoglossus semilaevis parent fish technical method of laying eggs
CN111655030B (en) Aquaculture method for producing salmon roe
CN110800655A (en) Indoor factory full-season breeding method for micropterus salmoides
CN103404471B (en) A kind of method impelling swamp eel to lay eggs in advance
WO2008074084A1 (en) Production of sea urchin roe
CN114831060A (en) Method for cultivating Micropterus salmoides twice gonadal maturation within one year
CN102273419B (en) Method for cultivating Spanish mackerel
CN103478032A (en) Natural spawning and hatching culture method for silver arowana
CN103478022A (en) Method for promoting nature spawning of american shad by using artificial culture ecological factor
CN106577392A (en) Mariculture method for oncorhynchus keta