JP5782298B2 - Oblique winding spring and wire for oblique winding spring - Google Patents

Oblique winding spring and wire for oblique winding spring Download PDF

Info

Publication number
JP5782298B2
JP5782298B2 JP2011121238A JP2011121238A JP5782298B2 JP 5782298 B2 JP5782298 B2 JP 5782298B2 JP 2011121238 A JP2011121238 A JP 2011121238A JP 2011121238 A JP2011121238 A JP 2011121238A JP 5782298 B2 JP5782298 B2 JP 5782298B2
Authority
JP
Japan
Prior art keywords
spring
wire
outer layer
less
winding spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011121238A
Other languages
Japanese (ja)
Other versions
JP2012248495A (en
Inventor
寛 泉田
寛 泉田
清水 健一
健一 清水
伸栄 高村
伸栄 高村
増田 享哉
享哉 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Original Assignee
NHK Spring Co Ltd
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd, Sumitomo SEI Steel Wire Corp, Sumitomo Electric Industries Ltd filed Critical NHK Spring Co Ltd
Priority to JP2011121238A priority Critical patent/JP5782298B2/en
Publication of JP2012248495A publication Critical patent/JP2012248495A/en
Application granted granted Critical
Publication of JP5782298B2 publication Critical patent/JP5782298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Metal Extraction Processes (AREA)

Description

本発明は、コネクタ接続の接点部材などに利用される斜め巻きばね、及びこの斜め巻きばねの素材に利用される斜め巻きばね用線材に関するものである。特に、ばね特性及び導電性の双方に優れる斜め巻きばね、及びこのばねの素材に適した斜め巻きばね用線材に関するものである。   The present invention relates to an oblique winding spring used for a contact member for connector connection and the like, and an oblique winding spring wire used for a material of the oblique winding spring. In particular, the present invention relates to a slant winding spring that is excellent in both spring characteristics and conductivity, and a slant winding spring wire suitable for the material of the spring.

種々の電気機器と電線とを電気的に接続する構造として、従来、電気機器に設けられたコネクタ部に、電線の端部に設けられた端子を差し込むコネクタ接続が利用されている。また、コネクタ部と端子との接触状態を十分に維持するための多接点部材として、斜め巻きばね(傾斜コイルばね)が利用されている(例えば、特許文献1参照)。斜め巻きばねとは、ピッチ角が周期的に変化する傾斜コイルばねであり、この構造のばねは、その周面に荷重をかけ、各コイルがコイルの軸に対して傾斜した状態に倒れながら圧縮されることにより、例えば、接点として機能する。コネクタ部と端子との間にこの斜め巻きばねを介在させ、ばね荷重(ばねの付勢力)をコネクタ部と端子との双方に作用させることで、コネクタ部と端子との両者の接触状態を十分に維持することができる。   As a structure for electrically connecting various electric devices and electric wires, a connector connection in which a terminal provided at an end portion of the electric wire is inserted into a connector portion provided in the electric device is conventionally used. Further, an oblique winding spring (tilted coil spring) is used as a multi-contact member for sufficiently maintaining the contact state between the connector portion and the terminal (see, for example, Patent Document 1). The slant winding spring is a tilt coil spring whose pitch angle changes periodically. The spring with this structure applies a load to the peripheral surface and compresses each coil as it tilts with respect to the coil axis. Thus, for example, it functions as a contact. By interposing this slanted winding spring between the connector part and the terminal and applying a spring load (spring biasing force) to both the connector part and the terminal, the contact state between the connector part and the terminal is sufficient. Can be maintained.

接点部材には、導電率が高いことが望まれる。従って、上記斜め巻きばねの素材には、従来、特許文献1に記載されるように銅が利用されている。   The contact member is desired to have high conductivity. Therefore, copper is conventionally used as a material for the above-described oblique winding spring as described in Patent Document 1.

しかし、銅は強度が低いことから、銅製の斜め巻きばねでは、端子の抜き差し動作の繰り返しによりへたり易い(塑性変形し易い)。そのため、銅製の斜め巻きばねでは、当該ばねをその軸方向に垂直な方向に圧縮したときのばねの高さの変位(増加)に対して、必要なばね荷重が得られない上に、斜め巻きばねの特性であるばね荷重の非線形領域が得られない。非線形領域とは、ばね荷重が変位量によらず一定して十分な大きさを示す変位領域をいう。従って、特にばね特性(荷重、非線形性)にも優れることが望まれる場合、上記斜め巻きばねの素材には、高強度で導電率が高いベリリウム銅が利用されている。   However, since copper has low strength, copper slant winding springs tend to sag by repeated insertion / removal operations of terminals (easily plastically deformed). For this reason, with a copper diagonal spring, the spring load required for the displacement (increase) of the spring height when the spring is compressed in a direction perpendicular to the axial direction cannot be obtained, and the diagonal winding A non-linear region of spring load, which is a characteristic of the spring, cannot be obtained. The non-linear region refers to a displacement region where the spring load is constant and sufficiently large regardless of the amount of displacement. Accordingly, beryllium copper having high strength and high electrical conductivity is used as the material of the above-described oblique winding spring when it is desired that the spring characteristics (load, nonlinearity) are also excellent.

特開2008-176965号公報JP 2008-176965 A

しかし、ベリリウム(Be)は、人体に有害であり、使用を低減することが望まれる。従って、ベリリウム銅を素材に用いなくても、ベリリウム銅と同等程度、或いは同等以上の導電性を有し、かつばね特性に優れる斜め巻きばね、及びその素材の開発が望まれる。   However, beryllium (Be) is harmful to the human body and it is desirable to reduce its use. Therefore, it is desired to develop an obliquely wound spring having a conductivity equivalent to or equal to or equal to that of beryllium copper and having excellent spring characteristics without using beryllium copper as a material, and its material.

そこで、本発明の目的の一つは、ばね特性及び導電性に優れる斜め巻きばねが得られる斜め巻きばね用線材を提供することにある。また、本発明の他の目的は、ばね特性及び導電性に優れる斜め巻きばねを提供することにある。   Then, one of the objectives of this invention is providing the wire for diagonal winding springs from which the diagonal winding spring excellent in a spring characteristic and electroconductivity is obtained. Another object of the present invention is to provide a diagonally wound spring having excellent spring characteristics and conductivity.

本発明者らは、接点部材に用いられる斜め巻きばねに求められる二つの特性、即ち、導電性に優れること、かつ、へたり難いこと(代表的にはばね荷重が大きいこと、非線形領域が大きいこと)、という二つの特性を満たす構成を種々検討した。その結果、斜め巻きばねの構成材料を単一の材質とすると、ばね特性の向上が難しいことから、複数の異なる材質で構成することを検討した。具体的には、導電率が高い材質と、高強度な材質とを利用し、芯線と、芯線の外周を覆う外側層とを具える複合線材を検討した。そして、コネクタ接続の接点部材に利用される斜め巻きばねでは、(1)外側層は、導電性に優れる材質から構成されること、(2)芯線と外側層との硬度差が十分に大きいこと、が好ましい、との知見を得た。   The inventors of the present invention have two characteristics required for an oblique winding spring used for a contact member, that is, excellent conductivity and difficult to sag (typically a large spring load and a large non-linear region). We studied various configurations that satisfy these two characteristics. As a result, since it is difficult to improve the spring characteristics when the constituent material of the slant winding spring is made of a single material, it has been considered to configure it with a plurality of different materials. Specifically, a composite wire comprising a core wire and an outer layer covering the outer periphery of the core wire using a material having high conductivity and a high-strength material was examined. And in the slant winding spring used for the contact member for connector connection, (1) the outer layer is made of a material having excellent conductivity, and (2) the hardness difference between the core wire and the outer layer is sufficiently large. And obtained the knowledge that it is preferable.

上記知見に基づき、本発明は、芯線及び外側層の構成材料を、特定の硬度差を満たすものとすると共に、外側層を導電性に優れる材質とすることを規定する。   Based on the above findings, the present invention defines that the constituent materials of the core wire and the outer layer satisfy a specific hardness difference, and that the outer layer is made of a material having excellent conductivity.

本発明の斜め巻きばね用線材は、斜め巻きばねの素材に利用される線材であり、芯線とこの芯線の外周に設けられた外側層とを具える複合線材から構成される。上記芯線は、オーステナイト系ステンレス鋼から構成され、上記外側層は、銅、銅合金、アルミニウム、及びアルミニウム合金から選択される1種の金属から構成される。そして、上記芯線と上記外側層とのビッカース硬度Hvの差が350以上である。   The wire for an oblique winding spring of the present invention is a wire used as a material for an oblique winding spring, and is composed of a composite wire comprising a core wire and an outer layer provided on the outer periphery of the core wire. The core wire is made of austenitic stainless steel, and the outer layer is made of one kind of metal selected from copper, copper alloy, aluminum, and aluminum alloy. The difference in Vickers hardness Hv between the core wire and the outer layer is 350 or more.

上記本発明斜め巻きばね用線材を用いることで、本発明斜め巻きばねを製造することができる。本発明の斜め巻きばねは、芯線とこの芯線の外周に設けられた外側層とを具える複合線材から構成される。上記芯線は、オーステナイト系ステンレス鋼から構成され、上記外側層は、銅、銅合金、アルミニウム、及びアルミニウム合金から選択される1種の金属から構成される。そして、上記芯線と上記外側層とのビッカース硬度Hvの差が350以上である。   By using the wire for an oblique winding spring of the present invention, the oblique winding spring of the present invention can be manufactured. The diagonally wound spring of the present invention is composed of a composite wire comprising a core wire and an outer layer provided on the outer periphery of the core wire. The core wire is made of austenitic stainless steel, and the outer layer is made of one kind of metal selected from copper, copper alloy, aluminum, and aluminum alloy. The difference in Vickers hardness Hv between the core wire and the outer layer is 350 or more.

本発明斜め巻きばねをコネクタ接続の接点部材に利用した場合、導電性に優れる材質からなる外側層がコネクタ部と端子との双方に直接接触するため、十分な導通を確保できる。即ち、銅などと比較して導電率が低いステンレス鋼により外側層が構成された場合と比較して、本発明斜め巻きばねは、上記接点部材としての使用時に接触抵抗を低減できる。また、本発明斜め巻きばねは、芯線と外側層との硬度差が十分に大きく、外側層が相対的に低硬度となることで変形し易い。従って、本発明斜め巻きばねは、接点部材に利用した場合、外側層が十分に変形可能であり、変形によりコネクタ部と端子との双方に十分接触できる。この点からも接触抵抗を低減できることから、本発明斜め巻きばねは、接触抵抗の低減により、導電性に優れる。   When the slant winding spring of the present invention is used as a contact member for connector connection, the outer layer made of a material having excellent conductivity is in direct contact with both the connector portion and the terminal, so that sufficient conduction can be ensured. That is, the oblique winding spring of the present invention can reduce the contact resistance when used as the contact member as compared with the case where the outer layer is made of stainless steel having a lower conductivity than copper or the like. Moreover, the diagonally wound spring of the present invention is easily deformed because the hardness difference between the core wire and the outer layer is sufficiently large and the outer layer has a relatively low hardness. Therefore, when the diagonally wound spring of the present invention is used as a contact member, the outer layer can be sufficiently deformed and can sufficiently contact both the connector portion and the terminal by deformation. Since contact resistance can be reduced also from this point, the slant winding spring of this invention is excellent in electroconductivity by reduction of contact resistance.

かつ、本発明斜め巻きばねは、芯線が相対的に十分に高硬度であることで、ばね全体の高強度化を図ることができる。従って、本発明斜め巻きばねは、十分なばね荷重が得られると共に、非線形領域が大きく、非線形性に優れる。そのため、本発明斜め巻きばねは、接点部材に利用した場合、端子の抜き差しを繰り返してもへたり難く、接点部材の信頼性を高められる。また、非線形性に優れることで本発明斜め巻きばねは、製造誤差によりばねの寸法にばらつきがあり、接点部材に利用した場合にばねの軸方向に垂直な方向に圧縮されたばねの高さにばらつきがあっても、非線形領域が大きいことで上記ばねの高さによらず、コネクタ部及び端子の双方に、所定のばね荷重を与えられる。つまり、本発明斜め巻きばねは、製造誤差の吸収も可能であり、端子の抜き差しの繰り返しによるばねの高さの変位が生じない場合でも、接点部材の信頼性を高められる。   And the diagonal winding spring of this invention can achieve the high intensity | strength of the whole spring because a core wire is comparatively enough high hardness. Therefore, the diagonally wound spring of the present invention can obtain a sufficient spring load, has a large non-linear region, and is excellent in non-linearity. For this reason, when the diagonally wound spring of the present invention is used for a contact member, it is difficult to sag even if the terminal is repeatedly inserted and removed, and the reliability of the contact member can be improved. In addition, due to the excellent non-linearity, the slant winding spring of the present invention has variations in spring dimensions due to manufacturing errors, and when used as a contact member, it varies in the height of the spring compressed in the direction perpendicular to the axial direction of the spring. Even if there is, there is a large non-linear region, so that a predetermined spring load can be applied to both the connector part and the terminal regardless of the height of the spring. That is, the slant winding spring of the present invention can absorb manufacturing errors, and the reliability of the contact member can be improved even when the spring height does not change due to repeated insertion and removal of the terminals.

本発明斜め巻きばね用線材は、導電性に優れ、かつ非線形性にも優れる斜め巻きばねを提供することができる。   The wire for an oblique winding spring of the present invention can provide an oblique winding spring that is excellent in conductivity and excellent in non-linearity.

上述のように特定の積層順序の複合線材とすると共に、内外の材質を特定の材質とし、接触抵抗の低減による良好な導電性の確保、かつ高強度材の具備による良好なばね特性の確保を両立するには、複合線材の内外の硬度差を指標にすることができる、と言える。そこで、本発明では、ビッカース硬度Hvの差を規定する。   As mentioned above, it is a composite wire rod with a specific stacking order, and the inner and outer materials are specified materials, ensuring good conductivity by reducing contact resistance, and ensuring good spring characteristics by having a high-strength material. To achieve both, it can be said that the difference in hardness between the inside and outside of the composite wire can be used as an index. Therefore, in the present invention, the difference in Vickers hardness Hv is defined.

本発明の一形態として、上記オーステナイト系ステンレス鋼は、質量%で、C:0.05%以上0.1%以下、及びN:0.1%以上0.3%以下の少なくとも一方を満たす形態が挙げられる。   As an embodiment of the present invention, the austenitic stainless steel may include an embodiment satisfying at least one of C: 0.05% to 0.1% and N: 0.1% to 0.3% by mass%.

上記ステンレス鋼は、炭素(C)や窒素(N)を多く含むことで強度に優れる。また、芯線が高強度なステンレス鋼から構成されるため、例えば、当該芯線を細くできる、即ち、外側層の割合を相対的に多くできる。これらのことから、上記ステンレス鋼からなる芯線を具える上記形態は、ばね特性及び導電性の双方に優れる斜め巻きばねが得られる。或いは、芯線の細経化により、斜め巻きばねの小型化(細径化)を図ることができる。   The stainless steel is excellent in strength because it contains a large amount of carbon (C) and nitrogen (N). Moreover, since the core wire is made of high-strength stainless steel, for example, the core wire can be made thin, that is, the proportion of the outer layer can be relatively increased. From these facts, the above-described form including the core wire made of stainless steel provides an oblique winding spring that is excellent in both spring characteristics and conductivity. Alternatively, the slanted winding spring can be reduced in size (thinner diameter) by making the core wire thinner.

本発明の一形態として、上記複合線材の横断面に対する外側層の面積割合が30%以上90%以下である形態が挙げられる。   As one form of this invention, the form whose area ratio of the outer side layer with respect to the cross section of the said composite wire is 30% or more and 90% or less is mentioned.

上記形態は、外側層の割合が十分に高く、導電性に優れ、かつ高強度な芯線も十分に存在するため、ばね特性及び導電性の双方に優れる斜め巻きばねが得られる。   In the above aspect, the ratio of the outer layer is sufficiently high, the conductivity is excellent, and the high-strength core wire is also sufficiently present, so that an oblique spring having both excellent spring characteristics and conductivity can be obtained.

本発明の一形態として、上記芯線と上記外側層とのビッカース硬度Hvの差が400以上である形態が挙げられる。   As one form of this invention, the form whose difference of the Vickers hardness Hv of the said core wire and the said outer layer is 400 or more is mentioned.

上記形態は、芯線がより高硬度であり、かつ外側層が相対的に低硬度な材料、例えば、軟銅などの高導電率の材料で構成されるため、ばね特性により優れると共に、導電性にもより優れる斜め巻きばねが得られる。   In the above-mentioned form, the core wire has a higher hardness and the outer layer is made of a material having a relatively low hardness, for example, a material having a high conductivity such as annealed copper. A superior oblique winding spring is obtained.

本発明の一形態として、上記オーステナイト系ステンレス鋼が、質量%で、C:0.05%以上0.1%以下及びN:0.1%以上0.3%以下の少なくとも一方を満たし、かつSi:0.3%以上2.0%以下、Mn:0.5%以上4.0%以下、Cr:16%以上20%以下、Ni:6.0%以上14.0%以下を含有し、残部がFe及び不可避的不純物からなる形態が挙げられる。   As an embodiment of the present invention, the austenitic stainless steel satisfies at least one of C: 0.05% to 0.1% and N: 0.1% to 0.3% by mass%, and Si: 0.3% to 2.0%. , Mn: 0.5% or more and 4.0% or less, Cr: 16% or more and 20% or less, Ni: 6.0% or more and 14.0% or less, with the balance being Fe and inevitable impurities.

上記ステンレス鋼は、炭素(C)や窒素(N)が高濃度であることで、上述のように高強度である。また、上述のように芯線の高強度化により、芯線の細経化が可能であるため、外側層の増大を図ることができる。これらのことより、上記形態は、ばね特性及び導電性の双方に優れる斜め巻きばねが得られる。或いは、芯線の細経化により、斜め巻きばねの小型化(細径化)を図ることができる。   The stainless steel has high strength as described above due to the high concentration of carbon (C) and nitrogen (N). Moreover, since the core wire can be thinned by increasing the strength of the core wire as described above, the outer layer can be increased. From these things, the said form can obtain the diagonal winding spring which is excellent in both a spring characteristic and electroconductivity. Alternatively, the slanted winding spring can be reduced in size (thinner diameter) by making the core wire thinner.

上記オーステナイト系ステンレス鋼として、更に、質量%で、Mo:0.1%以上4.0%以下、Nb:0.1%以上2.0%以下、及びTi:0.1%以上2.0%以下から選択される1種又は2種の元素を含有する形態が挙げられる。   As the austenitic stainless steel, one or two kinds selected from Mo: 0.1% to 4.0%, Nb: 0.1% to 2.0%, and Ti: 0.1% to 2.0% in mass%. The form containing an element is mentioned.

上記ステンレス鋼は、Mo,Nb,Tiが添加されることで更に高強度である。また、上述のように芯線の高強度化により芯線の細経化が可能であるため、外側層の増大を図ることができる。これらのことより、上記形態は、ばね特性及び導電性の双方により優れる斜め巻きばねが得られる。或いは、芯線の細経化により、斜め巻きばねの小型化(細径化)を図ることができる。   The stainless steel has higher strength by adding Mo, Nb, and Ti. Moreover, since the core wire can be thinned by increasing the strength of the core wire as described above, the outer layer can be increased. From these things, the said form can obtain the diagonally wound spring which is more excellent in both spring characteristics and conductivity. Alternatively, the slanted winding spring can be reduced in size (thinner diameter) by making the core wire thinner.

本発明斜め巻きばねは、ばね特性及び導電性の双方に優れる。本発明斜め巻きばね用線材は、ばね特性及び導電性の双方に優れる斜め巻きばねが得られる。   The diagonally wound spring of the present invention is excellent in both spring characteristics and conductivity. The wire for oblique winding springs of the present invention provides an oblique winding spring that is excellent in both spring characteristics and conductivity.

図1(A)は、実施形態に係る斜め巻きばね用線材の横断面図、図1(B)は、実施形態に係る斜め巻きばねの正面図及び側面図である。FIG. 1 (A) is a cross-sectional view of the wire for an oblique winding spring according to the embodiment, and FIG. 1 (B) is a front view and a side view of the oblique winding spring according to the embodiment. 図2は、斜め巻きばねの非線形性の測定方法を説明する説明図である。FIG. 2 is an explanatory diagram for explaining a method for measuring the nonlinearity of the obliquely wound spring. 図3は、ばね高さの変位とばね荷重との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the displacement of the spring height and the spring load. 図4は、斜め巻きばねの電気抵抗率の測定方法を説明する説明図である。FIG. 4 is an explanatory diagram for explaining a method of measuring the electrical resistivity of the oblique winding spring. 図5は、斜め巻きばねを接点部材に用いた場合を想定した電気抵抗率の測定方法を説明する説明図であり、図5(A)は側面図、図5(B)は正面図を示す。FIG. 5 is an explanatory diagram for explaining a method of measuring electrical resistivity assuming a case where an oblique winding spring is used as a contact member, FIG. 5 (A) is a side view, and FIG. 5 (B) is a front view. . 図6は、試験例1において作製した斜め巻きばねに通電したときの通電時間と温度上昇との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the energization time and the temperature rise when energizing the oblique winding spring produced in Test Example 1. 図7は、試験例2において作製した斜め巻きばねに通電したときの通電時間と温度上昇との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the energization time and the temperature rise when energizing the oblique winding spring produced in Test Example 2. 図8は、試験例3において作製した斜め巻きばねに通電したときの通電時間と温度上昇との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the energization time and the temperature rise when energizing the slant winding spring produced in Test Example 3. 図9は、試験例4において作製した斜め巻きばねに通電したときの通電時間と温度上昇との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the energization time and the temperature rise when energizing the slant winding spring produced in Test Example 4. 図10は、斜め巻きばねを接点部材に用いた使用例を示す概略説明図である。FIG. 10 is a schematic explanatory view showing an example of use in which a diagonally wound spring is used as a contact member.

以下、本発明をより詳細に説明する。
なお、以下の説明において「組成」の含有量は全て「質量%」である。
The present invention will be described in detail below.
In the following description, the contents of “composition” are all “mass%”.

[複合線材]
(芯線)
芯線は、主として複合線材のばね特性を確保することに寄与する。この芯線の構成材料は、炭素(C)を含有する鉄基合金、即ち鋼であって、クロム(Cr)及びニッケル(Ni)を更に含有し、オーステナイト組織(γ組織)を有するステンレス鋼とする。代表的には、C,Cr,Ni、マンガン(Mn)、珪素(Si)を含有し、残部がFe及び不可避的不純物からなるステンレス鋼であり、例えば、18Cr-8Niステンレス鋼が挙げられる。特に、本発明では、このγ系ステンレス鋼は、後述する外側層とのビッカース硬度Hvの差が350以上を満たす組成からなるものとする。このような組成として、例えば、汎用の鋼種:SUS304を利用することができる。
[Composite wire]
(Core wire)
The core wire mainly contributes to ensuring the spring characteristics of the composite wire. The constituent material of this core wire is an iron-based alloy containing carbon (C), that is, steel, further containing chromium (Cr) and nickel (Ni), and stainless steel having an austenitic structure (γ structure). . Typically, it is a stainless steel containing C, Cr, Ni, manganese (Mn), silicon (Si), the balance being Fe and inevitable impurities, for example, 18Cr-8Ni stainless steel. In particular, in the present invention, this γ-based stainless steel has a composition satisfying a Vickers hardness Hv difference of 350 or more with an outer layer described later. As such a composition, for example, a general-purpose steel type: SUS304 can be used.

特に、Cや窒素(N)の含有量が高いγ系ステンレス鋼は、ビッカース硬度(絶対値)が大きくなり易く、上記硬度差を十分に大きくとることができる。具体的には、C:0.05%以上及びN:0.1%以上の少なくとも一方を満たすことが好ましく、双方を満たすことがより好ましい。   In particular, γ-based stainless steel having a high content of C and nitrogen (N) tends to have a large Vickers hardness (absolute value), and the hardness difference can be sufficiently large. Specifically, it is preferable to satisfy at least one of C: 0.05% or more and N: 0.1% or more, and it is more preferable to satisfy both.

Cは、強力なオーステナイト形成元素であり、ひずみの導入による強化や転位の固着による強化を図ることができる。また、熱処理により、硬度や強度を更に向上できる。Cが多いほど、高硬度化・高強度化を図ることができるが、多過ぎると、Crの炭化物が生成され易くなり、Crの欠乏により靭性の低下や耐食性の低下を招く。従って、Cの含有量は、0.1%以下が好ましく、0.06%以上0.08%以下がより好ましい。   C is a strong austenite-forming element, and can be strengthened by introducing strain and strengthening by fixing dislocations. Moreover, hardness and intensity | strength can further be improved by heat processing. As the amount of C increases, the hardness and strength can be increased. However, when the amount is too large, Cr carbide is easily generated, and the lack of Cr causes a decrease in toughness and a decrease in corrosion resistance. Accordingly, the C content is preferably 0.1% or less, more preferably 0.06% or more and 0.08% or less.

Nも、強力なオーステナイト形成元素であり、転位の固着効果を有する。Nも多いほど、高硬度化・高強度化を図ることができる。しかし、Nが多過ぎると、溶解・鋳造時にブローホールの発生要因となるため、0.3%以下が好ましい。Nのより好ましい含有量は、0.15%以上0.25%以下である。   N is also a strong austenite-forming element and has a dislocation fixing effect. The more N, the higher the hardness and strength. However, if N is too much, it causes blowholes during melting and casting, so 0.3% or less is preferable. A more preferable content of N is 0.15% or more and 0.25% or less.

より具体的な組成として、例えば、C:0.05%〜0.1%及びN:0.1%〜0.3%の少なくとも一方を満たし、Si:0.3%〜2.0%、Mn:0.5%〜4.0%、Cr:16%〜20%、Ni:6.0%〜14.0%を含有し、残部がFe及び不可避的不純物が挙げられる。更に、Mo:0.1%〜4.0%、Nb:0.1%〜2.0%、及びTi:0.1%〜2.0%から選択される1種又は2種の元素を含有する形態が挙げられる。   As a more specific composition, for example, at least one of C: 0.05% to 0.1% and N: 0.1% to 0.3% is satisfied, Si: 0.3% to 2.0%, Mn: 0.5% to 4.0%, Cr: 16% -20%, Ni: 6.0% to 14.0%, with the balance being Fe and inevitable impurities. Furthermore, the form containing 1 type or 2 types of elements selected from Mo: 0.1% -4.0%, Nb: 0.1% -2.0%, and Ti: 0.1% -2.0% is mentioned.

Crは、γ系ステンレス鋼の主要構成元素であり、耐熱性、耐酸化性などに寄与する。γ相の安定性を考慮すると、16%以上が好ましく、靭性の劣化を考慮すると、20%以下が好ましい。Crのより好ましい含有量は、17.0%以上19.0%以下である。   Cr is a main constituent element of γ stainless steel and contributes to heat resistance, oxidation resistance, and the like. Considering the stability of the γ phase, it is preferably 16% or more, and considering the deterioration of toughness, it is preferably 20% or less. A more preferable content of Cr is 17.0% or more and 19.0% or less.

Niは、γ相の安定化に効果がある元素であり、γ相の安定性を考慮すると、6.0%以上が好ましく、Nを比較的多く含む場合にNiを多く含むとブローホールが発生し易くなることから、14.0%以下が好ましい。Niのより好ましい含有量は、8.0%以上11.0%以下である。   Ni is an element that is effective in stabilizing the γ phase. Considering the stability of the γ phase, it is preferably 6.0% or more, and if a relatively large amount of N is included, blow holes are likely to occur. Therefore, 14.0% or less is preferable. A more preferable content of Ni is 8.0% or more and 11.0% or less.

Siは、溶解精錬時の脱酸剤として作用する。脱酸剤としての効果を得るためには、Siの含有量は0.3%以上が好ましい。Siが多いほど強度、耐食性の向上が望めるが、靭性の劣化が懸念される。靭性の劣化を考慮すると、2.0%以下が好ましい。Siのより好ましい含有量は、0.4%以上1.2%以下である。   Si acts as a deoxidizer during melting and refining. In order to obtain the effect as a deoxidizer, the Si content is preferably 0.3% or more. The more Si, the better the strength and corrosion resistance can be expected, but there is concern about the deterioration of toughness. Considering toughness deterioration, 2.0% or less is preferable. A more preferable content of Si is 0.4% or more and 1.2% or less.

Mnは、Siと同様に溶解精錬時の脱酸剤に利用される。また、Mnは、γ相の安定化にも寄与することから、0.5%以上が好ましく、高温での耐酸化性を考慮すると、4.0%以下が好ましい。Mnのより好ましい含有量は、1.0%以上3.0%以下である。   Mn is used as a deoxidizing agent during melting and refining in the same way as Si. Mn also contributes to the stabilization of the γ phase, so 0.5% or more is preferable, and 4.0% or less is preferable in consideration of oxidation resistance at high temperatures. A more preferable content of Mn is 1.0% or more and 3.0% or less.

Mo,Nb,Tiはいずれも、上記特定の範囲で含有することで、γ相中に固溶して機械的特性を向上させることができる。各元素のより好ましい含有量は、Mo:0.5%以上3.0%以下、Nb:0.8%以上1.5%以下、Ti:0.4%以上1.0%以下である。   Any of Mo, Nb, and Ti can be contained in the specific range, so that they can be dissolved in the γ phase to improve the mechanical properties. More preferable contents of each element are Mo: 0.5% to 3.0%, Nb: 0.8% to 1.5%, and Ti: 0.4% to 1.0%.

(外側層)
外側層の構成材料は、銅、銅合金、アルミニウム、及びアルミニウム合金から選択される1種とし、芯線を構成する上述のγ系ステンレス鋼よりも、ビッカース硬度Hvが350以上小さいものとする。これらの金属は、上述のγ系ステンレス鋼よりも導電率が高いことから、外側層は主として複合線材の導電性を確保することに寄与する。また、これらの金属は、上述のγ系ステンレス鋼よりも相対的に柔らかいため、複合線材の製造時、芯線の原料素線の変形に十分に追従することができる。更に、これらの金属は、相対的に柔らかいことで容易に変形できる。そのため、本発明斜め巻きばね用線材から製造された斜め巻きばねを接点部材に利用した場合、外側層を構成するこれらの金属は、端子の挿入時の押圧力により十分に変形して、コネクタ部及び端子の双方との接触面積を十分に確保できる。従って、このような外側層により、コネクタ部及び端子との接触抵抗を効果的に低減して、導電性に優れる斜め巻きばねが得られる。
(Outer layer)
The constituent material of the outer layer is one selected from copper, copper alloy, aluminum, and aluminum alloy, and the Vickers hardness Hv is 350 or less smaller than the above-described γ-based stainless steel constituting the core wire. Since these metals have higher conductivity than the above-described γ-based stainless steel, the outer layer mainly contributes to ensuring the conductivity of the composite wire. Moreover, since these metals are relatively softer than the above-mentioned γ-type stainless steel, they can sufficiently follow the deformation of the raw material wires of the core wire during the production of the composite wire. Furthermore, these metals are relatively soft and can be easily deformed. Therefore, when the slant winding spring manufactured from the wire for slant winding spring of the present invention is used as a contact member, these metals constituting the outer layer are sufficiently deformed by the pressing force at the time of inserting the terminal, and the connector portion And a sufficient contact area with both terminals can be secured. Therefore, such an outer layer effectively reduces the contact resistance with the connector portion and the terminal, and an oblique winding spring having excellent conductivity can be obtained.

銅は、Cu含有量が99.9%以上のいわゆる純銅、代表的には軟銅(導電率:100%IACS)が挙げられる。銅合金は、例えば、リン青銅(例えば、Sn:5.5%〜7.0%、P:0.03%〜0.35%を含有するもの。具体的にはJIS規格のC5191など)、黄銅(例えば、Zn:38%〜41%を含有するもの。具体的には、JIS規格のC2801など)が挙げられる。銅や銅合金は、導電率が高い上に、ステンレス鋼との熱膨張係数の差及び腐食電位の差が小さく、ステンレス鋼との複合線材の構成材料に好適である。なお、外側層の構成材料をベリリウム銅とした場合でも本発明では芯線を具えることから、斜め巻きばねや斜め巻きばね用線材の全体がベリリウム銅から構成される場合と比較して、ベリリウム銅の使用量を低減できる。従って、上記銅合金としてベリリウム銅を用いることができるが、使用しない方が好ましい。   The copper includes so-called pure copper having a Cu content of 99.9% or more, typically soft copper (conductivity: 100% IACS). Copper alloys include, for example, phosphor bronze (for example, Sn: 5.5% to 7.0%, P: 0.03% to 0.35%, specifically JIS C5191, etc.), brass (for example, Zn: 38%) One containing ˜41% (specifically, C2801 of JIS standard). Copper and copper alloys have high electrical conductivity and also have a small difference in thermal expansion coefficient and corrosion potential from stainless steel, and are suitable as a constituent material for composite wires with stainless steel. Even when beryllium copper is used as the constituent material of the outer layer, the present invention includes a core wire. Therefore, compared to the case where the whole of the slant winding spring and the slant winding spring wire is made of beryllium copper, beryllium copper. Can be reduced. Therefore, beryllium copper can be used as the copper alloy, but it is preferable not to use it.

アルミニウムは、Al含有量が99.0%以上のいわゆる純アルミニウム(JIS規格の1000系。例えば、A1050、A1070、A1085、A1100など)、アルミニウム合金は、例えば、Al-Cu系合金(JIS規格の2000系。例えば、A2017など)、Al-Mg系合金(JIS規格の5000系。例えば、A5052、A5083など)、Al-Zn-Mg系合金(JIS規格の7000系。例えば、A7075など)などが挙げられる。アルミニウムやアルミニウム合金は、軽量であり、複合線材の軽量化を図ることができる。   Aluminum is a so-called pure aluminum (JIS standard 1000 series, for example, A1050, A1070, A1085, A1100, etc.) with an Al content of 99.0% or more, and aluminum alloy is, for example, an Al-Cu alloy (JIS standard 2000 series). For example, A2017 etc.), Al-Mg alloys (JIS standard 5000 series, such as A5052, A5083 etc.), Al-Zn-Mg alloys (JIS standard 7000 series, eg A7075 etc.), etc. . Aluminum and aluminum alloys are lightweight, and the weight of the composite wire can be reduced.

(芯線と外側層との比率)
上記複合線材の横断面における外側層の面積割合が高いほど、導電性に優れ、芯線の面積割合が高いほど、高強度である。本発明斜め巻きばね用線材から製造された斜め巻きばねを接点部材に利用する場合、十分な導電性を得るためには、上記外側層の面積割合は、30%以上が好ましい。芯線と外側層とのビッカース硬度Hvの差が大きいほど、芯線は相対的に高硬度・高強度であることから、芯線を細くしても、十分な強度を維持できるため、外側層の面積割合を増大できる。しかし、外側層の面積割合が大き過ぎると、複合線材の製造時において伸線性の低下や斜め巻きばねのばね特性の低下を招くことから、外側層の面積割合は90%以下が好ましい。外側層の面積割合のより好ましい範囲は、30%以上60%以下である。
(Ratio between core wire and outer layer)
The higher the area ratio of the outer layer in the cross section of the composite wire, the better the conductivity. The higher the area ratio of the core wire, the higher the strength. When the diagonally wound spring manufactured from the diagonally wound spring wire of the present invention is used as a contact member, the area ratio of the outer layer is preferably 30% or more in order to obtain sufficient conductivity. The greater the difference in Vickers hardness Hv between the core wire and the outer layer, the higher the hardness and strength of the core wire, so even if the core wire is thin, sufficient strength can be maintained, so the area ratio of the outer layer Can be increased. However, if the area ratio of the outer layer is too large, the drawability and the spring characteristics of the slant winding spring are deteriorated during the production of the composite wire. Therefore, the area ratio of the outer layer is preferably 90% or less. A more preferable range of the area ratio of the outer layer is 30% or more and 60% or less.

(線径)
上記複合線材は、所望の斜め巻きばねが得られるように、種々の線径を選択することができる。コネクタ接続の接点部材に利用される斜め巻きばねの素材とする場合、線径は、0.2mm〜1.2mmが挙げられる。
(Wire diameter)
For the composite wire, various wire diameters can be selected so that a desired oblique winding spring can be obtained. In the case of using the material of the slant winding spring used for the contact member for connector connection, the wire diameter is 0.2 mm to 1.2 mm.

(機械的特性)
そして、本発明では、芯線は、外側層よりもビッカース硬度Hvが高く、その差が350以上であることを最大の特徴とする。この硬度差が高いほど、芯線のビッカース硬度の絶対値も相対的に大きくなって強度が高くなり、非線形領域が大きく、かつ導電性に優れる斜め巻きばねが得られる。従って、上記硬度差は、高いほど好ましく、380以上、更に400以上が好ましく、特に上限は設けない。芯線のビッカース硬度Hvの絶対値は、600以上、更に650以上が好ましい。
(Mechanical properties)
In the present invention, the core wire is characterized in that the Vickers hardness Hv is higher than that of the outer layer, and the difference is 350 or more. As the hardness difference is higher, the absolute value of the Vickers hardness of the core wire is relatively increased and the strength is increased, and a diagonally wound spring having a large non-linear region and excellent conductivity is obtained. Therefore, the hardness difference is preferably as high as possible, and is preferably 380 or more, more preferably 400 or more, and there is no particular upper limit. The absolute value of the Vickers hardness Hv of the core wire is preferably 600 or more, more preferably 650 or more.

(電気的特性)
本発明斜め巻きばね用線材は、導電率が高く、外側層の面積割合にもよるが、20%IACS以上を満たす形態とすることができる。外側層の面積割合が高いほど、導電率も高くなり、50%IACS以上を満たす形態とすることができる。
(Electrical characteristics)
The wire for an oblique winding spring of the present invention has a high electrical conductivity and can be configured to satisfy 20% IACS or more, depending on the area ratio of the outer layer. The higher the area ratio of the outer layer is, the higher the conductivity is, and it is possible to obtain a form satisfying 50% IACS or more.

[斜め巻きばね]
本発明斜め巻きばねを構成する複合線材は、芯線と外側層とのビッカース硬度Hvの差が350以上を満たす。従って、本発明斜め巻きばねは、同様の仕様としたベリリウム銅製の斜め巻きばねと比較して、高強度化が可能であるため、ばね荷重をより大きくしたり、非線形領域をより大きくしたり、低抵抗にしたりすることができる。また、後述する試験例に示すように、ばね加工後、熱処理を施すことで、硬度差が更に大きいばねとすることができる。
[Slant winding spring]
In the composite wire constituting the oblique winding spring of the present invention, the difference in Vickers hardness Hv between the core wire and the outer layer satisfies 350 or more. Therefore, the oblique winding spring of the present invention can be increased in strength compared to the beryllium copper oblique winding spring having the same specifications, so that the spring load is increased, the nonlinear region is increased, Or low resistance. Moreover, as shown in the test example mentioned later, it can be set as a spring with a still larger hardness difference by heat-processing after a spring process.

本発明斜め巻きばねの軸方向の長さ、長径、短径、巻き数などは、適宜選択することができる。なお、本発明斜め巻きばねは、素材に用いた線材(代表的には、本発明斜め巻きばね用線材)における硬度差を実質的に維持する、或いは、同硬度差がより大きい。また、本発明斜め巻きばねを構成する複合線材の組成、外側層の面積割合、線径、導電率は、素材に用いた線材(代表的には、本発明線材)における組成、外側層の面積割合、線径、導電率を実質的に維持する。   The axial length, the major axis, the minor axis, the number of windings, and the like of the oblique winding spring of the present invention can be appropriately selected. The oblique winding spring of the present invention substantially maintains the hardness difference in the wire used for the material (typically, the wire for the oblique winding spring of the present invention) or has a larger hardness difference. Further, the composition of the composite wire constituting the slant winding spring of the present invention, the area ratio of the outer layer, the wire diameter, and the conductivity are the composition of the wire used for the material (typically, the wire of the present invention), the area of the outer layer. The ratio, wire diameter, and conductivity are substantially maintained.

[製造方法]
本発明斜め巻きばね用線材は、いわゆるクラッド線の製造方法、即ち、芯線となる原料素線の準備・外側層となる原料部材の準備→原料素線と原料部材との一体化物の作製→一体化物の伸線加工、という工程を経て製造することができる。原料素線の製造には、公知のγ系ステンレス鋼線の製造方法を利用でき、代表的には、溶製→熱間鍛造→熱間圧延→伸線加工という工程を経て原料素線を製造することができる。外側層の原料部材には、パイプ材、帯状材、板状材を利用することができる。上記一体化物は、例えば、原料素線をパイプ材に挿入したり、原料素線の外周に帯状材を巻き付けたり、板状材で包んだりすることで製造することができる。パイプ材、帯状材、板状材の製造には、公知の銅パイプや銅板、アルミニウムパイプやアルミニウム板の製造方法を利用できる。パイプ材は、代表的には、溶解→鋳造→熱間押出→冷間圧延→抽伸(引き抜き、延伸)、板状材は、溶解→鋳造→熱間圧延→冷間圧延という工程を経て製造することができる。原料素線の線径、パイプ材や板状材・帯状材の厚さ(外径)、伸線加工度などは、複合線材の最終線径や強度、外側層の面積割合が所望の値となるように適宜選択することができる。
[Production method]
The wire for an oblique winding spring of the present invention is a so-called clad wire manufacturing method, that is, preparation of a raw material wire to be a core wire, preparation of a raw material member to be an outer layer → manufacturing an integrated material of raw material wire and raw material member → integration It can be manufactured through a process of drawing a chemical compound. For the production of raw material wire, a known method of manufacturing a γ-based stainless steel wire can be used. Typically, the raw material wire is manufactured through the steps of melting, hot forging, hot rolling, and wire drawing. can do. A pipe material, a strip-shaped material, or a plate-shaped material can be used for the raw material member of the outer layer. The integrated product can be manufactured, for example, by inserting a raw material wire into a pipe material, wrapping a strip-shaped material around the outer periphery of the raw material wire, or wrapping with a plate-shaped material. A known copper pipe or copper plate, aluminum pipe or aluminum plate manufacturing method can be used for the production of the pipe material, strip material or plate material. The pipe material is typically manufactured through a process of melting → casting → hot extrusion → cold rolling → drawing (drawing, stretching), and plate material is manufactured through a process of melting → casting → hot rolling → cold rolling. be able to. The final wire diameter and strength of the composite wire and the area ratio of the outer layer are the desired values for the wire diameter of the raw material wire, the thickness (outer diameter) of the pipe material, plate-like material, and strip-like material, and the degree of wire drawing It can select suitably so that it may become.

上記原料素線と原料部材とは、十分な硬度差を有する。従って、上記複合化のための伸線加工時、原料素線と原料部材との境界部分に、伸線加工により加えられる応力のずれが生じ難く、原料素線に追従するように原料部材が十分に変形する。そのため、得られた複合線材において芯線と外側層との境界部分が機械的弱点に実質的にならず、この複合線材により製造された本発明斜め巻きばねは、非線形性に優れる。   The raw material wire and the raw material member have a sufficient hardness difference. Therefore, at the time of wire drawing for the above-mentioned compounding, the stress applied by wire drawing hardly occurs at the boundary portion between the raw material wire and the raw material member, and the raw material member is sufficient to follow the raw material wire. Transforms into Therefore, the boundary portion between the core wire and the outer layer does not substantially become a mechanical weak point in the obtained composite wire, and the oblique winding spring of the present invention manufactured using this composite wire is excellent in non-linearity.

上記複合化のための伸線加工後、熱処理を施してもよい。熱処理を施すことで、特にC,Nなどを多く含むγ系ステンレス鋼の硬度をより高められ、芯線と外側層との硬度差をより大きくすることができる。芯線の材質にもよるが、例えば、上記硬度差を400以上、更に450以上、特に500以上とすることができ、ばね特性に更に優れる斜め巻きばねが得られる。一方、外側層は、この熱処理によりいわば時効処理が施された状態となるため、導電率をより高められる。この熱処理の温度は、例えば、400℃以上500℃以下が挙げられる。   You may heat-process after the wire drawing for the said composite. By performing the heat treatment, the hardness of the γ-based stainless steel containing a large amount of C, N, etc. can be increased, and the hardness difference between the core wire and the outer layer can be further increased. Although depending on the material of the core wire, for example, the hardness difference can be set to 400 or more, further 450 or more, particularly 500 or more, and an oblique winding spring having further excellent spring characteristics can be obtained. On the other hand, since the outer layer is in a state of being subjected to aging treatment by this heat treatment, the conductivity can be further increased. The temperature of this heat treatment is, for example, 400 ° C. or higher and 500 ° C. or lower.

上記本発明斜め巻きばね用線材を螺旋状に巻回することで、本発明斜め巻きばねを製造することができる。巻回方法は、公知の方法を利用できる。ばね加工後に歪み取りを目的とした熱処理を施すと、よりへたり難くすることができる。この熱処理の温度は、例えば、200℃以上300℃以下が挙げられる。また、この熱処理の温度を上述のように高めると、上述のようにビッカース硬度Hvの差をより大きくすることができ、歪み除去による高強度化に加えて、ばね特性及び導電性の更なる向上も図ることができる。   The diagonal winding spring of the present invention can be manufactured by winding the wire for the diagonal winding spring of the present invention spirally. A known method can be used as the winding method. When heat treatment for the purpose of strain removal is performed after spring processing, it can be made more difficult to sag. The temperature of this heat treatment is, for example, 200 ° C. or higher and 300 ° C. or lower. In addition, when the temperature of this heat treatment is increased as described above, the difference in Vickers hardness Hv can be increased as described above, and in addition to increasing the strength by removing strain, the spring characteristics and conductivity are further improved. Can also be planned.

以下、試験例を挙げて、本発明斜め巻きばね用線材及び本発明斜め巻きばねの特性を説明する。表1は、以下の試験例に用いる素材の材質を示す(各元素の含有量:質量%)。鋼種1は、SUS304相当材であり、鋼種3は、SUS316相当材、Al(1)は、A1050相当材、Al(2)は、A2017相当材である。   Hereinafter, a test example is given and the characteristic of the wire material for diagonal winding springs of this invention and the diagonal winding spring of this invention is demonstrated. Table 1 shows the materials of the materials used in the following test examples (content of each element: mass%). Steel type 1 is a SUS304 equivalent material, steel type 3 is a SUS316 equivalent material, Al (1) is an A1050 equivalent material, and Al (2) is an A2017 equivalent material.

Figure 0005782298
Figure 0005782298

[試験例1]
表1に示す鋼種1の原料素線、及び原料部材として軟銅からなるパイプ材、アルミニウムからなるパイプ材、アルミニウム合金からなるパイプ材を用意し、各パイプ材にそれぞれ原料素線を挿入した一体化物に伸線加工を施し、線径:φ0.6mmのクラッド線材(複合線材)を作製した(試料No.1-1,1-2,1-3)。原料素線、パイプ材は公知の製造条件により作製した。複合化のための伸線加工は、銅線などの製造に利用される製造設備を利用することができる。この試験では、上記製造設備を利用して、複合線材の内部が均一的に加工されるようにダイス角度や加工度などを調整して複合線材を作製した。得られた試料No.1-1,1-2,1-3の複合線材1は、図1(A)に示すように、γ系ステンレス鋼からなる芯線11と、芯線11の全周を覆い、軟銅やアルミニウム、アルミニウム合金からなる外側層12とを具える。外側層12の厚さは、芯線11の全周に亘り、均一的である。
[Test Example 1]
Steel 1 material strands shown in Table 1, and pipe materials made of annealed copper, pipe materials made of aluminum, and pipe materials made of aluminum alloy as raw material members, and an integrated product with raw material wires inserted into each pipe material The wire was subjected to wire drawing to produce a clad wire (composite wire) having a wire diameter of φ0.6 mm (Sample Nos. 1-1, 1-2, 1-3). The raw material wires and pipe materials were produced under known production conditions. For wire drawing for compounding, a manufacturing facility used for manufacturing copper wire or the like can be used. In this test, a composite wire was manufactured by adjusting the die angle and the degree of processing so that the inside of the composite wire was uniformly processed using the above manufacturing equipment. The composite wire 1 of the obtained sample Nos. 1-1, 1-2, 1-3 covers the entire circumference of the core wire 11 and the core wire 11 made of γ-based stainless steel, as shown in FIG. And an outer layer 12 made of annealed copper, aluminum, or an aluminum alloy. The thickness of the outer layer 12 is uniform over the entire circumference of the core wire 11.

比較材として、軟銅からなる原料素線と鋼種1からなるパイプ材とを用意して、線径:φ0.6mmのクラッド線材を作製した(試料No.100)。原料素線、パイプ材は公知の製造条件により作製した。複合化は、上記試料No.1-1と同様の製造設備を用いて行った。別の比較材として、ベリリウム銅(Be:0.15質量%〜2.00質量%)からなり、線径:φ0.6mmの線材を用意した(試料No.200)。   As a comparative material, a raw material wire made of annealed copper and a pipe material made of steel type 1 were prepared, and a clad wire with a wire diameter of φ0.6 mm was prepared (Sample No. 100). The raw material wires and pipe materials were produced under known production conditions. Compounding was performed using the same production equipment as Sample No. 1-1. As another comparative material, a wire material made of beryllium copper (Be: 0.15 mass% to 2.00 mass%) and having a wire diameter of φ0.6 mm was prepared (Sample No. 200).

用意した線材を螺旋状に巻回して斜め巻きばね2(図1(B))を作製した。ばねの仕様は、長径l(mm):5.4mm×短径b(mm):5.0mmの楕円端面、ばね長さL:45mm、総巻数:50である(図1(B)の巻数、ばねの軸方向に対するコイルの傾斜角は例示である)。   The prepared wire was spirally wound to produce a diagonally wound spring 2 (FIG. 1 (B)). The specifications of the spring are: major axis l (mm): 5.4 mm × minor axis b (mm): ellipse end face of 5.0 mm, spring length L: 45 mm, total number of turns: 50 (number of turns in FIG. 1 (B), spring The angle of inclination of the coil with respect to the axial direction is an example.

作製した斜め巻きばねを構成する線材の横断面をとり、当該横断面における外側層の面積割合を調べた。その結果を表2に示す。また、この横断面を用いて、芯線及び外側層のビッカース硬度Hvを測定した。その結果を表2に示す。ビッカース硬度Hvは、上記横断面において、芯線は、その中心位置、外側層はその厚さ方向の中心位置にそれぞれ圧子を押し当てて測定する。なお、上記用意した線材も、その横断面をとり、上記と同様にして芯線及び外側層のビッカース硬度Hvをそれぞれ測定することができる。   The cross section of the wire which comprises the produced diagonal winding spring was taken, and the area ratio of the outer layer in the said cross section was investigated. The results are shown in Table 2. Moreover, the Vickers hardness Hv of a core wire and an outer side layer was measured using this cross section. The results are shown in Table 2. The Vickers hardness Hv is measured by pressing an indenter at the center position of the core wire and at the center position in the thickness direction of the outer layer in the cross section. In addition, the prepared wire can also take the cross section, and can measure the Vickers hardness Hv of a core wire and an outer layer similarly to the above.

作製した斜め巻きばねの非線形性を調べた。その結果を表2に示す。ここでは、斜め巻きばねが接点部材に利用され、コネクタ部と端子とに押圧された状態を想定して、図2に示すように斜め巻きばね2をその軸方向に垂直な方向に圧縮できるように一対の挟持部材50で挟む。この状態で変位量(ばねの押し付け量=ばね高さ(斜め巻きばねの軸方向に垂直な方向の大きさ)の変位量)を増加させたときの荷重を調べる。変位量を増加しても荷重がほとんど上昇しない、或いは上昇が小さい場合、斜め巻きばねは、変位量によらず一定のばね荷重が得られる領域が大きいと言える。そこで、ここでは、荷重の変化が20N以内となる変位量の最大値を非線形領域の長さとする。この非線形領域が長いほど、非線形性に優れると言える。   The non-linearity of the manufactured oblique winding spring was examined. The results are shown in Table 2. Here, assuming that the slant winding spring is used as a contact member and is pressed against the connector portion and the terminal, the slant winding spring 2 can be compressed in a direction perpendicular to its axial direction as shown in FIG. Is sandwiched between a pair of clamping members 50. In this state, the load when the displacement amount (spring pressing amount = displacement amount of the spring height (direction perpendicular to the axial direction of the slant winding spring)) is increased is examined. If the load hardly increases even if the amount of displacement is increased, or if the increase is small, it can be said that the oblique winding spring has a large region where a constant spring load can be obtained regardless of the amount of displacement. Therefore, here, the maximum value of the displacement amount at which the load change is within 20 N is defined as the length of the nonlinear region. It can be said that the longer this nonlinear region, the better the nonlinearity.

作製した斜め巻きばねの導電率を調べた。導電率は、斜め巻きばねの両端に端子部材を接触させて求めた。その結果を表2に示す。   The conductivity of the manufactured oblique winding spring was examined. The electrical conductivity was obtained by bringing a terminal member into contact with both ends of the slant winding spring. The results are shown in Table 2.

作製した斜め巻きばねの電気抵抗率を調べた。ここでは、二通りの方法で調べた。一つは、図4に示すように、斜め巻きばね2の両端を一対の端子部材51(ここではAgめっきされた真鍮板)で挟み、4端子法により測定した(ばねの抵抗値=全体抵抗−(一方の端子部材の抵抗+他方の端子部材の抵抗))。その結果を表2に示す(表2の「両端」)。   The electrical resistivity of the manufactured oblique winding spring was examined. Here, two methods were used. As shown in FIG. 4, one end is sandwiched between a pair of terminal members 51 (here, Ag-plated brass plates) and measured by a four-terminal method (spring resistance value = total resistance). -(Resistance of one terminal member + resistance of the other terminal member)). The results are shown in Table 2 ("Both ends" in Table 2).

他の一つは、斜め巻きばねが接点部材に利用され、コネクタ部と端子とに挟まれた状態を想定して、図5に示すように斜め巻きばね2をその軸方向に垂直な方向に挟むように一対の端子部材52(ここではAgめっきされた真鍮板)を配置して、4端子法により測定した。その結果を表2に示す(表2の「使用時」)。   As another example, assuming that the slant winding spring is used as a contact member and is sandwiched between the connector portion and the terminal, the slant winding spring 2 is placed in a direction perpendicular to its axial direction as shown in FIG. A pair of terminal members 52 (here, Ag-plated brass plates) were arranged so as to be sandwiched, and measurement was performed by a four-terminal method. The results are shown in Table 2 ("in use" in Table 2).

作製した斜め巻きばねに通電して温度の上昇度合いを調べた。通電条件は、電流値:100Aとし、通電開始からの温度変化を図6に示す。また、(通電開始から所定時間(800sec)経過の温度)−通電前の温度を上昇温度とし、上昇温度を表2に示す。   The manufactured oblique winding spring was energized to investigate the degree of temperature rise. The energization condition is a current value of 100 A, and the temperature change from the start of energization is shown in FIG. Further, (temperature after the start of energization for a predetermined time (800 sec)) − temperature before energization is defined as an elevated temperature, and the elevated temperature is shown in Table 2.

Figure 0005782298
Figure 0005782298

表2に示すように、芯線がγ系ステンレス鋼からなり、外側層が銅やアルミニウム、アルミニウム合金で構成された複合線材からなる試料No.1-1,1-2,1-3の斜め巻きばねは、ビッカース硬度Hvの差が350以上を満たす。そして、この試料No.1-1,1-2,1-3の斜め巻きばねは、ベリリウム銅からなる斜め巻きばねや外側層がγ系ステンレス鋼からなる斜め巻きばねよりも非線形領域が大きく、ばね特性に優れることが分かる。なお、ばね加工前の複合線材も、斜め巻きばねと同様にビッカース硬度Hvの差が350以上を満たしており、斜め巻きばねは、素材に用いた複合線材の硬度差を実質的に維持している。   As shown in Table 2, sample Nos. 1-1, 1-2, and 1-3 are slantedly wound with a composite wire consisting of a core wire made of γ stainless steel and an outer layer made of copper, aluminum, or an aluminum alloy. The spring satisfies a Vickers hardness Hv difference of 350 or more. And the oblique winding spring of this sample No. 1-1, 1-2, 1-3 has a larger non-linear region than the oblique winding spring made of beryllium copper and the oblique winding spring whose outer layer is made of γ series stainless steel, It can be seen that the spring characteristics are excellent. The composite wire before the spring processing also has a Vickers hardness Hv difference of 350 or more, similar to the diagonal winding spring, and the diagonal winding spring substantially maintains the hardness difference of the composite wire used for the material. Yes.

特に、外側層に軟銅を用いた試料No.1-1の斜め巻きばねは、接点部材での使用時を想定した状態において電気抵抗値が0.12m・Ω以下であり、非常に低抵抗であることが分かる。従って、この斜め巻きばねは、導電性に優れると言える。このような結果となった理由は、外側層が導電性に非常に優れる銅で構成されていることで、接触抵抗を低減できたため、かつ、外側層が相対的に低硬度な材料で構成されることで、外側層が変形して接触面積を増大し、接触抵抗が低減できたため、と考えられる。また、試料No.1-1の斜め巻きばねは、導電率自体も高いこと、低抵抗であることで温度上昇も小さいことが分かる。斜め巻きばねを接点部材に利用した場合、斜め巻きばねの抵抗が大きいと、発熱量が多くなり、発熱に伴う温度上昇によって斜め巻きばねに応力緩和(へたり)が生じ得る。応力緩和の大きさによっては、所定のばね荷重が得られなくなる。試料No.1-1のように電気抵抗が小さい斜め巻きばねは、温度上昇に伴う応力緩和が生じ難く、所定のばね荷重を良好に得ることができると言える。つまり、導電率が高く、かつ接点部材として使用した状態における抵抗が低い試料No.1-1のような斜め巻きばねは、接点部材に好適に利用できると言える。   In particular, the diagonally wound spring of Sample No. 1-1 using soft copper for the outer layer has an electric resistance value of 0.12 m · Ω or less in a state assumed to be used in a contact member, and has a very low resistance. I understand that. Therefore, it can be said that this slant winding spring is excellent in conductivity. The reason for this result is that the outer layer is made of copper, which is very excellent in electrical conductivity, so that the contact resistance can be reduced, and the outer layer is made of a material with relatively low hardness. This is probably because the outer layer was deformed to increase the contact area and reduce the contact resistance. Further, it can be seen that the diagonally wound spring of Sample No. 1-1 has a high conductivity itself and a low resistance due to its low resistance. When an oblique winding spring is used as a contact member, if the resistance of the oblique winding spring is large, the amount of heat generation increases, and stress relaxation (sagging) may occur in the oblique winding spring due to a temperature rise accompanying heat generation. Depending on the magnitude of the stress relaxation, a predetermined spring load cannot be obtained. It can be said that the slant winding spring having a small electrical resistance as in sample No. 1-1 is less likely to cause stress relaxation due to temperature rise and can obtain a predetermined spring load satisfactorily. That is, it can be said that an oblique winding spring such as Sample No. 1-1 having high conductivity and low resistance when used as a contact member can be suitably used for the contact member.

外側層にアルミニウムやアルミニウム合金を用いた試料No.1-2,1-3の斜め巻きばねも、試料No.1-1と同様に接点部材での使用時を想定した状態において低抵抗になっていることが分かる。従って、これらの斜め巻きばねも、外側層の変形により接触抵抗が低減でき、導電性に優れると言える。また、試料No.1-2,1-3の斜め巻きばねは、アルミニウムやアルミニウム合金を利用することで、軽量化を図ることができる。   The diagonally wound springs of Samples Nos. 1-2 and 1-3 that use aluminum or an aluminum alloy for the outer layer also have a low resistance in the state assumed to be used for contact members, as with Sample No. 1-1. I understand that Therefore, it can be said that these slant winding springs can also be reduced in contact resistance due to deformation of the outer layer and are excellent in conductivity. In addition, the slant winding springs of Sample Nos. 1-2 and 1-3 can be reduced in weight by using aluminum or an aluminum alloy.

以上から、接点部材に利用される斜め巻きばねの外側層は、γ系ステンレス鋼よりも導電率が高く、かつ、相対的に低硬度である材料から構成されることが好ましいと言える。   From the above, it can be said that the outer layer of the diagonally wound spring used for the contact member is preferably made of a material having higher conductivity and relatively low hardness than γ-based stainless steel.

[試験例2]
表1に示す鋼種1の原料素線、及び原料部材として軟銅からなるパイプ材を用意し、試験例1の試料No.1-1と同様に、芯線:γ系ステンレス鋼、外側層:軟銅、線径:φ0.6mmのクラッド線材(複合線材)を作製した。この試験では、種々の大きさの原料素線、及びパイプ材を用意して、外側層の面積割合が異なる複合線材を作製した。
[Test Example 2]
Prepare the raw material strand of steel type 1 shown in Table 1 and a pipe material made of annealed copper as a material member, as in Sample No. 1-1 of Test Example 1, core wire: γ-based stainless steel, outer layer: annealed copper, A clad wire (composite wire) having a wire diameter of φ0.6 mm was produced. In this test, raw material wires and pipe materials of various sizes were prepared, and composite wires having different area ratios of the outer layers were produced.

得られた複合線材を試験例1と同様にして、同様の仕様の斜め巻きばね(長径l:5.4mm×短径b:5.0mm、ばね長さL:45mm、総巻数:50)を作製し、試験例1と同様にして、外側層の面積割合、ばねの非線形性、ばねの導電率、ばねの電気抵抗(両端、使用時)を調べた。その結果を表3に示す。また、作製した斜め巻きばねに通電して温度の上昇度合いを調べた。通電条件は、電流値:100Aとし、通電開始からの温度変化を図7に示す。更に、試験例1と同様に、所定時間経過後の上昇温度も表3に示す。   The obtained composite wire was made in the same manner as in Test Example 1 to produce an oblique winding spring (major axis l: 5.4 mm x minor axis b: 5.0 mm, spring length L: 45 mm, total number of windings: 50) with the same specifications. In the same manner as in Test Example 1, the area ratio of the outer layer, the nonlinearity of the spring, the electrical conductivity of the spring, and the electrical resistance of the spring (both ends, in use) were examined. The results are shown in Table 3. Moreover, it energized the produced diagonal winding spring and investigated the temperature rise degree. The energization condition is a current value of 100 A, and the temperature change from the start of energization is shown in FIG. Further, as in Test Example 1, the temperature rise after a lapse of a predetermined time is also shown in Table 3.

Figure 0005782298
Figure 0005782298

表3に示すように斜め巻きばねの複合線材の構成材料が同じ場合、外側層の面積割合が高くなるほど、導電率が高く、かつ低抵抗であること、面積割合が低いほど、非線形領域が大きいことが分かる。また、芯線がγ系ステンレス鋼であると、芯線の面積割合が小さくても(外側層の面積割合が大きくても)、外側層がγ系ステンレス鋼である場合(試験例1の試料No.100)よりも、ばね特性に優れることが分かる。従って、芯線がγステンレス鋼である場合、外側層の割合を大きくできることから、導電性を高められると言える。また、芯線よりも相対的に低抵抗な外側層の割合を大きくすることで、温度上昇も小さいことが分かる。逆に、外側層の面積割合が低いと、ばね特性に更に優れると共に、軽量なばねとすることができると言える。このように特定の積層順序の複合線材であって、かつ内外の硬度差が特定の範囲を満たす材質から構成された斜め巻きばねは、ばね特性と導電性との双方に優れる、と言える。また、特定の積層順序の複合線材であって、かつ内外の硬度差が特定の範囲を満たす材質から構成された複合線材は、ばね特性と導電性との双方に優れる斜め巻きばねが得られる、と言える。更に、この試験から、非線形領域の長さ、使用時の導電性をベリリウム銅からなるばね(試験例1の試料No.200)と同等以上とする場合、外側層の面積割合は、30%〜90%が好ましいと言える。   As shown in Table 3, when the constituent materials of the composite wire of the oblique winding spring are the same, the higher the area ratio of the outer layer, the higher the conductivity and the lower resistance, and the lower the area ratio, the larger the nonlinear region I understand that. Further, when the core wire is γ-type stainless steel, even if the area ratio of the core wire is small (even if the area ratio of the outer layer is large), the outer layer is γ-type stainless steel (Sample No. in Test Example 1). It can be seen that the spring characteristics are superior to 100). Therefore, when the core wire is γ stainless steel, the ratio of the outer layer can be increased, so that the conductivity can be improved. It can also be seen that the temperature rise is small by increasing the proportion of the outer layer having a relatively lower resistance than the core wire. Conversely, when the area ratio of the outer layer is low, it can be said that the spring characteristics are further improved and a light spring can be obtained. Thus, it can be said that the oblique winding spring which is a composite wire having a specific stacking order and is composed of a material whose hardness difference between the inside and outside satisfies a specific range is excellent in both spring characteristics and conductivity. In addition, a composite wire that is a composite wire in a specific stacking order and that is composed of a material that satisfies a specific range in hardness difference between the inside and outside, an oblique winding spring that is excellent in both spring characteristics and conductivity is obtained. It can be said. Furthermore, from this test, when the length of the non-linear region and the conductivity during use are equal to or greater than the spring made of beryllium copper (Sample No. 200 of Test Example 1), the area ratio of the outer layer is 30% to 90% is preferable.

なお、この試験において、斜め巻きばねを構成する線材の組成や硬度差、外側層の面積割合などは、ばね加工前の複合線材の値を実質的に維持していることを確認している。   In this test, it has been confirmed that the composition and hardness difference of the wire constituting the oblique winding spring, the area ratio of the outer layer, etc. substantially maintain the value of the composite wire before the spring processing.

[試験例3]
表1に示す各鋼種の原料素線、及び原料部材として軟銅からなるパイプ材を用意し、試験例1の試料No.1-1と同様に、芯線:γ系ステンレス鋼、外側層:軟銅、線径:φ0.6mmのクラッド線材(複合線材)を作製した。この試験では、芯線の組成が異なる複合線材を作製した。
[Test Example 3]
Prepare a raw material wire of each steel type shown in Table 1 and a pipe material made of soft copper as a raw material member, as in Sample No. 1-1 of Test Example 1, core wire: γ-based stainless steel, outer layer: soft copper, A clad wire (composite wire) having a wire diameter of φ0.6 mm was produced. In this test, composite wires having different core wire compositions were produced.

得られた複合線材を試験例1と同様にして、同様の仕様の斜め巻きばね(長径l:5.4mm×短径b:5.0mm、ばね長さL:45mm、総巻数:50)を作製し、試験例1と同様にして、芯線及び外側層のビッカース硬度Hv、外側層の面積割合、ばねの非線形性、ばねの導電率、ばねの電気抵抗(両端、使用時)を調べた。その結果を表4に示す。また、作製した斜め巻きばねに通電して温度の上昇度合いを調べた。通電条件は、電流値:100Aとし、通電開始からの温度変化を図8に示す。更に、試験例1と同様に、所定時間経過後の上昇温度も表4に示す。   The obtained composite wire was made in the same manner as in Test Example 1 to produce an oblique winding spring (major axis l: 5.4 mm x minor axis b: 5.0 mm, spring length L: 45 mm, total number of windings: 50) with the same specifications. In the same manner as in Test Example 1, the Vickers hardness Hv of the core wire and the outer layer, the area ratio of the outer layer, the non-linearity of the spring, the conductivity of the spring, and the electrical resistance of the spring (both ends, in use) were examined. The results are shown in Table 4. Moreover, it energized the produced diagonal winding spring and investigated the temperature rise degree. The energization condition is a current value of 100 A, and the temperature change from the start of energization is shown in FIG. Further, similarly to Test Example 1, the temperature rise after a predetermined time is also shown in Table 4.

Figure 0005782298
Figure 0005782298

表4に示すように、試料No.3-1(試料No.1-1と同様の組成)と比較して、窒素が多い試料No.3-2、NbやTiを含む試料No.3-3,3-4は、ビッカース硬度Hvの差が大きいことが分かる。このため、試料No.3-2〜3-4は、試料No.3-1と同程度の導電性を維持しながら、非線形領域がより大きく、ばね特性により優れている。また、試料No.3-1〜3-4は、温度上昇も小さいことも分かる。   As shown in Table 4, compared to sample No. 3-1 (same composition as sample No. 1-1), sample No. 3-2 rich in nitrogen, sample No. 3- containing Nb and Ti 3 and 3-4 show a large difference in Vickers hardness Hv. For this reason, Sample Nos. 3-2 to 3-4 maintain a conductivity comparable to that of Sample No. 3-1, while having a larger non-linear region and better spring characteristics. It can also be seen that sample Nos. 3-1 to 3-4 have a small temperature rise.

表4に示すようにSUS316といったNi当量の高いγ系ステンレス鋼を芯線に用いると、硬度差を十分にとれないことがある。この場合、例えば、伸線加工時の加工度(減面率)を大きくして芯線の強度を高めることで、硬度差を大きくすることが考えられる。しかし、Ni当量の高いγ系ステンレス鋼は積層欠陥エネルギーが高いため、上述のように加工度を大きくしても加工硬化が不十分となることも多い。このようにステンレス鋼の組成は強度に大きな影響を及ぼすことから、ビッカース硬度Hvの差を大きくする手法の一つとして、γ系ステンレス鋼の組成を調整することが利用できる、と言える。   As shown in Table 4, when γ-type stainless steel with a high Ni equivalent such as SUS316 is used for the core wire, the hardness difference may not be sufficiently obtained. In this case, for example, it is conceivable to increase the hardness difference by increasing the degree of processing (area reduction) during wire drawing to increase the strength of the core wire. However, since γ-type stainless steel having a high Ni equivalent has a high stacking fault energy, work hardening is often insufficient even when the degree of work is increased as described above. Thus, it can be said that adjusting the composition of the γ-based stainless steel can be used as one of the methods for increasing the difference in the Vickers hardness Hv because the composition of the stainless steel has a great influence on the strength.

[試験例4]
表1に示す鋼種1又は鋼種2の原料素線、及び原料部材として軟銅からなるパイプ材を用意し、試験例1の試料No.1-1と同様に、芯線:γ系ステンレス鋼、外側層:軟銅、線径:φ0.6mmのクラッド線材(複合線材)を作製した。
[Test Example 4]
Prepare a raw material strand of steel type 1 or steel type 2 shown in Table 1 and a pipe material made of annealed copper as a raw material member, and in the same manner as Sample No. 1-1 in Test Example 1, core wire: γ-based stainless steel, outer layer : Clad wire (composite wire) with mild copper and wire diameter: φ0.6 mm was prepared.

得られた複合線材を試験例1と同様にして、同様の仕様の斜め巻きばね(長径l:5.4mm×短径b:5.0mm、ばね長さL:45mm、総巻数:50)を作製した。試料No.4-2,4-4,4-5のばねには、ばね加工後、熱処理を施した(試料No.4-2:350℃、試料No.4-4:400℃、No.4-5:450℃、保持時間:いずれも30分)。得られたばねに対して、試験例1と同様にして、ばねの非線形性、ばねの導電率、ばねの電気抵抗(両端、使用時)を調べた。ばね加工後に熱処理を施したNo.4-2,4-4,4-5のばねは、熱処理後に上記各特性を調べた。その結果を表5に示す。また、得られたばねを構成する線材の横断面をとり、試験例1と同様にして、外側層の面積割合、芯線及び外側層のビッカース硬度Hvを調べた。その結果を表5に示す。更に、作製した斜め巻きばねに通電して温度の上昇度合いを調べた。通電条件は、電流値:100Aとし、通電開始からの温度変化を図9に示す。加えて、試験例1と同様に、所定時間経過後の上昇温度も表5に示す。   The obtained composite wire was made in the same manner as in Test Example 1 to produce an oblique winding spring (major axis l: 5.4 mm × minor axis b: 5.0 mm, spring length L: 45 mm, total number of windings: 50) having the same specifications. . The springs of Sample Nos. 4-2, 4-4, and 4-5 were heat treated after the spring processing (Sample No. 4-2: 350 ° C, Sample No. 4-4: 400 ° C, No. 4-5: 450 ° C, retention time: 30 minutes for all). For the obtained spring, the non-linearity of the spring, the conductivity of the spring, and the electrical resistance of the spring (both ends, in use) were examined in the same manner as in Test Example 1. The springs No. 4-2, 4-4, and 4-5 that were heat-treated after spring processing were examined for the above characteristics after the heat treatment. The results are shown in Table 5. Further, the cross section of the wire constituting the obtained spring was taken, and the area ratio of the outer layer, the core wire, and the Vickers hardness Hv of the outer layer were examined in the same manner as in Test Example 1. The results are shown in Table 5. Furthermore, the degree of the temperature rise was examined by energizing the manufactured oblique winding spring. The energization condition is a current value of 100 A, and the temperature change from the start of energization is shown in FIG. In addition, as in Test Example 1, the temperature rise after a predetermined time has also been shown in Table 5.

Figure 0005782298
Figure 0005782298

表5に示すように斜め巻きばねを構成する複合線材の構成材料が同じ組成でも、熱処理を施すことで、ビッカース硬度Hvの差をより高められることが分かる。特に、コットレル雰囲気を形成し易いC及びNを多く含有することで、熱処理によって、ビッカース硬度差をより大きくできることが分かる。そして、熱処理を施した試料No.4-2,4-4,4-5は、熱処理を施していない試料No.4-1,4-3よりも使用時の抵抗が低く、かつ非線形領域がより大きく、ばね特性により優れている。また、熱処理を施した試料No.4-2,4-4,4-5は、熱処理を施していない試料No.4-1,4-3よりも低抵抗であることで、温度上昇も小さいことが分かる。このように熱処理を施すことでも、ビッカース硬度Hvの差を容易に大きくでき、より低抵抗で導電性に優れると共に、ばね特性により優れる斜め巻きばねが得られることが分かる。この理由は、熱処理により、芯線を構成するγ系ステンレス鋼が高硬度化・高強度化し、外側層を構成する銅は、伸線加工時に芯線から固溶拡散したFe成分を析出分離することで導電率が高まると共に、軟化されて変形し易くなり、端子部材との接触面積を十分に確保することができたため、と考えられる。   As shown in Table 5, it can be seen that the difference in the Vickers hardness Hv can be further increased by performing the heat treatment even if the constituent materials of the composite wire constituting the oblique spring are the same. In particular, it can be seen that the Vickers hardness difference can be further increased by heat treatment by containing a large amount of C and N that can easily form a Cottrell atmosphere. Samples 4-2, 4-4, and 4-5 that have been heat-treated have lower resistance during use than the samples No. 4-1 and 4-3 that have not been heat-treated, and have a non-linear region. Larger and better in spring characteristics. In addition, sample Nos. 4-2, 4-4, and 4-5 that have undergone heat treatment have a lower resistance than sample Nos. 4-1 and 4-3 that have not undergone heat treatment, resulting in a small increase in temperature. I understand that. It can be seen that even when heat treatment is performed in this manner, the difference in the Vickers hardness Hv can be easily increased, and an obliquely wound spring having lower resistance, excellent conductivity, and superior spring characteristics can be obtained. The reason for this is that the heat treatment increases the hardness and strength of the γ-based stainless steel that constitutes the core wire, and the copper that constitutes the outer layer precipitates and separates the Fe component that has dissolved and diffused from the core wire during wire drawing. This is considered to be because the conductivity was increased and the film was softened and easily deformed, and a sufficient contact area with the terminal member could be secured.

[使用例]
上述した試験例1〜試験例4で作製した、芯線がγ系ステンレス鋼、外側層が銅といった導電性に優れる材料からなり、かつビッカース硬度Hvの差が350以上を満たす複合線材からなる斜め巻きばねは、コネクタ接続の接点部材に好適に利用できる。
[Example of use]
Diagonal winding made of a composite wire made in Test Example 1 to Test Example 4 described above, made of a material having excellent conductivity such as γ stainless steel and outer layer made of copper, and having a Vickers hardness Hv difference of 350 or more. The spring can be suitably used as a contact member for connector connection.

例えば、図10(A)に示すように、雌型コネクタ部60Aの挿入穴62に雄型端子61Aを嵌め込むことでコネクタ接続を行う場合に、雌型コネクタ部60Aの挿入穴62に直線状の取付溝63を設け、この取付溝63の長手方向に斜め巻きばね2を配置した構造が挙げられる。この構造は、例えば、蓄電池や発電機器といった、通電電流値が300A以下の電気機器に利用される。雄型端子61Aを雌型コネクタ部60Aに嵌め込むと、斜め巻きばね2の付勢力により、雌型コネクタ部60Aと雄型端子61Aとは押圧された状態を保持される上に、付勢力により嵌合状態が固定される。特に、本発明斜め巻きばねを利用することで、非線形領域が大きいことから、ばねの変位によらず一定のばね荷重を雌型コネクタ部60A及び雄型端子61Aに付与することができる。   For example, as shown in FIG. 10 (A), when the connector connection is made by inserting the male terminal 61A into the insertion hole 62 of the female connector part 60A, the insertion hole 62 of the female connector part 60A is linear. There is a structure in which the mounting groove 63 is provided, and the oblique winding spring 2 is disposed in the longitudinal direction of the mounting groove 63. This structure is used, for example, for an electrical device having an energization current value of 300 A or less, such as a storage battery or a power generation device. When the male terminal 61A is fitted into the female connector part 60A, the female connector part 60A and the male terminal 61A are held in a pressed state by the biasing force of the oblique winding spring 2, and the biasing force The mating state is fixed. In particular, since the non-linear region is large by using the slant winding spring of the present invention, a constant spring load can be applied to the female connector portion 60A and the male terminal 61A regardless of the displacement of the spring.

或いは、例えば、図10(B)に示すように、雌型コネクタ部60Bの挿入穴62に、その周方向に沿って環状の取付溝63を設け、斜め巻きばね2を円環状に配置した構造が挙げられる。この構造は、雄型端子61Bの全周が斜め巻きばね2に接触可能であり、コネクタ部及び端子の双方がばね荷重を十分に受けられる。なお、図10(B)に示す雌型コネクタ部60Bは、複数(ここでは3つ。2つ又は4つ以上も有り得る)の挿入穴62を具え、複数の雄型端子61Bが嵌合する構造である。この構造は、例えば、ハイブリッド自動車や電気自動車などの車載機器といった、通電電流値が100アンペア〜200アンペア程度の機器に利用される。   Alternatively, for example, as shown in FIG. 10 (B), the insertion hole 62 of the female connector portion 60B is provided with an annular mounting groove 63 along its circumferential direction, and the oblique winding spring 2 is arranged in an annular shape. Is mentioned. In this structure, the entire circumference of the male terminal 61B can contact the slant winding spring 2, and both the connector portion and the terminal can sufficiently receive the spring load. Note that the female connector portion 60B shown in FIG. 10 (B) has a plurality (three in this case, possibly two or more) of insertion holes 62, and a structure in which a plurality of male terminals 61B are fitted. It is. This structure is used for a device having an energization current value of about 100 amperes to about 200 amperes, such as an in-vehicle device such as a hybrid vehicle or an electric vehicle.

或いは、例えば、図10(C)に示すように、雌型コネクタ部60Cの挿入穴62には取付溝がなく、雄型端子61Cの周方向に円環状の取付溝64が設けられて、斜め巻きばね2を円環状に配置した構造が挙げられる。このように接点部材となる斜め巻きばねは、コネクタ接続に利用される雌型部材・雄型部材のいずれにも配置可能である。   Alternatively, for example, as shown in FIG. 10C, there is no mounting groove in the insertion hole 62 of the female connector portion 60C, and an annular mounting groove 64 is provided in the circumferential direction of the male terminal 61C. A structure in which the winding spring 2 is arranged in an annular shape is mentioned. In this way, the oblique winding spring serving as the contact member can be disposed on either the female member or the male member used for connector connection.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、雄型コネクタ部と雌型端子とによるコネクタ接続の接点部材にも本発明斜め巻きばねを利用できる。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the oblique winding spring of the present invention can be used for a contact member for connector connection by a male connector portion and a female terminal.

本発明斜め巻きばねは、蓄電池、発電機器、車載部品などの種々の電気機器と、電線とのコネクタ接続における接点部材に好適に利用することができる。本発明斜め巻きばね用鋼線は、上記本発明斜め巻きばねの素材に好適に利用することができる。   The diagonally wound spring of the present invention can be suitably used for a contact member in connector connection between various electric devices such as a storage battery, a power generation device, and an in-vehicle component and an electric wire. The steel wire for an oblique winding spring of the present invention can be suitably used as a material for the oblique winding spring of the present invention.

1 複合線材(斜め巻きばね用線材) 11 芯線 12 外側層
50 挟持部材 51,52 端子部材
60A,60B,60C 雌型コネクタ部 61A,61B,61C 雄型端子 62 挿入穴 63,64 取付溝
1 Composite wire (obliquely wound spring wire) 11 Core wire 12 Outer layer
50 Holding member 51,52 Terminal member
60A, 60B, 60C Female connector 61A, 61B, 61C Male terminal 62 Insertion hole 63, 64 Mounting groove

Claims (10)

ばねの軸方向に垂直な方向に圧縮される斜め巻きばねの素材に利用される斜め巻きばね用線材であって、
オーステナイト系ステンレス鋼から構成される芯線と、この芯線の外周に設けられた外側層とを具える複合線材から構成され、
前記外側層は、銅、銅合金、アルミニウム、及びアルミニウム合金から選択される1種の金属から構成され、
前記芯線と前記外側層とのビッカース硬度Hvの差が400以上である斜め巻きばね用線材。
A wire for an oblique winding spring used as a material for an oblique winding spring that is compressed in a direction perpendicular to the axial direction of the spring,
Consists of a composite wire comprising a core wire composed of austenitic stainless steel and an outer layer provided on the outer periphery of the core wire,
The outer layer is composed of one kind of metal selected from copper, copper alloy, aluminum, and aluminum alloy,
The difference is 400 or more der Ru swash Me wound spring wire of Vickers hardness Hv of the outer layer and the core wire.
ばねの軸方向に垂直な方向に圧縮される斜め巻きばねであって、
オーステナイト系ステンレス鋼から構成される芯線と、この芯線の外周に設けられた外側層とを具える複合線材を螺旋状に巻回して構成され、
前記外側層は、銅、銅合金、アルミニウム、及びアルミニウム合金から選択される1種の金属から構成され、
前記芯線と前記外側層とのビッカース硬度Hvの差が400以上である斜め巻きばね。
An oblique winding spring that is compressed in a direction perpendicular to the axial direction of the spring,
Constructed by spirally winding a composite wire comprising a core wire composed of austenitic stainless steel and an outer layer provided on the outer periphery of the core wire,
The outer layer is composed of one kind of metal selected from copper, copper alloy, aluminum, and aluminum alloy,
The core wire and the outer layer and the Vickers hardness Hv difference over 400 der Ru swash Me coil spring of.
前記オーステナイト系ステンレス鋼は、
質量%で、C:0.05%以上0.1%以下、及びN:0.1%以上0.3%以下の少なくとも一方を満たす請求項1に記載の斜め巻きばね用線材。
The austenitic stainless steel is
By mass%, C: 0.05% to 0.1% or less, and N: obliquely wound spring wire according to at least 0.1% 0.3% Motomeko 1 that meet at least one.
前記複合線材の横断面に対する外側層の面積割合が30%以上90%以下である請求項1又は請求項3に記載の斜め巻きばね用線材。 The composite wire obliquely wound spring wire according to Motomeko 1 or claim 3 area ratio Ru der 30% or more than 90% of the outer layer to the cross section of the. 前記オーステナイト系ステンレス鋼は、
質量%で、C:0.05%以上0.1%以下及びN:0.1%以上0.3%以下の少なくとも一方を満たし、かつSi:0.3%以上2.0%以下、Mn:0.5%以上4.0%以下、Cr:16%以上20%以下、Ni:6.0%以上14.0%以下を含有し、残部がFe及び不可避的不純物からなる請求項1,請求項3,及び請求項4のいずれか1項に記載の斜め巻きばね用線材。
The austenitic stainless steel is
Satisfies at least one of C: 0.05% to 0.1% and N: 0.1% to 0.3% by mass%, Si: 0.3% to 2.0%, Mn: 0.5% to 4.0%, Cr: 16% more than 20% or less, Ni: contained 6.0% or more 14.0% or less, Motomeko 1 balance ing Fe and inevitable impurities, claim 3, and the oblique winding according to any one of claims 4 Spring wire.
更に、質量%で、Mo:0.1%以上4.0%以下、Nb:0.1%以上2.0%以下、及びTi:0.1%以上2.0%以下から選択される1種又は2種の元素を含有する請求項5に記載の斜め巻きばね用線材。 Furthermore, by mass%, Mo: 0.1% to 4.0% or less, Nb: 0.1% or more and 2.0% or less, and Ti: billed you containing one or two elements selected from 0.1% to 2.0% or less Item 6. A wire for an obliquely wound spring according to Item 5 . 前記オーステナイト系ステンレス鋼は、
質量%で、C:0.05%以上0.1%以下、及びN:0.1%以上0.3%以下の少なくとも一方を満たす請求項2に記載の斜め巻きばね。
The austenitic stainless steel is
By mass%, C: 0.05% to 0.1% or less, and N: oblique coil spring according to Motomeko 2 that meet at least one of 0.1% to 0.3% or less.
前記複合線材の横断面に対する外側層の面積割合が30%以上90%以下である請求項2又は請求項7に記載の斜め巻きばね。 Oblique winding spring according to Motomeko 2 or claim 7 area ratio of the outer layer is Ru der 90% or less than 30% of the cross-section of the composite wire. 前記オーステナイト系ステンレス鋼は、
質量%で、C:0.05%以上0.1%以下及びN:0.1%以上0.3%以下の少なくとも一方を満たし、かつSi:0.3%以上2.0%以下、Mn:0.5%以上4.0%以下、Cr:16%以上20%以下、Ni:6.0%以上14.0%以下を含有し、残部がFe及び不可避的不純物からなる請求項2,請求項7,及び請求項8のいずれか1項に記載の斜め巻きばね。
The austenitic stainless steel is
Satisfies at least one of C: 0.05% to 0.1% and N: 0.1% to 0.3% by mass%, Si: 0.3% to 2.0%, Mn: 0.5% to 4.0%, Cr: 16% more than 20% or less, Ni: contained 6.0% or more 14.0% or less, Motomeko 2 balance ing Fe and inevitable impurities, oblique winding according to any one of claims 7, and claim 8 Spring.
更に、質量%で、Mo:0.1%以上4.0%以下、Nb:0.1%以上2.0%以下、及びTi:0.1%以上2.0%以下から選択される1種又は2種の元素を含有する請求項9に記載の斜め巻きばね。 Furthermore, by mass%, Mo: 0.1% to 4.0% or less, Nb: 0.1% or more and 2.0% or less, and Ti: billed you containing one or two elements selected from 0.1% to 2.0% or less Item 10. The oblique winding spring according to Item 9 .
JP2011121238A 2011-05-31 2011-05-31 Oblique winding spring and wire for oblique winding spring Active JP5782298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121238A JP5782298B2 (en) 2011-05-31 2011-05-31 Oblique winding spring and wire for oblique winding spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121238A JP5782298B2 (en) 2011-05-31 2011-05-31 Oblique winding spring and wire for oblique winding spring

Publications (2)

Publication Number Publication Date
JP2012248495A JP2012248495A (en) 2012-12-13
JP5782298B2 true JP5782298B2 (en) 2015-09-24

Family

ID=47468740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121238A Active JP5782298B2 (en) 2011-05-31 2011-05-31 Oblique winding spring and wire for oblique winding spring

Country Status (1)

Country Link
JP (1) JP5782298B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637843B2 (en) 2013-06-06 2017-05-02 Toyota Boshoku Kabushiki Kaisha Fabric material
CN104233849A (en) * 2013-06-08 2014-12-24 丰田纺织株式会社 Cloth material
US10598241B2 (en) 2014-02-26 2020-03-24 Bal Seal Engineering, Inc. Multi deflection canted coil springs and related methods
JP6340666B2 (en) * 2014-08-25 2018-06-13 北川工業株式会社 Conductive member
US10591011B2 (en) 2015-06-29 2020-03-17 Nhk Spring Co., Ltd. Elastic member and wire for elastic member
JP6508035B2 (en) * 2015-12-24 2019-05-08 株式会社オートネットワーク技術研究所 Terminal bracket and connector
JP6729018B2 (en) * 2016-06-10 2020-07-22 住友電気工業株式会社 Wire material for obliquely wound spring, obliquely wound spring and manufacturing method thereof
JP6627664B2 (en) * 2016-07-06 2020-01-08 株式会社オートネットワーク技術研究所 connector
JP6660561B2 (en) * 2016-07-06 2020-03-11 株式会社オートネットワーク技術研究所 Terminal module and connector
CN107069277A (en) * 2016-12-21 2017-08-18 苏州华旃航天电器有限公司 A kind of elastic contact element of built-in liquid cooling medium is the electric contact piece of helical structure
CN107069292A (en) * 2016-12-21 2017-08-18 苏州华旃航天电器有限公司 A kind of electric contact piece
CN106848681A (en) * 2016-12-21 2017-06-13 苏州华旃航天电器有限公司 Electric contact piece with elastic contact element
CN107069268A (en) * 2016-12-21 2017-08-18 苏州华旃航天电器有限公司 A kind of electric contact piece of built-in liquid cooling medium
CN106684608A (en) * 2016-12-21 2017-05-17 苏州华旃航天电器有限公司 Electrical contact with a spiral resilient contact element
CN106684636A (en) * 2016-12-21 2017-05-17 苏州华旃航天电器有限公司 Electrical connector for plates
CN106848676A (en) * 2016-12-21 2017-06-13 苏州华旃航天电器有限公司 A kind of jack contact has the electric connector of elastic contact element
CN106848677A (en) * 2016-12-21 2017-06-13 苏州华旃航天电器有限公司 A kind of electric connector with jack contact
US11186902B2 (en) 2017-03-10 2021-11-30 Sumitomo Electric Industries, Ltd. Wire material for canted coil spring and canted coil spring
DE112018002665T5 (en) 2017-05-25 2020-02-27 Sumitomo Electric Industries, Ltd. Inclined coil spring and connecting element
JP6889838B2 (en) * 2017-10-24 2021-06-18 株式会社オートネットワーク技術研究所 Terminal bracket
JP7099479B2 (en) 2018-02-01 2022-07-12 住友電気工業株式会社 Copper-coated steel wire and diagonally wound spring
CN112955602B (en) * 2018-10-23 2023-07-14 贝卡尔特先进帘线阿尔特公司 Steel wire rope, coated steel wire rope and belt comprising steel wire rope
JP2020161374A (en) * 2019-03-27 2020-10-01 株式会社オートネットワーク技術研究所 Diagonal winding coil spring, connector, and electric connection box

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3076977B2 (en) * 1997-07-22 2000-08-14 日本航空電子工業株式会社 Electrical connection members
CN1762073A (en) * 2003-03-18 2006-04-19 信越高分子材料株式会社 Pressure contact hold type connector
JP2008135275A (en) * 2006-11-28 2008-06-12 Hitachi Cable Ltd Electric contact and female terminal
JP4770752B2 (en) * 2007-02-16 2011-09-14 三菱電機株式会社 Contact device
JP5657220B2 (en) * 2009-02-04 2015-01-21 株式会社笠作エレクトロニクス Probe pin socket and probe unit
JP5178576B2 (en) * 2009-02-23 2013-04-10 三菱電機株式会社 Contact structure

Also Published As

Publication number Publication date
JP2012248495A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5782298B2 (en) Oblique winding spring and wire for oblique winding spring
JP6729018B2 (en) Wire material for obliquely wound spring, obliquely wound spring and manufacturing method thereof
JP4961512B2 (en) Aluminum copper clad material
US11505856B2 (en) Copper-coated steel wire and stranded wire
JP2016108617A (en) Aluminum alloy wire rod, aluminum alloy twisted wire, covered wire, wire harness, and method for producing aluminum alloy wire rod and aluminum alloy twisted wire
JPH0336241B2 (en)
US11186902B2 (en) Wire material for canted coil spring and canted coil spring
JP6050588B2 (en) Copper alloy wire
CN110997211B (en) Clad material and method for producing clad material
US11459644B2 (en) Copper-coated steel wire and canted coil spring
US11674193B2 (en) Canted coil spring and connector
JP2005017284A (en) Method of evaluating bending workability and spring characteristics of metallic material, and metallic material
US7604860B2 (en) High tensile nonmagnetic stainless steel wire for overhead electric conductor, low loss overhead electric conductor using the wire, and method of manufacturing the wire and overhead electric conductor
JP2022158722A (en) Magnetic material composite wire
EP3327160B1 (en) Reed switch wire rod, reed switch reed piece, and reed switch
US20240029914A1 (en) Electrically conductive wire
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
JP2023024277A (en) conductive wire
CN113811958B (en) Copper-clad steel wire, twisted wire, insulated wire and cable
EP2873745A1 (en) Wire for reed switch, reed piece for reed switch, and reed switch
JP2005339923A (en) Cladding material for conductive component and its manufacturing method
WO2020261563A1 (en) Copper-covered steel wire, stranded wire, insulated electric wire, and cable
JP2004076070A (en) Steel for electric part having excellent electrical conductivity and mechanical strength and electric part made of steel
JP2008006500A (en) Diffusion-bonded member and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150717

R150 Certificate of patent or registration of utility model

Ref document number: 5782298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250