JP5780851B2 - Method for producing iron-silicon alloy - Google Patents

Method for producing iron-silicon alloy Download PDF

Info

Publication number
JP5780851B2
JP5780851B2 JP2011141134A JP2011141134A JP5780851B2 JP 5780851 B2 JP5780851 B2 JP 5780851B2 JP 2011141134 A JP2011141134 A JP 2011141134A JP 2011141134 A JP2011141134 A JP 2011141134A JP 5780851 B2 JP5780851 B2 JP 5780851B2
Authority
JP
Japan
Prior art keywords
powder
sintering
iron
silicon alloy
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011141134A
Other languages
Japanese (ja)
Other versions
JP2013007102A (en
Inventor
明 小杉
明 小杉
武 赤塚
武 赤塚
Original Assignee
直江津電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 直江津電子工業株式会社 filed Critical 直江津電子工業株式会社
Priority to JP2011141134A priority Critical patent/JP5780851B2/en
Publication of JP2013007102A publication Critical patent/JP2013007102A/en
Application granted granted Critical
Publication of JP5780851B2 publication Critical patent/JP5780851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、例えば光センサー、発光素子、太陽電池などの光学素子や熱電素子などに使用されるβ鉄シリサイド(βFeSi2)や半導体などを生産する過程に用いる鉄シリコン合金の製造方法に関する。 The present invention relates to a method for producing an iron-silicon alloy used in the process of producing β-iron silicide (βFeSi 2 ), semiconductors, and the like used for optical elements such as optical sensors, light-emitting elements, solar cells, and thermoelectric elements.

従来、この種の鉄シリコン合金の製造方法として、まずFe、Siなどの原料を混合し、高周波炉で溶解させ金型に鋳込んで鉄けい化物合金のインゴットが作成され、その後、このインゴットをスタンプミルとボールミルにより約2μmの粉末に粉砕し、この粉末に結合剤が混合されてから冷間プレスを行って成形した後、この成形体を焼結し、引き続きβ化熱処理して熱発電材料を得るものがある(例えば、特許文献1参照)。   Conventionally, as a method for producing this kind of iron silicon alloy, first, raw materials such as Fe and Si are mixed, melted in a high frequency furnace and cast into a mold, and then an iron silicide alloy ingot is prepared. It is pulverized into a powder of about 2 μm by a stamp mill and a ball mill, and after the binder is mixed with this powder, it is cold pressed and molded, and then the molded body is sintered and subsequently subjected to β heat treatment to produce a thermoelectric power generation material. (For example, refer to Patent Document 1).

特公平2−1381号公報Japanese Patent Publication No. 2-1381

しかし乍ら、このような従来の鉄シリコン合金の製造方法では、原料を高温(1200℃以上)で溶成する際に、FeSiと未反応のSi,Fe及び少量のαFeSi2の混合物が合成されて結晶粒界を形成するため、溶成された鉄けい化物合金を粉砕して焼結し直す必要がある。
それにより、工程数が多くて製造に時間を要するとともに、長時間の熱処理も必要になることから、エネルギーの消費量も多くなって、大量生産に不向きでコスト高になるという問題があった。
さらに、溶成工程に用いる高周波炉及び金型や、粉砕工程に用いるスタンプミルとボールミルが必要になるため、製造設備が高価になってコスト高になるという問題もあった。
また、冷間プレスによる粉末焼結法は、粉末にした原料を再度適当なサイズに造粒するか、又は微粉末を除去しなければならず、原料の歩留りが悪いとともに、原料中にある酸化物や吸着ガス等は熱電変換素子の特性を低下させるため、これらを除去するのに余分な工程が必要であったり、原料の品質管理を厳密に行う必要があるという問題があった。
そこで、冷間プレスによる粉末焼結法に代えてホットプレス法により、原料粉末を加圧すると同時に加熱して焼結することが考えられる。
しかし、ホットプレス法は、焼結密度を高くするには非常に高い圧力と温度が必要で、製造設備が高価になるとともに、長い焼結時間が必要でランニングコストならびに生産性の点で問題があり、さらに前記冷間プレス法と同様に、原料の適切な品質管理が必要であるという問題があった。
However, in such a conventional method for producing an iron-silicon alloy, a mixture of FeSi, unreacted Si, Fe, and a small amount of αFeSi 2 is synthesized when the raw material is melted at a high temperature (1200 ° C. or higher). In order to form a grain boundary, it is necessary to pulverize and re-sinter the melted iron silicide alloy.
As a result, the number of processes is large, and it takes time for manufacturing and also requires heat treatment for a long time. Therefore, there is a problem that energy consumption is increased, making it unsuitable for mass production and costly.
Furthermore, since a high-frequency furnace and a mold used for the melting process and a stamp mill and a ball mill used for the crushing process are required, there is a problem that the manufacturing equipment becomes expensive and the cost is increased.
In addition, the powder sintering method by cold pressing must granulate the powdered raw material again to an appropriate size or remove the fine powder, resulting in poor raw material yield and oxidation in the raw material. Since substances, adsorbed gases, and the like deteriorate the characteristics of the thermoelectric conversion element, there are problems that an extra step is required to remove them and that quality control of the raw materials must be strictly performed.
Therefore, it is conceivable that the raw material powder is pressurized and simultaneously heated and sintered by a hot press method instead of the cold press powder sintering method.
However, the hot press method requires very high pressure and temperature to increase the sintering density, which makes the production equipment expensive and requires a long sintering time, which causes problems in terms of running cost and productivity. In addition, similarly to the cold pressing method, there is a problem that appropriate quality control of the raw material is necessary.

本発明は、このような問題に対処することを課題とするものであり、溶成工程や粉砕混合工程を経ることなく高純度の鉄シリコン合金やβ鉄シリサイドや半導体を生産することなどを目的とするものである。   An object of the present invention is to deal with such problems, and aims to produce high-purity iron-silicon alloys, β-iron silicides, and semiconductors without going through a melting step and a pulverizing and mixing step. It is what.

このような目的を達成するために本発明は、原料として鉄とシリコン粉を焼結型内に充填する充填工程と、前記焼結型内に充填された前記鉄粉及び前記シリコン粉の混合粉末をパルス通電焼結法にて焼結する焼結工程とを含み、
前記シリコン粉が、Siのインゴットからウエハを切断分離する際に排出される平均粒径が0.1〜10μmの切りくずであり、前記焼結工程は、前記混合粉末を加圧しながら直流パルス通電してαFeSi2を主成分とした焼結体を作製したことを特徴とする。
The present invention in order to achieve the above object, a filling step of filling the raw material and to the iron powder and divorced powder into sintered, wherein the iron powder filled in the sintering mold and the silicon powder A sintering step of sintering the mixed powder of the above by a pulse current sintering method,
The silicon powder is chips having an average particle size of 0.1 to 10 μm discharged when the wafer is cut and separated from the Si ingot, and the sintering step is performed by applying a DC pulse while pressing the mixed powder. Thus, a sintered body containing αFeSi 2 as a main component was produced.

前述した特徴を有する本発明は、粒径が10μm以下の鉄粉と粒径が10μm以下のシリコン粉を焼結型内に充填し、この粉末をパルス通電焼結法で加圧しながら直流パルス通電することにより、プラズマ放電が発生し電界作用でイオンの移動が高速となって粉末中にある酸化物や吸着ガスの除去が効果的に行われ、αFeSi2を主成分とした品質が良好で且つ緻密な焼結体が得られるので、溶成工程や粉砕混合工程を経ることなくβ鉄シリサイドや半導体などに変換可能な高純度の鉄シリコン合金を生産することができる。
その結果、溶成工程や粉砕混合工程が必要な従来の方法に比べ、工程数が減少して製造時間を短縮化できるとともに、溶成工程や粉砕混合工程に必要なエネルギーも削減できてコストの低減化が図れ、より大量に生産することが可能となる。
さらに、溶成工程や粉砕混合工程に用いる製造設備が必要ないから更なるコストの低減化も図れる。
また、パルス通電焼結法は、ホットプレス法による粉末焼結法に比べ、短時間で焼成できてランニングコストならびに生産性を向上させることができるとともに、短時間で比較的低温でも緻密な焼結体が得られるため、従来では結晶性の問題から使用困難であった光学素子として使用することが可能となる。
In the present invention having the above-mentioned features, a DC pulse energization is performed by filling iron powder having a particle size of 10 μm or less and silicon powder having a particle size of 10 μm or less into a sintering mold and pressurizing the powder by a pulse current sintering method. As a result, plasma discharge is generated, and ions are moved at high speed by electric field action, and the oxide and adsorbed gas in the powder are effectively removed, and the quality based on αFeSi 2 is good and Since a dense sintered body can be obtained, it is possible to produce a high-purity iron silicon alloy that can be converted into β-iron silicide, a semiconductor, or the like without going through a melting step or a pulverizing and mixing step.
As a result, the number of processes can be reduced and manufacturing time can be shortened compared to conventional methods that require a melting process and a pulverizing and mixing process, and energy required for the melting process and the pulverizing and mixing process can be reduced. Reduction can be achieved, and it becomes possible to produce in larger quantities.
Furthermore, since the manufacturing equipment used for a melting process and a grinding | pulverization mixing process is unnecessary, the cost can be reduced further.
In addition, the pulse current sintering method can be fired in a shorter time than the powder sintering method by the hot press method, improving running costs and productivity, and dense sintering at a relatively low temperature in a short time. Since a body is obtained, it can be used as an optical element that has been difficult to use due to crystallinity problems.

以下、本発明の実施形態を詳細に説明する。
本発明の実施形態に係る鉄シリコン合金の製造方法は、粒径が10μm以下の鉄粉と粒径が10μm以下のシリコン粉を焼結型内に充填する充填工程と、前記焼結型内に充填された前記混合粉末をパルス通電焼結法にて焼結する焼結工程とを含んでいる。
Hereinafter, embodiments of the present invention will be described in detail.
A method for producing an iron-silicon alloy according to an embodiment of the present invention includes a filling step of filling a sintered mold with iron powder having a particle size of 10 μm or less and silicon powder having a particle size of 10 μm or less, A sintering step of sintering the filled mixed powder by a pulse current sintering method.

前記充填工程では、原料として10μm以下の平均粒径を有する鉄粉と、10μm以下の平均粒径を有するシリコン粉などが用意され、これらを所望量ずつ混合してから焼結型内に充填するか、又は鉄粉とシリコン粉を所望量ずつ前記焼結型内に充填してから混合する。
前記焼結工程では、前記焼結型内に充填された前記混合粉末を、パルス通電焼結法にて加圧しながら直流パルス通電することで、αFeSi2(α鉄シリサイド)を主成分とした焼結体を作製している。
また、前記焼結工程の後工程として、前記焼結体をβ化熱処理してβFeSi2(β鉄シリサイド)を得るβ化処理工程を含むことも可能である。
In the filling step, iron powder having an average particle diameter of 10 μm or less and silicon powder having an average particle diameter of 10 μm or less are prepared as raw materials, and these are mixed in desired amounts, and then filled into a sintering mold. Alternatively, iron powder and silicon powder are filled into the sintering mold in a desired amount and mixed.
In the sintering step, the mixed powder filled in the sintering mold is subjected to direct current pulse energization while being pressed by a pulse current sintering method, so that sintering with αFeSi 2 (α iron silicide) as a main component is performed. The body is made.
Further, as a subsequent step of the sintering step, it is possible to include a β treatment step for obtaining βFeSi 2 (β iron silicide) by subjecting the sintered body to a β heat treatment.

パルス通電焼結法とは、前記焼結型内の前記混合粉体に例えば数百アンペアから数千アンペアの直流パルス電流を流し、粒子間の放電や焼結型のジュール熱による直接発熱で焼結する加圧焼結法の一種であり、直流パルス通電焼結法や放電プラズマ焼結法などのようにも呼ばれている。
パルス通電焼結法(直流パルス通電焼結法、放電プラズマ焼結法)の実施に使用する装置の一例としては、チャンバー内に設置されている焼結型と、この焼結型内に充填される前記混合粉体を加圧するための加圧機構と、前記混合粉体に直流パルス電流を流すための電極とを備えている。この電極を介して電源から前記混合粉体に直流パルス電流を流すことにより、前記混合粉体の粒子間にプラズマ放電が生起されて、粒子間で加熱焼結を行う。
In the pulse current sintering method, a direct current pulse current of, for example, several hundred amperes to several thousand amperes is passed through the mixed powder in the sintering mold, and the powder is sintered by direct heat generation due to discharge between particles or Joule heat of the sintering mold. This is a kind of pressure sintering method, and is also called a direct current pulse current sintering method or a discharge plasma sintering method.
As an example of an apparatus used for carrying out the pulse electric current sintering method (DC pulse electric current sintering method, discharge plasma sintering method), a sintering mold installed in a chamber and a filling in the sintering mold A pressing mechanism for pressing the mixed powder and an electrode for allowing a DC pulse current to flow through the mixed powder. By applying a direct current pulse current from the power source to the mixed powder through this electrode, a plasma discharge is generated between the particles of the mixed powder, and heat sintering is performed between the particles.

前記加圧機構による前記混合粉末の加圧量としては、例えば10MPa以上、好ましくは20MPa以上で60MPa以下に圧力制御することが好ましい。
前記電極による前記混合粉末の加熱温度としては、例えば 500℃〜1500℃の範囲、好ましくは 850℃〜1200℃の範囲内に温度制御することが好ましい。
さらに、前記焼結型の焼結環境としては、例えば10Pa以下に減圧するか、若しくは不活性ガス中で焼結することが好ましい。
The amount of pressurization of the mixed powder by the pressurizing mechanism is preferably 10 MPa or more, preferably 20 MPa or more and 60 MPa or less.
The heating temperature of the mixed powder by the electrode is preferably controlled in the range of, for example, 500 ° C to 1500 ° C, preferably in the range of 850 ° C to 1200 ° C.
Furthermore, as a sintering environment of the sintering type, for example, it is preferable to reduce the pressure to 10 Pa or less or to sinter in an inert gas.

このような本発明の実施形態に係る鉄シリコン合金の製造方法によると、前記充填工程で粒径10μm以下の鉄粉とシリコン粉を焼結型内に混合充填し、前記焼結工程で前記焼結型内に充填された前記混合粉末をパルス通電焼結法で加圧しながら直流パルス通電している。
それにより、プラズマ放電が発生し電界作用でイオンの移動が高速となって混合粉末中にある酸化物や吸着ガスの除去が効果的に行われ、αFeSi2を主成分とした品質が良好で且つ緻密な焼結体が得られる。
したがって、前述した特許文献1では不可欠であった溶成工程や粉砕混合工程を省略しても、β鉄シリサイド(βFeSi2)や半導体などに変換可能な高純度の鉄シリコン合金を生産することができる。
さらに、シリコン粉として、Siのインゴットからウエハを切断分離する際に排出される、その平均粒径が0.1〜10μmの切りくずを使用した場合には、例えばボールミルや遊星ボールミルなどの粉砕機を使用する必要がないため、容易にしかも安価で得られるとともに、原料として廃材を有効利用できるから環境に優しく経済的であるという利点がある。
According to such a method for producing an iron-silicon alloy according to an embodiment of the present invention, iron powder and silicon powder having a particle size of 10 μm or less are mixed and filled in a sintering mold in the filling step, and the sintering is performed in the sintering step. Direct current pulse energization is performed while the mixed powder filled in the mold is pressed by a pulse current sintering method.
As a result, plasma discharge is generated, and ions are moved at high speed by electric field action, and the oxide and adsorbed gas in the mixed powder are effectively removed, and the quality based on αFeSi 2 is good and A dense sintered body is obtained.
Therefore, it is possible to produce a high-purity iron-silicon alloy that can be converted into β-iron silicide (βFeSi 2 ), a semiconductor, or the like even if the melting step and the pulverizing and mixing step, which are indispensable in Patent Document 1 described above, are omitted. it can.
Furthermore, when chips having an average particle diameter of 0.1 to 10 μm discharged when cutting and separating a wafer from an Si ingot are used as silicon powder, a pulverizer such as a ball mill or a planetary ball mill is used. Therefore, there is an advantage that it can be obtained easily and inexpensively, and the waste material can be effectively used as a raw material, so that it is environmentally friendly and economical.

特に、前記混合粉末を20MPa以上に加圧しながら前記混合粉末に直流パルスを通電して、前記粉末を850℃〜1200℃以下の範囲内で加熱焼結した場合には、高純度の鉄シリコン合金を確実に生産することができるという利点がある。   In particular, when the mixed powder is pressurized to 20 MPa or more, a direct current pulse is applied to the mixed powder, and the powder is heated and sintered within a range of 850 ° C. to 1200 ° C. or less. There is an advantage that can be produced reliably.

このように得られた鉄シリコン合金は、前記焼結工程の後工程として前記β化処理工程で、前記焼結体をβ化熱処理すると、高純度のβ鉄シリサイドが得られる。
それにより、前述した特許文献1では不可欠であった溶成工程や粉砕混合工程を省略しても、高純度のβ鉄シリサイドを生産することができるという利点がある。
β化熱処理の具体例としては、前記焼結体を減圧下で約700 〜 900℃の熱処理を約10時間以上実施したり、アルゴン置換にて約700 〜 900℃の熱処理を約200時間以上実施することが好ましい。
The iron-silicon alloy obtained in this way is obtained by subjecting the sintered body to β heat treatment in the β treatment step as a subsequent step of the sintering step, thereby obtaining high-purity β iron silicide.
Accordingly, there is an advantage that high-purity β-iron silicide can be produced even if the melting step and the pulverizing and mixing step, which are indispensable in Patent Document 1 described above, are omitted.
As specific examples of the β heat treatment, the sintered body is subjected to heat treatment at about 700 to 900 ° C. under reduced pressure for about 10 hours or more, or heat treatment at about 700 to 900 ° C. for about 200 hours or more by argon substitution. It is preferable to do.

また、前記充填工程で、前記原料となる粒径が10μm以下の鉄粉とシリコン粉からなる混合粉末に、例えばMnやCoなどのドープ材(ドーパント)を微量添加することも可能である。
すなわち、ドープ材が添加された前記混合粉末をパルス通電焼結法で加圧しながら直流パルス通電すると、前記焼結体にp/n接合が直接成形される。
それにより、工程を増やすことなくp型又はn型半導体を生産することができるという利点がある。
In the filling step, it is also possible to add a small amount of a doping material (dopant) such as Mn or Co to the mixed powder made of iron powder and silicon powder having a particle size of 10 μm or less as the raw material.
That is, when direct current pulse energization is performed while the mixed powder to which the doping material is added is pressed by a pulse current sintering method, a p / n junction is directly formed in the sintered body.
Thereby, there is an advantage that a p-type or n-type semiconductor can be produced without increasing the number of steps.

さらに、前記焼結体の表面に例えばMnやCoなどのドープ材を、例えば塗布などにより積層してから熱処理することも可能である。
すなわち、前記焼結体の表面にドープ材を塗布した後に熱処理すると、n型又はp型半導体が形成される。
それにより、p型又はn型半導体を生産することができるという利点がある。
Furthermore, it is possible to heat-treat after laminating a dope material such as Mn or Co on the surface of the sintered body by, for example, coating.
That is, when a dope material is applied to the surface of the sintered body and then heat-treated, an n-type or p-type semiconductor is formed.
This has the advantage that a p-type or n-type semiconductor can be produced.

Claims (3)

原料として鉄とシリコン粉を焼結型内に充填する充填工程と、
前記焼結型内に充填された前記鉄粉及び前記シリコン粉の混合粉末をパルス通電焼結法にて焼結する焼結工程とを含み、
前記シリコン粉が、Siのインゴットからウエハを切断分離する際に排出される平均粒径が0.1〜10μmの切りくずであり、
前記焼結工程は、前記混合粉末を加圧しながら直流パルス通電してαFeSi2を主成分とした焼結体を作製したことを特徴とする鉄シリコン合金の製造方法。
A filling step of filling iron powder and divorced powder into sintered as a raw material,
A sintering step of sintering the mixed powder of the iron powder and the silicon powder filled in the sintering mold by a pulse current sintering method,
The silicon powder is a chip having an average particle size of 0.1 to 10 μm discharged when the wafer is cut and separated from the Si ingot,
The method for producing an iron-silicon alloy is characterized in that in the sintering step, a sintered body containing αFeSi 2 as a main component is produced by applying direct current pulse while pressing the mixed powder.
前記焼結工程の後工程として、前記焼結体をβ化熱処理してβ鉄シリサイドを得るβ化処理工程を含むことを特徴とする請求項1記載の鉄シリコン合金の製造方法。 As a step after the sintering step, the manufacturing method according to claim 1 Symbol placement iron silicon alloy, characterized in that it comprises the sintered body was heat-treated β of obtaining β-iron disilicide β treatment step. 前記焼結体の表面にドープ材を積層して熱処理したことを特徴とする請求項1記載の鉄シリコン合金の製造方法。 The process according to claim 1 Symbol placement iron silicon alloy, wherein the heat-treated by stacking doped material on the surface of the sintered body.
JP2011141134A 2011-06-24 2011-06-24 Method for producing iron-silicon alloy Active JP5780851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011141134A JP5780851B2 (en) 2011-06-24 2011-06-24 Method for producing iron-silicon alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011141134A JP5780851B2 (en) 2011-06-24 2011-06-24 Method for producing iron-silicon alloy

Publications (2)

Publication Number Publication Date
JP2013007102A JP2013007102A (en) 2013-01-10
JP5780851B2 true JP5780851B2 (en) 2015-09-16

Family

ID=47674684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011141134A Active JP5780851B2 (en) 2011-06-24 2011-06-24 Method for producing iron-silicon alloy

Country Status (1)

Country Link
JP (1) JP5780851B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213930B4 (en) * 2016-07-28 2018-07-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process for the preparation of reference materials for measurements of the Seebeck coefficient and corresponding samples for use as reference material
CN106191763B (en) * 2016-09-13 2018-10-26 佛山科学技术学院 A kind of silication iron thin film and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158540B2 (en) * 1991-09-30 2001-04-23 いすゞ自動車株式会社 Manufacturing method of thermoelectric material
JP2004088080A (en) * 2002-06-19 2004-03-18 Jfe Steel Kk beta-FeSi2 THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC TRANSDUCER
JPWO2010055615A1 (en) * 2008-11-12 2012-04-12 株式会社林商会 High purity silicon and thermoelectric conversion materials

Also Published As

Publication number Publication date
JP2013007102A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
CN100491554C (en) Method for preparing fine grain preferred tropism Bi2Te3 thermoelectric materials
CN107408618B (en) Compound semiconductor thermoelectric material and method for producing same
US10662507B2 (en) Method for producing a thermoelectric material
JP2012012229A (en) POWDER, SINTERED BODY AND SPUTTERING TARGET, EACH CONTAINING ELEMENTS Cu, In, Ga AND Se, AND METHOD FOR PRODUCING THE POWDER
CN107394035A (en) A kind of Sb doping BiCuSeO thermoelectric materials and preparation method thereof
JP2013149651A (en) Thermoelectric material manufacturing method
JP5780851B2 (en) Method for producing iron-silicon alloy
CN107326250B (en) The method of the supper-fast preparation high-performance ZrNiSn block thermoelectric material of one step
JP2013077680A (en) Method of manufacturing thermoelectric conversion device
CN102383023A (en) Preparation method for ferro-silico-manganese alloy thermoelectric material
CN113773083B (en) Bismuth telluride-based material with high strength and high thermoelectric property and preparation method thereof
JP5838050B2 (en) Method for producing magnesium silicon alloy
CN107604208A (en) Device is got rid of in a kind of method for preparing p-type filled skutterudite compound and melt rotation
CN112335061A (en) Thermoelectric conversion material, thermoelectric conversion module using same, and method for producing thermoelectric conversion material
JP4123388B2 (en) Zinc antimony compound sintered compact
KR102176471B1 (en) Thermoelectric material for thermoelectric device
JP2014165260A (en) Method of producing thermoelectric conversion material
CN101692479B (en) Method for preparing P-type high manganese-silicon thermoelectric material
JP7449549B2 (en) Thermoelectric element and its manufacturing method
JP2007173852A (en) Method of manufacturing thermoelectric material
JP3704556B2 (en) Method for producing zinc antimony compound
JP2019218592A (en) Silicide alloy material and element including the same
JP6155141B2 (en) Thermoelectric conversion material and method for producing the same
JPH06169110A (en) Manufacture of thermoelectric conversion material
TWI578584B (en) Method for preparing n type lead telluride thermoelectric material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5780851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250