JP5780003B2 - COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN - Google Patents

COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN Download PDF

Info

Publication number
JP5780003B2
JP5780003B2 JP2011128302A JP2011128302A JP5780003B2 JP 5780003 B2 JP5780003 B2 JP 5780003B2 JP 2011128302 A JP2011128302 A JP 2011128302A JP 2011128302 A JP2011128302 A JP 2011128302A JP 5780003 B2 JP5780003 B2 JP 5780003B2
Authority
JP
Japan
Prior art keywords
silicone
inorganic oxide
silicone resin
oxide particles
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011128302A
Other languages
Japanese (ja)
Other versions
JP2012255070A (en
Inventor
大塚 剛史
剛史 大塚
佐藤 洋一
洋一 佐藤
恭行 栗野
恭行 栗野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2011128302A priority Critical patent/JP5780003B2/en
Priority to KR1020137032472A priority patent/KR101596378B1/en
Priority to TW101106487A priority patent/TWI525140B/en
Priority to PCT/JP2012/055066 priority patent/WO2012169237A1/en
Priority to CN201280027849.7A priority patent/CN103597034B/en
Publication of JP2012255070A publication Critical patent/JP2012255070A/en
Application granted granted Critical
Publication of JP5780003B2 publication Critical patent/JP5780003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Description

本発明は、無機酸化物粒子とシリコーン樹脂との複合組成物及び透明複合体に関し、さらに詳しくは、シリコーン樹脂のフィラー材として好適に用いられ、屈折率、機械的特性およびガスバリア性の向上と共に透明性の維持を可能とする無機酸化物粒子について、シリコーン樹脂中に分散した場合の分散性および硬化時の相分離・白化を防止することが可能な無機酸化物粒子とシリコーン樹脂との複合組成物、及び、この複合組成物を成形固化した透明複合体に関するものである。   The present invention relates to a composite composition and a transparent composite of inorganic oxide particles and a silicone resin, and more specifically, is suitably used as a filler material for a silicone resin, and is transparent with improved refractive index, mechanical properties, and gas barrier properties. Composition of inorganic oxide particles and silicone resin capable of preventing dispersibility when dispersed in silicone resin and phase separation / whitening during curing of inorganic oxide particles capable of maintaining the property And a transparent composite obtained by molding and solidifying the composite composition.

従来、シリカ等無機酸化物をフィラーとして樹脂と複合化することにより、樹脂の機械的特性等を向上させる試みがなされている。このフィラーと樹脂とを複合化する方法としては、無機酸化物を水及び有機溶媒のいずれか一方または双方を含む溶液中に分散させた分散液と、樹脂とを混合する方法が一般的であり、分散液と樹脂を種々の方法により混合することにより、無機酸化物粒子が第2相として複合化された無機酸化物粒子複合化プラスチックを作製することができる(例えば、特許文献1参照)。
また、無機酸化物粒子の表面にポリマーを被覆することにより、機械的特性の他に屈折率や透明性の調整等、光学的特性を趣向したコーティング組成物、塗膜が提案されている(例えば、特許文献2参照)。
In the past, attempts have been made to improve the mechanical properties and the like of a resin by compounding an inorganic oxide such as silica with a resin as a filler. As a method of combining the filler and the resin, a method of mixing a dispersion liquid in which an inorganic oxide is dispersed in a solution containing one or both of water and an organic solvent, and the resin is generally used. By mixing the dispersion and the resin by various methods, an inorganic oxide particle composite plastic in which the inorganic oxide particles are combined as the second phase can be produced (for example, see Patent Document 1).
In addition, coating compositions and coating films that have optical properties such as refractive index and transparency adjustment in addition to mechanical properties have been proposed by coating the surface of inorganic oxide particles with a polymer (for example, , See Patent Document 2).

ポリマー材料の中でも、シリコーン樹脂は、耐熱性、耐寒性等の耐候性に優れるとともに、電気的特性、低毒性等にも優れていることから、化粧品材料や医用材料から電気電子材料まで、多岐に亘って使用されている。また、近年では、その透明性にも着目されるようになり、発光ダイオードの透明封止材料等、透明性が求められる部材にも用いられるようになっている。
このような用途において要求される特性としては、透明性、屈折率等の光学的特性、硬度等の機械的特性、耐熱性等の熱的安定性、水蒸気や各種ガスの透過性を抑制するガスバリア性が挙げられる。
Among polymer materials, silicone resins have excellent weather resistance such as heat resistance and cold resistance, as well as excellent electrical properties and low toxicity, so they range from cosmetic materials and medical materials to electrical and electronic materials. Used throughout. Further, in recent years, attention has also been paid to the transparency, and it is also used for a member requiring transparency, such as a transparent sealing material for a light emitting diode.
Properties required for such applications include transparency, optical properties such as refractive index, mechanical properties such as hardness, thermal stability such as heat resistance, and gas barrier that suppresses the permeability of water vapor and various gases. Sex.

従来より提案されているシリコーン樹脂と無機酸化物等の無機材料とを複合化することで光学的特性や熱的安定性を向上させたものとしては、例えば、酸化ジルコニウム粒子をキレート化剤存在下で水酸基含有ポリシロキサンと複合化した組成物(特許文献3)、酸化ジルコニウム粒子と多官能ポリシロキサンとを複合化した発光素子コーティング用組成物(特許文献4)、無機ナノ粒子を有機化合物で被覆しフェニル基含有シリコーンに混合した発光素子用充填材料(特許文献5)等、多数提案されている。   For example, zirconium oxide particles can be produced in the presence of a chelating agent by improving the optical properties and thermal stability by combining a conventionally proposed silicone resin and an inorganic material such as an inorganic oxide. A composition comprising a polysiloxane mixed with a hydroxyl group-containing polysiloxane (Patent Document 3), a composition for coating a light emitting device comprising a composite of zirconium oxide particles and polyfunctional polysiloxane (Patent Document 4), and coating inorganic nanoparticles with an organic compound A large number of materials such as a filling material for a light emitting element mixed with phenyl group-containing silicone (Patent Document 5) have been proposed.

特開2005−161111号公報Japanese Patent Laying-Open No. 2005-161111 特開2003−292826号公報JP 2003-292826 A 特開2006−316264号公報JP 2006-316264 A 特開2009−91380号公報JP 2009-91380 A 特開2007−70603号公報JP 2007-70603 A

しかしながら、従来では、無機酸化物粒子を疎水性の樹脂と複合化しようとすると、この無機酸化物粒子の表面が親水性であることから、特に疎水性の高いシリコーン樹脂と無機酸化物粒子との間では、シリコーン樹脂と無機酸化物粒子が分離してしまい、複合化することが困難であるという問題点があった。
そこで、一般的な解決法として、無機酸化物粒子の表面を疎水化するために、有機高分子分散剤等の表面修飾剤を無機酸化物粒子の表面に付与することにより、シリコーン樹脂と無機酸化物粒子との相溶性を高める工夫がなされているが、無機酸化物粒子の表面の疎水化を、シリコーン樹脂と相溶するまで十分に疎水化することが難しいという問題点があった。
また、無機酸化物粒子の粒径が20nm以上と大きく、したがって、透明性が低下し、場合によっては失透してしまうという問題点があった。
However, conventionally, when the inorganic oxide particles are combined with a hydrophobic resin, the surface of the inorganic oxide particles is hydrophilic, and therefore, particularly between the highly hydrophobic silicone resin and the inorganic oxide particles. In the meantime, the silicone resin and the inorganic oxide particles are separated, making it difficult to form a composite.
Therefore, as a general solution, in order to hydrophobize the surface of the inorganic oxide particles, a surface modifier such as an organic polymer dispersant is added to the surface of the inorganic oxide particles to thereby form a silicone resin and an inorganic oxide. There has been a contrivance to increase the compatibility with physical particles, but there has been a problem that it is difficult to sufficiently hydrophobize the surface of the inorganic oxide particles until they are compatible with the silicone resin.
In addition, the particle size of the inorganic oxide particles is as large as 20 nm or more. Therefore, there is a problem that transparency is lowered and devitrification occurs depending on the case.

また、例えば高粘性シリコーン樹脂においては、従来の疎水性高分子分散剤を用いても、無機酸化物粒子との相溶がし難く、例え無機酸化物粒子の表面を十分に疎水化することができたとしても、無機酸化物粒子の透明分散液を得ることができないという問題点があった。
また、水酸基含有ポリシロキサンを用いた場合、架橋の進行に伴い水が発生し、場合によっては、無機酸化物粒子とポリシロキサンとが相分離する虞があり、さらには、得られた複合物にポアやクラックが発生する虞があった。
一方、多官能ポリシロキサンを用いる場合も無機酸化物粒子とポリシロキサンとの配合に制約があり、特に無機酸化物粒子の量が多い場合にポアやクラックの発生が顕著となるという問題点があった。多官能ポリシロキサンを用いる場合では、未反応の官能基が残留し易く、よって、架橋後の複合体特性に経時変化が生じ易く、更には、耐久性に劣るという問題点があった。
For example, in a high viscosity silicone resin, even if a conventional hydrophobic polymer dispersant is used, it is difficult to be compatible with inorganic oxide particles, and the surface of inorganic oxide particles can be sufficiently hydrophobized. Even if it was possible, there was a problem that a transparent dispersion of inorganic oxide particles could not be obtained.
In addition, when a hydroxyl group-containing polysiloxane is used, water is generated with the progress of crosslinking, and in some cases, there is a possibility that the inorganic oxide particles and the polysiloxane may be phase-separated. There was a risk of pores and cracks.
On the other hand, when polyfunctional polysiloxane is used, there is a limitation in the blending of inorganic oxide particles and polysiloxane, and there is a problem that pores and cracks become prominent particularly when the amount of inorganic oxide particles is large. It was. When the polyfunctional polysiloxane is used, there is a problem that unreacted functional groups are likely to remain, so that the composite characteristics after crosslinking are likely to change with time, and the durability is inferior.

また、キレート化剤を用いて無機酸化物粒子とシリコーン樹脂とを相溶化させる場合、経時変化や熱劣化が原因で着色を呈するという問題点があった。
また、高屈折率の発光素子用充填材料においては、各種有機分子と相互作用し易いメチルフェニルシリコーンにナノ粒子を分散させた透明分散液が提案されているが、低極性であるジメチルシリコーン樹脂での透明分散および硬化体については達成できていない。
また、付加反応型のジメチルシリコーンを用いる場合では、硬化前のシリコーンには透明分散するが、硬化工程で、相分離が発生し白化してしまう場合があった。
Further, when the inorganic oxide particles and the silicone resin are made compatible with each other using a chelating agent, there is a problem that coloring occurs due to a change with time or thermal deterioration.
In addition, as a high refractive index filling material for light-emitting elements, a transparent dispersion in which nanoparticles are dispersed in methylphenyl silicone that easily interacts with various organic molecules has been proposed. The transparent dispersion and the cured product cannot be achieved.
In addition, when addition reaction type dimethyl silicone is used, the silicone before curing is transparently dispersed, but phase separation may occur in the curing step and whitening may occur.

一方、従来の金属酸化物粒子の表面を変性シリコーンで処理する方法も提案されているが、一般的に変性シリコーンが多官能であることから、無機酸化物粒子の表面を確実に処理することができず、未反応の変性部位がシリコーン樹脂との相溶に悪影響を及ぼすことがあった。そこで、この問題を解決するために、二次あるいは三次の表面処理(表面修飾)を施す等の改善が試みられているが、工程が煩雑化する等の問題点があった。   On the other hand, a method of treating the surface of the conventional metal oxide particles with a modified silicone has also been proposed, but since the modified silicone is generally polyfunctional, it is possible to reliably treat the surface of the inorganic oxide particles. In some cases, the unreacted modified site may adversely affect the compatibility with the silicone resin. Thus, in order to solve this problem, attempts have been made to improve the surface treatment (secondary or tertiary surface treatment), but there have been problems such as complicated processes.

本発明は、上記の課題を解決するためになされたものであって、屈折率、機械的特性およびガスバリア性の向上と共に透明性の維持を可能とする無機酸化物粒子をシリコーン樹脂中に分散した場合に、分散性が高く、しかも、硬化時の相分離・白化を防止することが可能な無機酸化物粒子とシリコーン樹脂との複合組成物及び透明複合体を提供することを目的とする。   The present invention has been made to solve the above-described problems, and inorganic oxide particles capable of maintaining the transparency as well as improving the refractive index, mechanical properties, and gas barrier properties are dispersed in the silicone resin. In this case, an object is to provide a composite composition and a transparent composite of inorganic oxide particles and a silicone resin, which have high dispersibility and can prevent phase separation and whitening during curing.

本発明者等は、上記の課題を解決するために鋭意検討を重ねた結果、平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子を、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーを用いて表面修飾し、さらに、シリコーン樹脂と、反応触媒とを用いて複合化することにより、無機酸化物粒子をシリコーン樹脂中に分散した場合に、無機酸化物粒子の分散性が大幅に向上すると共に、透明性を維持しつつ、シリコーン樹脂の耐熱性及び耐光性を維持するともに、屈折率が制御された透明複合体を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above problems, the present inventors have found that an inorganic oxide particle having an average dispersed particle diameter of 1 nm or more and 20 nm or less is a polydimethylsiloxane skeleton having one functional group at one end. By surface modification with a polymer and further compounding with a silicone resin and a reaction catalyst, when the inorganic oxide particles are dispersed in the silicone resin, the dispersibility of the inorganic oxide particles is greatly increased. While improving transparency and maintaining transparency, while maintaining the heat resistance and light resistance of a silicone resin, it discovered that the transparent composite body by which the refractive index was controlled can be obtained, and it came to complete this invention.

すなわち、本発明の無機酸化物粒子とシリコーン樹脂との複合組成物は、リジメチルシロキサン骨格ポリマーが結合することにより表面修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子と、シリコーン樹脂と、反応触媒とを含有してなる複合組成物であって、前記シリコーン樹脂は、ビニル変性シリコーン及びハイドロジェン変性シリコーンを含有し、前記反応触媒は、ヒドロシリル化反応触媒を含有してなり、前記ポリジメチルシロキサン骨格ポリマーは、モノグリシジルエーテル末端ポリジメチルシロキサン、モノヒドロキシエーテル末端ポリジメチルシロキサンの群から選択された1種または2種であることを特徴とする。 That is, the inorganic oxide composite composition of the particles and the silicone resin of the present invention, a port re polydimethylsiloxane backbone average dispersed particle diameter as surface modified by polymer binds less 1nm or more and 20nm inorganic oxide particles A composite composition comprising a silicone resin and a reaction catalyst, wherein the silicone resin comprises a vinyl-modified silicone and a hydrogen-modified silicone, and the reaction catalyst comprises a hydrosilylation reaction catalyst. The polydimethylsiloxane skeleton polymer is one or two selected from the group consisting of a monoglycidyl ether-terminated polydimethylsiloxane and a monohydroxyether-terminated polydimethylsiloxane .

前記ポリジメチルシロキサン骨格ポリマーは、モノグリシジルエーテル末端ポリジメチルシロキサン、モノヒドロキシエーテル末端ポリジメチルシロキサンの群から選択された1種または2種であることが好ましい。
前記ビニル変性シリコーンは、両末端ビニル−ジメチルシリコーン、両末端ビニルジフェニル−ジメチルシリコーン、両末端ビニル−フェニルメチルシリコーン、両末端ビニル−ジエチルシリコーン、側鎖ビニル−ジメチルシリコーン、ビニルメチルシリコーン、ビニルメトキシシリコーン、ビニルレジン分散体の群から選択された1種または2種以上であることが好ましい。
The polydimethylsiloxane skeleton polymer is preferably one or two selected from the group of monoglycidyl ether-terminated polydimethylsiloxane and monohydroxy ether-terminated polydimethylsiloxane.
The vinyl-modified silicone includes vinyl dimethyl silicone at both ends, vinyl diphenyl-dimethyl silicone at both ends, vinyl phenylphenyl silicone at both ends, vinyl diethyl silicone at both ends, vinyl dimethyl silicone at side chain, vinyl methyl silicone, vinyl methoxy silicone. 1 type or 2 types or more selected from the group of vinyl resin dispersions are preferred.

前記ハイドロジェン変性シリコーンは、両末端ハイドロジェン−ジメチルシリコーン、メチルハイドロジェン−ジメチルシリコーン、メチルハイドロジェンシリコーン、エチルハイドロジェンシリコーン、メチルハイドロジェン−フェニルメチルシリコーン、ハイドライドレジンの群から選択された1種または2種以上であることが好ましい。   The hydrogen-modified silicone is one selected from the group consisting of hydrogen-dimethylsilicone at both ends, methylhydrogen-dimethylsilicone, methylhydrogensilicone, ethylhydrogensilicone, methylhydrogen-phenylmethylsilicone, and hydride resin. Or it is preferable that they are 2 or more types.

前記ハイドロジェン変性シリコーンは、下記の式(1)

Figure 0005780003
(但し、R〜Rは相互に独立な任意の有機基(Hを除く)、mは1以上の整数、nは0を含む正の整数である)
に示す側鎖ハイドロジェン変性シリコーンを含有してなり、該側鎖ハイドロジェン変性シリコーンにおけるmとnとの比(m/(m+n))は0.25以上かつ1以下であることが好ましい。 The hydrogen-modified silicone has the following formula (1):
Figure 0005780003
(Where R 1 to R 8 are mutually independent arbitrary organic groups (excluding H), m is an integer of 1 or more, and n is a positive integer including 0)
It is preferable that the ratio (m / (m + n)) of m to n in the side chain hydrogen-modified silicone is 0.25 or more and 1 or less.

前記ビニル変性シリコーンは、側鎖ビニル−ジメチルシリコーンであり、前記ハイドロジェン変性シリコーンは、下記の式(1)

Figure 0005780003
(但し、R 〜R は相互に独立な任意の有機基(Hを除く)、mは1以上の整数、nは0を含む正の整数である)
に示す側鎖ハイドロジェン変性シリコーンであることが好ましい。
前記無機酸化物粒子の形成材料が酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化鉄(Fe、FeO、Fe)、酸化銅(CuO、CuO)、酸化亜鉛(ZnO)、酸化イットリウム(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In、InO)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO、W)、酸化鉛(PbO、PbO)、酸化ビスマス(Bi)、酸化セリウム(CeO、Ce)、酸化アンチモン(Sb、Sb)酸化ゲルマニウム(GeO、GeO)、スズ添加酸化インジウム(ITO:Indium Tin Oxide)、イットリア安定化ジルコニア(YSZ:Yttria Stabilized Zirconia)から選択される1種または2種以上であることが好ましい。
前記無機酸化物粒子の前記複合組成物中の含有率が、1質量%以上かつ90質量%以下であることが好ましい。 The vinyl-modified silicone is a side chain vinyl-dimethyl silicone, and the hydrogen-modified silicone is represented by the following formula (1):
Figure 0005780003
(Where R 1 to R 8 are mutually independent arbitrary organic groups (excluding H), m is an integer of 1 or more, and n is a positive integer including 0)
The side chain hydrogen-modified silicone shown in FIG.
The material for forming the inorganic oxide particles is zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 , FeO, Fe 3 O 4 ), copper oxide (CuO, Cu 2 O), zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), niobium oxide (Nb 2 O 5 ), molybdenum oxide (MoO 3 ), indium oxide (In 2 O 3 , In 2 O), tin oxide (SnO 2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 , W 2 O 5 ), lead oxide (PbO, PbO 2 ), bismuth oxide (Bi) 2 O 3 ), cerium oxide (CeO 2 , Ce 2 O 3 ), antimony oxide (Sb 2 O 3 , Sb 2 O 5 ) germanium oxide (GeO 2 , GeO), tin-added It is preferable that it is 1 type, or 2 or more types selected from indium oxide (ITO: Indium Tin Oxide) and yttria stabilized zirconia (YSZ: Yttria Stabilized Zirconia).
The content of the inorganic oxide particles in the composite composition is preferably 1% by mass to 90% by mass.

本発明の透明複合体は、本発明の無機酸化物粒子とシリコーン樹脂との複合組成物を、所定の形状に成形し固化するか、または前記複合組成物を固化した後に成形してなり、シリコーン樹脂中に、ポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された無機酸化物粒子が平均分散粒子径1nm以上かつ20nm以下にて分散するとともに、前記シリコーン樹脂中にヒドロシリル化反応触媒を含有してなり、前記ポリジメチルシロキサン骨格ポリマーは、モノグリシジルエーテル末端ポリジメチルシロキサン、モノヒドロキシエーテル末端ポリジメチルシロキサンの群から選択された1種または2種であることを特徴とする。 The transparent composite of the present invention is formed by molding and solidifying the composite composition of the inorganic oxide particles of the present invention and the silicone resin into a predetermined shape, or molding the composite composition and then forming silicone. The inorganic oxide particles whose surface is modified by bonding the polydimethylsiloxane skeleton polymer in the resin are dispersed with an average dispersed particle diameter of 1 nm or more and 20 nm or less, and a hydrosilylation reaction catalyst is contained in the silicone resin. The polydimethylsiloxane skeleton polymer is one or two selected from the group consisting of a monoglycidyl ether-terminated polydimethylsiloxane and a monohydroxyether-terminated polydimethylsiloxane .

本発明の無機酸化物粒子とシリコーン樹脂との複合組成物によれば、少なくとも、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子と、シリコーン樹脂と、反応触媒とを含有したものとし、シリコーン樹脂を、ビニル変性シリコーン及びハイドロジェン変性シリコーンを含有したものとし、反応触媒を、ヒドロシリル化反応触媒を含有してなることとしたので、シリコーン樹脂中における無機酸化物粒子の分散性を大幅に向上させることができる。
したがって、この複合組成物を用いれば、無機酸化物粒子とシリコーン樹脂とを複合化した場合に、分散性が高く、しかも、硬化時の相分離・白化を防止することができ、よって、透明性、耐熱性及び耐光性を維持しつつ、屈折率が制御された透明複合体を得ることができる。
According to the composite composition of the inorganic oxide particles and the silicone resin of the present invention, the average dispersed particle size whose surface is modified by binding a polydimethylsiloxane skeleton polymer having one functional group at one end is 1 nm or more. In addition, the inorganic oxide particles of 20 nm or less, a silicone resin, and a reaction catalyst are included. The silicone resin is a resin that includes vinyl-modified silicone and hydrogen-modified silicone. The reaction catalyst is a hydrosilylation reaction catalyst. Since it is made to contain, the dispersibility of the inorganic oxide particle in a silicone resin can be improved significantly.
Therefore, when this composite composition is used, when the inorganic oxide particles and the silicone resin are combined, the dispersibility is high, and phase separation and whitening at the time of curing can be prevented. A transparent composite with a controlled refractive index can be obtained while maintaining heat resistance and light resistance.

本発明の透明複合体によれば、シリコーン樹脂中に、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された無機酸化物粒子が平均分散粒子径1nm以上かつ20nm以下にて分散するとともに、前記シリコーン樹脂中にヒドロシリル化反応触媒を含有することとしたので、透明性、耐熱性及び耐光性を維持しつつ、屈折率が制御された無機酸化物粒子とシリコーン樹脂との透明複合体を容易に得ることができる。   According to the transparent composite of the present invention, inorganic oxide particles whose surface is modified by bonding a polydimethylsiloxane skeleton polymer having one functional group at one end in a silicone resin has an average dispersed particle diameter of 1 nm or more and 20 nm. In addition to dispersing in the following, the silicone resin contains a hydrosilylation reaction catalyst, so that the inorganic oxide particles and the silicone resin in which the refractive index is controlled while maintaining transparency, heat resistance and light resistance are maintained. A transparent complex with can be easily obtained.

本発明の透明複合体によれば、本発明の無機酸化物粒子とシリコーン樹脂との複合組成物を、所定の形状に成形し固化するか、または複合組成物を固化した後に成形したので、透明性、耐熱性及び耐光性を維持しつつ、屈折率が制御された無機酸化物粒子とシリコーン樹脂との透明複合体を容易に得ることができる。   According to the transparent composite of the present invention, the composite composition of the inorganic oxide particles and the silicone resin of the present invention is molded into a predetermined shape and solidified, or molded after the composite composition is solidified. It is possible to easily obtain a transparent composite of inorganic oxide particles having a controlled refractive index and a silicone resin while maintaining the properties, heat resistance and light resistance.

本発明の無機酸化物粒子とシリコーン樹脂との複合組成物及び透明複合体を実施するための形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The form for implementing the composite composition and transparent composite_body | complex of the inorganic oxide particle | grains and silicone resin of this invention are demonstrated.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[無機酸化物粒子とシリコーン樹脂との複合組成物]
本実施形態の無機酸化物粒子とシリコーン樹脂との複合組成物(以下、単に「複合組成物」と称することもある。)は、無機酸化物粒子をシリコーン樹脂中に分散してなる複合組成物であり、少なくとも、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子と、シリコーン樹脂と、反応触媒とを含有してなる複合組成物である。
[Composite composition of inorganic oxide particles and silicone resin]
The composite composition of inorganic oxide particles and silicone resin of the present embodiment (hereinafter sometimes simply referred to as “composite composition”) is a composite composition in which inorganic oxide particles are dispersed in a silicone resin. And an inorganic oxide particle having an average dispersed particle diameter of 1 nm to 20 nm, which is surface-modified by bonding with a polydimethylsiloxane skeleton polymer having one functional group at one end, a silicone resin, and a reaction catalyst Is a composite composition.

ここで「複合組成物」とは、特定の形状を有さず、一度変形すると元の形状には戻らない不可逆的な変形性を有するものであって、後述の透明複合体の原料となるものである。
この複合組成物の状態としては、例えば、液状やチクソトロピー性を有するゲル状の状態にあるものを示すものとする。
Here, the “composite composition” does not have a specific shape, has irreversible deformability that does not return to the original shape once deformed, and serves as a raw material for the transparent composite described later It is.
As a state of this composite composition, for example, a state in a liquid state or a gel state having thixotropy shall be shown.

無機酸化物粒子の成分である無機酸化物としては、特に限定されないが、ケイ素(Si)等の非金属元素の酸化物、ジルコニウム(Zr)、チタン(Ti)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)、タンタル(Ta)、タングステン(W)、鉛(Pb)、ビスマス(Bi)、セリウム(Ce)、アンチモン(Sb)、ゲルマニウム(Ge)等の金属元素の酸化物が挙げられる。   The inorganic oxide that is a component of the inorganic oxide particles is not particularly limited, but is an oxide of a nonmetallic element such as silicon (Si), zirconium (Zr), titanium (Ti), aluminum (Al), iron (Fe ), Copper (Cu), zinc (Zn), yttrium (Y), niobium (Nb), molybdenum (Mo), indium (In), tin (Sn), tantalum (Ta), tungsten (W), lead (Pb) ), Bismuth (Bi), cerium (Ce), antimony (Sb), germanium (Ge) and other metal element oxides.

このような無機酸化物としては、例えば、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化鉄(Fe、FeO、Fe)、酸化銅(CuO、CuO)、酸化亜鉛(ZnO)、酸化イットリウム(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In、InO)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO、W)、酸化鉛(PbO、PbO)、酸化ビスマス(Bi)、酸化セリウム(CeO、Ce)、酸化アンチモン(Sb、Sb)酸化ゲルマニウム(GeO、GeO)等が挙げられる。 Examples of such inorganic oxides include zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 , FeO). , Fe 3 O 4 ), copper oxide (CuO, Cu 2 O), zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), niobium oxide (Nb 2 O 5 ), molybdenum oxide (MoO 3 ), indium oxide (In 2 O 3 , In 2 O), tin oxide (SnO 2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 , W 2 O 5 ), lead oxide (PbO, PbO 2 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 , Ce 2 O 3 ), antimony oxide (Sb 2 O 3 , Sb 2 O 5 ) germanium oxide (GeO 2 , GeO) Etc.

このような無機酸化物には、スズ添加酸化インジウム(ITO:Indium Tin Oxide)、イットリア安定化ジルコニア(YSZ:Yttria Stabilized Zirconia)等の複合酸化物も含まれる。
このような無機酸化物は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
特に、シリコーン樹脂との複合組成物を高屈折率化する場合には、高い屈折率を有し、可視光線に対して無色透明であり、硬度も高い酸化ジルコニウム(ZrO)や酸化チタン(TiO)が好適である。
Such inorganic oxides also include composite oxides such as tin-added indium tin oxide (ITO) and yttria stabilized zirconia (YSZ).
Such inorganic oxides may be used alone or in combination of two or more.
In particular, when increasing the refractive index of a composite composition with a silicone resin, zirconium oxide (ZrO 2 ) or titanium oxide (TiO 2 ) having a high refractive index, being colorless and transparent to visible light, and having high hardness. 2 ) is preferred.

また、シリコーン樹脂との複合組成物を低屈折率化する場合には、例えば、中空シリカ粒子や多孔質シリカ粒子のような粒子内に空隙を有することで粒子全体として低屈折率となる無機酸化物粒子を用いることが好ましい。   Further, when reducing the refractive index of a composite composition with a silicone resin, for example, an inorganic oxide that has a low refractive index as a whole particle by having voids in the particles such as hollow silica particles and porous silica particles. It is preferable to use physical particles.

この無機酸化物粒子の複合組成物中における平均分散粒子径は、1nm以上かつ20nm以下であることが好ましい。
ここで、無機酸化物粒子の平均分散粒子径を1nm以上かつ20nm以下と限定した理由は、平均分散粒子径が1nm未満であると、この粒子を構成する粒子の一次粒子径も1nm未満と極めて小さくなり、したがって、結晶性が乏しくなり、屈折率等の粒子特性を発現することが難しくなるからであり、一方、平均分散粒子径が20nmを超えると、レイリー散乱の影響が大きくなり、複合組成物の透明性が低下したり、あるいは、この複合組成物を成形・固化して得られる透明複合体の透明性が低下するからである。
The average dispersed particle size in the composite composition of the inorganic oxide particles is preferably 1 nm or more and 20 nm or less.
Here, the reason why the average dispersed particle diameter of the inorganic oxide particles is limited to 1 nm or more and 20 nm or less is that when the average dispersed particle diameter is less than 1 nm, the primary particle diameter of the particles constituting the particles is extremely less than 1 nm. This is because the crystallinity becomes poor, and it becomes difficult to express particle characteristics such as refractive index. On the other hand, when the average dispersed particle diameter exceeds 20 nm, the influence of Rayleigh scattering becomes large, and the composite composition This is because the transparency of the product is lowered, or the transparency of the transparent composite obtained by molding and solidifying the composite composition is lowered.

このように、無機酸化物粒子は、ナノメートルサイズの粒子であるから、この無機酸化物粒子をシリコーン樹脂中に分散させた複合組成物、あるいは、この複合組成物を成形・固化してなる透明複合体においても、光散乱が小さく、複合組成物や透明複合体の透明性を維持することが可能である。   Thus, since the inorganic oxide particles are nanometer-sized particles, a composite composition in which the inorganic oxide particles are dispersed in a silicone resin, or a transparent product formed by molding and solidifying the composite composition. Even in the composite, light scattering is small, and the transparency of the composite composition and the transparent composite can be maintained.

この無機酸化物粒子の複合組成物中の含有率は、1質量%以上かつ90質量%以下であることが好ましく、より好ましくは5質量%以上かつ90質量%以下、さらに好ましくは10質量%以上かつ85質量%以下である。
ここで、無機酸化物粒子の含有率を1質量%以上かつ90質量%以下と限定した理由は、含有率が1質量%未満であると、無機酸化物粒子の量が少なすぎてしまい、無機酸化物粒子をシリコーン樹脂と複合化した場合にシリコーン樹脂の光学特性や機械的特性の変化が発現し難くなり、結果として無機酸化物粒子を複合化させる効果が得られなくなるので好ましくない。一方、含有率が90質量%を越えると、無機酸化物粒子の分散性が十分に確保できなくなったり、複合組成物中における流動性が低下し、成形性が悪化したりするので好ましくない。
The content of the inorganic oxide particles in the composite composition is preferably 1% by mass or more and 90% by mass or less, more preferably 5% by mass or more and 90% by mass or less, and further preferably 10% by mass or more. And it is 85 mass% or less.
Here, the reason why the content of the inorganic oxide particles is limited to 1% by mass or more and 90% by mass or less is that when the content is less than 1% by mass, the amount of the inorganic oxide particles is too small, and the inorganic oxide particles When the oxide particles are combined with the silicone resin, it is not preferable because changes in the optical properties and mechanical properties of the silicone resin are hardly exhibited, and as a result, the effect of combining the inorganic oxide particles cannot be obtained. On the other hand, when the content exceeds 90% by mass, the dispersibility of the inorganic oxide particles cannot be ensured sufficiently, the fluidity in the composite composition is lowered, and the moldability is deteriorated.

次に、この無機酸化物粒子の表面修飾について説明する。
この無機酸化物粒子の表面は、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーからなる表面修飾剤により修飾されている。
この表面修飾剤は、ポリジメチルシロキサン骨格、特に直鎖状のポリジメチルシロキサン骨格を主鎖に有し、この主鎖の片末端(一端側)に官能基である極性基を1基のみ有している。そのため、この官能基(極性基)が無機酸化物粒子の表面へ選択的に結合すると、他端側、すなわちシロキサン骨格部分は揃って粒子外側(無機酸化物粒子の表面から遠ざかる方向)を向く形となる。
Next, the surface modification of the inorganic oxide particles will be described.
The surface of the inorganic oxide particles is modified with a surface modifier made of a polydimethylsiloxane skeleton polymer having one functional group at one end.
This surface modifier has a polydimethylsiloxane skeleton, in particular, a linear polydimethylsiloxane skeleton in the main chain, and has only one polar group as a functional group at one end (one end side) of the main chain. ing. Therefore, when this functional group (polar group) is selectively bonded to the surface of the inorganic oxide particle, the other end, that is, the siloxane skeleton part is aligned and faces the outside of the particle (the direction away from the surface of the inorganic oxide particle). It becomes.

しかも、このシロキサン骨格部分とシリコーン樹脂とは相溶性が高く、かつ親和性も良好であるから、このポリジメチルシロキサン骨格ポリマーからなる表面修飾剤により表面修飾された無機酸化物粒子は、シリコーン樹脂中に均一に分散することができ、良好な複合組成物を形成することができる。   Moreover, since the siloxane skeleton portion and the silicone resin are highly compatible and have good affinity, the inorganic oxide particles surface-modified with the surface modifier made of the polydimethylsiloxane skeleton polymer are contained in the silicone resin. Can be uniformly dispersed, and a good composite composition can be formed.

ここで、「直鎖状のポリジメチルシロキサン骨格」とは、ポリジメチルシロキサン骨格に枝分れ(分岐)がないことを示している。
ここで、このポリジメチルシロキサン骨格に枝分れ(分岐)があったり、あるいは、官能基である極性基がシロキサン骨格の中間に位置している(官能基がシロキサン骨格の中間に位置するケイ素に結合している)場合には、シロキサン骨格の少なくとも一部は、無機酸化物粒子の表面方向を向いたり、粒子表面に平行な方向を向いたりし易い。この場合、無機酸化物粒子の外側に向いたシロキサン骨格の量が減少することになり、無機酸化物粒子とシリコーン樹脂との間の相溶性や親和性が低下する虞が生じる。さらに、シロキサン骨格の方向に統一性が無くなるために、シロキサン骨格同士の絡み合いや立体障害が生じ、やはり無機酸化物粒子とシリコーン樹脂との間の相溶性や親和性が低下する虞がある。
Here, the “linear polydimethylsiloxane skeleton” means that the polydimethylsiloxane skeleton has no branches (branches).
Here, the polydimethylsiloxane skeleton is branched (branched), or the polar group which is a functional group is located in the middle of the siloxane skeleton (the silicon in which the functional group is located in the middle of the siloxane skeleton). In the case of bonding, at least a part of the siloxane skeleton is likely to face the surface direction of the inorganic oxide particles or the direction parallel to the particle surface. In this case, the amount of the siloxane skeleton directed to the outside of the inorganic oxide particles is reduced, and the compatibility and affinity between the inorganic oxide particles and the silicone resin may be reduced. Furthermore, since the uniformity of the direction of the siloxane skeleton is lost, entanglement and steric hindrance between the siloxane skeletons may occur, and the compatibility and affinity between the inorganic oxide particles and the silicone resin may also decrease.

また、この表面修飾剤は極性基を1基のみ有している1官能基であり、しかも、この官能基が無機酸化物粒子との結合に使用されるので、無機酸化物粒子に結合した表面修飾剤には官能基が存在しない。したがって、従来の多官能ポリシロキサンを用いた場合に、未反応で残留している官能基が原因となって発生するシリコーン樹脂との相溶性の悪化、例えば白濁化等が発生する虞が無く、安定した複合組成物を得ることができる。   Further, this surface modifier is a monofunctional group having only one polar group, and since this functional group is used for bonding with the inorganic oxide particles, the surface bonded to the inorganic oxide particles. There are no functional groups in the modifier. Therefore, when using a conventional polyfunctional polysiloxane, there is no risk of deterioration of compatibility with the silicone resin generated due to unreacted functional groups, such as white turbidity, A stable composite composition can be obtained.

このような表面修飾剤としては、モノグリシジルエーテル末端ポリジメチルシロキサン、モノヒドロキシエーテル末端ポリジメチルシロキサンのうちいずれか1種または2種を有することが好ましい。
これらの表面修飾剤が有する末端基のうち、モノグリシジルエーテル末端は、グリシジル基の一部であるエポキシ基の部分が開環して無機酸化物粒子の表面の水酸基と結合するものであり、また、モノヒドロキシエーテル末端は、末端の水酸基と無機酸化物粒子の表面の水酸基とが脱水縮合することで結合するものである。
As such a surface modifier, it is preferable to have one or two of monoglycidyl ether-terminated polydimethylsiloxane and monohydroxyether-terminated polydimethylsiloxane.
Among the terminal groups possessed by these surface modifiers, the monoglycidyl ether terminal is one in which the epoxy group part of the glycidyl group is ring-opened and bonded to the hydroxyl group on the surface of the inorganic oxide particle. The monohydroxy ether terminal is bonded by dehydration condensation between the terminal hydroxyl group and the surface hydroxyl group of the inorganic oxide particles.

これらの表面修飾剤のうち、モノグリシジルエーテル末端ポリジメチルシロキサンは、もとより水酸基を含有しておらず、また、モノヒドロキシエーテル末端ポリジメチルシロキサンは、無機酸化物粒子と結合する官能基のみに水酸基を有している。したがって、いずれの表面修飾剤においても、無機酸化物粒子の表面に結合した後は、水酸基を有さないか、もしくは無機酸化物粒子の表面近傍に存在し、シリコーン樹脂との相溶を妨げない状態となっている。   Of these surface modifiers, monoglycidyl ether-terminated polydimethylsiloxane does not naturally contain hydroxyl groups, and monohydroxyether-terminated polydimethylsiloxane has hydroxyl groups only on functional groups that bind to inorganic oxide particles. Have. Therefore, in any surface modifier, after bonding to the surface of the inorganic oxide particle, it does not have a hydroxyl group or exists in the vicinity of the surface of the inorganic oxide particle, and does not prevent compatibility with the silicone resin. It is in a state.

また、これらの表面修飾剤により表面修飾された無機酸化物粒子とシリコーン樹脂との複合組成物から得られた透明複合体は、収縮率が小さい。これにより、透明複合体におけるポアやクラックの発生が無く、また硬化したシリコーン樹脂中における無機酸化物粒子の分散性も良好に保たれ、欠陥のない透明複合体が得られることとなる。   Moreover, the transparent composite_body | complex obtained from the composite composition of the inorganic oxide particle surface-modified by these surface modifiers and a silicone resin has a small shrinkage rate. As a result, there is no generation of pores or cracks in the transparent composite, and the dispersibility of the inorganic oxide particles in the cured silicone resin is maintained well, and a transparent composite free from defects is obtained.

本実施形態の無機酸化物粒子は、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーにより表面修飾されているので、シリコーン樹脂に対しては、相溶性や分散性が優れたものとなっている。したがって、シリコーン樹脂自体には特段の制限は無く、通常のシリコーン樹脂であれば問題なく使用することができる。
これらのシリコーン樹脂の中でも、特に、室温(25℃)以上かつ150℃程度以下で硬化物が得られるヒドロシリル化反応を用いたシリコーン樹脂が特に好ましく、このようなシリコーン樹脂としては、ビニル変性シリコーンおよびハイドロジェン変性シリコーンが好適である。
Since the inorganic oxide particles of this embodiment are surface-modified with a polydimethylsiloxane skeleton polymer having one functional group at one end, the silicone resin has excellent compatibility and dispersibility. Yes. Accordingly, the silicone resin itself is not particularly limited, and any ordinary silicone resin can be used without any problem.
Among these silicone resins, particularly preferred are silicone resins using a hydrosilylation reaction in which a cured product is obtained at room temperature (25 ° C.) or more and about 150 ° C. or less. Examples of such silicone resins include vinyl-modified silicones and Hydrogen-modified silicone is preferred.

ビニル変性シリコーンとしては、両末端ビニル−ジメチルシリコーン、両末端ビニルジフェニル−ジメチルシリコーン、両末端ビニル−フェニルメチルシリコーン、両末端ビニル−ジエチルシリコーン、側鎖ビニル−ジメチルシリコーン、ビニルメチルシリコーン、ビニルメトキシシリコーン、ビニルレジン分散体等が挙げられる。これらのビニル変性シリコーンは、1種類を選択使用してもよく、2種類以上を組み合わせて使用してもよい。   As vinyl-modified silicones, both terminal vinyl-dimethyl silicone, both terminal vinyl diphenyl-dimethyl silicone, both terminal vinyl-phenyl methyl silicone, both terminal vinyl-diethyl silicone, side chain vinyl-dimethyl silicone, vinyl methyl silicone, vinyl methoxy silicone And vinyl resin dispersion. One kind of these vinyl-modified silicones may be selected and used, or two or more kinds may be used in combination.

ハイドロジェン変性シリコーンとしては、両末端ハイドロジェン−ジメチルシリコーン、メチルハイドロジェン−ジメチルシリコーン、メチルハイドロジェンシリコーン、エチルハイドロジェンシリコーン、メチルハイドロジェン−フェニルメチルシリコーン、ハイドライドレジン等が挙げられる。これらのハイドロジェン変性シリコーンは、1種類を選択使用してもよく、2種類以上を組み合わせて使用してもよい。   Examples of the hydrogen-modified silicone include both-end hydrogen-dimethylsilicone, methylhydrogen-dimethylsilicone, methylhydrogensilicone, ethylhydrogensilicone, methylhydrogen-phenylmethylsilicone, and hydride resin. One type of these hydrogen-modified silicones may be selected and used, or two or more types may be used in combination.

このハイドロジェン変性シリコーンにおいては、下記の式(1)

Figure 0005780003
(但し、R〜Rは相互に独立な任意の有機基(Hを除く)、mは1以上の整数、nは0を含む正の整数である)
に示す側鎖ハイドロジェン変性シリコーンを含有していることが好ましい。
ここで、側鎖ハイドロジェン変性シリコーンが好ましい理由は、ビニル変性シリコーンとヒドロシリル化反応等により重合硬化してシリコーン樹脂重合体を形成する際に、末端ハイドロジェン変性シリコーンに比べて反応性が高く、さらに反応基であるハイドロジェン変性シリコーンの量が多くできることから架橋密度が高くなり、結果として得られたシリコーン樹脂重合体の特性を向上させることができるからである。 In this hydrogen-modified silicone, the following formula (1)
Figure 0005780003
(Where R 1 to R 8 are mutually independent arbitrary organic groups (excluding H), m is an integer of 1 or more, and n is a positive integer including 0)
It is preferable to contain the side chain hydrogen-modified silicone shown in FIG.
Here, the reason why the side chain hydrogen-modified silicone is preferable is that, when a silicone resin polymer is formed by polymerization and curing with a vinyl-modified silicone and a hydrosilylation reaction, the reactivity is higher than the terminal hydrogen-modified silicone, Furthermore, since the amount of the hydrogen-modified silicone as a reactive group can be increased, the crosslinking density is increased, and the characteristics of the resulting silicone resin polymer can be improved.

さらにまた、上記の式(1)に示す側鎖ハイドロジェン変性シリコーンにおけるmとnとの比(m/(m+n))は、0.25以上かつ1以下であることが好ましい。
ここで、mとnとの比(m/(m+n))を0.25以上かつ1以下に限定した理由は、この比が0.25未満であると、硬化時の架橋密度が少なすぎるために、無機酸化物粒子の凝集・相分離速度がシリコーン樹脂の硬化速度よりも速くなり、その結果、シリコーン樹脂との硬化の際に透明性が失われるからである。
Furthermore, the ratio (m / (m + n)) of m to n in the side chain hydrogen-modified silicone represented by the above formula (1) is preferably 0.25 or more and 1 or less.
Here, the reason why the ratio of m to n (m / (m + n)) is limited to 0.25 or more and 1 or less is that when this ratio is less than 0.25, the crosslinking density during curing is too low. In addition, the aggregation / phase separation rate of the inorganic oxide particles becomes faster than the curing rate of the silicone resin, and as a result, the transparency is lost upon curing with the silicone resin.

なお、mとnの比(m/(m+n))が大きくなるほど、下記の式(2)

Figure 0005780003
に示すハイドロジェン含有ユニットの含有率が高くなり、透明複合体を形成した後もビニル変性シリコーンと未反応のユニットの割合が増加すると考えられるが、この未反応ハイドロジェン含有ユニットが透明複合体の特性に及ぼす影響はほとんど無い。したがって、側鎖ハイドロジェン変性シリコーンにおけるmとnの比(m/(m+n))の最大値は1であってよい。 As the ratio of m to n (m / (m + n)) increases, the following formula (2)
Figure 0005780003
The content of hydrogen-containing units shown in (2) is high, and the proportion of vinyl-modified silicone and unreacted units is expected to increase even after forming a transparent composite. There is almost no influence on the characteristics. Therefore, the maximum value of the ratio of m to n (m / (m + n)) in the side chain hydrogen-modified silicone may be 1.

上記の式(1)においては、R〜Rは相互に独立な任意の有機基(Hを除く)であり、その一部または全てが同一であってもよい。なおここで「一部が同一」とは、例えば、RとRとRとHとが同一であり、かつRとRとRとRとRとは相互に異なる、というように、一部のみが同一種である場合だけでなく、例えば、RとRとRとが同一かつRとRとRとRが同一であり、かつRとRとRとは相互に異なる、というような、その一部同士が同一の組み合わせであってもよい。
また、「有機基」とは、特性基、官能基、置換基等の有機物からなる基全般を表すものであって、例えば、アルキル基、アルコキシ基等が含まれる。
In the above formula (1), R 1 to R 8 are mutually independent arbitrary organic groups (excluding H), and part or all of them may be the same. Here, “partially the same” means, for example, that R 1 , R 3 , R 4 and H 6 are the same, and R 1 , R 2 , R 5 , R 7 and R 8 are mutually Not only in the case where only some are of the same species, for example, R 1 , R 3 and R 4 are the same and R 2 , R 5 , R 7 and R 8 are the same, and R 1 , R 2 and R 6 may be different from each other, and some of them may be the same combination.
Further, the “organic group” represents all groups composed of organic substances such as a characteristic group, a functional group, and a substituent, and includes, for example, an alkyl group and an alkoxy group.

このシリコーン樹脂としては、無機酸化物粒子等と混合後の複合組成物の特性として、特定の形状を有さず、一度変形すると元の形状には戻らない不可逆的な変形性を有するものであって、後述の透明複合体の原料となるものであり、例えば液状やチクソトロピー性を有するゲル状の状態にあるものであればよく、その重合度は特に限定されない。   This silicone resin does not have a specific shape as a characteristic of the composite composition after mixing with inorganic oxide particles or the like, and has irreversible deformability that does not return to the original shape once deformed. Any material can be used as a raw material for the transparent composite, which will be described later, and may be in a liquid state or a gel-like state having thixotropy, for example, and the degree of polymerization is not particularly limited.

すなわち、複合組成物が上記特性を有するものであれば、モノマー(単量体)、オリゴマー(2〜数百程度の重合体)、ポリマー(数百以上の重合体)のいずれでもよく、またこれらを組み合わせることで重合度に幅を持たせたものを用いてもかまわない。
また、このシリコーン樹脂においては、その特性を損なわない範囲で酸化防止剤、離型剤、カップリング剤、無機充填剤等を添加してもよい。
That is, as long as the composite composition has the above characteristics, any of a monomer (monomer), an oligomer (2 to several hundreds of polymers), and a polymer (several hundreds or more of polymers) may be used. You may use what gave the width | variety of polymerization degree by combining.
Moreover, in this silicone resin, you may add antioxidant, a mold release agent, a coupling agent, an inorganic filler, etc. in the range which does not impair the characteristic.

本実施形態の複合組成物は、反応触媒を含有している。
この反応触媒としては、ヒドロシリル化反応触媒を含有していることが好ましい。このヒドロシリル化反応触媒としては貴金属系触媒が挙げられ、貴金属の粉体、貴金属塩、貴金属錯体等を適宜選択することができる。貴金属系触媒の中では白金族系触媒が好ましく、例えば、白金系触媒、ロジウム系触媒、パラジウム系触媒等を挙げることができ、特に、白金系触媒が好ましい。この白金系触媒としては、白金微粉体、塩化白金酸、白金−オレフィン錯体、白金−カルボニル錯体等が挙げられ、これらを単独で、あるいは2種以上を組み合わせて用いることができる。
The composite composition of this embodiment contains a reaction catalyst.
The reaction catalyst preferably contains a hydrosilylation reaction catalyst. Examples of the hydrosilylation reaction catalyst include a noble metal catalyst, and a noble metal powder, a noble metal salt, a noble metal complex, and the like can be appropriately selected. Among the noble metal catalysts, platinum group catalysts are preferable, and examples thereof include platinum catalysts, rhodium catalysts, palladium catalysts, and the like, and platinum catalysts are particularly preferable. Examples of the platinum-based catalyst include platinum fine powder, chloroplatinic acid, a platinum-olefin complex, a platinum-carbonyl complex, and the like. These can be used alone or in combination of two or more.

また、本実施形態の複合組成物は、有機溶媒を含有することができる。
ここで、複合組成物が有機溶媒を含有する利点としては、次のような点が上げられる。
第1の利点としては、複合組成物の粘度制御が挙げられる。例えば、無機酸化物粒子とシリコーン樹脂との混合物が高粘度の場合、流動性が悪化し、後述の透明複合体の成形性の低下や取り扱いの容易性が低下するという問題が生じる場合がある。そこで、これらの問題を解消するために、有機溶媒を混合物に添加することにより、この混合物の粘度を所望の粘度にまで低下させることが可能になる。
Moreover, the composite composition of this embodiment can contain an organic solvent.
Here, the following points can be raised as advantages of the composite composition containing an organic solvent.
The first advantage is viscosity control of the composite composition. For example, when the mixture of the inorganic oxide particles and the silicone resin has a high viscosity, the fluidity is deteriorated, and there may be a problem that the moldability and ease of handling of the transparent composite described later are lowered. Therefore, in order to solve these problems, it is possible to reduce the viscosity of the mixture to a desired viscosity by adding an organic solvent to the mixture.

第2の利点としては、混合・分散の容易化が挙げられる。例えば、表面修飾剤により修飾された無機酸化物粒子を、まず、使用するシリコーン樹脂と相溶性の高い有機溶媒中に分散させて無機酸化物粒子分散液とし、この無機酸化物粒子分散液とシリコーン樹脂とを混合・攪拌すれば、無機酸化物粒子のシリコーン樹脂に対する分散性が非常に高くなるので好ましい。   The second advantage is easy mixing and dispersion. For example, inorganic oxide particles modified with a surface modifier are first dispersed in an organic solvent highly compatible with the silicone resin to be used to form an inorganic oxide particle dispersion, and this inorganic oxide particle dispersion and silicone It is preferable to mix and stir the resin since the dispersibility of the inorganic oxide particles in the silicone resin becomes very high.

この有機溶媒としては、疎水性溶媒を用いることが好ましい。その理由は、表面修飾された無機酸化物の分散性が高く、シリコーン樹脂との相溶性が高い溶媒として、疎水性溶媒が適しているからである。
このような疎水性溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素等の塩素含有溶媒が好適に用いられ、これらの溶媒のうち1種を単独で、または2種以上を混合して用いることができる。
As the organic solvent, a hydrophobic solvent is preferably used. The reason is that a hydrophobic solvent is suitable as a solvent having high dispersibility of the surface-modified inorganic oxide and high compatibility with the silicone resin.
As such a hydrophobic solvent, for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, and chlorine-containing solvents such as dichloromethane, chloroform, and carbon tetrachloride are preferably used. One of these solvents is used. Can be used alone or in admixture of two or more.

この有機溶媒の含有率は、上記等の溶媒添加効果が得られるものであれば特に限定はされないが、通常、表面修飾された無機酸化物粒子とシリコーン樹脂との合計量に対して400質量%以下であることが好ましい。その理由としては、有機溶媒が過剰に存在すると、この複合組成物を用いて後述の透明複合体を形成する際に、粘度が低すぎて成形性に難が生じたり、あるいは有機溶媒の除去に時間を要したりするので、好ましくないからである。   The content of the organic solvent is not particularly limited as long as the above-mentioned solvent addition effect can be obtained, but is usually 400% by mass with respect to the total amount of the surface-modified inorganic oxide particles and the silicone resin. The following is preferable. The reason for this is that if an organic solvent is present in excess, when forming a transparent composite described later using this composite composition, the viscosity is too low, resulting in difficulty in moldability, or removal of the organic solvent. This is because it takes time and is not preferable.

[複合組成物の製造方法]
本実施形態の複合組成物の製造方法は、まず、無機酸化物粒子の表面を、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーにより修飾し、次いで、この表面修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子と、シリコーン樹脂と、反応触媒とを混合する方法である。
[Method for producing composite composition]
In the production method of the composite composition of the present embodiment, first, the surface of the inorganic oxide particles is modified with a polydimethylsiloxane skeleton polymer having one functional group at one end, and then the surface-modified average dispersed particle size is obtained. Is a method of mixing inorganic oxide particles of 1 nm or more and 20 nm or less, a silicone resin, and a reaction catalyst.

ここで、無機酸化物粒子の表面を、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーにより修飾する方法としては、まず、無機酸化物粒子の表面に予め特定の分散剤を結合させて疎水性溶媒(有機溶媒)への分散性を持たせた後に、この無機酸化物粒子を疎水性溶媒中に分散させ、得られた分散液に片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーからなる表面修飾剤を加えることで、この疎水性溶媒中にて無機酸化物粒子の表面に予め結合している特定の分散剤と、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーからなる表面修飾剤とを置換させる方法を挙げることができる。   Here, as a method for modifying the surface of the inorganic oxide particle with a polydimethylsiloxane skeleton polymer having one functional group at one end, first, a specific dispersant is bonded to the surface of the inorganic oxide particle in advance to make it hydrophobic. After imparting dispersibility to an organic solvent (organic solvent), the inorganic oxide particles are dispersed in a hydrophobic solvent, and a polydimethylsiloxane skeleton polymer having one functional group at one end is dispersed in the obtained dispersion. The surface which consists of the specific dispersing agent previously couple | bonded with the surface of the inorganic oxide particle in this hydrophobic solvent, and the polydimethylsiloxane frame | skeleton polymer which has one functional group in one terminal by adding the surface modifier which becomes A method for substituting the modifier may be mentioned.

始めに、無機酸化物粒子の表面に特定の分散剤を結合させて、疎水性溶媒への分散性を持たせる。
この特定の分散剤とは、分散剤が結合した無機酸化物粒子が疎水性溶媒に容易に分散するものであり、かつ、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーよりなる表面修飾剤が共存する場合に、無機酸化物粒子表面において、既に結合している特定の分散剤と当該表面修飾剤とが、容易に置換を起こすことができるものである。
First, a specific dispersant is bonded to the surface of the inorganic oxide particles so as to have dispersibility in a hydrophobic solvent.
This specific dispersant is a surface modifier comprising a polydimethylsiloxane skeleton polymer in which inorganic oxide particles to which a dispersant is bonded are easily dispersed in a hydrophobic solvent and having one functional group at one end. In the case of coexistence, the specific dispersant already bonded to the surface of the inorganic oxide particle and the surface modifier can easily be substituted.

特定の分散剤としては、有機酸化合物または有機塩基化合物を挙げることができ、有機酸化合物としてはカルボン酸、リン酸、スルホン酸等が、有機塩基化合物としてはアミン、フォスファゼン塩基等が挙げられる。
これらの分散剤の中でも、無機酸化物粒子を分散させる分散剤として機能し、かつ表面修飾剤との反応時には良好に脱離させることが可能であることから、カルボン酸やアミンが好適に用いられる。
Specific examples of the dispersant include organic acid compounds and organic base compounds. Examples of the organic acid compound include carboxylic acid, phosphoric acid, and sulfonic acid. Examples of the organic base compound include amine and phosphazene base.
Among these dispersants, carboxylic acids and amines are preferably used because they function as a dispersant for dispersing the inorganic oxide particles and can be favorably eliminated during the reaction with the surface modifier. .

カルボン酸としては、例えば、ギ酸、酢酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ラウリン酸、ステアリン酸などの飽和脂肪酸、オレイン酸などの不飽和脂肪酸から選択された1種または2種以上を選択して用いればよい。また、アミンとしては、例えば、ピリジン、ビピリジンなどの芳香族アミンや、トリエチルアミン、ジエチルアミン、モノエチルアミン、ブチルアミンなどの脂肪族アミンから選択された1種または2種以上を選択して用いればよい。   Examples of the carboxylic acid include 1 selected from saturated fatty acids such as formic acid, acetic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, capric acid, lauric acid, stearic acid, and unsaturated fatty acids such as oleic acid. A species or two or more species may be selected and used. As the amine, for example, one or more selected from aromatic amines such as pyridine and bipyridine and aliphatic amines such as triethylamine, diethylamine, monoethylamine, and butylamine may be selected and used.

次いで、表面に特定の分散剤を結合させた無機酸化物粒子を、疎水性溶媒中へ分散させる。
疎水性溶媒としては、当該無機酸化物粒子が安定に分散するものであればよいが、例えば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素などの含塩素溶媒が好適に用いられ、これらの溶媒のうち1種または2種以上を用いることができる。
Next, the inorganic oxide particles having a specific dispersant bonded to the surface are dispersed in a hydrophobic solvent.
The hydrophobic solvent is not particularly limited as long as the inorganic oxide particles can be stably dispersed. For example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, and chlorine-containing compounds such as dichloromethane, chloroform, and carbon tetrachloride. A solvent is preferably used, and one or more of these solvents can be used.

次いで、無機酸化物粒子を分散させた疎水性溶媒に、既に述べた片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーからなる表面修飾剤を加え、この表面修飾剤を無機酸化物表面に既に結合している特定の分散剤と置換させることにより、無機酸化物粒子の表面を修飾する。
この片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーからなる表面修飾剤の無機酸化物粒子に対する質量比は、無機酸化物粒子の全質量に対して5質量%以上かつ200質量%以下であることが好ましく、より好ましくは10質量%以上かつ100質量%以下、さらに好ましくは20質量%以上かつ100質量%以下である。
Next, the surface modifier composed of a polydimethylsiloxane skeleton polymer having one functional group at one end is added to the hydrophobic solvent in which the inorganic oxide particles are dispersed, and this surface modifier is already applied to the surface of the inorganic oxide. The surface of the inorganic oxide particles is modified by substituting with a specific dispersing agent.
The mass ratio of the surface modifier comprising the polydimethylsiloxane skeleton polymer having one functional group at one end to the inorganic oxide particles is 5% by mass or more and 200% by mass or less with respect to the total mass of the inorganic oxide particles. More preferably, it is 10 mass% or more and 100 mass% or less, More preferably, it is 20 mass% or more and 100 mass% or less.

ここで、表面修飾剤の質量比を5質量%以上かつ200質量%以下と限定した理由は、表面修飾剤の質量比が5質量%未満であると、表面修飾剤の量が少なすぎて無機酸化物粒子の表面を十分に修飾することができず、したがって、この表面修飾が不十分な無機酸化物粒子のシリコーン樹脂への相溶が困難となり、シリコーン樹脂との複合化の際に透明性が失われるからであり、一方、表面修飾剤の質量比が200質量%を超えると、複合組成物における表面修飾剤の割合が無視できなくなる程増大し、したがって、複合組成物の特性に大きく影響を及ぼすこととなり、特性の低下を引き起こす虞があるからである。   Here, the reason why the mass ratio of the surface modifier is limited to 5% by mass or more and 200% by mass or less is that when the mass ratio of the surface modifier is less than 5% by mass, the amount of the surface modifier is too small and inorganic. The surface of the oxide particles cannot be sufficiently modified. Therefore, it becomes difficult for the inorganic oxide particles having insufficient surface modification to be compatible with the silicone resin. On the other hand, when the mass ratio of the surface modifier exceeds 200% by mass, the proportion of the surface modifier in the composite composition increases to a degree that cannot be ignored, and thus greatly affects the properties of the composite composition. This is because there is a risk of deteriorating characteristics.

このように、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーからなる表面修飾剤を用い、この表面修飾剤を疎水性溶媒中で無機酸化物粒子と反応させることにより、表面修飾剤の官能基(極性基)は無機酸化物粒子へ選択的に配向・結合し、一方他端側は疎水性溶媒中に分散しようとして、無機酸化物粒子の外側を向く形となる。したがって、これらの表面処理剤は、官能基部分を無機酸化物粒子と結合し、他端側は無機酸化物粒子に対して放射状に離れるような形となる。
以上により、表面が片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーにより修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子が得られる。
Thus, by using a surface modifier composed of a polydimethylsiloxane skeleton polymer having one functional group at one end and reacting the surface modifier with inorganic oxide particles in a hydrophobic solvent, The groups (polar groups) are selectively oriented and bonded to the inorganic oxide particles, while the other end side is directed to the outside of the inorganic oxide particles so as to be dispersed in the hydrophobic solvent. Therefore, these surface treatment agents have a shape in which the functional group portion is bonded to the inorganic oxide particles, and the other end side is radially separated from the inorganic oxide particles.
As described above, inorganic oxide particles having an average dispersed particle diameter of 1 nm or more and 20 nm or less, the surface of which is modified with a polydimethylsiloxane skeleton polymer having one functional group at one end, are obtained.

次いで、この表面修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子と、シリコーン樹脂と、反応触媒とを混合する。この際、必要に応じて有機溶媒を加えてもよい。
ここで、シリコーン樹脂自体には特段の限定は無く、上述したヒドロシリル化反応により硬化可能なビニル変性シリコーンおよびハイドロジェン変性シリコーンの組み合わせであれば問題なく使用することができる。
Next, the inorganic oxide particles having a surface-modified average dispersed particle diameter of 1 nm or more and 20 nm or less, a silicone resin, and a reaction catalyst are mixed. At this time, an organic solvent may be added as necessary.
Here, the silicone resin itself is not particularly limited, and any combination of vinyl-modified silicone and hydrogen-modified silicone that can be cured by the hydrosilylation reaction described above can be used without any problem.

すなわち、ビニル変性シリコーンとしては、両末端ビニル−ジメチルシリコーン、両末端ビニルジフェニル−ジメチルシリコーン、両末端ビニル−フェニルメチルシリコーン、両末端ビニル−ジエチルシリコーン、側鎖ビニル−ジメチルシリコーン、ビニルメチルシリコーン、ビニルメトキシシリコーン、ビニルレジン分散体等の中から、1種類を単独で、または2種類以上を組み合わせて選択使用することができる。   That is, as vinyl-modified silicone, both terminal vinyl-dimethylsilicone, both terminal vinyldiphenyl-dimethylsilicone, both terminal vinyl-phenylmethylsilicone, both terminal vinyl-diethylsilicone, side chain vinyl-dimethylsilicone, vinylmethylsilicone, vinyl From methoxysilicone, vinyl resin dispersion, etc., one kind can be selected and used alone or in combination of two or more kinds.

また、ハイドロジェン変性シリコーンとしては、両末端ハイドロジェン−ジメチルシリコーン、メチルハイドロジェン−ジメチルシリコーン、メチルハイドロジェンシリコーン、エチルハイドロジェンシリコーン、メチルハイドロジェン−フェニルメチルシリコーン、ハイドライドレジン等の中から、1種類を単独で、または2種類以上を組み合わせて選択使用することができる。   Examples of the hydrogen-modified silicone include hydrogen-dimethylsilicone at both ends, methylhydrogen-dimethylsilicone, methylhydrogensilicone, ethylhydrogensilicone, methylhydrogen-phenylmethylsilicone, hydride resin, and the like. The types can be selected and used alone or in combination of two or more.

また、ハイドロジェン変性シリコーンにおいては、上記の式(1)に示す側鎖ハイドロジェン変性シリコーンを含有していることが好ましい。
ここで、側鎖ハイドロジェン変性シリコーンが好ましい理由は、ビニル変性シリコーンとヒドロシリル化反応等により重合硬化してシリコーン樹脂重合体を形成する際に、末端ハイドロジェン変性シリコーンに比べて反応性が高く、さらに反応基であるハイドロジェン変性シリコーンの量が多くできることから架橋密度が高くなり、結果として得られたシリコーン樹脂重合体の特性を向上させることができるからである。
The hydrogen-modified silicone preferably contains a side chain hydrogen-modified silicone represented by the above formula (1).
Here, the reason why the side chain hydrogen-modified silicone is preferable is that, when a silicone resin polymer is formed by polymerization and curing with a vinyl-modified silicone and a hydrosilylation reaction, the reactivity is higher than the terminal hydrogen-modified silicone, Furthermore, since the amount of the hydrogen-modified silicone as a reactive group can be increased, the crosslinking density is increased, and the characteristics of the resulting silicone resin polymer can be improved.

さらにまた、上記の式(2)に示す側鎖ハイドロジェン変性シリコーンにおけるmとnとの比(m/(m+n))は0.25以上かつ1以下であることが好ましい。
ここで、mとnとの比(m/(m+n))を0.25以上に限定した理由は、この比が0.25未満であると、硬化時の架橋密度が少なすぎるために、無機酸化物粒子の凝集・相分離速度がシリコーン樹脂の硬化速度よりも速くなり、その結果、シリコーン樹脂との硬化の際に透明性が失われるからである。
Furthermore, the ratio (m / (m + n)) of m to n in the side chain hydrogen-modified silicone represented by the above formula (2) is preferably 0.25 or more and 1 or less.
Here, the reason that the ratio of m to n (m / (m + n)) is limited to 0.25 or more is that when this ratio is less than 0.25, the crosslinking density at the time of curing is too small, and thus inorganic This is because the aggregation / phase separation rate of the oxide particles becomes faster than the curing rate of the silicone resin, and as a result, the transparency is lost upon curing with the silicone resin.

なお、mとnとの比(m/(m+n))が大きくなるほど、上記の式(2)に示すハイドロジェン含有ユニットの含有率が高くなり、透明複合体を形成した後もビニル変性シリコーンと未反応のユニットの割合が増加すると考えられるが、この未反応ハイドロジェン含有ユニットが透明複合体の特性に及ぼす影響はほとんど無い。従って、側鎖ハイドロジェン変性シリコーンにおけるmとnとの比(m/(m+n))の最大値は1であってよい。   In addition, as the ratio of m to n (m / (m + n)) increases, the content of the hydrogen-containing unit represented by the above formula (2) increases, and even after forming the transparent composite, Although the proportion of unreacted units is thought to increase, this unreacted hydrogen-containing unit has little effect on the properties of the transparent composite. Therefore, the maximum value of the ratio of m to n (m / (m + n)) in the side chain hydrogen-modified silicone may be 1.

表面修飾された無機酸化物粒子とシリコーン樹脂とを混合する方法は、特に限定されず、ミキサー、各種ミル、超音波の印加等、従来知られている方法を用いればよい。   The method of mixing the surface-modified inorganic oxide particles and the silicone resin is not particularly limited, and a conventionally known method such as a mixer, various mills, or application of ultrasonic waves may be used.

ここで、表面修飾剤により表面が修飾された無機酸化物粒子は、粒子のままの状態でシリコーン樹脂と混合することも可能ではあるが、この表面修飾された無機酸化物粒子のシリコーン樹脂中における分散性や混合の容易性を高めるためには、予め、この表面修飾された無機酸化物粒子を使用するシリコーン樹脂に対して相溶性の高い有機溶媒(疎水性溶媒)中に再分散させておき、得られた無機酸化物粒子分散液とシリコーン樹脂とを混合・攪拌することが好ましい。   Here, the inorganic oxide particles whose surface is modified by the surface modifier can be mixed with the silicone resin in the state of the particles, but the surface-modified inorganic oxide particles in the silicone resin can be mixed. In order to increase dispersibility and ease of mixing, the surface-modified inorganic oxide particles are previously redispersed in an organic solvent (hydrophobic solvent) that is highly compatible with the silicone resin that uses the particles. It is preferable to mix and stir the obtained inorganic oxide particle dispersion and the silicone resin.

すなわち、無機酸化物粒子を、ある程度の粘度を有するシリコーン樹脂に対して直接投入して撹拌した場合、この無機酸化物粒子を粘性を有するシリコーン樹脂中に均一にかつ粒子の凝集を防ぎつつ分散させることが難しく、得られた分散体中の無機酸化物粒子の分散性も悪く、さらには無機酸化物粒子を粘性を有するシリコーン樹脂中に分散させる工程自体、多大な労力を要する。   That is, when inorganic oxide particles are directly added to a silicone resin having a certain degree of viscosity and stirred, the inorganic oxide particles are uniformly dispersed in the silicone resin having viscosity while preventing aggregation of the particles. It is difficult, the dispersibility of the inorganic oxide particles in the obtained dispersion is poor, and further, the process itself of dispersing the inorganic oxide particles in the viscous silicone resin requires a great deal of labor.

一方、表面修飾された無機酸化物粒子を一旦、シリコーン樹脂に対して相溶性の高い有機溶媒中に再分散させた場合、有機溶媒自体が低粘度であるから、無機酸化物粒子は有機溶媒中に均一に分散し、低粘度の無機酸化物粒子分散液となる。そこで、この無機酸化物粒子が均一に分散された分散液とシリコーン樹脂とを混合すれば、液体同士が混合されることから、シリコーン樹脂がある程度の粘度を有するものとしても分散液と均一に混合され、その結果、無機酸化物粒子はシリコーン樹脂中に容易かつ均一に分散することとなる。さらには低粘度の無機酸化物粒子分散液と粘性を有するシリコーン樹脂とを混合する工程自体、溶液同士の混合工程であるから、多大な労力を必要としない。   On the other hand, when the surface-modified inorganic oxide particles are once redispersed in an organic solvent highly compatible with the silicone resin, the organic solvent itself has a low viscosity. In the form of a low-viscosity inorganic oxide particle dispersion. Therefore, if the dispersion liquid in which the inorganic oxide particles are uniformly dispersed and the silicone resin are mixed, the liquids are mixed with each other, so even if the silicone resin has a certain degree of viscosity, it is uniformly mixed with the dispersion liquid. As a result, the inorganic oxide particles are easily and uniformly dispersed in the silicone resin. Furthermore, since the process itself is a process of mixing the low-viscosity inorganic oxide particle dispersion and the viscous silicone resin, and a process of mixing the solutions, a great deal of labor is not required.

さらに、表面修飾された無機酸化物粒子とシリコーン樹脂との混合物が高粘度であった場合、この混合物の流動性が悪化し、ひいては後述の透明複合体の成形性の低下や取り扱いの容易性が低下するという問題が生じる場合がある。
この問題を防ぐためには、無機酸化物粒子とシリコーン樹脂とを混合する際に、適当な溶媒、例えば、表面修飾された無機酸化物の分散性が高くかつシリコーン樹脂との相溶性も高い有機溶媒を添加し、得られた混合物の粘度を低下させておくことが好ましい。
Furthermore, when the mixture of the surface-modified inorganic oxide particles and the silicone resin has a high viscosity, the fluidity of the mixture deteriorates, and as a result, the moldability of the transparent composite described later and ease of handling are reduced. There may be a problem of degradation.
In order to prevent this problem, when mixing the inorganic oxide particles and the silicone resin, an appropriate solvent, for example, an organic solvent having high dispersibility of the surface-modified inorganic oxide and high compatibility with the silicone resin. It is preferable to reduce the viscosity of the resulting mixture.

このような有機溶媒としては、疎水性溶媒を用いることが好ましく、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素等の塩素含有溶媒が好適に用いられ、これらの溶媒のうち1種を単独で、または2種以上を混合して用いることができる。
また、この有機溶媒の含有率は、上記の溶媒添加効果が得られるものであれば特に限定はされないが、通常、表面修飾された無機酸化物粒子とシリコーン樹脂との合計量に対して400質量%以下であることが好ましい。その理由としては、有機溶媒が過剰に存在すると、この複合組成物を用いて後述の透明複合体を形成する際に、粘度が低すぎて成形性に難が生じたり、あるいは有機溶媒の除去に時間を要したりするからである。
As such an organic solvent, a hydrophobic solvent is preferably used. For example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, and chlorine-containing solvents such as dichloromethane, chloroform, and carbon tetrachloride are suitably used. Of these solvents, one kind can be used alone, or two or more kinds can be mixed and used.
Further, the content of the organic solvent is not particularly limited as long as the above-mentioned solvent addition effect can be obtained, but usually 400 mass with respect to the total amount of the surface-modified inorganic oxide particles and the silicone resin. % Or less is preferable. The reason for this is that if an organic solvent is present in excess, when forming a transparent composite described later using this composite composition, the viscosity is too low, resulting in difficulty in moldability, or removal of the organic solvent. It takes time.

表面修飾された無機酸化物粒子とシリコーン樹脂とを混合する具体的な方法としては、例えば、(1)無機酸化物粒子を有機溶媒中に再分散させた後、この分散液にシリコーン樹脂を投入し、混合攪拌する方法、(2)無機酸化物粒子とシリコーン樹脂とを混合した後、この混合物に適宜有機溶媒を添加し、ミキサー等を用いて撹拌・混合することで粘度を調整し、流動性を有する混合物とする方法、等が挙げられる。
なお、有機溶媒の添加により得られた混合物の粘度が低い場合には、有機溶媒の一部あるいは全部を揮発等で除去することにより、粘度の調整(高粘度化)を行ってもよい。
以上のようにして、本実施形態の複合組成物を得ることができる。
As a specific method for mixing the surface-modified inorganic oxide particles and the silicone resin, for example, (1) After redispersing the inorganic oxide particles in an organic solvent, the silicone resin is added to the dispersion (2) After mixing the inorganic oxide particles and the silicone resin, an organic solvent is appropriately added to the mixture, and the viscosity is adjusted by stirring and mixing using a mixer or the like. And the like, and the like.
In addition, when the viscosity of the mixture obtained by the addition of the organic solvent is low, the viscosity may be adjusted (high viscosity) by removing part or all of the organic solvent by volatilization or the like.
As described above, the composite composition of the present embodiment can be obtained.

[透明複合体]
本実施形態の透明複合体は、シリコーン樹脂中に、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された無機酸化物粒子が平均分散粒子径1nm以上かつ20nm以下にて分散するとともに、前記シリコーン樹脂中にヒドロシリル化反応触媒を含有している透明複合体である。なお、この透明複合体においては、有機溶媒、中でも疎水性溶媒は、基本的には含まれておらず、含まれていてもごく微量である。
[Transparent composite]
In the transparent composite of this embodiment, the inorganic oxide particles whose surface is modified by bonding a polydimethylsiloxane skeleton polymer having one functional group at one end in a silicone resin have an average dispersed particle diameter of 1 nm or more and 20 nm or less. And a transparent composite containing a hydrosilylation reaction catalyst in the silicone resin. In this transparent composite, an organic solvent, especially a hydrophobic solvent, is not basically contained, and even if it is contained, the amount is very small.

ここで、「透明複合体」は特定の形状を有するが、この「所定の形状を有する」とは、透明複合体が液状、ゲル状等の不可逆的な変形性を有しておらず、使用の目的や方法に合わせた一定の形状を維持することができることを示すものである。すなわち、通常のほとんど変形しない固体状の他、ゴム状等の弾性変形性(形状復元性)を有するものを含むものであり、形状自体が特定の形状であることを示すものではない。   Here, the “transparent composite” has a specific shape, but this “having a predetermined shape” means that the transparent composite does not have irreversible deformability such as liquid or gel. This shows that a certain shape can be maintained according to the purpose and method. That is, in addition to a normal solid state that hardly deforms, it includes a rubber-like one having elastic deformability (shape restoring property), and does not indicate that the shape itself is a specific shape.

この透明複合体は、上記の複合組成物におけるシリコーン樹脂の重合度や架橋度、あるいはシリコーン樹脂と表面修飾剤のシロキサン骨格との間の重合や架橋数を高めることにより、所定の形状を有する状態を得ることができるものである。したがって、この透明複合体を構成する各成分、すなわち、表面が片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーよりなる表面修飾剤により修飾されている無機酸化物粒子、シリコーン樹脂、反応触媒の3成分については、上述の複合組成物と同一である。   This transparent composite has a predetermined shape by increasing the degree of polymerization and crosslinking of the silicone resin in the above composite composition, or the number of polymerizations and crosslinking between the silicone resin and the siloxane skeleton of the surface modifier. Can be obtained. Therefore, each component of the transparent composite, that is, the inorganic oxide particles, the silicone resin, and the reaction catalyst, the surface of which is modified with a surface modifier made of a polydimethylsiloxane skeleton polymer having one functional group at one end. About 3 components, it is the same as the above-mentioned composite composition.

この透明複合体では、これ自体を構成している表面修飾された無機酸化物粒子は、シリコーン樹脂との相溶性及び親和性が高く、シリコーン樹脂中における分散性が良好である。したがって、無機酸化物粒子とシリコーン樹脂とが相分離を起こしたり、無機酸化物粒子の凝集が発生したりすること等に起因する、光学的特性、機械的特性、熱的安定性等の劣化を生じさせる虞がなく、良好な特性を維持することができる。   In this transparent composite, the surface-modified inorganic oxide particles constituting the composite itself have high compatibility and affinity with the silicone resin, and good dispersibility in the silicone resin. Therefore, degradation of optical characteristics, mechanical characteristics, thermal stability, etc. caused by phase separation of inorganic oxide particles and silicone resin or aggregation of inorganic oxide particles. There is no possibility of causing it, and good characteristics can be maintained.

また、上述したように、このシリコーン樹脂を反応触媒によって硬化させた場合、シリコーン樹脂の硬化速度は、無機酸化物粒子の凝集・相分離速度よりも早いので、得られる透明複合体の中で無機酸化物粒子が凝集することなく透明性も高いものとなる。加えて、透明複合体の形成材料である複合組成物は、キレート化剤を使用していないので、透明複合体に着色が発生する虞もない。   Further, as described above, when this silicone resin is cured by a reaction catalyst, the curing rate of the silicone resin is faster than the aggregation / phase separation rate of the inorganic oxide particles. The oxide particles are not aggregated and the transparency is high. In addition, since the composite composition which is a material for forming the transparent composite does not use a chelating agent, there is no possibility of coloring the transparent composite.

また、この透明複合体に含まれる無機酸化物粒子の平均分散粒子径を20nm以下としているので、平均分散粒子径が20nmを超えると影響が大きくなるレイリー散乱の発生も低く抑えられており、透明複合体の透明性が低下することもない。
このように、無機酸化物粒子は、ナノメートルサイズの粒子であるから、この無機酸化物粒子をシリコーン樹脂中に分散させた複合組成物や透明複合体においても、光散乱が小さく、複合組成物や透明複合体の透明性を維持することが可能である。
In addition, since the average dispersed particle size of the inorganic oxide particles contained in this transparent composite is 20 nm or less, the occurrence of Rayleigh scattering, which has a large effect when the average dispersed particle size exceeds 20 nm, is suppressed to a low level. The transparency of the composite is not lowered.
Thus, since the inorganic oxide particles are nanometer-sized particles, light scattering is small even in a composite composition or a transparent composite in which the inorganic oxide particles are dispersed in a silicone resin. And the transparency of the transparent composite can be maintained.

さらに、この透明複合体に含まれる無機酸化物粒子の平均分散粒子径を1nm以上としているので、この無機酸化物粒子の平均一次粒子径が結晶性の維持が低下する1nm未満となることがない。したがって、この無機酸化物粒子は結晶性が良好に維持されている。
このように、無機酸化物粒子の結晶性が維持されているので、無機酸化物粒子自体が有する特性、すなわち屈折率や硬度、耐熱性等の特性が劣化することがない。したがって、無機酸化物粒子をシリコーン樹脂と複合化させた透明複合体としての効果を十分に得ることができる。
Furthermore, since the average dispersed particle diameter of the inorganic oxide particles contained in the transparent composite is 1 nm or more, the average primary particle diameter of the inorganic oxide particles does not become less than 1 nm at which the maintenance of crystallinity is lowered. . Therefore, the inorganic oxide particles are maintained in good crystallinity.
Thus, since the crystallinity of the inorganic oxide particles is maintained, the characteristics of the inorganic oxide particles themselves, that is, characteristics such as refractive index, hardness, and heat resistance do not deteriorate. Therefore, the effect as a transparent composite obtained by combining inorganic oxide particles with a silicone resin can be sufficiently obtained.

ここで、透明複合体の効果について説明する。
「光学的特性」
透明複合体の光学的特性としては、屈折率制御が挙げられる。
シリコーン樹脂の屈折率は1.4程度であるから、このシリコーン樹脂より屈折率が高い高屈折率酸化物粒子と複合化することにより、透明複合体の屈折率を高めることができる。
特に屈折率が2以上の高屈折率無機酸化物粒子、例えば、正方晶酸化ジルコニウム(屈折率:2.15)や酸化チタン(屈折率:2.6程度)と複合化することが有効であり、これらの高屈折率無機酸化物粒子を用いることにより、透明複合体の屈折率を、シリコーン樹脂単体と比べて0.1から0.2程度高い1.5から1.65程度まで高めることが可能である。
Here, the effect of the transparent composite will be described.
"Optical properties"
The optical properties of the transparent composite include refractive index control.
Since the refractive index of the silicone resin is about 1.4, the refractive index of the transparent composite can be increased by compositing with high refractive index oxide particles having a higher refractive index than that of the silicone resin.
In particular, it is effective to form a composite with high refractive index inorganic oxide particles having a refractive index of 2 or more, such as tetragonal zirconium oxide (refractive index: 2.15) or titanium oxide (refractive index: about 2.6). By using these high refractive index inorganic oxide particles, the refractive index of the transparent composite can be increased from about 1.5 to about 1.65, which is about 0.1 to 0.2 higher than that of the silicone resin alone. Is possible.

この透明複合体の透明性については、上述したとおり、無機酸化物粒子の平均分散粒子径を20nm以下とすることで、光散乱を十分低く抑えることができる。したがって、この透明複合体では、透明性が十分に保たれている。
なお、中空シリカ粒子や多孔質シリカ粒子のような、粒子内に空隙を有することで粒子全体として低屈折率となる無機酸化物粒子をシリコーン樹脂と複合化すれば、透明複合体の屈折率を低下させることも可能である。
Regarding the transparency of the transparent composite, as described above, the light scattering can be suppressed sufficiently low by setting the average dispersed particle size of the inorganic oxide particles to 20 nm or less. Therefore, the transparency is sufficiently maintained in this transparent composite.
If inorganic oxide particles such as hollow silica particles and porous silica particles that have voids in the particles and have a low refractive index as a whole are combined with a silicone resin, the refractive index of the transparent composite can be increased. It can also be reduced.

「機械的特性」
透明複合体の機械的特性としては、樹脂単体と比較して硬度が向上することが挙げられる。
通常の無機酸化物粒子は、シリコーン樹脂と比べて硬度が高く、この無機酸化物粒子をシリコーン樹脂と複合化することで、透明複合体の表面硬度を高めることができる。これにより、透明複合体の耐擦傷性を向上させることができ、透明複合体自体の寸法精度を向上させることができる。
特に、酸化ジルコニウムは、酸化物系セラミックスの中でも高硬度であるから、複合化による表面硬度の向上に高い効果を発揮することができる。
"Mechanical properties"
The mechanical properties of the transparent composite include an improvement in hardness as compared with the resin alone.
Ordinary inorganic oxide particles have a higher hardness than silicone resins, and the surface hardness of the transparent composite can be increased by combining the inorganic oxide particles with a silicone resin. Thereby, the scratch resistance of the transparent composite can be improved, and the dimensional accuracy of the transparent composite itself can be improved.
In particular, since zirconium oxide has a high hardness among oxide-based ceramics, it can exhibit a high effect in improving the surface hardness by combining.

「熱的安定性及び化学的安定性」
シリコーン樹脂は、それ自体が骨格にケイ素(Si)を含むので、通常の樹脂と比べて耐熱性や耐薬品性等の熱的安定性や化学的安定性に優れている。一方、無機酸化物粒子は、耐熱性の点でシリコーン樹脂より勝っている。そこで、化学的安定性が高い無機酸化物粒子を選定し、この化学的安定性が高い無機酸化物粒子とシリコーン樹脂とを複合化すれば、得られた透明複合体の熱的安定性や化学的安定性をより高めることができる。
"Thermal and chemical stability"
Since the silicone resin itself contains silicon (Si) in the skeleton, it is superior in thermal stability and chemical stability such as heat resistance and chemical resistance as compared with a normal resin. On the other hand, inorganic oxide particles are superior to silicone resins in terms of heat resistance. Therefore, if inorganic oxide particles with high chemical stability are selected and the inorganic oxide particles with high chemical stability are combined with a silicone resin, the thermal stability and chemical properties of the resulting transparent composite are obtained. Stability can be further increased.

ここで、シリコーン樹脂は、疎水性溶媒との相溶性が高いことからも分かるように、疎水性(撥水性)ではあるが、柔軟性に富み、水蒸気に対するガスバリア性は他樹脂と比較して低い。
本実施形態の透明複合体においては、ガスバリア性に優れる無機酸化物粒子が透明複合体の内部に均一に分散され、さらに無機酸化物粒子とシリコーン樹脂との結合性が高いことから、透明複合体における水蒸気に対するガスバリア性を高い状態へ改善することができる。
Here, as can be seen from the high compatibility with the hydrophobic solvent, the silicone resin is hydrophobic (water repellency), but has high flexibility and low gas barrier property against water vapor compared to other resins. .
In the transparent composite of the present embodiment, the inorganic oxide particles having excellent gas barrier properties are uniformly dispersed inside the transparent composite, and the bondability between the inorganic oxide particles and the silicone resin is high. The gas barrier property against water vapor in can be improved to a high state.

この透明複合体によれば、高屈折率の無機酸化物粒子、特に酸化ジルコニウムをシリコーン樹脂と複合化させることにより、得られる透明複合体の屈折率を例えば1.4から1.65程度まで高めることができる。また、硬度が向上することで寸法精度の向上も図ることができる。したがって、光学素子における設計自由度を向上させることができる。
その結果、例えば、光学レンズの小型化、薄厚化、集積化、集光効率の向上、屈折率波長依存性の低減等を行うことができるようになり、よって、このような光学素子を用いる機器であるCCDやCMOSカメラ等の特性向上、例えば高解像度化や高感度化が期待できる。
According to this transparent composite, the refractive index of the obtained transparent composite is increased from, for example, about 1.4 to 1.65 by combining high refractive index inorganic oxide particles, particularly zirconium oxide, with a silicone resin. be able to. In addition, the dimensional accuracy can be improved by improving the hardness. Therefore, the design freedom in the optical element can be improved.
As a result, for example, the optical lens can be reduced in size, thickness, integration, improvement in light collection efficiency, reduction in refractive index wavelength dependency, and the like, and thus an apparatus using such an optical element. Improvements in characteristics of CCD and CMOS cameras, such as higher resolution and higher sensitivity, can be expected.

また、この透明複合体は、単体のシリコーン樹脂と比べて高屈折率であることから、発光素子であるLEDの封止材として用いた場合には、封止材に覆われる発光体や、発光体を形成するための基板等の屈折率が高い部材(LEDの発光体である半導体材料の屈折率は2.5程度、半導体材料を成膜する透光性の基板の屈折率は1.76程度)との屈折率整合性を向上させることができる。したがって、LEDの発光体から外部に発光を取り出す過程における内部反射を低減することができる。   In addition, since this transparent composite has a higher refractive index than a single silicone resin, when used as a sealing material for an LED, which is a light-emitting element, A member having a high refractive index, such as a substrate for forming a body (the refractive index of a semiconductor material which is a light emitting body of an LED is about 2.5, and the refractive index of a light-transmitting substrate on which the semiconductor material is formed is 1.76. The degree of refractive index matching can be improved. Therefore, it is possible to reduce internal reflection in the process of extracting light emitted from the LED light emitter.

すなわち、本実施形態の透明複合体をLEDの封止材に用いることで、LEDからの光取り出し効率を10%ないし15%程度改善することができる。その結果、LEDの輝度を向上させることができる。
さらに、この透明複合体は水蒸気に対するガスバリア性が高いことから、外部からの水分滲入を抑え、発光領域の劣化を抑制することができる。したがって、発光素子の長寿命化を図ることができる。
That is, by using the transparent composite of the present embodiment as an LED sealing material, the light extraction efficiency from the LED can be improved by about 10% to 15%. As a result, the luminance of the LED can be improved.
Furthermore, since this transparent composite has a high gas barrier property against water vapor, it is possible to suppress the intrusion of moisture from the outside and suppress the deterioration of the light emitting region. Therefore, the lifetime of the light emitting element can be extended.

また、この透明複合体を有機EL素子の封止材として用いた場合には、水蒸気に対するガスバリア性が高いことから、外部からの水分滲入を抑え、発光領域の劣化を抑制することができる。また、透明複合体中の無機酸化物粒子は、酸素ガスの透過を効果的に抑制することができるので、同様に発光領域の劣化を抑制することができる。したがって、本実施形態の透明複合体を有機EL素子の封止材として用いることにより、有機EL素子における発光素子の長寿命化を図ることができる。   In addition, when this transparent composite is used as a sealing material for an organic EL element, the gas barrier property against water vapor is high, so that moisture penetration from the outside can be suppressed and deterioration of the light emitting region can be suppressed. In addition, since the inorganic oxide particles in the transparent composite can effectively suppress the permeation of oxygen gas, the deterioration of the light emitting region can be similarly suppressed. Therefore, the lifetime of the light emitting element in the organic EL element can be extended by using the transparent composite of the present embodiment as a sealing material for the organic EL element.

[透明複合体の製造方法]
本実施形態の透明複合体は、本実施形態の複合組成物を、所定の形状に成形し固化するか、または前記複合組成物を固化した後に所定の形状に成形することで、得ることができる。
[Method for producing transparent composite]
The transparent composite of the present embodiment can be obtained by molding and solidifying the composite composition of the present embodiment into a predetermined shape, or molding the composite composition into a predetermined shape after solidifying the composite composition. .

本実施形態の製造方法においては、「所定の形状に成形し固化する方法」は、下記のとおりである。
まず、本実施形態の複合組成物を、金型や型枠を用いて成形したり、金型や型枠状の容器に充填したりすることにより、目的の形状に成形された成形体または充填物を得る。
この際、使用する複合組成物の粘度が高い場合には、予め、有機溶媒等を添加し撹拌・混合して粘度を低下させ、成形や充填に適した粘度となるように調整しておくことが好ましい。
一方、使用する複合組成物の粘度が低い場合には、予め、シリコーン樹脂同士やシリコーン樹脂と表面修飾剤の一部を下記の様に重合や架橋させるか、または複合組成物が有機溶媒を含む場合には、この有機溶媒の一部あるいは全部を揮発させる等で除去することで粘度を高め、成形や充填に適した粘度となるように調整しておくことが好ましい。
In the manufacturing method of this embodiment, the “method of forming into a predetermined shape and solidifying” is as follows.
First, the composite composition of the present embodiment is molded using a mold or a mold, or filled into a mold or a mold-shaped container, thereby forming a molded body or a filling molded into a target shape. Get things.
At this time, if the composite composition to be used has a high viscosity, an organic solvent or the like is added in advance and stirred and mixed so as to reduce the viscosity, so that the viscosity is suitable for molding and filling. Is preferred.
On the other hand, when the viscosity of the composite composition to be used is low, the silicone resins or a part of the silicone resin and the surface modifier are polymerized or crosslinked in advance as described below, or the composite composition contains an organic solvent. In some cases, it is preferable to adjust the viscosity to be suitable for molding and filling by increasing the viscosity by removing part or all of the organic solvent by volatilization.

次いで、この成形体または充填物を、室温(25℃程度)のまま、あるいは所定の温度(室温〜150℃、好ましくは80℃〜150℃)に加温して所定時間静置し、この複合組成物中のシリコーン樹脂や表面修飾剤に反応触媒を介して重合や架橋等の反応を生じさせ、シリコーン樹脂同士やシリコーン樹脂と表面修飾剤間での結合度(重合度)を高める。
また、この成形体または充填物に有機溶媒が残留する場合には、この有機溶媒を揮発除去する。
これにより、この成形体または充填物は、金型や容器から外した後、外力を加えても、一定の形状を維持できる状態となる。
以上により、欠陥が無く、光学的特性、機械的特性に優れ、高い熱的安定性や化学的安定性を有する、本実施形態の透明複合体を得ることができる。
Subsequently, the molded body or the filling is left at room temperature (about 25 ° C.) or is heated to a predetermined temperature (room temperature to 150 ° C., preferably 80 ° C. to 150 ° C.) and left to stand for a predetermined time. Reactions such as polymerization and crosslinking are caused to occur in the silicone resin and the surface modifier in the composition via a reaction catalyst, and the degree of bonding (degree of polymerization) between the silicone resins and between the silicone resin and the surface modifier is increased.
Further, when an organic solvent remains in the molded body or the filling, the organic solvent is removed by volatilization.
Thereby, even if it applies external force after removing this molded object or filling material from a metal mold | die or a container, it will be in the state which can maintain a fixed shape.
As described above, it is possible to obtain the transparent composite of the present embodiment having no defects, excellent optical characteristics and mechanical characteristics, and having high thermal stability and chemical stability.

また、本実施形態の製造方法においては、「複合組成物を固化した後に所定の形状に成形する方法」は、下記のとおりである。
まず、本実施形態の複合組成物を固化して、複合組成物の固化物(未成形の透明複合体)を得る。固化方法としては、複合組成物を室温(25℃程度)のまま、あるいは所定の温度(室温〜150℃、好ましくは80℃〜150℃)に加温して所定時間静置し、この複合組成物中のシリコーン樹脂や表面修飾剤に反応触媒を介して重合や架橋等の反応を生じさせ、シリコーン樹脂同士やシリコーン樹脂と表面修飾剤間での結合度(重合度)を高めてやればよい。
また、有機溶媒が残留する場合には、この有機溶媒も揮発除去することが好ましい。
この固化物は、外力を加えても、一定の形状を維持できる状態である。
Moreover, in the manufacturing method of this embodiment, "the method of shape | molding in a predetermined shape after solidifying a composite composition" is as follows.
First, the composite composition of this embodiment is solidified to obtain a solidified product (unformed transparent composite) of the composite composition. As the solidification method, the composite composition is allowed to stand at room temperature (about 25 ° C.) or at a predetermined temperature (room temperature to 150 ° C., preferably 80 ° C. to 150 ° C.) and left to stand for a predetermined time. What is necessary is just to raise reaction (polymerization degree) between silicone resins or between a silicone resin and a surface modifier by causing a reaction such as polymerization or cross-linking to a silicone resin or a surface modifier in a product via a reaction catalyst. .
Moreover, when an organic solvent remains, it is preferable to volatilize and remove this organic solvent.
This solidified product is in a state in which a certain shape can be maintained even when an external force is applied.

次いで、この固化物を切削や型抜き等の機械加工法により、必要な形状に成形する。本実施形態のシリコーン樹脂は、硬化後でも柔軟性を有しており、容易に加工することができる。
さらに、加工後の成型体においては、シリコーン樹脂同士やシリコーン樹脂と表面修飾剤間での結合度(重合度)を高めたり、残留する有機溶媒を除去することで、より固化を進めてもよい。
以上によっても、欠陥が無く、光学的特性、機械的特性に優れ、高い熱的安定性や化学的安定性を有する、本実施形態の透明複合体を得ることができる。
Next, this solidified product is formed into a necessary shape by a machining method such as cutting or die cutting. The silicone resin of the present embodiment has flexibility even after curing and can be easily processed.
Furthermore, the molded body after processing may be further solidified by increasing the degree of bonding (degree of polymerization) between the silicone resins or between the silicone resin and the surface modifier, or by removing the remaining organic solvent. .
As described above, it is possible to obtain the transparent composite of this embodiment having no defects, excellent optical characteristics and mechanical characteristics, and having high thermal stability and chemical stability.

なお、この透明複合体を透明性を問題にしない分野に適用する場合、透明性を確保する必要がないことから、用いる無機酸化物粒子の平均分散粒子径を1nm以上かつ20nm以下に限定する必要はない。   In addition, when applying this transparent composite to the field where transparency is not a problem, it is not necessary to ensure transparency, and therefore, it is necessary to limit the average dispersed particle size of the inorganic oxide particles to be used to 1 nm or more and 20 nm or less. There is no.

例えば、無機酸化物粒子とシリコーン樹脂とを含有する複合体の表面硬度のみの向上を目的とする場合には、平均分散粒子径が20nmよりも大きい粒子、例えば100nmの無機酸化物粒子を用いることもできる。
このような場合であっても、本実施形態の複合組成物の製造方法を適用することにより、複合組成物中での無機酸化物粒子の分散性が高まり、良好な物性を有する成形体または充填物を作製することが可能な複合組成物とすることができる。
For example, when the purpose is to improve only the surface hardness of a composite containing inorganic oxide particles and a silicone resin, particles having an average dispersed particle size larger than 20 nm, for example, 100 nm inorganic oxide particles should be used. You can also.
Even in such a case, by applying the manufacturing method of the composite composition of the present embodiment, the dispersibility of the inorganic oxide particles in the composite composition is increased, and a molded body or filling having good physical properties. It can be set as the composite composition which can produce a thing.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

「実施例1」
オキシ塩化ジルコニウム8水塩2615gを純水40L(リットル)に溶解させたジルコニウム塩溶液に、28%アンモニア水344gを純水20Lに溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調整した。
次いで、このスラリーに、硫酸ナトリウム300gを5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えた。このときの硫酸ナトリウムの添加量は、ジルコニウム塩溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。
"Example 1"
To a zirconium salt solution in which 2615 g of zirconium oxychloride octahydrate is dissolved in 40 L (liter) of pure water, dilute ammonia water in which 344 g of 28% ammonia water is dissolved in 20 L of pure water is added with stirring, and the zirconia precursor slurry is added. It was adjusted.
Next, an aqueous sodium sulfate solution in which 300 g of sodium sulfate was dissolved in 5 L of pure water was added to this slurry with stirring. The amount of sodium sulfate added at this time was 30% by mass with respect to the zirconia-converted value of zirconium ions in the zirconium salt solution.

次いで、この混合物を、乾燥器を用いて、大気中、130℃にて24時間乾燥させ、固形物を得た。
次いで、この固形物を自動乳鉢を用いて粉砕した後、電気炉を用いて、大気中、500℃にて1時間焼成した。
次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥させ、ジルコニア粒子を得た。
Subsequently, this mixture was dried at 130 ° C. for 24 hours in the air using a drier to obtain a solid.
Next, the solid was pulverized using an automatic mortar, and then baked at 500 ° C. for 1 hour in the air using an electric furnace.
Next, the fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, and after sufficiently removing the added sodium sulfate, dried in a dryer, Zirconia particles were obtained.

次いで、このジルコニア粒子10gに、トルエン85g、カプロン酸5gを加えて混合し、ジルコニア粒子の表面を配位子により修飾した。その後、分散処理を行い、ジルコニア透明分散液を調製した。
次いで、このジルコニア透明分散液100gに、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーとしてモノグリシジルエーテル末端ポリジメチルシロキサン(PDMS−G:数平均分子量5000:Aldrich社製)10g、ジブチルスズジラウレート0.01gを加え、環流下にて表面修飾を行った。
Next, 85 g of toluene and 5 g of caproic acid were added to and mixed with 10 g of the zirconia particles, and the surface of the zirconia particles was modified with a ligand. Then, the dispersion process was performed and the zirconia transparent dispersion liquid was prepared.
Next, 100 g of this zirconia transparent dispersion was mixed with 10 g of a monoglycidyl ether-terminated polydimethylsiloxane (PDMS-G: number average molecular weight 5000: manufactured by Aldrich) as a polydimethylsiloxane skeleton polymer having one functional group at one end, dibutyltin dilaurate 0 .01 g was added and surface modification was performed under reflux.

反応終了後、溶媒をエバポレータにて除去し、メタノール洗浄と遠心分離を繰り返すことによって、ジルコニア粒子から脱離したカプロン酸、および未反応のモノグリシジルエーテル末端ポリジメチルシロキサンを除去した。回収した表面修飾ジルコニア粒子は15gであった。   After completion of the reaction, the solvent was removed with an evaporator, and methanol washing and centrifugation were repeated to remove caproic acid detached from the zirconia particles and unreacted monoglycidyl ether-terminated polydimethylsiloxane. The recovered surface-modified zirconia particles were 15 g.

得られた表面処理ジルコニア粒子を、プロトンNMR(重クロロホルム中)にて測定した結果、、2.6から3.5ppm近傍のグリシジル基に起因するシグナル強度が、モノグリシジルエーテル末端ポリジメチルシロキサン単体に比べて大きく減少していた。この結果から、モノグリシジルエーテル末端ポリジメチルシロキサンが、エポキシ基の開環及びジルコニア粒子との結合を生じさせていると判断した。   The obtained surface-treated zirconia particles were measured by proton NMR (in deuterated chloroform). As a result, the signal intensity caused by glycidyl groups in the vicinity of 2.6 to 3.5 ppm was found to be monoglycidyl ether-terminated polydimethylsiloxane alone. Compared to a large decrease. From this result, it was judged that the monoglycidyl ether-terminated polydimethylsiloxane caused ring opening of the epoxy group and bonding with the zirconia particles.

この表面修飾ジルコニア粒子15gを、トルエン35gへ再分散した後、ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131(Gelest社製)14.1g、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151(Gelest社製)0.9gを加え、更に反応触媒として室温硬化用の白金ジビニルテトラメチルジシロキサンSIP6830.3(Gelest社製)6mgを加え、実施例1の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物を得た。   After 15 g of the surface-modified zirconia particles were redispersed in 35 g of toluene, 14.1 g of side chain vinyl-dimethylsilicone VDT-131 (manufactured by Gelest) as vinyl-modified silicone and methylhydrogen-dimethylsilicone HMS as hydrogen-modified silicone 0.9 g of -151 (manufactured by Gelest) was added, and 6 mg of platinum divinyltetramethyldisiloxane SIP6830.3 (manufactured by Gelest) for room temperature curing was added as a reaction catalyst, and the surface-modified zirconia particles of Example 1-silicone resin A composite composition was obtained.

次いで、この表面修飾ジルコニア粒子−シリコーン樹脂複合組成物を攪拌溶解後、ガラス板で組み上げた型の中に流し込み、40℃の真空下にて有機溶媒を除去しつつ、硬化反応を行い、実施例1の厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
Next, this surface-modified zirconia particle-silicone resin composite composition was stirred and dissolved, then poured into a mold assembled with a glass plate, and the curing reaction was carried out while removing the organic solvent under vacuum at 40 ° C. A transparent composite having a thickness of 1 of 1 mm was obtained.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例1の透明複合体の断面を電解放出型透過電子顕微鏡JEM−2100F(日本電子社製)を用いて観察し、無作為に100個選び出した粒子の粒子径を測定し、その平均値を透明複合体内におけるジルコニア粒子の平均分散粒子径とした。この測定の結果、平均分散粒子径は7nmであった。
この測定結果から、実施例1の複合組成物中のジルコニア粒子の平均分散粒子径も、7nmないしはそれ以下と結論づけられた。
また、得られた実施例1の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
The cross section of the obtained transparent composite of Example 1 was observed using a field emission transmission electron microscope JEM-2100F (manufactured by JEOL Ltd.), and the particle size of 100 particles randomly selected was measured. The average value was defined as the average dispersed particle size of the zirconia particles in the transparent composite. As a result of this measurement, the average dispersed particle size was 7 nm.
From this measurement result, it was concluded that the average dispersed particle size of the zirconia particles in the composite composition of Example 1 was 7 nm or less.
In addition, as a result of conducting elemental analysis on the obtained transparent composite of Example 1, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例2」
ジルコニア粒子を10g(25質量%)から14g(35質量%)に、ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131を14.1g(47質量%)から8.4g(28質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151を0.9g(3質量%)から0.6g(2質量%)に、それぞれ変更した他は、実施例1に準じて実施例2の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は35質量%であった。
"Example 2"
Zirconia particles from 10 g (25% by mass) to 14 g (35% by mass), and side chain vinyl-dimethylsilicone VDT-131 as a vinyl-modified silicone from 14.1 g (47% by mass) to 8.4 g (28% by mass). Example 2 according to Example 1 except that methylhydrogen-dimethylsilicone HMS-151 was changed from 0.9 g (3% by mass) to 0.6 g (2% by mass) as the hydrogen-modified silicone. The surface-modified zirconia particle-silicone resin composite composition and a transparent composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this transparent composite was 35% by mass.

得られた実施例2の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は8nmであった。
この結果から、実施例2の複合組成物中のジルコニア粒子の平均分散粒子径も、8nmないしはそれ以下と結論づけられた。
また、得られた実施例2の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
As a result of measuring the particle diameter of the zirconia particles in the obtained transparent composite of Example 2 in the same manner as in Example 1, the average dispersed particle diameter was 8 nm.
From this result, it was concluded that the average dispersed particle size of the zirconia particles in the composite composition of Example 2 was 8 nm or less.
Further, as a result of conducting elemental analysis on the obtained transparent composite of Example 2, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例3」
ジルコニア粒子を10g(25質量%)から16g(40質量%)に、ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131を14.1g(47質量%)から5.7g(19質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151を0.9g(3質量%)から0.3g(1質量%)に、反応触媒として白金ジビニルテトラメチルジシロキサンSIP6830.3を6mg(0.02質量%)から3mg(0.01質量%)に、それぞれ変更した他は、実施例1に準じて実施例3の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は40質量%であった。
"Example 3"
Zirconia particles from 10 g (25% by mass) to 16 g (40% by mass), and side chain vinyl-dimethylsilicone VDT-131 as vinyl-modified silicone from 14.1 g (47% by mass) to 5.7 g (19% by mass). , 0.9 g (3 wt%) to 0.3 g (1 wt%) of methylhydrogen-dimethylsilicone HMS-151 as the hydrogen-modified silicone and 6 mg of platinum divinyltetramethyldisiloxane SIP6830.3 as the reaction catalyst ( The surface-modified zirconia particle-silicone resin composite composition of Example 3 and a transparent composite having a thickness of 1 mm are the same as in Example 1 except that the amount is changed from 0.02% by mass to 3 mg (0.01% by mass). Got the body.
The content of zirconia particles in this transparent composite was 40% by mass.

得られた実施例3の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は10nmであった。
この結果から、実施例3の複合組成物中のジルコニア粒子の平均分散粒子径も、10nmないしはそれ以下と結論づけられた。
また、得られた実施例3の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
As a result of measuring the particle diameter of the zirconia particles in the obtained transparent composite of Example 3 in the same manner as in Example 1, the average dispersed particle diameter was 10 nm.
From this result, it was concluded that the average dispersed particle size of the zirconia particles in the composite composition of Example 3 was 10 nm or less.
In addition, as a result of conducting elemental analysis on the obtained transparent composite of Example 3, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例4」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131を14.1g(47質量%)から11.7g(39質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−031(Gelest社製)の3.3g(11質量%)に、それぞれ変更した他は、実施例1に準じて実施例4の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
Example 4
The side chain vinyl-dimethylsilicone VDT-131 was changed from 14.1 g (47% by mass) to 11.7 g (39% by mass) as the vinyl-modified silicone, and 0.1% of methylhydrogen-dimethylsilicone HMS-151 as the hydrogen-modified silicone. The surface of Example 4 according to Example 1 except that 9 g (3% by mass) was changed to 3.3 g (11% by mass) of methylhydrogen-dimethylsilicone HMS-031 (manufactured by Gelest). A modified zirconia particle-silicone resin composite composition and a transparent composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例4の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は7nmであった。
この結果から、実施例4の複合組成物中のジルコニア粒子の平均分散粒子径も、7nmないしはそれ以下と結論づけられた。
また、得られた実施例4の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
As a result of measuring the particle diameter of the zirconia particles in the obtained transparent composite of Example 4 in the same manner as in Example 1, the average dispersed particle diameter was 7 nm.
From this result, it was concluded that the average dispersed particle size of the zirconia particles in the composite composition of Example 4 was 7 nm or less.
In addition, as a result of conducting elemental analysis on the obtained transparent composite of Example 4, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例5」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131の14.1g(47質量%)を、側鎖ビニル−ジメチルシリコーンVDT−731(Gelest社製)の4.8g(16質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−031の10.2g(34質量%)に、それぞれ変更した他は、実施例1に準じて実施例5の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
"Example 5"
As vinyl-modified silicone, 14.1 g (47% by mass) of side-chain vinyl-dimethylsilicone VDT-131 was added to 4.8 g (16% by mass) of side-chain vinyl-dimethylsilicone VDT-731 (manufactured by Gelest). Except that 0.9 g (3% by mass) of methylhydrogen-dimethylsilicone HMS-151 was changed to 10.2 g (34% by mass) of methylhydrogen-dimethylsilicone HMS-031 as a gen-modified silicone, According to Example 1, the surface-modified zirconia particle-silicone resin composite composition of Example 5 and a transparent composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例5の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は7nmであった。
この結果から、実施例5の複合組成物中のジルコニア粒子の平均分散粒子径も、7nmないしはそれ以下と結論づけられた。
また、得られた実施例5の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
As a result of measuring the particle diameter of the zirconia particles in the obtained transparent composite of Example 5 in the same manner as in Example 1, the average dispersed particle diameter was 7 nm.
From this result, it was concluded that the average dispersed particle size of the zirconia particles in the composite composition of Example 5 was 7 nm or less.
In addition, as a result of conducting elemental analysis on the obtained transparent composite of Example 5, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例6」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131の14.1g(47質量%)を、両末端ビニル−ジメチルシリコーンDMS−V21(Gelest社製)の13.5g(45質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−301(Gelest社製)の1.5g(5質量%)に、それぞれ変更した他は、実施例1に準じて実施例6の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
"Example 6"
As a vinyl-modified silicone, 14.1 g (47% by mass) of side chain vinyl-dimethylsilicone VDT-131 was added to 13.5 g (45% by mass) of both-end vinyl-dimethylsilicone DMS-V21 (manufactured by Gelest). 0.9 g (3% by mass) of methylhydrogen-dimethylsilicone HMS-151 as a gen-modified silicone, and 1.5 g (5% by mass) of methylhydrogen-dimethylsilicone HMS-301 (manufactured by Gelest), respectively. Other than the changes, the surface-modified zirconia particle-silicone resin composite composition of Example 6 and a transparent composite having a thickness of 1 mm were obtained according to Example 1.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例6の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は10nmであった。
この結果から、実施例6の複合組成物中のジルコニア粒子の平均分散粒子径も、10nmないしはそれ以下と結論づけられた。
また、得られた実施例6の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
As a result of measuring the particle diameter of zirconia particles in the obtained transparent composite of Example 6 in the same manner as in Example 1, the average dispersed particle diameter was 10 nm.
From this result, it was concluded that the average dispersed particle size of zirconia particles in the composite composition of Example 6 was 10 nm or less.
In addition, as a result of performing elemental analysis on the obtained transparent composite of Example 6, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例7」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131の14.1g(47質量%)を、両末端ビニル−ジメチルシリコーンDMS−V22(Gelest社製)の14.7g(49質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−301の0.3g(1質量%)に、それぞれ変更した他は、実施例1に準じて実施例7の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
"Example 7"
As a vinyl-modified silicone, 14.1 g (47% by mass) of side chain vinyl-dimethylsilicone VDT-131 was added to 14.7 g (49% by mass) of both-end vinyl-dimethylsilicone DMS-V22 (manufactured by Gelest). Except that 0.9 g (3% by mass) of methyl hydrogen-dimethyl silicone HMS-151 was changed to 0.3 g (1% by mass) of methyl hydrogen-dimethyl silicone HMS-301, respectively, as a gen-modified silicone, According to Example 1, the surface-modified zirconia particle-silicone resin composite composition of Example 7 and a transparent composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例7の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は10nmであった。
この結果から、実施例7の複合組成物中のジルコニア粒子の平均分散粒子径も、10nmないしはそれ以下と結論づけられた。
また、得られた実施例7の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
The particle diameter of the zirconia particles in the obtained transparent composite of Example 7 was measured in the same manner as in Example 1. As a result, the average dispersed particle diameter was 10 nm.
From this result, it was concluded that the average dispersed particle size of zirconia particles in the composite composition of Example 7 was 10 nm or less.
In addition, as a result of conducting elemental analysis on the obtained transparent composite of Example 7, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例8」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131を14.1g(47質量%)から14.4g(48質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−301の0.6g(2質量%)に、それぞれ変更した他は、実施例1に準じて実施例8の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
"Example 8"
The side chain vinyl-dimethylsilicone VDT-131 is changed from 14.1 g (47% by mass) to 14.4 g (48% by mass) as the vinyl-modified silicone, and 0.1% of methylhydrogen-dimethylsilicone HMS-151 as the hydrogen-modified silicone. Surface modified zirconia particles-silicone of Example 8 according to Example 1 except that 9 g (3% by mass) was changed to 0.6 g (2% by mass) of methylhydrogen-dimethylsilicone HMS-301. A resin composite composition and a transparent composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例8の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は7nmであった。
この結果から、実施例8の複合組成物中のジルコニア粒子の平均分散粒子径も、7nmないしはそれ以下と結論づけられた。
また、得られた実施例8の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
As a result of measuring the particle diameter of the zirconia particles in the obtained transparent composite of Example 8 in the same manner as in Example 1, the average dispersed particle diameter was 7 nm.
From this result, it was concluded that the average dispersed particle size of zirconia particles in the composite composition of Example 8 was 7 nm or less.
Further, as a result of conducting elemental analysis on the obtained transparent composite of Example 8, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例9」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131の14.1g(47質量%)を、側鎖ビニル−ジメチルシリコーンVDT−731の11.4g(38質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−301の3.6g(12質量%)に、それぞれ変更した他は、実施例1に準じて実施例9の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
"Example 9"
14.1 g (47% by mass) of side-chain vinyl-dimethylsilicone VDT-131 as vinyl-modified silicone, 11.4 g (38% by mass) of side-chain vinyl-dimethylsilicone VDT-731, and methyl as hydrogen-modified silicone According to Example 1, except that 0.9 g (3% by mass) of hydrogen-dimethylsilicone HMS-151 was changed to 3.6 g (12% by mass) of methylhydrogen-dimethylsilicone HMS-301. Thus, a surface-modified zirconia particle-silicone resin composite composition of Example 9 and a transparent composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例9の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は7nmであった。
この結果から、実施例9の複合組成物中のジルコニア粒子の平均分散粒子径も、7nmないしはそれ以下と結論づけられた。
また、得られた実施例9の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
The particle diameter of the zirconia particles in the obtained transparent composite of Example 9 was measured in the same manner as in Example 1. As a result, the average dispersed particle diameter was 7 nm.
From this result, it was concluded that the average dispersed particle size of zirconia particles in the composite composition of Example 9 was 7 nm or less.
In addition, as a result of conducting elemental analysis on the obtained transparent composite of Example 9, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「実施例10」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131の14.1g(47質量%)を、両末端ビニル−ジメチルシリコーンDMS−V22の14.7g(49質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−301の0.3g(1質量%)に、反応触媒として白金ジビニルテトラメチルジシロキサンSIP6830.3を、白金シクロビニルメチルシロキサンSIP6832.2(Gelest社製)に、それぞれ変更した他は、実施例1に準じて実施例10の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの透明複合体を得た。
この透明複合体のジルコニア粒子の含有率は25質量%であった。
"Example 10"
14.1 g (47% by mass) of side chain vinyl-dimethylsilicone VDT-131 as vinyl-modified silicone, 14.7 g (49% by mass) of vinyl-dimethylsilicone DMS-V22 at both ends, and methyl as hydrogen-modified silicone 0.9 g (3% by mass) of hydrogen-dimethylsilicone HMS-151 was added to 0.3 g (1% by mass) of methylhydrogen-dimethylsilicone HMS-301, and platinum divinyltetramethyldisiloxane SIP6830. 3 was changed to platinum cyclovinylmethylsiloxane SIP 6832.2 (manufactured by Gelest Co., Ltd.), respectively, and the surface-modified zirconia particle-silicone resin composite composition of Example 10 and a transparent film having a thickness of 1 mm were used according to Example 1. A complex was obtained.
The content of zirconia particles in this transparent composite was 25% by mass.

得られた実施例10の透明複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は9nmであった。
この結果から、実施例10の複合組成物中のジルコニア粒子の平均分散粒子径も、9nmないしはそれ以下と結論づけられた。
また、得られた実施例10の透明複合体について、元素分析を行った結果、反応触媒として添加した量と同等量の白金成分を検出できたことから、本発明の透明複合体であることを確認した。
As a result of measuring the particle diameter of the zirconia particles in the obtained transparent composite of Example 10 in the same manner as in Example 1, the average dispersed particle diameter was 9 nm.
From this result, it was concluded that the average dispersed particle size of the zirconia particles in the composite composition of Example 10 was 9 nm or less.
In addition, as a result of conducting elemental analysis on the obtained transparent composite of Example 10, it was possible to detect an amount of platinum component equivalent to the amount added as a reaction catalyst, so that it was the transparent composite of the present invention. confirmed.

「比較例1」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131の14.1g(47質量%)を、両末端ビニル−ジメチルシリコーンDMS−V21の8.7g(29質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−031の6.3g(21質量%)に、それぞれ変更した他は、実施例1に準じて比較例1の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの複合体を得た。
この複合体のジルコニア粒子の含有率は25質量%であった。
得られた比較例1の複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は35nmであった。
"Comparative Example 1"
14.1 g (47% by mass) of side chain vinyl-dimethylsilicone VDT-131 as vinyl-modified silicone, 8.7 g (29% by mass) of vinyl-dimethylsilicone DMS-V21 at both ends, and methyl as hydrogen-modified silicone According to Example 1, except that 0.9 g (3% by mass) of hydrogen-dimethylsilicone HMS-151 was changed to 6.3 g (21% by mass) of methylhydrogen-dimethylsilicone HMS-031, respectively. Thus, a surface-modified zirconia particle-silicone resin composite composition of Comparative Example 1 and a composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this composite was 25% by mass.
As a result of measuring the particle diameter of the zirconia particles in the obtained composite of Comparative Example 1 in the same manner as in Example 1, the average dispersed particle diameter was 35 nm.

「比較例2」
ビニル変性シリコーンとして側鎖ビニル−ジメチルシリコーンVDT−131の14.1g(47質量%)を、両末端ビニル−ジメチルシリコーンDMS−V22の13.2g(44質量%)に、ハイドロジェン変性シリコーンとしてメチルハイドロジェン−ジメチルシリコーンHMS−151の0.9g(3質量%)を、メチルハイドロジェン−ジメチルシリコーンHMS−031の1.8g(6質量%)に、それぞれ変更した他は、実施例1に準じて比較例2の表面修飾ジルコニア粒子−シリコーン樹脂複合組成物及び厚みが1mmの複合体を得た。
この複合体のジルコニア粒子の含有率は25質量%であった。
得られた比較例2の複合体中のジルコニア粒子の粒子径を実施例1と同様にして測定した結果、平均分散粒子径は42nmであった。
"Comparative Example 2"
14.1 g (47% by mass) of side chain vinyl-dimethylsilicone VDT-131 as vinyl-modified silicone, 13.2 g (44% by mass) of vinyl-dimethylsilicone DMS-V22 at both ends, and methyl as hydrogen-modified silicone According to Example 1, except that 0.9 g (3% by mass) of hydrogen-dimethylsilicone HMS-151 was changed to 1.8 g (6% by mass) of methylhydrogen-dimethylsilicone HMS-031, respectively. Thus, a surface-modified zirconia particle-silicone resin composite composition of Comparative Example 2 and a composite having a thickness of 1 mm were obtained.
The content of zirconia particles in this composite was 25% by mass.
As a result of measuring the particle diameter of the zirconia particles in the obtained composite of Comparative Example 2 in the same manner as in Example 1, the average dispersed particle diameter was 42 nm.

「評価」
実施例1〜10それぞれの透明複合体及び比較例1、2それぞれの複合体について、下記の装置または方法により透明性、屈折率及び耐久性の評価を行った。
"Evaluation"
The transparency, refractive index, and durability of each of the transparent composites of Examples 1 to 10 and Comparative Examples 1 and 2 were evaluated by the following apparatus or method.

(1)透明性
分光光度計(日本分光社製)を用いて可視光線の透過率を測定した。
ここでは、透明複合体(または複合体)の厚み方向(L=1mm)の可視光線透過率を測定し、可視光線透過率が80%以上を「○」、80%未満を「×」とした。
(2)屈折率
日本工業規格JIS K 7142「プラスチックの屈折率測定方法」に準拠し、アッベ屈折計により測定した。
ここでは、ジルコニア粒子を添加していない樹脂単体を基準として、屈折率が0.03以上向上した場合を「○」、屈折率が0.03未満しか向上しなかった場合を「×」とした。
(1) Transparency The transmittance of visible light was measured using a spectrophotometer (manufactured by JASCO Corporation).
Here, the visible light transmittance in the thickness direction (L = 1 mm) of the transparent composite (or composite) was measured, and the visible light transmittance was 80% or more as “◯” and less than 80% as “x”. .
(2) Refractive index The refractive index was measured with an Abbe refractometer in accordance with Japanese Industrial Standard JIS K 7142 “Plastic Refractive Index Measuring Method”.
Here, on the basis of a single resin not added with zirconia particles, a case where the refractive index is improved by 0.03 or more is “◯”, and a case where the refractive index is improved by less than 0.03 is “X”. .

(3)耐久性
透明複合体(または複合体)を温度150℃の環境下に24時間放置した後、取り出し、透明複合体(または複合体)の外観を目視にて観察し、黄変が無いものを「○」、黄変したものを「×」とした。
実施例1〜10及び比較例1〜2各々の複合組成物の組成及び透明複合体(または複合体)の評価結果を表1に示す。
(3) Durability The transparent composite (or composite) is allowed to stand for 24 hours in an environment at a temperature of 150 ° C. and then taken out. The appearance of the transparent composite (or composite) is visually observed, and there is no yellowing. The thing was set as "(circle)" and the thing yellowed was set as "x".
Table 1 shows the composition of each of the composite compositions of Examples 1 to 10 and Comparative Examples 1 and 2 and the evaluation results of the transparent composite (or composite).

Figure 0005780003
Figure 0005780003

表1によれば、実施例1〜10各々の透明複合体は、透明性、屈折率及び耐久性の全ての点で優れたものであった。
一方、比較例1、2の複合体は、可視光線の透過率が0%〜20%と極めて低く、また、屈折率を測定することができなかった。
この理由は、ハイドロジェン変性シリコーン及びビニル変性シリコーン共に架橋密度が小さいので、無機酸化物粒子の凝集・相分離速度がシリコーン樹脂の硬化速度よりも速くなり、その結果、シリコーン樹脂との硬化の際に透明性が失われたことによると考えられる。
According to Table 1, each of the transparent composites of Examples 1 to 10 was excellent in all points of transparency, refractive index and durability.
On the other hand, the composites of Comparative Examples 1 and 2 had an extremely low visible light transmittance of 0% to 20%, and the refractive index could not be measured.
The reason is that both hydrogen-modified silicone and vinyl-modified silicone have low crosslink density, so the aggregation / phase separation rate of inorganic oxide particles is faster than the curing rate of silicone resin, and as a result, when cured with silicone resin. This is thought to be due to the loss of transparency.

本発明の無機酸化物粒子とシリコーン樹脂との複合組成物は、無機酸化物粒子をシリコーン樹脂中に分散してなる複合組成物であり、少なくとも、片末端に1官能基を有するポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子と、シリコーン樹脂と、反応触媒とを含有してなる複合組成物としたことにより、無機酸化物粒子とシリコーン樹脂とを複合化した複合体の透明性、耐熱性及び耐光性を維持しつつ、屈折率が制御された透明複合体を得ることができるものであるから、半導体発光素子(LED)の封止材、液晶表示装置用基板、有機EL表示装置用基板、カラーフィルタ用基板、タッチパネル用基板、太陽電池用基板等の光学シート、透明板、光学レンズ、光学素子、光導波路、接着剤等はもちろんのこと、これ以外の様々な工業分野においても、その利用可能性は大である。   The composite composition of inorganic oxide particles and silicone resin of the present invention is a composite composition obtained by dispersing inorganic oxide particles in a silicone resin, and a polydimethylsiloxane skeleton having at least one functional group at one end. By forming a composite composition comprising inorganic oxide particles having an average dispersed particle diameter of 1 nm or more and 20 nm or less, which is surface-modified by bonding with a polymer, a silicone resin, and a reaction catalyst, an inorganic oxide is obtained. Since a transparent composite with a controlled refractive index can be obtained while maintaining the transparency, heat resistance, and light resistance of a composite comprising particles and a silicone resin, a semiconductor light emitting device (LED) Sealing material, liquid crystal display substrate, organic EL display substrate, color filter substrate, touch panel substrate, solar cell substrate optical sheet, transparent plate, Manabu lens, an optical element, an optical waveguide, such as an adhesive, of course, also in various industrial fields other than this, its availability is large.

Claims (8)

ポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された平均分散粒子径が1nm以上かつ20nm以下の無機酸化物粒子と、シリコーン樹脂と、反応触媒とを含有してなる複合組成物であって、
前記シリコーン樹脂は、ビニル変性シリコーン及びハイドロジェン変性シリコーンを含有し、
前記反応触媒は、ヒドロシリル化反応触媒を含有してなり、
前記ポリジメチルシロキサン骨格ポリマーは、モノグリシジルエーテル末端ポリジメチルシロキサン、モノヒドロキシエーテル末端ポリジメチルシロキサンの群から選択された1種または2種であることを特徴とする無機酸化物粒子とシリコーン樹脂との複合組成物。
A composite composition comprising inorganic oxide particles having an average dispersed particle size of 1 nm or more and 20 nm or less, which is surface-modified by bonding with a polydimethylsiloxane skeleton polymer, a silicone resin, and a reaction catalyst,
The silicone resin contains vinyl-modified silicone and hydrogen-modified silicone,
The reaction catalyst contains a hydrosilylation reaction catalyst,
The polydimethylsiloxane skeleton polymer is one or two selected from the group consisting of a monoglycidyl ether-terminated polydimethylsiloxane and a monohydroxyether-terminated polydimethylsiloxane . Composite composition.
前記ビニル変性シリコーンは、両末端ビニル−ジメチルシリコーン、両末端ビニルジフェニル−ジメチルシリコーン、両末端ビニル−フェニルメチルシリコーン、両末端ビニル−ジエチルシリコーン、側鎖ビニル−ジメチルシリコーン、ビニルメチルシリコーン、ビニルメトキシシリコーン、ビニルレジン分散体の群から選択された1種または2種以上であることを特徴とする請求項1記載の無機酸化物粒子とシリコーン樹脂との複合組成物。 The vinyl-modified silicone includes vinyl dimethyl silicone at both ends, vinyl diphenyl-dimethyl silicone at both ends, vinyl phenylphenyl silicone at both ends, vinyl diethyl silicone at both ends, vinyl dimethyl silicone at side chain, vinyl methyl silicone, vinyl methoxy silicone. The composite composition of inorganic oxide particles and a silicone resin according to claim 1 , wherein the composite composition is one or more selected from the group of vinyl resin dispersions. 前記ハイドロジェン変性シリコーンは、両末端ハイドロジェン−ジメチルシリコーン、メチルハイドロジェン−ジメチルシリコーン、メチルハイドロジェンシリコーン、エチルハイドロジェンシリコーン、メチルハイドロジェン−フェニルメチルシリコーン、ハイドライドレジンの群から選択された1種または2種以上であることを特徴とする請求項1または2に記載の無機酸化物粒子とシリコーン樹脂との複合組成物。 The hydrogen-modified silicone is one selected from the group consisting of hydrogen-dimethylsilicone at both ends, methylhydrogen-dimethylsilicone, methylhydrogensilicone, ethylhydrogensilicone, methylhydrogen-phenylmethylsilicone, and hydride resin. Or it is 2 or more types, The composite composition of the inorganic oxide particle and silicone resin of Claim 1 or 2 characterized by the above-mentioned. 前記ハイドロジェン変性シリコーンは、下記の式(1)
Figure 0005780003
(但し、R〜Rは相互に独立な任意の有機基(Hを除く)、mは1以上の整数、nは0を含む正の整数である)
に示す側鎖ハイドロジェン変性シリコーンを含有してなり、
該側鎖ハイドロジェン変性シリコーンにおけるmとnとの比(m/(m+n))は0.25以上かつ1以下であることを特徴とする請求項1ないしのいずれか1項記載の無機酸化物粒子とシリコーン樹脂との複合組成物。
The hydrogen-modified silicone has the following formula (1):
Figure 0005780003
(Where R 1 to R 8 are mutually independent arbitrary organic groups (excluding H), m is an integer of 1 or more, and n is a positive integer including 0)
Containing the side chain hydrogen-modified silicone shown in
The inorganic oxidation according to any one of claims 1 to 3 , wherein a ratio (m / (m + n)) of m to n in the side chain hydrogen-modified silicone is 0.25 or more and 1 or less. Composite composition of product particles and silicone resin.
前記ビニル変性シリコーンは、側鎖ビニル−ジメチルシリコーンであり、The vinyl-modified silicone is a side chain vinyl-dimethyl silicone,
前記ハイドロジェン変性シリコーンは、下記の式(1)  The hydrogen-modified silicone has the following formula (1):
Figure 0005780003
Figure 0005780003
(但し、R  (However, R 1 〜R~ R 8 は相互に独立な任意の有機基(Hを除く)、mは1以上の整数、nは0を含む正の整数である)Are arbitrary organic groups independent of each other (excluding H), m is an integer of 1 or more, and n is a positive integer including 0)
に示す側鎖ハイドロジェン変性シリコーンである請求項2に記載の無機酸化物粒子とシリコーン樹脂との複合組成物。The composite composition of inorganic oxide particles and a silicone resin according to claim 2, which is a side chain hydrogen-modified silicone.
前記無機酸化物粒子の形成材料が酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化鉄(Fe、FeO、Fe)、酸化銅(CuO、CuO)、酸化亜鉛(ZnO)、酸化イットリウム(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In、InO)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO、W)、酸化鉛(PbO、PbO)、酸化ビスマス(Bi)、酸化セリウム(CeO、Ce)、酸化アンチモン(Sb、Sb)酸化ゲルマニウム(GeO、GeO)、スズ添加酸化インジウム(ITO:Indium Tin Oxide)、イットリア安定化ジルコニア(YSZ:Yttria Stabilized Zirconia)から選択される1種または2種以上であることを特徴とする請求項1ないし5のいずれか1項記載の無機酸化物粒子とシリコーン樹脂との複合組成物。 The material for forming the inorganic oxide particles is zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 , FeO, Fe 3 O 4 ), copper oxide (CuO, Cu 2 O), zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), niobium oxide (Nb 2 O 5 ), molybdenum oxide (MoO 3 ), indium oxide (In 2 O 3 , In 2 O), tin oxide (SnO 2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 , W 2 O 5 ), lead oxide (PbO, PbO 2 ), bismuth oxide (Bi) 2 O 3 ), cerium oxide (CeO 2 , Ce 2 O 3 ), antimony oxide (Sb 2 O 3 , Sb 2 O 5 ) germanium oxide (GeO 2 , GeO), tin-added 6. One type or two or more types selected from indium tin oxide (ITO) and yttria stabilized zirconia (YSZ). A composite composition of inorganic oxide particles and a silicone resin. 前記無機酸化物粒子の前記複合組成物中の含有率が、1質量%以上かつ90質量%以下であることを特徴とする請求項1ないし6のいずれか1項記載の無機酸化物粒子とシリコーン樹脂との複合組成物。   The inorganic oxide particles and the silicone according to any one of claims 1 to 6, wherein the content of the inorganic oxide particles in the composite composition is 1% by mass or more and 90% by mass or less. Composite composition with resin. 請求項1ないし7のいずれか1項記載の無機酸化物粒子とシリコーン樹脂との複合組成物を、所定の形状に成形し固化するか、または前記複合組成物を固化した後に成形してなることを特徴とする透明複合体であって、
シリコーン樹脂中に、ポリジメチルシロキサン骨格ポリマーが結合することにより表面修飾された無機酸化物粒子が平均分散粒子径1nm以上かつ20nm以下にて分散するとともに、前記シリコーン樹脂中にヒドロシリル化反応触媒を含有してなり、
前記ポリジメチルシロキサン骨格ポリマーは、モノグリシジルエーテル末端ポリジメチルシロキサン、モノヒドロキシエーテル末端ポリジメチルシロキサンの群から選択された1種または2種であることを特徴とする透明複合体。
The composite composition of inorganic oxide particles according to any one of claims 1 to 7 and a silicone resin is formed into a predetermined shape and solidified, or formed after the composite composition is solidified. A transparent composite characterized by
The inorganic oxide particles whose surface is modified by bonding the polydimethylsiloxane skeleton polymer to the silicone resin are dispersed with an average dispersed particle diameter of 1 nm or more and 20 nm or less, and a hydrosilylation reaction catalyst is contained in the silicone resin. And
The polydimethylsiloxane skeleton polymer is one or two selected from the group consisting of monoglycidyl ether-terminated polydimethylsiloxane and monohydroxy ether-terminated polydimethylsiloxane .
JP2011128302A 2011-06-08 2011-06-08 COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN Active JP5780003B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011128302A JP5780003B2 (en) 2011-06-08 2011-06-08 COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN
KR1020137032472A KR101596378B1 (en) 2011-06-08 2012-02-29 Composite composition of inorganic oxide particles and silicone resin, and transparent composite material
TW101106487A TWI525140B (en) 2011-06-08 2012-02-29 A complex composition including an inorganic oxide particle and a silicone resin, and a transparent composite
PCT/JP2012/055066 WO2012169237A1 (en) 2011-06-08 2012-02-29 Composite composition of inorganic oxide particles and silicone resin, and transparent composite material
CN201280027849.7A CN103597034B (en) 2011-06-08 2012-02-29 The complex composition and transparent complex of inorganic oxide particle and polyorganosiloxane resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128302A JP5780003B2 (en) 2011-06-08 2011-06-08 COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN

Publications (2)

Publication Number Publication Date
JP2012255070A JP2012255070A (en) 2012-12-27
JP5780003B2 true JP5780003B2 (en) 2015-09-16

Family

ID=47295811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128302A Active JP5780003B2 (en) 2011-06-08 2011-06-08 COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN

Country Status (5)

Country Link
JP (1) JP5780003B2 (en)
KR (1) KR101596378B1 (en)
CN (1) CN103597034B (en)
TW (1) TWI525140B (en)
WO (1) WO2012169237A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567255B2 (en) * 2013-01-31 2017-02-14 Empire Technology Development Llc Light weight structural materials
JP6112603B2 (en) * 2013-03-29 2017-04-12 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
WO2015061075A1 (en) * 2013-10-24 2015-04-30 Dow Corning Corporation Cured silicone with high light transmittance, curable silicone for preparing same, devices and methods
WO2015164779A1 (en) 2014-04-24 2015-10-29 Rensselaer Polytechnic Institute Matrix-free polymer nanocomposites and related products and methods thereof
CN106537240B (en) * 2014-12-04 2020-11-13 积水化学工业株式会社 Polysiloxane particles, sealant for liquid crystal dropping process, and liquid crystal display element
WO2016208640A1 (en) * 2015-06-24 2016-12-29 住友大阪セメント株式会社 Curable silicone resin composition, silicone resin composite, photosemiconductor light emitting device, luminaire and liquid crystal imaging device
JP6524901B2 (en) * 2015-12-08 2019-06-05 信越化学工業株式会社 Silicone rubber composition and cured product thereof
JP2017155136A (en) * 2016-03-02 2017-09-07 サムスン エレクトロニクス カンパニー リミテッド Inorganic oxide-containing curable silicone resin composition and optical member formed by using the composition
US11274253B2 (en) 2016-09-21 2022-03-15 Koninklijke Philips N.V. Actuator device, actuation method and manufacturing method
WO2020203459A1 (en) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 Surface modification method for inorganic particles, method for producing dispersion liquid, and dispersion liquid
JP2020164678A (en) 2019-03-29 2020-10-08 日亜化学工業株式会社 Silicone resin composition and method for producing the same
CN110246985B (en) * 2019-06-21 2021-10-01 京东方科技集团股份有限公司 Electroluminescent device, preparation method thereof and display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218723A (en) * 1989-02-20 1990-08-31 Nippon Sheet Glass Co Ltd Fine particle coated with polydimethylsiloxane
JP4187454B2 (en) 2002-03-29 2008-11-26 大日本印刷株式会社 Antireflection film
JP4273942B2 (en) 2003-11-28 2009-06-03 Jsr株式会社 Zirconia particle dispersion, method for producing the same, and photocurable composition
JP5034301B2 (en) 2005-04-15 2012-09-26 Jsr株式会社 High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JP4961829B2 (en) 2005-08-09 2012-06-27 ソニー株式会社 Method for producing nanoparticle-resin composite material
JP5167595B2 (en) * 2006-03-29 2013-03-21 住友大阪セメント株式会社 Transparent plastic member and composite plastic member containing zirconia fine particles
JP5167582B2 (en) * 2005-10-28 2013-03-21 住友大阪セメント株式会社 Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
JP2007299981A (en) * 2006-05-01 2007-11-15 Sumitomo Osaka Cement Co Ltd Light emitting element, sealing composition thereof, and optical semiconductor device
JP5540458B2 (en) * 2006-02-17 2014-07-02 住友大阪セメント株式会社 Inorganic oxide transparent dispersion and resin composition, transparent composite, light emitting device sealing composition, light emitting device, and method for producing transparent composite
JP5018025B2 (en) * 2006-11-08 2012-09-05 住友大阪セメント株式会社 Surface-modified zirconium oxide particle dispersion and transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element
JP5332101B2 (en) * 2006-12-01 2013-11-06 住友大阪セメント株式会社 Inorganic oxide transparent dispersion and transparent composite, composition for sealing light-emitting device, light-emitting device, and method for producing transparent composite
JP5176380B2 (en) * 2007-05-07 2013-04-03 住友大阪セメント株式会社 Surface-modified zirconia particles, surface-modified zirconia particle dispersion and composite, and method for producing surface-modified zirconia particles
JP5012230B2 (en) * 2007-06-07 2012-08-29 住友大阪セメント株式会社 Zirconia-containing silicone resin composition
JP2009003164A (en) * 2007-06-21 2009-01-08 Sumitomo Osaka Cement Co Ltd Hologram recording material and hologram recording medium
JP2009091380A (en) 2007-10-03 2009-04-30 Jsr Corp Composition for light emitting element coating, light emitting device, and method for manufacturing composition for light emitting element coating
JP5082814B2 (en) * 2007-12-11 2012-11-28 住友大阪セメント株式会社 Inorganic oxide-containing transparent composite and method for producing the same

Also Published As

Publication number Publication date
JP2012255070A (en) 2012-12-27
WO2012169237A1 (en) 2012-12-13
KR20140038983A (en) 2014-03-31
CN103597034B (en) 2017-06-20
CN103597034A (en) 2014-02-19
TWI525140B (en) 2016-03-11
KR101596378B1 (en) 2016-02-22
TW201249910A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
JP5780003B2 (en) COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN
JP5273744B2 (en) Method for producing composite composition of inorganic oxide particles and silicone resin
JP5472543B2 (en) Surface-modified metal oxide particle material, optical semiconductor element sealing composition, and optical semiconductor device
JP6565923B2 (en) Surface-modified metal oxide particle dispersion and production method thereof, surface-modified metal oxide particle-silicone resin composite composition, surface-modified metal oxide particle-silicone resin composite, optical member, and light emitting device
JP5540458B2 (en) Inorganic oxide transparent dispersion and resin composition, transparent composite, light emitting device sealing composition, light emitting device, and method for producing transparent composite
CN107936572B (en) A kind of high transparency heat oxygen aging resistance add-on type liquid silicon rubber and preparation method thereof
JP2008120848A (en) Transparent inorganic oxide dispersion, transparent composite, method for producing the same, composition for sealing light-emitting element and light-emitting element
EP3101062B1 (en) Nanoparticle, method for producing nanoparticle, addition curing silicone resin composition, and semiconductor apparatus
CN106854367A (en) Rubber composition and its product of solidification
JP5424381B2 (en) Resin composition for optical semiconductor encapsulation
JP2017105897A (en) Inorganic particle-polysiloxane composite, dispersion containing the same, solid material and manufacturing method of inorganic particle-polysiloxane composite
WO2016208640A1 (en) Curable silicone resin composition, silicone resin composite, photosemiconductor light emitting device, luminaire and liquid crystal imaging device
JP5162879B2 (en) METAL OXIDE PARTICLE-SILICONE RESIN COMPOSITION, OPTICAL MEMBER AND LIGHT EMITTING DEVICE PROVIDED WITH THE SAME, AND METHOD FOR PRODUCING METAL OXIDE PARTICLE-SILICONE RESIN COMPOSITION
JP5769154B2 (en) Composite composition of inorganic oxide particles and silicone resin, transparent composite and method for producing the same
JP6514148B2 (en) Condensation-curable silicone resin composition and semiconductor device
JP2023140678A (en) thermosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5780003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150