JP5777591B2 - Electro-heating and shrinking machine electrode - Google Patents

Electro-heating and shrinking machine electrode Download PDF

Info

Publication number
JP5777591B2
JP5777591B2 JP2012242889A JP2012242889A JP5777591B2 JP 5777591 B2 JP5777591 B2 JP 5777591B2 JP 2012242889 A JP2012242889 A JP 2012242889A JP 2012242889 A JP2012242889 A JP 2012242889A JP 5777591 B2 JP5777591 B2 JP 5777591B2
Authority
JP
Japan
Prior art keywords
mass
electrode
shrinking machine
heating
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242889A
Other languages
Japanese (ja)
Other versions
JP2013057126A (en
Inventor
隆行 庄司
隆行 庄司
修 寺田
修 寺田
秀行 番匠
秀行 番匠
鉄也 竹本
鉄也 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP2012242889A priority Critical patent/JP5777591B2/en
Publication of JP2013057126A publication Critical patent/JP2013057126A/en
Application granted granted Critical
Publication of JP5777591B2 publication Critical patent/JP5777591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、特殊合金鋼、チタン合金などの各種部品の製造に用いられる電気加熱鍛縮機用電極に関するものである。   The present invention relates to an electrode for an electric heating / shrinking machine used for manufacturing various parts such as special alloy steel and titanium alloy.

自動車などに使用される特殊合金鋼などからなるエンジンバルブの多くは、電気加熱鍛縮によって製造されている。このような電気加熱鍛縮に使用される電極の材料には、電気伝導性、高温での機械的性質と耐酸化性に優れることが要求され、従来、この種の用途の材料としては、Cu合金、耐熱鋼、超硬合金などが提案されている。   Many engine valves made of special alloy steel used for automobiles and the like are manufactured by electric heating forging. Electrode materials used for such electric heating and shrinkage are required to have excellent electrical conductivity, high-temperature mechanical properties and oxidation resistance. Conventionally, as a material for this type of application, Cu Alloys, heat-resistant steels, cemented carbides and the like have been proposed.

特殊合金鋼などの電気加熱鍛縮は、通常高温、大気中で行われるので、台電極、摺動電極などの電極の材料には電気伝導性、耐熱性および耐酸化性、耐熱衝撃性と共に高温機械的特性が求められる。Cu合金は、電気伝導性が高く加熱冷却し易いものの高温での酸化が著しい。耐熱鋼は、高温での酸化や変形が著しい。普通の超硬合金は、CoやNiなどの結合相金属を含むため、高温で硬度が低下し易く耐酸化性にも劣り、熱衝撃で割れる。また、いわゆるバインダーレス超硬合金は、結合相金属をほとんど含まないため高温での硬度低下は少ないが、やはり耐熱衝撃性で劣る。耐酸化性および高温機械的性質に優れる合金としては、他にW−Ni−Fe系(例えば、特許文献1参照)、W−Ni−Fe−Mo系(例えば、特許文献2参照)などのW基合金が挙げられるが、何れも耐酸化性や高温機械的特性に問題がある。   Electrical heating and shrinkage of special alloy steel is usually performed at high temperatures in the atmosphere, so electrode materials such as table electrodes and sliding electrodes have high temperatures as well as electrical conductivity, heat resistance and oxidation resistance, and thermal shock resistance. Mechanical properties are required. Although Cu alloy has high electrical conductivity and is easy to heat and cool, oxidation at a high temperature is remarkable. Heat resistant steels are significantly oxidized and deformed at high temperatures. Since ordinary cemented carbide contains a binder phase metal such as Co or Ni, the hardness is likely to decrease at high temperatures, and the oxidation resistance is poor, and it is cracked by thermal shock. In addition, so-called binderless cemented carbide contains almost no binder phase metal, so the hardness is hardly lowered at high temperatures, but it is still inferior in thermal shock resistance. Other alloys excellent in oxidation resistance and high-temperature mechanical properties include W-Ni-Fe-based (for example, see Patent Document 1), W-Ni-Fe-Mo-based (for example, see Patent Document 2), and the like. Examples include base alloys, but all have problems in oxidation resistance and high-temperature mechanical properties.

本発明は、上記のような問題点を解決するためになされたものである。すなわち耐熱性および高温機械的特性に優れるW基合金の、耐酸化性および高温機械的特性をさらに向上させ、電気加熱鍛縮機用電極に適した長寿命の材料を提供しようとするものである。   The present invention has been made to solve the above problems. That is, the present invention aims to further improve the oxidation resistance and high-temperature mechanical properties of a W-base alloy having excellent heat resistance and high-temperature mechanical properties, and to provide a long-life material suitable for an electrode for an electric heating / shrinking machine. .

本発明の電気加熱鍛縮機用電極の素材をW基合金とするのは、Wが高温での機械的性質に優れるためである。Niを添加するのは焼結性を向上させるためであり、その添加量が1質量%未満では焼結性向上効果が小さくなり、15質量%を超えると高温での硬さ低下率が大きくなる。Niの一部をFeで置換してもよいが、その添加量の計がNiとの合計量の30質量%を超えると耐酸化性が低下する。Crを添加するのは耐酸化性および高温機械的特性を向上させるためであり、その添加量が1質量%未満では耐酸化性の向上効果が不足し、20質量%を超えると焼結性が低下するので好ましくない。また、Wの一部を、周期律表4または5族に属する遷移金属で置換してもよいが、その置換量が10質量%を超えると焼結性が低下し、抗折力が低下する。 The reason why the material of the electrode for electric heating / shrinking machine of the present invention is a W-based alloy is that W is excellent in mechanical properties at a high temperature. Ni is added to improve the sinterability. If the amount added is less than 1% by mass, the effect of improving the sinterability decreases, and if it exceeds 15% by mass, the rate of decrease in hardness at high temperatures increases. . A part of Ni may be substituted with Fe. However, if the total amount of Ni exceeds 30% by mass of the total amount with Ni, the oxidation resistance decreases. Cr is added to improve oxidation resistance and high-temperature mechanical properties. When the amount added is less than 1% by mass, the effect of improving oxidation resistance is insufficient, and when it exceeds 20% by mass, sinterability is increased. Since it falls, it is not preferable. Further, a part of W, may be substituted with a transition metal belonging to circumferential Kiritsuhyo group 4 or 5, but the amount of substitution sintering property is lowered and more than 10 wt%, the deflecting strength reduction To do.

なお、合金組織を構成するWの長軸径による平均粒度が5μm未満では、熱クラックが発生しやすくなるので好ましくない。   In addition, it is not preferable that the average particle size by the major axis diameter of W constituting the alloy structure is less than 5 μm because thermal cracks are likely to occur.

本発明による焼結合金は、高温における硬さの低下率が小さく、超硬合金や通常のW基合金に比較して耐酸化性に優れているため、電気加熱鍛縮機用電極に用いるとそれらの長寿命化が図れ、産業上の利用価値が高い。   The sintered alloy according to the present invention has a small decrease in hardness at a high temperature and is superior in oxidation resistance as compared with a cemented carbide or a normal W-based alloy. Their lifespan can be extended and their industrial utility value is high.

例えば、自動車用エンジンバルブの電気加熱鍛縮の場合、被加工材の温度を1000℃以上に上昇させ、台電極に押し当てられる。このとき、耐熱鋼などの場合、100ショットで酸化の進行および変形が発生し交換となる。この台電極の変形はエンジンバルブの最終形状に影響を及ぼすため、不良品の発生に繋がり生産性が低下するが、本発明合金を用いると、酸化や変形が大幅に抑えられ、200〜300ショットの耐用回数が可能となり、大幅に生産性が改善された。   For example, in the case of electric heating / shrinking of an automobile engine valve, the temperature of the workpiece is raised to 1000 ° C. or higher and pressed against the base electrode. At this time, in the case of heat-resistant steel or the like, the oxidation progresses and deforms after 100 shots and is exchanged. This deformation of the base electrode affects the final shape of the engine valve, leading to the occurrence of defective products and lowering the productivity. However, when the alloy of the present invention is used, oxidation and deformation are greatly suppressed, and 200 to 300 shots. Can be used for a long time, greatly improving productivity.

特開平5−311206号公報JP-A-5-311206 特開平6−192804号公報JP-A-6-192804

本発明の電気加熱鍛縮機用電極の素材は通常の粉末冶金法によって製造できる。すなわち、W、Ni、FeおよびCr粉末を所定の組成に配合し、ボールミルあるいはアトライターによる湿式混合を経て乾燥後、所望の形状にプレス圧100〜500MPaで加圧成形する。次に、成形体を1350〜1500℃で30〜120分真空焼結した後、最終的な形状に加工する。 The raw material of the electrode for electric heating / shrinking machine of the present invention can be produced by a usual powder metallurgy method. That is, W, Ni, Fe and Cr powders are blended in a predetermined composition, dried by wet mixing with a ball mill or attritor, and then pressed into a desired shape under a press pressure of 100 to 500 MPa. Next, the compact is vacuum sintered at 1350-1500 ° C. for 30-120 minutes and then processed into a final shape.

表1には本発明合金、参考合金、および比較合金の配合組成を示した。本発明合金および参考合金No.1〜4はNiおよびFe量を一定とし、Cr量を変化させたものであり、参考合金No.5〜11は、Ni、FeおよびCoの合計量とCr量を変化させたものである。また、本発明合金および参考合金No.12〜14はNi、FeおよびCr量をNo.2合金と同一とし、Wの一部をTi、TaまたはMoで置換したものである。比較合金のNo.15〜20はCrを含まないW基合金、No.21〜24は一般的な耐摩耗工具用超硬合金である。WCの粒度は、合金組織においてフルマンの式により求めたものである。ここで、W基合金はすべてフィッシャーサブシーブサイザーの測定による平均粒度が4μmのW粉を用い、湿式ボールミル時間24時間、プレス圧100MPa、真空焼結1460℃−60分の条件で作製した。焼結後のW粒子の長軸径による粒度は、組成により異なるが、10〜100μmの範囲内であった。 Table 1 shows the composition of the alloy of the present invention , the reference alloy, and the comparative alloy. The alloys of the present invention and reference alloys Nos. 1 to 4 have a constant amount of Ni and Fe and the amount of Cr is changed, and reference alloys Nos. 5 to 11 are the total amount of Ni, Fe and Co and the amount of Cr. Is a change. The alloys of the present invention and reference alloys Nos. 12 to 14 have the same amounts of Ni, Fe and Cr as the No. 2 alloy, and a part of W is substituted with Ti, Ta or Mo. Comparative alloys Nos. 15 to 20 are W-based alloys not containing Cr, and Nos. 21 to 24 are general cemented carbides for wear-resistant tools. The grain size of WC is obtained by the Fullman equation in the alloy structure. Here, all W-based alloys were prepared using W powder having an average particle size of 4 μm as measured by a Fischer sub-sieving sizer under conditions of a wet ball mill time of 24 hours, a pressing pressure of 100 MPa, and vacuum sintering of 1460 ° C.-60 minutes. The particle size depending on the major axis diameter of the W particles after sintering was in the range of 10 to 100 μm, although depending on the composition.

表1に示した本発明合金、参考合金、および比較合金の抗折力、硬さ、高温硬さ、および耐酸化性(酸化増量)の測定結果を表2に示した。酸化増量試験は、4×8×25mmの試験片の全面を鏡面仕上げ後、大気中で800℃−30分間加熱し、その重量変化から単位面積当たりの酸化増量を算出した。また、高温硬さ(HV1)はAr雰囲気中で測定した。 Table 2 shows the measurement results of the bending strength, hardness, high temperature hardness, and oxidation resistance (oxidation increase) of the alloys of the present invention , reference alloys, and comparative alloys shown in Table 1. In the oxidation increase test, the entire surface of a 4 × 8 × 25 mm 3 test piece was mirror finished, heated in the atmosphere at 800 ° C. for 30 minutes, and the increase in oxidation per unit area was calculated from the change in weight. The high temperature hardness (HV1) was measured in an Ar atmosphere.

No.1〜4および15より、Cr添加量が増加するにつれて酸化増量が減少、すなわち耐酸化性が向上し、室温および高温硬さが向上している。また、No.15〜19のようにNi、FeおよびCoの合計量が増加すると耐酸化性および高温硬さが劣化するが、No.5〜11のようにNi、FeおよびCoの合計量の増加と共にCr量も増加させることにより、耐酸化性の劣化を抑制することができる。また、一般的な超硬合金と比較すると抗折力は低いが、本発明合金は耐酸化性の面では非常に優れているので、電気加熱鍛縮機用電極に用いると、それらの長寿命化を図ることができる。   From Nos. 1 to 4 and 15, as the amount of added Cr increases, the oxidation increase decreases, that is, the oxidation resistance is improved, and the room temperature and high temperature hardness are improved. Moreover, when the total amount of Ni, Fe and Co increases as in Nos. 15 to 19, the oxidation resistance and high-temperature hardness deteriorate, but the total amount of Ni, Fe and Co as in Nos. 5 to 11 decreases. By increasing the Cr amount with the increase, it is possible to suppress the deterioration of oxidation resistance. In addition, the bending strength is low compared to general cemented carbides, but the alloys of the present invention are very superior in terms of oxidation resistance. Can be achieved.

Claims (2)

Wが91〜95質量%、NiおよびFeの合計量が3質量%で、その内Feの量はNiとの合計量の0〜25質量%、Crが2〜5質量%、および不可避不純物からなる組成を有し、光学顕微鏡組織写真上でW粒子の長軸径の平均が5μm以上で、かつ4×8×25mmの試験片の全面を鏡面仕上げ後、大気中で800℃−30min加熱し、その重量変化から単位面積当たりの値を算出した酸化増量が22g/m以下であり、かつ900℃における高温硬さが170HV1以上である焼結合金により、少なくとも一部が構成されることを特徴とする、被加工材の温度を1000℃以上に上昇させて押し当てられる、自動車エンジンバルブ製造用電気加熱鍛縮機用電極。 W is 91 to 95 mass%, a total amount of Ni and Fe is 3 mass%, 0-25 mass% of the total amount of the amount of its inner Fe is Ni, Cr 2 to 5 wt%, and unavoidable impurities The average of the major axis diameter of the W particles is 5 μm or more on the optical micrograph and the entire surface of the 4 × 8 × 25 mm 3 test piece is mirror-finished and then 800 ° C. for 30 minutes in the atmosphere. At least a part is composed of a sintered alloy that is heated and has an oxidation increase calculated from a weight change of 22 g / m 2 or less and a high temperature hardness at 900 ° C. of 170 HV1 or more. An electrode for an electric heating / shrinking machine for manufacturing an automobile engine valve, which is pressed by raising the temperature of a workpiece to 1000 ° C. or higher. Wの10質量%以下が、周期律表4または5族に属する遷移金属の1種または2種以上で置換されており、かつ4×8×25mmの試験片の全面を鏡面仕上げ後、大気中で800℃−30min加熱し、その重量変化から単位面積当たりの値を算出した酸化増量が22g/m以下であり、かつ900℃における高温硬さが170HV1以上である、請求項1に記載の焼結合金により、少なくとも一部が構成されることを特徴とする、被加工材の温度を1000℃以上に上昇させて押し当てられる、自動車エンジンバルブ製造用電気加熱鍛縮機用電極。 10% by mass or less of W is replaced with one or more transition metals belonging to Group 4 or Group 5 of the periodic table, and the entire surface of a 4 × 8 × 25 mm 3 test piece is mirror-finished, then the atmosphere Heating at 800 ° C. for 30 minutes in the medium, the oxidation increase calculated from the change in weight per unit area is 22 g / m 2 or less, and the high temperature hardness at 900 ° C. is 170 HV1 or more. An electrode for an electric heating / shrinking machine for manufacturing an automobile engine valve, which is pressed by raising the temperature of a workpiece to 1000 ° C. or higher, characterized in that the sintered alloy is at least partially configured.
JP2012242889A 2012-11-02 2012-11-02 Electro-heating and shrinking machine electrode Active JP5777591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242889A JP5777591B2 (en) 2012-11-02 2012-11-02 Electro-heating and shrinking machine electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242889A JP5777591B2 (en) 2012-11-02 2012-11-02 Electro-heating and shrinking machine electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010131462A Division JP2011246797A (en) 2010-05-21 2010-05-21 Electrode for electric heating upsetting machine and peripheral member thereof

Publications (2)

Publication Number Publication Date
JP2013057126A JP2013057126A (en) 2013-03-28
JP5777591B2 true JP5777591B2 (en) 2015-09-09

Family

ID=48133223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242889A Active JP5777591B2 (en) 2012-11-02 2012-11-02 Electro-heating and shrinking machine electrode

Country Status (1)

Country Link
JP (1) JP5777591B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133945A (en) * 1983-11-09 1985-07-17 Mitsubishi Heavy Ind Ltd Electric upsetter
JP3721510B2 (en) * 2001-03-14 2005-11-30 冨士ダイス株式会社 Sintered alloy suitable for optical glass mold and its peripheral components
JP2007270339A (en) * 2006-03-30 2007-10-18 Fuji Dies Kk Metal mold for die casting and its peripheral member

Also Published As

Publication number Publication date
JP2013057126A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP6124877B2 (en) FeNi binder with versatility
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP5876490B2 (en) Method for producing a sintered composite
EP2826877A2 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
JP2019510872A5 (en)
JP2660455B2 (en) Heat resistant hard sintered alloy
JP5152770B1 (en) Method for producing tough cemented carbide
JP2007270339A (en) Metal mold for die casting and its peripheral member
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP6384098B2 (en) Titanium carbonitride-based cermet for chipsaw
CN106086566A (en) A kind of chromio high temperature wear resistant alloy and preparation method thereof
CN105132784A (en) Compression-resistant high-hardness composite metal ceramic material and preparation method thereof
JP3721510B2 (en) Sintered alloy suitable for optical glass mold and its peripheral components
JP2011246797A (en) Electrode for electric heating upsetting machine and peripheral member thereof
JP5777591B2 (en) Electro-heating and shrinking machine electrode
JPH06316743A (en) Die for forging
JP4598212B2 (en) Method for producing WC-based composite ceramic sintered body
JP5888678B2 (en) Die casting mold
WO2017110813A1 (en) High-hardness high-toughness powder
JP6937495B2 (en) High-rigidity Fe-based alloy
JP5826138B2 (en) Tough cemented carbide and coated cemented carbide
JP2017186624A (en) Hard metal alloy and manufacturing method therefor and carbide tool
JP2011084808A (en) Heat resistant alloy having oxidation resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140728

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R150 Certificate of patent or registration of utility model

Ref document number: 5777591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250