JP5777491B2 - Deformation prediction formula setting method for resin bumper and deformation prediction method for resin bumper - Google Patents

Deformation prediction formula setting method for resin bumper and deformation prediction method for resin bumper Download PDF

Info

Publication number
JP5777491B2
JP5777491B2 JP2011239410A JP2011239410A JP5777491B2 JP 5777491 B2 JP5777491 B2 JP 5777491B2 JP 2011239410 A JP2011239410 A JP 2011239410A JP 2011239410 A JP2011239410 A JP 2011239410A JP 5777491 B2 JP5777491 B2 JP 5777491B2
Authority
JP
Japan
Prior art keywords
bumper
deformation
amount
resin
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011239410A
Other languages
Japanese (ja)
Other versions
JP2013095044A (en
Inventor
藤本 健一
健一 藤本
慎明 吉田
慎明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011239410A priority Critical patent/JP5777491B2/en
Publication of JP2013095044A publication Critical patent/JP2013095044A/en
Application granted granted Critical
Publication of JP5777491B2 publication Critical patent/JP5777491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂製のバンパを車体に取り付けた際に生じるバンパの変形予測式を設定する方法、及び樹脂製バンパの変形予測方法に関する。   The present invention relates to a method for setting a deformation prediction formula for a bumper generated when a resin bumper is attached to a vehicle body, and a deformation prediction method for a resin bumper.

昨今、軽量化に伴う燃費向上等を目的として、バンパをはじめとする自動車の外装部品を樹脂製とする試みがなされており、その多くが実装されるに至っている。ところが、バンパのように比較的大型な部品を樹脂製とした場合には、これを車体に取付けた際に、バンパが自重により車体に対して垂れ下がる向きに変形することが多い。そのため、例えばフードやフェンダ、ヘッドランプなどの周辺部品とバンパとの隙間が想定以上に広がり、意匠面の品質低下などの組付け不良を招くおそれがある。   In recent years, attempts have been made to make exterior parts of automobiles such as bumpers made of resin for the purpose of improving fuel efficiency associated with weight reduction, and many of them have been mounted. However, when a relatively large part such as a bumper is made of a resin, when the bumper is attached to the vehicle body, the bumper is often deformed so as to hang down from the vehicle body due to its own weight. For this reason, for example, a gap between a peripheral part such as a hood, a fender, and a headlamp and the bumper is wider than expected, and there is a risk of causing an assembly failure such as a deterioration in design surface quality.

上記問題を解決するため、従来、設計変更や金型修正を繰り返すことで当該製品の最終設計や作り込みを行っていたが、この方法では、非常に手間と費用がかかることから、試作と修正の繰り返しに代わる新たな設計手法の構築が望まれている。   In order to solve the above problems, the final design and creation of the product was conventionally performed by repeating design changes and mold corrections. However, this method is very time-consuming and expensive, so prototypes and corrections are required. The construction of a new design method to replace this process is desired.

ここで、例えば下記特許文献1には、バンパ等の樹脂製部品の成形時の変形量だけでなく、支持体に組み付ける際に生じる変形量(垂れ下がり量)を、自重による変形量も加味してCAE解析により予測する方法が開示されている。   Here, for example, in Patent Document 1 below, not only the deformation amount at the time of molding a resin part such as a bumper, but also the deformation amount (sagging amount) generated when assembled to the support is taken into account the deformation amount due to its own weight. A method for predicting by CAE analysis is disclosed.

特開2007−38600号公報JP 2007-38600 A

このように、CAE解析を用いた予測技術は提案されているものの、その予測精度は未だ不十分なものに留まっているのが現状であり、信頼性、確実性に欠ける、との問題点を有していた。すなわち、実際の製品に生じる変形量と解析結果(予測量)との間には大きな開きが見られる場合も少なくなく、結果的に、試作とその(金型の)修正を繰り返し実施する必要が生じていた。また、上記解析には主に解析モデルの作成や修正などに多大な時間が必要となり、予測に要する時間が長期化する点も問題となっていた。   As described above, although a prediction technique using CAE analysis has been proposed, the prediction accuracy is still insufficient, and there is a problem that reliability and certainty are lacking. Had. In other words, there is often a large gap between the amount of deformation that occurs in the actual product and the analysis result (predicted amount), and as a result, it is necessary to repeat trial manufacture and its (mold) correction. It was happening. In addition, the above analysis mainly requires a great deal of time for creating and modifying an analysis model, and the time required for prediction is also long.

以上の事情に鑑み、信頼性と確実性に優れたバンパの車体取付け時変形量の予測技術を構築し、これにより最終設計までに要する時間を短縮することを、本発明により解決すべき技術的課題とする。   In view of the above circumstances, a technical technique that should be solved by the present invention is to build a technology for predicting the deformation amount of a bumper mounted on a vehicle body with excellent reliability and certainty, thereby reducing the time required for final design. Let it be an issue.

前記技術的課題の解決は、本発明に係る樹脂製バンパの変形予測式の設定方法によって達成される。すなわち、この設定方法は、樹脂製のバンパを車体に取り付けた際に生じるバンパの変形量を予測するための予測式を設定する方法であって、過去に設計した複数の車種におけるバンパの図面要素データと取付け時変形量との相関を求める相関取得工程と、相対的に高い相関を示した上位複数の図面要素について回帰分析を行う回帰分析工程とを具備し、回帰分析により図面要素を変数とする取付け時変形量の予測式を設定するに際し、図面要素データを、バンパがラジエータサポートに対して車体長手方向に締結される場合と鉛直方向に締結される場合とで層別し、各々の図面要素データごとに取付け時変形量との相関を求めると共に、相対的に高い値を示した相関の正負が、対応する図面要素と取付け時変形量との技術的関係から見て整合しているか否かを判別し、整合していると判別された図面要素についてのみ回帰分析を行う点をもって特徴付けられる。   The solution of the technical problem is achieved by the method for setting the deformation prediction formula of the resin bumper according to the present invention. That is, this setting method is a method of setting a prediction formula for predicting the amount of deformation of the bumper that occurs when the resin bumper is attached to the vehicle body, and is a drawing element of the bumper in a plurality of vehicle models designed in the past. A correlation obtaining step for obtaining a correlation between the data and the amount of deformation at the time of attachment, and a regression analysis step for performing regression analysis on a plurality of higher-order drawing elements showing relatively high correlations. When setting the prediction formula for the amount of deformation during installation, the drawing element data is stratified according to whether the bumper is fastened to the radiator support in the longitudinal direction of the vehicle body or when it is fastened in the vertical direction. The correlation with the deformation amount at the time of installation is obtained for each element data, and the sign of the correlation showing a relatively high value is adjusted in view of the technical relationship between the corresponding drawing element and the deformation amount at the time of installation. To whether to determine which is only characterized with a point of performing a regression analysis on the determined drawing elements to be aligned.

本発明は、いわゆるSQC手法と呼ばれる統計的品質管理手法を利用して、樹脂製バンパの車体取付け時における変形量を予測するための予測式を設定することを特徴とする。すなわち、ここでいう統計的品質管理手法とは、過去の車種において実際に測定した結果(データ)と、当該車種の複数の図面要素とから、新たに生産する車種で起こり得る結果(量的結果)を予測する手法であり、これをバンパの取付け時変形量の予測に適用したものである。ここで、本発明者らが、上述の品質管理手法を樹脂製バンパの取付け時変形量の予測に適用したところ、従来からある品質管理手法をそのまま適用したのでは、依然としてバンパの取付け時変形量を高精度に予測することが難しいことが分かった。そこで、本発明者らは、上述の品質管理手法を適用するに際し、まずバンパの取付け先となる車体フレーム部品(ラジエータサポート)への締結方向の違いがバンパの垂れ下がり量にも大きな影響を及ぼす(言い換えると、締結構造が異なることで垂れ下がりの傾向も異なる)点に着目し、バンパがラジエータサポートに対して車体長手方向に締結されている場合と鉛直方向に締結されている場合とで図面要素データの層別を行い、各層別後の図面要素データごとにバンパの取付け時変形量との相関を求めるようにした。また、図面要素データと変形量との間で相対的に高い相関を示しているにも関らず、これを変数として予測式を導出した場合、予測式の精度が不十分となる場合があることに着目し、相対的に高い値を示した相関の正負が、対応する図面要素と取付け時変形量との技術的関係から見て整合しているか否かを判別し、整合していると判別された図面要素についてのみ回帰分析を行うようにした。   The present invention is characterized by setting a prediction formula for predicting the deformation amount of the resin bumper when the vehicle body is mounted using a so-called SQC method. In other words, the statistical quality control method here refers to the results (quantitative results) that can occur in a newly produced vehicle type from the results (data) actually measured in the past vehicle type and a plurality of drawing elements of the vehicle type. ) And is applied to predict the amount of deformation when the bumper is installed. Here, when the present inventors applied the above-mentioned quality control method to the prediction of the deformation amount at the time of mounting the resin bumper, if the conventional quality control method is applied as it is, the deformation amount at the time of mounting the bumper is still It was found that it was difficult to predict with high accuracy. Therefore, when applying the above-described quality control method, the inventors of the present invention have a great influence on the amount of sag of the bumper due to the difference in the fastening direction to the body frame component (radiator support) to which the bumper is attached ( In other words, drawing elements data for when the bumper is fastened to the radiator support in the longitudinal direction of the vehicle body and when it is fastened to the vertical direction. In order to obtain a correlation with the amount of deformation when the bumper is mounted for each drawing element data after each layer. In addition, even if a relatively high correlation is shown between the drawing element data and the deformation amount, when the prediction formula is derived using this as a variable, the accuracy of the prediction formula may be insufficient. Paying attention to this, it is determined whether or not the positive and negative correlations showing relatively high values are consistent from the technical relationship between the corresponding drawing element and the amount of deformation at the time of attachment. Regression analysis was performed only for the discriminated drawing elements.

このように、本発明に係る変形予測式の設定方法は、従来の品質管理手法を実際の適用対象(樹脂製バンパ)に応じて改良したものであり、この方法によれば、従来のCAE解析を利用した予測方法と比較して、より実際の垂れ下がり量に近い値を予測することが可能な予測式を設定することができる。また、過去の設計実績に基づいて予測式を構築するようにしたので、図面要素データ及び変形量の蓄積(更新)により容易に予測式の見直しが可能となり、その予測精度を向上させることができる。また、本発明によれば、過去の図面要素データや変形量を用いた簡単な処理演算で正確性及び信頼性に優れた予測式を設定することができるので、導出(計算)に要する時間を大幅に短縮することができ、これにより現実の設計に要する期間を短くすることが可能となる。   Thus, the deformation prediction formula setting method according to the present invention is an improvement of the conventional quality control method according to the actual application target (resin bumper). According to this method, the conventional CAE analysis is performed. As compared with the prediction method using the method, a prediction formula capable of predicting a value closer to the actual amount of drooping can be set. Moreover, since the prediction formula is constructed based on the past design results, the prediction formula can be easily reviewed by accumulating (updating) the drawing element data and the deformation amount, and the prediction accuracy can be improved. . In addition, according to the present invention, since a prediction formula having excellent accuracy and reliability can be set with a simple processing operation using past drawing element data and deformation amount, the time required for derivation (calculation) can be reduced. The time required for the actual design can be shortened.

また、前記技術的課題の解決は、本発明に係るバンパの変形予測方法によっても達成される。すなわち、この変形予測方法は、樹脂製のバンパを車体に取り付けた際に生じるバンパの変形量を、バンパの図面要素に基づき予測する樹脂製バンパの変形予測方法であって、図面要素として、ラジエータサポートとの締結部の板厚、フードロックサポートとの締結部からフードとの割線部までの車体長手方向距離及び鉛直方向距離の和、並びにフードロックサポートとの締結部からバンパの前端部までの長手方向距離のうち少なくとも2要素を採択し、これら複数の要素を変数とする取付け時変形量の予測式を導出する点をもって特徴付けられる。あるいは、図面要素として、ラジエータサポートとの締結部の板厚、フードロックサポートとの締結部からバンパの前端部までの車体長手方向距離、及びフェンダとの割線部上端位置からバンパの前端部までの長手方向距離のうち少なくとも2要素を採択し、これら複数の要素を変数とする取付け時変形量の予測式を導出する点をもって特徴付けられる。 The solution of the technical problem is also achieved by the bumper deformation prediction method according to the present invention. That is, the deformation prediction method, the amount of deformation of the bumper occurring when fitted with a bumper made of a resin to the vehicle body, a modified prediction method of the resin bumper for predicting on the basis of drawing elements of the bumper, as FIG surface elements, Thickness of the fastening part with the radiator support, the sum of the longitudinal distance and vertical distance from the fastening part with the hood lock support to the dividing line with the hood, and from the fastening part with the hood lock support to the front end of the bumper Among the distances in the longitudinal direction, at least two elements are adopted, and a characteristic equation is characterized by deriving a prediction formula for the deformation amount at the time of attachment using these plural elements as variables. Alternatively, as FIG surface elements, the thickness of the fastening portion of the radiator support body longitudinal distance from the fastening portion of the hood lock support to the front end portion of the bumper, and the secant top end position of the fender to the front end portion of the bumper Among the distances in the longitudinal direction, at least two elements are adopted, and a characteristic equation is characterized by deriving a prediction formula for the deformation amount at the time of attachment using these plural elements as variables.

本発明者らは、まず、樹脂製バンパの図面要素のうち、垂れ下がり量との間に高い相関が認められると推定される要素を経験則に基づいて複数採択した上で、各図面要素につき垂れ下がり量との相関を求めたところ、上述した3つの図面要素が特に垂れ下がり量に影響を及ぼすことを知得するに至った。また、この際、上記3要素のうち少なくとも2要素を採択し、これら2要素を変数とする取付け時変形量の予測式を導出することで、より高精度の垂れ下がり量予測が可能になるとの知見を得るに至った。また、これらの図面要素の採択につき、バンパの車体への取付け態様、具体的にはラジエータサポートへの締結方向によって採択すべき図面要素を変更することで、より高精度の垂れ下がり量予測が可能になるとの知見を取得するに至った。   The present inventors first selected a plurality of elements that are estimated to have a high correlation with the amount of sagging among the drawing elements of the resin bumper, based on empirical rules, and then sagging for each drawing element. As a result of obtaining the correlation with the amount, it has been found that the above-mentioned three drawing elements particularly affect the amount of sagging. In addition, at this time, the knowledge that by adopting at least two of the above three elements and deriving a prediction formula for the deformation amount at the time of attachment using these two elements as variables, it is possible to predict the amount of sag more accurately. I came to get. In addition, regarding the adoption of these drawing elements, it is possible to predict the amount of drooping with higher accuracy by changing the drawing elements to be adopted according to the manner in which the bumper is mounted on the vehicle body, specifically the fastening direction to the radiator support. It came to acquire the knowledge that becomes.

本発明は以上の知見に基づき成されたもので、最適な図面要素の組合せを見出すことにより、バンパの取付け時変形量の予測に最適な予測式を導出することが可能となった。これにより、垂れ下がり量を予め高精度に予測することができ、やり直し工数等の低減を図ることが可能となる。また、上述のように少なくとも2個の図面要素を変数として予測式を導出するようにしたので、実際に予測した結果、寸法の変更が必要となった場合であって、予測式の変数として取り扱っているバンパの一図面要素の値(寸法)を変更できない場合であっても、共に変数として取り扱っている他の図面要素を変更することが可能となる。これにより、設計変更に種々の制約が課せられるような場合においても、比較的自由に設計変更を実施することが可能となる。   The present invention has been made on the basis of the above knowledge, and by finding an optimal combination of drawing elements, it has become possible to derive an optimal prediction formula for predicting a deformation amount at the time of mounting a bumper. As a result, the amount of sag can be predicted in advance with high accuracy, and the number of rework steps and the like can be reduced. In addition, as described above, since the prediction formula is derived using at least two drawing elements as variables, it is necessary to change the dimensions as a result of the actual prediction, and it is handled as a variable of the prediction formula. Even if the value (dimension) of one drawing element of the bumper cannot be changed, it is possible to change other drawing elements that are both handled as variables. Thereby, even when various restrictions are imposed on the design change, the design change can be performed relatively freely.

また、本発明に係るバンパの変形予測方法は、上ラジエータサポートとの締結部の板厚、フードロックサポートとの締結部からフードとの割線部までの車体長手方向距離及び鉛直方向距離の和、並びにフードロックサポートとの締結部からバンパの前端部までの長手方向距離のうち、少なくともフードロックサポートとの締結部からフードとの割線部までの長手方向距離及び鉛直方向距離の和を変数に含む回帰分析によって、取付け時変形量の予測式を導出するものであってもよい。あるいは、上ラジエータサポートとの締結部の板厚、フードロックサポートとの締結部からバンパの前端部までの車体長手方向距離、及びフェンダとの割線部上端位置からバンパの前端部までの長手方向距離のうち、少なくともフェンダとの割線部上端位置からバンパの前端部までの長手方向距離を変数に含む回帰分析によって、取付け時変形量の予測式を導出するものであってもよい。 Further, deformation prediction method of the bumper according to the present invention, the sum of the upper Symbol thickness of the fastening portion of the radiator support body longitudinal distance and vertical distance from the fastening portion of the hood lock support to the secant of the hood Of the longitudinal distance from the fastening portion with the hood lock support to the front end of the bumper , at least the sum of the longitudinal distance and the vertical distance from the fastening portion with the hood lock support to the secant portion with the hood is a variable. The prediction formula of the deformation amount at the time of attachment may be derived by the regression analysis including. Alternatively, the thickness of the fastening portion of the upper Symbol radiator support, the longitudinal direction of the car body longitudinal distance from the fastening portion of the hood lock support to the front end portion of the bumper, and the secant top end position of the fender to the front end portion of the bumper Of the distances , a prediction formula for the deformation amount during attachment may be derived by regression analysis including at least a longitudinal distance from the upper end position of the dividing line with the fender to the front end portion of the bumper.

上述の3要素のうち、任意の2要素を変数とする回帰分析を行ってバンパの取付け時変形量についての予測式を設定したところ、上述のように、バンパがラジエータサポートに対して車体長手方向に締結される場合には、少なくともフードロックサポートとの締結部からフードとの割線部までの長手方向距離及び鉛直方向距離の和を変数に含む回帰分析を行うことで得られる予測式が最も予測精度の面で好適であることが判明した。同様に、バンパがラジエータサポートに対して鉛直方向に締結される場合には、少なくともフェンダとの割線部上端位置からバンパの前端部までの長手方向距離を変数に含む回帰分析を行うことで得られる予測式が最も予測精度の面で好適であることが判明した。よって、上述の図面要素を変数とする回帰分析を行うことで、正確性及び信頼性の両面で優れた取付け時変形量の予測を行うことが可能となる。 A regression analysis was performed using two of the above three elements as variables, and a prediction formula for the amount of deformation when the bumper was installed was set. As described above, the bumper is in the longitudinal direction of the vehicle with respect to the radiator support. The most predictive formula is obtained by performing regression analysis that includes the sum of the distance in the longitudinal direction and the distance in the vertical direction from the fastening part with the hood lock support to the secant part with the hood as variables. It turned out to be preferable in terms of accuracy. Similarly, when the bumper is fastened to the radiator support in the vertical direction , it is obtained by performing a regression analysis that includes at least the longitudinal distance from the upper end position of the dividing line with the fender to the front end of the bumper as a variable. It was found that the prediction formula is most suitable in terms of prediction accuracy. Therefore, by performing regression analysis using the above-described drawing elements as variables, it is possible to predict the amount of deformation at the time of installation, which is excellent in both accuracy and reliability.

以上のように、本発明によれば、信頼性と確実性に優れたバンパの車体取付け時変形量の予測技術を構築し、これにより最終設計までに要する時間を短縮することができる。   As described above, according to the present invention, a technique for predicting the deformation amount of the bumper when mounted on the vehicle body, which is excellent in reliability and certainty, can be constructed, thereby shortening the time required for the final design.

本発明の一実施形態に係る樹脂製バンパの変形予測式の設定方法のフローチャートである。It is a flowchart of the setting method of the deformation | transformation prediction formula of the resin bumper which concerns on one Embodiment of this invention. ラジエータサポートとの締結方向を車体長手方向とする場合の、樹脂製バンパの車幅方向中央における縦断面図である。It is a longitudinal cross-sectional view in the vehicle width direction center of the resin bumper when the fastening direction with the radiator support is the vehicle body longitudinal direction. ラジエータサポートとの締結方向を鉛直方向とする場合の、樹脂製バンパの車幅方向中央における縦断面図である。It is a longitudinal cross-sectional view in the vehicle width direction center of the resin bumper when the fastening direction with the radiator support is the vertical direction. 樹脂製バンパの要部拡大斜視図である。It is a principal part expansion perspective view of a resin bumper. 樹脂製バンパの図面要素と車体取付け時の変形量との相関を示すグラフの一例である。It is an example of the graph which shows the correlation with the drawing element of resin bumpers, and the deformation amount at the time of vehicle body attachment. 樹脂製バンパの図面要素と車体取付け時の変形量との相関を示すグラフの他の例である。It is another example of the graph which shows the correlation with the drawing element of resin bumpers, and the deformation amount at the time of vehicle body attachment.

以下、本発明に係る樹脂製バンパの変形予測式の設定方法、及び樹脂製バンパの変形予測方法の一実施形態を図面に基づき説明する。この実施形態では、樹脂製バンパを車体に取り付けた際に生じるバンパの車体に対する垂れ下がり量を予測する場合を例にとって説明する。   Hereinafter, an embodiment of a method for setting a deformation prediction formula for a resin bumper and a deformation prediction method for a resin bumper according to the present invention will be described with reference to the drawings. In this embodiment, a case will be described as an example in which the amount of sag of a bumper with respect to the vehicle body that occurs when the resin bumper is attached to the vehicle body is predicted.

図1は、本発明の一実施形態に係る樹脂製バンパの変形予測式の設定方法のフローチャートを示している。同図に示すように、この予測式の設定方法は、過去に設計した複数の車種におけるバンパの図面要素データを、バンパがラジエータサポートに対して車体長手方向に締結される場合と鉛直方向に締結される場合とで層別する層別工程S1と、層別により群分けされた図面要素データごとにバンパの取付け時に生じる垂れ下がり量との相関を求める相関取得工程S2と、相対的に高い値を示した相関の正負が、対応する図面要素と垂れ下がり量との技術的関係から見て整合しているか否かを判別する技術的整合判別工程S3、及び整合していると判別された前記図面要素についてのみ上記回帰分析を行うことで、この回帰分析を行った図面要素を変数とする垂れ下がり量の予測式を設定する回帰分析工程S4とを具備する。また、少なくとも層別工程S1と相関取得工程S2において使用される複数の図面要素を採択する図面要素採択工程S0が層別工程S1の前に配設される。以下、各工程を詳細に説明する。   FIG. 1 shows a flowchart of a method for setting a deformation prediction formula for a resin bumper according to an embodiment of the present invention. As shown in the figure, this prediction formula setting method is based on the fact that bumper drawing element data for a plurality of vehicle models designed in the past is fastened in the vertical direction when the bumper is fastened to the radiator support in the longitudinal direction of the vehicle body. And a correlation acquisition step S2 for obtaining a correlation between the sag amount generated when the bumper is attached for each drawing element data grouped by stratification, and a relatively high value. A technical alignment determination step S3 for determining whether or not the sign of the correlation shown is consistent in view of the technical relationship between the corresponding drawing element and the amount of sag, and the drawing element determined to be consistent The regression analysis step S4 for setting a prediction formula for the amount of drooping with the drawing element subjected to the regression analysis as a variable is performed by performing the above regression analysis only for. In addition, a drawing element selection step S0 that adopts a plurality of drawing elements used in at least the stratification step S1 and the correlation acquisition step S2 is arranged before the stratification step S1. Hereinafter, each process will be described in detail.

(図面要素採択工程S0)
まず、バンパの垂れ下がり量との間に高い相関が認められると推定されるバンパの図面要素を作業者(技術者)の経験則に基づいて複数採択する。具体的には、図2から図4に示すように、バンパ10におけるラジエータサポート11との締結部10aからフード12との割線部10bまでの車体長手方向距離(いわゆるオーバーハング量)や板厚(例えばラジエータサポート11との締結部10aの板厚(図2では寸法A、図3では寸法D))、フードロックサポート13との締結部10cからバンパ10の前端部10dまでの車体長手方向距離(図2では寸法C、図3では寸法E)、フードロックサポート13との締結部10cからフード12との割線部10bまでの車体長手方向距離又は鉛直方向距離(図2中の寸法b1又はb2)、ラジエータサポート11との締結部10aの締結点数、締結部10a間のピッチ、フェンダ14との割線部10e上端位置からバンパ10の前端部10dまでの長手方向距離(図4中の寸法F)などが例示可能である。また、これら例示の図面要素の組み合わせとして、例えば寸法b1とb2との総和としての寸法B、B/A、F/Dなどを挙げることができる。もちろん、上記例示以外の要素を図面要素として層別工程S1以降の工程に提供しても構わない。図面要素の組み合わせについても同様である。
(Drawing element selection process S0)
First, a plurality of bumper drawing elements that are presumed to have a high correlation with the amount of bumper drooping are selected based on the empirical rules of the operator (engineer). Specifically, as shown in FIGS. 2 to 4, the longitudinal distance (so-called overhang amount) and the plate thickness (the so-called overhang amount) from the fastening portion 10 a with the radiator support 11 to the dividing line portion 10 b with the hood 12 in the bumper 10. For example, the plate thickness of the fastening part 10a with the radiator support 11 (dimension A in FIG. 2 and dimension D in FIG. 3), the distance in the vehicle body longitudinal direction from the fastening part 10c with the hood lock support 13 to the front end 10d of the bumper 10 ( The dimension C in FIG. 2 and the dimension E in FIG. 3), the longitudinal distance or the vertical distance from the fastening part 10c with the hood lock support 13 to the dividing line part 10b with the hood 12 (dimension b1 or b2 in FIG. 2). , The number of fastening points of the fastening part 10a with the radiator support 11, the pitch between the fastening parts 10a, and the front end part of the bumper 10 from the upper end position of the dividing line part 10e with the fender 14 Can be exemplified such as longitudinal distance to 0d (dimensions in FIG. 4 F). Further, examples of combinations of these drawing elements include dimensions B, B / A, and F / D as the sum of dimensions b1 and b2. Of course, you may provide elements other than the said illustration to the process after layering process S1 as drawing element. The same applies to combinations of drawing elements.

(層別工程S1)
次に、工程S0において採択した図面要素について、過去に設計した複数の車種におけるバンパ10の図面要素データを用意すると共に、用意した図面要素データを、バンパ10がラジエータサポート11に対して車体長手方向に締結される場合と鉛直方向に締結される場合とで層別する。以下、層別した図面要素データ群ごとに各工程S2〜S4に係る処理を施す。
(Layered process S1)
Next, with respect to the drawing elements adopted in step S0, the drawing element data of the bumper 10 in a plurality of vehicle types designed in the past are prepared, and the prepared drawing element data is sent from the bumper 10 to the radiator support 11 in the longitudinal direction of the vehicle body. It is divided into a case where it is fastened and a case where it is fastened in the vertical direction. Hereinafter, the process which concerns on each process S2-S4 is given for every drawing element data group classified by layer.

(相関取得工程S2)
層別工程S1において群分けされた図面要素データごとに当該図面要素とバンパ10の垂れ下がり量との相関を求める。この際、相関の強さ(絶対値)のみを求めるのではなく、その正負についても求める(以降の工程で利用できるように対応する情報を残しておく)。この実施形態では、図面要素採択工程S0の説明の欄で例示した図面要素に加えて、当該例示の図面要素の組み合わせ(寸法B、B/A、F/Dなど)についても車体取付け時におけるバンパ10の垂れ下がり量との相関を求める。
(Correlation acquisition step S2)
For each drawing element data grouped in the stratification step S1, a correlation between the drawing element and the amount of sag of the bumper 10 is obtained. At this time, not only the strength of the correlation (absolute value) is obtained, but also the positive / negative is obtained (the corresponding information is left so that it can be used in the subsequent steps). In this embodiment, in addition to the drawing elements exemplified in the description section of the drawing element selection step S0, a combination of the exemplified drawing elements (dimensions B, B / A, F / D, etc.) is also a bumper at the time of mounting the vehicle body. The correlation with the amount of droop of 10 is obtained.

(技術的整合判別工程S3)
このようにして、所定の図面要素又はこれらの組合せとバンパ10の垂れ下がり量との相関を求めたら、相対的に高い相関を示した上位複数の図面要素について、その相関の正負が、対応する図面要素と取付け時の垂れ下がり量との技術的関係から見て整合しているか否かを判別する。
(Technical consistency determination step S3)
In this way, when the correlation between the predetermined drawing element or a combination thereof and the amount of sag of the bumper 10 is obtained, the positive or negative of the correlation with respect to a plurality of upper drawing elements showing a relatively high correlation corresponds to the corresponding drawing. It is determined whether or not they are consistent from the technical relationship between the element and the amount of sag during installation.

ここで、例えば図5に示すように、相関が負の値を示す(回帰直線が負の傾きを有する)ことが、対応する図面要素、ここではフードロックサポート13との締結部10cからフード12との割線部10bまでの車体長手方向距離b1及び鉛直方向距離b2の総和である寸法B、と垂れ下がり量との技術的関係から見て整合しているか否かを判別する。この場合、車体長手方向寸法b1と鉛直方向距離b2が共に大きくなるほど垂れ下がり量も増大する関係にあるのが当該分野の技術常識に鑑みて妥当であり、実際の相関もこれに準じた傾向を示していることから、相関が負の値を示すことは技術的に整合していると判別される。   Here, for example, as shown in FIG. 5, the negative correlation (the regression line has a negative slope) indicates that the corresponding drawing element, here, the fastening portion 10 c with the hood lock support 13 to the hood 12. It is determined whether or not they are matched in view of the technical relationship between the dimension B, which is the sum of the vehicle body longitudinal direction distance b1 and the vertical direction distance b2 up to the dividing line portion 10b, and the amount of sag. In this case, it is reasonable in view of technical common sense in the field that the amount of sagging increases as both the vehicle body longitudinal dimension b1 and the vertical distance b2 increase, and the actual correlation also shows a tendency according to this. Therefore, a negative correlation value is determined to be technically consistent.

これに対して、例えば図6に示すように、対応する図面要素がラジエータサポート11との締結部10aの締結点数である場合、技術常識に鑑みれば、締結点数が増加するほどにバンパ10の垂れ下がり量が減少すべきところ、実際の相関結果を見ると、締結点数が増加するほどバンパ10の垂れ下がり量が増大している。このことから、相関が負の値を示していることは、対応する図面要素(締結点数)と垂れ下がり量との技術的関係から見て整合しているとは言い難い(整合性は否定される)。この場合、対応する図面要素は、以下の工程S3において処理の対象から排除される。   On the other hand, for example, as shown in FIG. 6, when the corresponding drawing element is the number of fastening points of the fastening portion 10 a with the radiator support 11, the bumper 10 hangs down as the number of fastening points increases according to common technical knowledge. Where the amount should be decreased, when the actual correlation result is seen, the amount of sag of the bumper 10 increases as the number of fastening points increases. From this, it is difficult to say that the negative correlation value is consistent from the technical relationship between the corresponding drawing element (number of fastening points) and the amount of sag (the consistency is denied) ). In this case, the corresponding drawing element is excluded from processing in the following step S3.

以上のようにして、相対的に高い相関を示した上位の図面要素であって、かつ上記技術的整合を有すると判別されたものについてのみ、次工程に係る回帰分析の対象として提供される。先に例示した図面要素又はこれらの組合せで言えば、寸法B、C、E、Fとこれらの組合せB/A、F/Dなどが挙げられる。   As described above, only high-order drawing elements that exhibit a relatively high correlation and that have been determined to have the above technical consistency are provided as the targets of the regression analysis related to the next process. Speaking of the above-illustrated drawing elements or combinations thereof, dimensions B, C, E, F and combinations thereof B / A, F / D, etc. may be mentioned.

(回帰分析工程S4)
上記工程S3にて、技術的に整合していると判別された図面要素又はこれらの組合せについてのみ回帰分析を行う。これにより、当該図面要素又はこれらの組合せを変数とする垂れ下がり量の予測式を導出する。先に例示した図面要素又はこれらの組合せについて求めた場合、バンパ10の垂れ下がり量は、以下の回帰式により導出される。
式1:(バンパの垂れ下がり量)=m0−m1×(B/A)
式2:(バンパの垂れ下がり量)=n0−n1×B−n2×C
式3:(バンパの垂れ下がり量)=s0−s1×(F/D)
式4:(バンパの垂れ下がり量)=t0−t1×F−t2×E
ただし、式1又は式2は、バンパ10のラジエータサポート11への締結方向が車体長手方向の場合に適用され、式3又は式4は、上記ラジエータサポート11への締結方向が鉛直方向の場合に適用される。また、m0、m1、n0、n1、n2、s0、s1、t0、t1、t2は何れも正の値を示す。ここで、バンパの垂れ下がり量が負の値を示す場合、実際に垂れ下がっていることを意味し、正の値を示す場合、バンパの下端が設計寸法よりも鉛直上方に位置していることを意味するものとする。
(Regression analysis step S4)
In step S3, the regression analysis is performed only for the drawing elements or combinations thereof determined to be technically consistent. As a result, a prediction formula for the amount of drooping with the drawing element or a combination thereof as a variable is derived. When the drawing elements exemplified above or combinations thereof are obtained, the amount of sag of the bumper 10 is derived by the following regression equation.
Formula 1: (Bumper sagging amount) = m0−m1 × (B / A)
Formula 2: (Bumper sag) = n0−n1 × B−n2 × C
Formula 3: (Bumper sagging amount) = s0−s1 × (F / D)
Formula 4: (Bumper sagging amount) = t0−t1 × F−t2 × E
However, Formula 1 or Formula 2 is applied when the fastening direction of the bumper 10 to the radiator support 11 is the longitudinal direction of the vehicle body, and Formula 3 or Formula 4 is when the fastening direction to the radiator support 11 is the vertical direction. Applied. Further, m0, m1, n0, n1, n2, s0, s1, t0, t1, and t2 all indicate positive values. Here, if the amount of sag of the bumper shows a negative value, it means that it actually hangs down, and if it shows a positive value, it means that the lower end of the bumper is positioned vertically above the design dimension. It shall be.

このようにして、回帰式(回帰直線)を求めることにより、垂れ下がり量についての予測式を導出することができるので、各変数に対応する図面要素データ(設計寸法)を入力することで、その図面に係るバンパ10の垂れ下がり量を予測することができる。例えば上記式1〜4の場合、得られた値の絶対値が所定の範囲内に収まっていれば、許容するものと定めることができる。 Thus, by calculating the regression formula (regression line), a prediction formula for the amount of drooping can be derived. By inputting drawing element data (design dimensions) corresponding to each variable, the drawing can be obtained. The amount of sag of the bumper 10 according to the above can be predicted. For example, in the case of the above formulas 1 to 4 , if the absolute value of the obtained value is within a predetermined range, it can be determined that it is allowed.

この際、本発明では、バンパ10がラジエータサポート11に対して車体長手方向に締結されている場合と鉛直方向に締結されている場合とで図面要素データの層別を行い、各層別後の図面要素データごとにバンパ10の垂れ下がり量との相関を求めるようにし、また、相対的に高い値を示した相関の正負が、対応する図面要素と垂れ下がり量との技術的関係から見て整合しているか否かを判別し、整合していると判別された図面要素についてのみ回帰分析を行うようにした。これにより、従来ある品質管理手法を実際の適用対象に応じて適切に改良することができ、バンパ10の垂れ下がり予測に適した変形予測式を設定することが可能となる。従って、この方法によれば、従来のCAE解析を利用した予測方法と比較して、より実際の垂れ下がり量に近い値を予測することが可能な予測式を設定することができる。また、過去の設計実績に基づいて予測式を構築するようにしたので、図面要素データ及び変形量の蓄積(更新)により容易に予測式の見直しが可能となり、その予測精度を向上させることができる。また、本発明によれば、過去の図面要素データや変形量を用いた簡単な処理演算で正確性及び信頼性に優れた予測式を設定することができるので、導出(計算)に要する時間を大幅に短縮することができ、これにより現実の設計に要する期間を短くすることが可能となる。   At this time, in the present invention, the drawing element data is stratified according to whether the bumper 10 is fastened to the radiator support 11 in the longitudinal direction of the vehicle body or when it is fastened in the vertical direction. Correlation with the amount of sag of the bumper 10 is obtained for each element data, and the sign of the correlation showing a relatively high value is consistent from the technical relationship between the corresponding drawing element and the amount of sag. The regression analysis is performed only for the drawing elements that are determined to be consistent. Thereby, the conventional quality control method can be appropriately improved according to the actual application target, and a deformation prediction formula suitable for the drooping prediction of the bumper 10 can be set. Therefore, according to this method, it is possible to set a prediction formula that can predict a value closer to the actual amount of drooping compared with a prediction method using a conventional CAE analysis. Moreover, since the prediction formula is constructed based on the past design results, the prediction formula can be easily reviewed by accumulating (updating) the drawing element data and the deformation amount, and the prediction accuracy can be improved. . In addition, according to the present invention, since a prediction formula having excellent accuracy and reliability can be set with a simple processing operation using past drawing element data and deformation amount, the time required for derivation (calculation) can be reduced. The time required for the actual design can be shortened.

また、本発明では、図2に示すように、バンパ10がラジエータサポート11に対して車体長手方向に締結される場合、図面要素として、ラジエータサポート11との締結部10aの板厚A、フードロックサポート13との締結部10cからフード12との割線部10bまでの車体長手方向距離b1及び鉛直方向距離b2の和(B)、並びにフードロックサポート13との締結部10cからバンパ10の前端部10dまでの長手方向距離Cのうち少なくとも2要素を採択し、これら2要素を変数とする垂れ下がり量の予測式を導出するようにした。又は、図3に示すように、バンパ10がラジエータサポート11に対して鉛直方向に締結される場合、図面要素として、ラジエータサポート11との締結部10aの板厚D、フードロックサポート13との締結部10cからバンパ10の前端部10dまでの車体長手方向距離E、及びフェンダ14との割線部10e上端位置からバンパ10の前端部10dまでの長手方向距離Fのうち少なくとも2要素を採択し、これら要素を変数とする垂れ下がり量の予測式を導出するようにした。このように、バンパ10の垂れ下がり量予測に最適な図面要素の組合せを見出すことにより、当該垂れ下がり量を高精度に予測可能な予測式を導出することが可能となった。これにより、初回の予測から垂れ下がり量を高精度に予測することが可能になるので、やり直し工数等の低減を図って、最終設計に至るまでに要する時間を短くすることができる。また、実際に予測した結果、寸法の変更が必要となった場合であって、予測式の変数として取り扱っているバンパ10の一図面要素の値(例えば板厚Aの大きさ)を変更できない場合においても、共に変数として取り扱っている他の図面要素(例えば寸法Bの大きさ)を変更することで対応することができる。従って、設計変更に種々の制約が課せられるような場合においても、制約内容に応じて適切な変数又は式を選択して用いることで、比較的自由に設計変更を実施することが可能となる。
In the present invention, as shown in FIG. 2, when the bumper 10 is fastened to the radiator support 11 in the longitudinal direction of the vehicle body , as a drawing element, the plate thickness A of the fastening portion 10a with the radiator support 11, the hood lock The sum (B) of the vehicle body longitudinal distance b1 and the vertical distance b2 from the fastening part 10c to the support 13 to the dividing line part 10b to the hood 12, and the front end part 10d of the bumper 10 from the fastening part 10c to the hood lock support 13 At least two elements in the longitudinal distance C are adopted, and a prediction formula for the amount of drooping with these two elements as variables is derived. Alternatively, as shown in FIG. 3, when the bumper 10 is fastened to the radiator support 11 in the vertical direction, the plate thickness D of the fastening portion 10 a with the radiator support 11 and the hood lock support 13 are fastened as the drawing elements. The vehicle body longitudinal direction distance E from the portion 10c to the front end portion 10d of the bumper 10 and the longitudinal direction distance F from the upper end position of the dividing line portion 10e to the fender 14 to the front end portion 10d of the bumper 10 are adopted. A prediction formula for the amount of sagging with two elements as variables was derived. Thus, by finding an optimal combination of drawing elements for predicting the amount of sag of the bumper 10, it is possible to derive a prediction formula that can predict the amount of sag with high accuracy. This makes it possible to predict the amount of sag from the initial prediction with high accuracy, thereby reducing the number of rework steps and shortening the time required for the final design. Moreover, when it is necessary to change the dimensions as a result of the actual prediction, and the value of one drawing element of the bumper 10 handled as a variable of the prediction formula (for example, the size of the thickness A) cannot be changed. Can be dealt with by changing other drawing elements (for example, the size of the dimension B) that are both handled as variables. Therefore, even when various restrictions are imposed on the design change, the design change can be performed relatively freely by selecting and using an appropriate variable or expression according to the contents of the restriction.

特に、上記例示した図面要素(A〜F)又はその組み合わせ(B/A、F/D)は、相関の正負に関する技術的整合判別工程S3によっても排除されずに残ったものであるから、正確性(予測精度)だけでなく信頼性においても高いといえる。従って、これら例示の図面要素又はその組み合わせを変数として垂れ下がり量の予測式を設定することは非常に好ましい。   In particular, since the above-illustrated drawing elements (A to F) or combinations thereof (B / A, F / D) remain without being excluded even in the technical matching determination step S3 regarding the positive or negative of the correlation, It can be said that it is high not only in reliability (prediction accuracy) but also in reliability. Therefore, it is highly preferable to set a droop amount prediction formula using these exemplary drawing elements or combinations thereof as variables.

10 バンパ
10a ラジエータサポートとの締結部
10b フードとの割線部
10c フードロックサポートとの締結部
10d 前端部
10e フェンダとの割線部
11 ラジエータサポート
12 フード
13 フードロックサポート
14 フェンダ
A、D ラジエータサポートとの締結部における板厚
b1 フードロックサポート締結部からフード割線部までの車体長手方向距離
b2 フードロックサポート締結部からフード割線部までの鉛直方向距離
C、E フードロックサポート締結部からバンパ前端部までの車体長手方向距離
F フェンダ割線部上端位置からバンパ前端部までの長手方向距離
S0 図面要素採択工程
S1 層別工程
S2 相関取得工程
S3 技術的整合判別工程
S4 回帰分析工程
10 Bumper 10a Fastening part 10b with radiator support Split part 10c with hood Fastening part 10d with hood lock support Front end part 10e Split line part with fender 11 Radiator support 12 Hood 13 Hood lock support 14 Fenders A and D with radiator support Thickness b1 at fastening part Vehicle body longitudinal distance b2 from hood lock support fastening part to hood split line part Vertical distance C from hood lock support fastening part to hood split line part, E From hood lock support fastening part to bumper front end part Vehicle body longitudinal distance F Longitudinal distance S0 from the upper end position of the fender dividing line part to the front end part of the bumper Drawing element selection process S1 Stratification process S2 Correlation acquisition process S3 Technical matching determination process S4 Regression analysis process

Claims (5)

樹脂製のバンパを車体に取り付けた際に生じる前記バンパの変形量を予測するための予測式を設定する方法であって、
過去に設計した複数の車種におけるバンパの図面要素データと前記取付け時変形量との相関を求める相関取得工程と、相対的に高い相関を示した上位複数の前記図面要素について回帰分析を行う回帰分析工程とを具備し、前記回帰分析により前記図面要素を変数とする前記取付け時変形量の予測式を設定するに際し、
前記図面要素データを、前記バンパがラジエータサポートに対して車体長手方向に締結される場合と鉛直方向に締結される場合とで層別し、各々の前記図面要素データごとに前記取付け時変形量との相関を求めると共に、
前記相対的に高い値を示した相関の正負が、対応する前記図面要素と前記取付け時変形量との技術的関係から見て整合しているか否かを判別し、整合していると判別された前記図面要素についてのみ前記回帰分析を行う樹脂製バンパの変形予測式の設定方法。
A method of setting a prediction formula for predicting a deformation amount of the bumper generated when a resin bumper is attached to a vehicle body,
A correlation acquisition step for obtaining a correlation between the bumper drawing element data and the amount of deformation at the time of installation in a plurality of vehicle models designed in the past, and a regression analysis for performing regression analysis on the plurality of drawing elements having a relatively high correlation And when setting a prediction formula for the amount of deformation at the time of installation using the drawing element as a variable by the regression analysis,
The drawing element data is stratified according to whether the bumper is fastened to the radiator support in the longitudinal direction of the vehicle body or when the bumper is fastened in the vertical direction, and the deformation amount at the time of attachment for each of the drawing element data. As well as
It is determined whether or not the positive and negative of the correlation indicating a relatively high value is consistent from the technical relationship between the corresponding drawing element and the deformation amount at the time of attachment, and is determined to be consistent. A method for setting a deformation prediction formula for a resin bumper that performs the regression analysis only on the drawing elements.
樹脂製のバンパを車体に取り付けた際に生じる前記バンパの変形量を、前記バンパの図面要素に基づき予測する樹脂製バンパの変形予測方法であって
記図面要素として、ラジエータサポートとの締結部の板厚、フードロックサポートとの締結部からフードとの割線部までの車体長手方向距離及び鉛直方向距離の和、並びに前記フードロックサポートとの締結部から前記バンパの前端部までの長手方向距離のうち少なくとも2要素を採択し、これら複数の要素を変数とする前記取付け時変形量の予測式を導出する樹脂製バンパの変形予測方法。
A deformation prediction method for a resin bumper for predicting a deformation amount of the bumper generated when the resin bumper is attached to a vehicle body based on a drawing element of the bumper ,
As before Symbol drawing elements, the thickness of the fastening portion of the radiator support, the sum of the vehicle body longitudinal distance and vertical distance from the fastening portion of the hood lock support to the secant of the hood, as well as engagement of the hood lock support A resin bumper deformation prediction method that adopts at least two elements in the longitudinal distance from the front part to the front end of the bumper, and derives a prediction equation for the deformation amount at the time of attachment using the plurality of elements as variables.
前記ラジエータサポートとの締結部の板厚、前記フードロックサポートとの締結部から前記フードとの割線部までの車体長手方向距離及び鉛直方向距離の和、並びに前記フードロックサポートとの締結部から前記バンパの前端部までの長手方向距離のうち、少なくとも前記フードロックサポートとの締結部から前記フードとの割線部までの長手方向距離及び鉛直方向距離の和を変数に含む回帰分析によって、前記取付け時変形量の予測式を導出する請求項2に記載の樹脂製バンパの変形予測方法。 The plate thickness of the fastening portion with the radiator support, the sum of the vehicle body longitudinal distance and the vertical distance from the fastening portion with the hood lock support to the secant portion with the hood, and the fastening portion with the hood lock support Among the longitudinal distances to the front end of the bumper , at the time of installation, by regression analysis including at least the sum of the longitudinal distance and the vertical distance from the fastening part with the hood lock support to the dividing line part with the hood as a variable The deformation prediction method for a resin bumper according to claim 2, wherein a prediction formula for the deformation amount is derived. 樹脂製のバンパを車体に取り付けた際に生じる前記バンパの変形量を、前記バンパの図面要素に基づき予測する樹脂製バンパの変形予測方法であって
記図面要素として、ラジエータサポートとの締結部の板厚、フードロックサポートとの締結部から前記バンパの前端部までの車体長手方向距離、及びフェンダとの割線部上端位置から前記バンパの前端部までの長手方向距離のうち少なくとも2要素を採択し、これら複数の要素を変数とする前記取付け時変形量の予測式を導出する樹脂製バンパの変形予測方法。
A deformation prediction method for a resin bumper for predicting a deformation amount of the bumper generated when the resin bumper is attached to a vehicle body based on a drawing element of the bumper ,
As before Symbol drawing elements, the thickness of the fastening portion of the radiator support body longitudinal distance from the fastening portion of the hood lock support to the front end portion of the bumper, and the front end portion of the bumper from the secant top end position of the fender A method for predicting deformation of a resin bumper, wherein at least two elements of the distance in the longitudinal direction are adopted, and a prediction formula of the deformation amount at the time of attachment is derived using these plural elements as variables.
前記ラジエータサポートとの締結部の板厚、前記フードロックサポートとの締結部から前記バンパの前端部までの車体長手方向距離、及び前記フェンダとの割線部上端位置から前記バンパの前端部までの長手方向距離のうち、少なくとも前記フェンダとの割線部上端位置から前記バンパの前端部までの長手方向距離を変数に含む回帰分析によって、前記取付け時変形量の予測式を導出する請求項4に記載の樹脂製バンパの変形予測方法。 The plate thickness of the fastening portion with the radiator support, the longitudinal distance of the vehicle body from the fastening portion with the hood lock support to the front end portion of the bumper, and the length from the upper end position of the dividing line with the fender to the front end portion of the bumper The prediction formula of the amount of deformation at the time of attachment is derived by regression analysis including, as a variable, at least a longitudinal distance from the upper end position of the dividing line with the fender to the front end of the bumper among the directional distances. Deformation prediction method for resin bumpers.
JP2011239410A 2011-10-31 2011-10-31 Deformation prediction formula setting method for resin bumper and deformation prediction method for resin bumper Expired - Fee Related JP5777491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239410A JP5777491B2 (en) 2011-10-31 2011-10-31 Deformation prediction formula setting method for resin bumper and deformation prediction method for resin bumper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239410A JP5777491B2 (en) 2011-10-31 2011-10-31 Deformation prediction formula setting method for resin bumper and deformation prediction method for resin bumper

Publications (2)

Publication Number Publication Date
JP2013095044A JP2013095044A (en) 2013-05-20
JP5777491B2 true JP5777491B2 (en) 2015-09-09

Family

ID=48617509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239410A Expired - Fee Related JP5777491B2 (en) 2011-10-31 2011-10-31 Deformation prediction formula setting method for resin bumper and deformation prediction method for resin bumper

Country Status (1)

Country Link
JP (1) JP5777491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282123B1 (en) * 2014-08-28 2021-07-27 엘지이노텍 주식회사 Design method of lamp for vehicle and lamp for vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138310A (en) * 1996-11-08 1998-05-26 Honda Motor Co Ltd Determination of optimum molding condition of injection molding machine
US7072808B2 (en) * 2002-02-04 2006-07-04 Tuszynski Steve W Manufacturing design and process analysis system
JP4774855B2 (en) * 2005-08-05 2011-09-14 トヨタ自動車株式会社 Assembly state prediction method for resin molded product, assembly state prediction device for resin molded product, and assembly state prediction program for resin molded product
JP4993505B2 (en) * 2008-06-03 2012-08-08 ダイハツ工業株式会社 Validity verification device for body parts design
JP2011048628A (en) * 2009-08-27 2011-03-10 Hitachi Ltd Method and system for predicting number-of-defects countermeasure man-hour

Also Published As

Publication number Publication date
JP2013095044A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
Franciosa et al. Deep learning enhanced digital twin for Closed-Loop In-Process quality improvement
JP5002411B2 (en) Model design system
US11604906B2 (en) System and method for crashworthiness analytics in design
JP5911466B2 (en) Method and system for determining draw model in press molding
JP5777491B2 (en) Deformation prediction formula setting method for resin bumper and deformation prediction method for resin bumper
US10315340B2 (en) Methods and systems for modeling of distortion in molded composites
WO2013046920A1 (en) Deformation state analysis method, resin molded article deformation improvement method, and resin molded article weight reduction method
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
JP2006031594A (en) Shape determination method for press forming die, and press forming method for material to be formed
JP5302909B2 (en) Dent stiffness prediction method
JP2005266892A (en) Mold designing support system and method, and program for supporting mold designing
JP6036381B2 (en) Design man-hour prediction apparatus, method and program
JP2018069263A (en) Press working condition determination method
JP2011183417A (en) Method of evaluating stability of spring back
US20190099823A1 (en) Topology-based spot weld optimization with inter-distance constraints
JP6886178B2 (en) Preliminary prediction method for the presence or absence of cracks during molding of a press-molded product
JP2007071674A (en) Deformation analysis method of resin molding component
JP4483515B2 (en) Product surface shape design system and mold manufacturing method
Morales et al. Optimization methods applied to development of vehicle structures
JP2020046298A (en) Tire wear prediction method and tire wear prediction device
Cha et al. Formability consideration during bead optimisation to stiffen deep drawn parts
CN105159702A (en) Reversing radar arrangement method and system
JP5620055B2 (en) Tire manufacturing process management method
JP2007268763A (en) Mounting position specifying method for resin molding and manufacturing method of the same
JP7410460B2 (en) Press forming analysis method, press forming analysis device and press forming analysis program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R150 Certificate of patent or registration of utility model

Ref document number: 5777491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees