JP5776152B2 - Liquid crystal aligning agent, liquid crystal display element, and polyorganosiloxane compound - Google Patents

Liquid crystal aligning agent, liquid crystal display element, and polyorganosiloxane compound Download PDF

Info

Publication number
JP5776152B2
JP5776152B2 JP2010191576A JP2010191576A JP5776152B2 JP 5776152 B2 JP5776152 B2 JP 5776152B2 JP 2010191576 A JP2010191576 A JP 2010191576A JP 2010191576 A JP2010191576 A JP 2010191576A JP 5776152 B2 JP5776152 B2 JP 5776152B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
compound
bond
polyorganosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010191576A
Other languages
Japanese (ja)
Other versions
JP2011102963A (en
Inventor
佳和 宮本
佳和 宮本
文隆 杉山
文隆 杉山
博昭 徳久
博昭 徳久
安田 博幸
博幸 安田
勉 熊谷
勉 熊谷
林 英治
英治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2010191576A priority Critical patent/JP5776152B2/en
Publication of JP2011102963A publication Critical patent/JP2011102963A/en
Application granted granted Critical
Publication of JP5776152B2 publication Critical patent/JP5776152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、液晶表示素子(LCD)の配向膜を形成するための材料として好適な液晶配向剤、この液晶配向剤から形成された液晶配向膜を有する液晶表示素子及び液晶配向剤に好適に用いられるポリオルガノシロキサン化合物に関する。   The present invention is suitably used for a liquid crystal aligning agent suitable as a material for forming an alignment film of a liquid crystal display element (LCD), a liquid crystal display element having a liquid crystal aligning film formed from this liquid crystal aligning agent, and a liquid crystal aligning agent. It relates to the polyorganosiloxane compound.

近年、液晶表示素子は消費電力が小さいことや、小型化及びフラット化が容易であること等の利点を有しているため、携帯電話等の小型の液晶表示装置から液晶テレビ等の大画面液晶表示装置まで幅広い用途で適用されている。   In recent years, liquid crystal display elements have advantages such as low power consumption and easy miniaturization and flattening. Therefore, liquid crystal display elements can be used from small liquid crystal display devices such as mobile phones to large screen liquid crystals such as liquid crystal televisions. It is applied to a wide range of uses up to display devices.

液晶表示装置の駆動モードとしては現在、液晶分子の配向(配列)状態の変化に応じ、TN(Twisted Nematic)、STN(Super Twisted Nematic)、IPS(In−Plane Switching)、VA(Vertical Alignment)等が知られている。また、VAモードでは配向分割により視野角を高めるため、MVA(Multi domain Vertical Alignment)方式やPVA(Patterned Vertical Alignment)方式が採用されており、さらに高速応答性やパネル開口率を向上させ、液晶にプレチルト角を付与することで光垂直配向方式、PSA(Polymer Sustained Alignment)方式等に採用することが検討されている。いずれの駆動モードにおいても、液晶分子の配向状態は液晶配向膜で直接制御されており、液晶配向膜は液晶表示素子の機能特性の発現や制御をかなりのウェイトで担っている。   As the driving mode of the liquid crystal display device, TN (Super Twisted Nematic), STN (Super Twisted Nematic), IPS (In-Plane Switching), VA (Vertical Alignment), etc. are currently used according to the change in the alignment (alignment) state of liquid crystal molecules. It has been known. In VA mode, MVA (Multi domain Vertical Alignment) method and PVA (Patterned Vertical Alignment) method are adopted to increase the viewing angle by orientation division, further improving the high-speed response and panel aperture ratio to the liquid crystal. It has been studied to adopt a pre-tilt angle for use in an optical vertical alignment method, a PSA (Polymer Sustained Alignment) method, and the like. In any of the drive modes, the alignment state of the liquid crystal molecules is directly controlled by the liquid crystal alignment film, and the liquid crystal alignment film is responsible for the development and control of the functional characteristics of the liquid crystal display element.

かかる液晶表示装置は携帯電話や液晶テレビ等の動画表示用装置として期待されていることから、液晶表示素子に求められる特性として、動画を滑らかに表示しつつ残像を極力抑えるべく、電気光学効果の応答時間のさらなる高速化が求められている。この要求に対して、液晶配向膜に用いるポリマー側鎖に誘電異方性を与える構造を付与することで改善を図る技術が報告されている(特表2007−521361号公報及び特表2007−521506号公報参照)。しかし、本特許文献には電気光学応答時間の高速化以外に実用面で重要となる配向性や電圧保持率、残像特性等の電気特性については全く記載されていない。   Since such a liquid crystal display device is expected as a moving image display device such as a mobile phone or a liquid crystal television, as a characteristic required for a liquid crystal display element, an electro-optic effect is required to suppress an afterimage as much as possible while smoothly displaying a moving image. A further increase in response time is required. In response to this requirement, a technique for improving the structure by imparting a structure that gives dielectric anisotropy to the polymer side chain used in the liquid crystal alignment film has been reported (Japanese Patent Publication No. 2007-521361 and Japanese Patent Publication No. 2007-521506). No. publication). However, this patent document does not describe electrical characteristics such as orientation, voltage holding ratio, and afterimage characteristics that are important in practical use other than speeding up the electro-optic response time.

このような状況から、液晶配向素子として一般に要求される配向性や電圧保持率といった電気特性を満足しつつ、電気光学応答時間の短い液晶配向素子を形成しうる液晶配向剤の開発が望まれている。   Under these circumstances, development of a liquid crystal aligning agent capable of forming a liquid crystal aligning element having a short electro-optic response time while satisfying electrical characteristics such as orientation and voltage holding ratio generally required as a liquid crystal aligning element is desired. Yes.

特表2007−521361号公報Special table 2007-521361 特表2007−521506号公報Special table 2007-521506 gazette

本発明は以上のような事情に基づいてなされたものであり、その目的は液晶素子の高速応答を実現しつつ電圧保持率や残像特性等の諸性能に優れた液晶表示素子を形成することができる液晶配向剤、その液晶配向剤から形成された液晶配向膜を備える垂直型等の液晶表示素子及び液晶配向剤に好適に用いられるポリオルガノシロキサン化合物を提供することである。   The present invention has been made based on the circumstances as described above, and its purpose is to form a liquid crystal display element excellent in various performances such as voltage holding ratio and afterimage characteristics while realizing a high-speed response of the liquid crystal element. It is to provide a liquid crystal aligning agent that can be used, a liquid crystal display element such as a vertical type provided with a liquid crystal aligning film formed from the liquid crystal aligning agent, and a polyorganosiloxane compound suitably used for the liquid crystal aligning agent.

上記課題を解決するためになされた発明は、
[A]ポリオルガノシロキサン化合物を含有し、
この[A]ポリオルガノシロキサン化合物が、
エポキシ基を有するポリオルガノシロキサンに由来する部分と、
下記式(1)で表されるカルボキシル基を有する化合物(以下、「特定カルボン酸」と称することがある)に由来する部分と
を有する液晶配向剤である。

Figure 0005776152
(式(1)中、Rはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基である。これらの基は置換基を有していてもよい。Rは二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。) The invention made to solve the above problems is
[A] containing a polyorganosiloxane compound,
This [A] polyorganosiloxane compound is
A portion derived from a polyorganosiloxane having an epoxy group;
And a portion derived from a compound having a carboxyl group represented by the following formula (1) (hereinafter sometimes referred to as “specific carboxylic acid”).
Figure 0005776152
(In Formula (1), R 1 is a methylene group or an alkylene group having 2 to 30 carbon atoms, a phenylene group, or a cyclohexylene group. These groups may have a substituent. R 2 is double. A linking group containing any one of a bond, a triple bond, an ether bond, an ester bond, and an oxygen atom, R 3 is a group having at least two monocyclic structures, and a is an integer of 0 to 1.)

当該液晶配向剤は、ポリオルガノシロキサン化合物を含んでいることから、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、配向性が良好で高い電圧保持特性を有し、残像特性に優れるとともに応答時間(立ち上がり時)を短縮できる。また、エポキシ基を有することで当該液晶配向剤はより配向性や電圧保持率といった電気特性が向上する。さらに、当該液晶配向剤が特定の構造単位を有することで、側鎖に誘電異方性を有する構造が導入され、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、さらに電気特性及び残像特性が向上し、より応答時間が短縮される。また、エポキシ基とカルボキシル基との間の反応性を利用することで、主鎖としてのポリオルガノシロキサンに側鎖としての上記式(1)で表される誘電異方性を有する構造を容易に導入できる。   Since the liquid crystal aligning agent contains a polyorganosiloxane compound, a liquid crystal display device including a liquid crystal aligning film formed using the liquid crystal aligning agent has good alignment properties and high voltage holding characteristics, and an afterimage. It has excellent characteristics and can shorten the response time (at the time of startup). Moreover, by having an epoxy group, the liquid crystal aligning agent further improves electrical characteristics such as orientation and voltage holding ratio. Further, a liquid crystal display element comprising a liquid crystal alignment film formed by using a structure having dielectric anisotropy in the side chain introduced by the liquid crystal alignment agent having a specific structural unit and using the liquid crystal alignment agent, Electrical characteristics and afterimage characteristics are improved, and response time is further shortened. Further, by utilizing the reactivity between the epoxy group and the carboxyl group, the structure having the dielectric anisotropy represented by the above formula (1) as the side chain can be easily formed on the polyorganosiloxane as the main chain. Can be introduced.

上記式(1)におけるRは、下記式(2)で表される基であることが好ましい。

Figure 0005776152
(式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであり、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。) R 3 in the above formula (1) is preferably a group represented by the following formula (2).
Figure 0005776152
(In formula (2), R 4 and R 6 are each a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring, and these further have a substituent. R 5 is a linking group containing any one of an optionally substituted alkylene group having 1 to 10 carbon atoms, a double bond, a triple bond, an ether bond, an ester bond and a heterocyclic ring. R 7 is any one of a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group, and an alkoxy group, and when R 6 has a plurality of substituents, they are the same or different. (B may be an integer of 0 to 1. c is an integer of 1 to 9.)

当該液晶配向剤のポリオルガノシロキサン化合物の側鎖に、上記式(2)で表される構造を導入することにより、得られる液晶配向素子の電気光学応答性をさらに高速化させることができる。   By introducing the structure represented by the above formula (2) into the side chain of the polyorganosiloxane compound of the liquid crystal aligning agent, the electro-optical response of the obtained liquid crystal aligning element can be further accelerated.

上記エポキシ基が、下記式(X−1)又は(X−2)で表される基であることが好ましい。

Figure 0005776152
(式(X−1)中、Aは酸素原子又は単結合である。hは1〜3の整数である。iは0〜6の整数である。但し、iが0の場合、Aは単結合である。「*」は結合手であることを示す。) The epoxy group is preferably a group represented by the following formula (X 1 -1) or (X 1 -2).
Figure 0005776152
(In the formula (X 1 -1), A is an oxygen atom or a single bond. H is an integer of 1 to 3. i is an integer of 0 to 6. However, when i is 0, A is (It is a single bond. “*” Indicates a bond.)

上記式(X−1)又は(X−2)で表される基を含ませることにより、当該液晶配向剤のポリオルガノシロキサン化合物に、上記式(1)で表される特定構造を有する化合物に由来する側鎖基を導入しやすくなる。 By including the group represented by the above formula (X 1 -1) or (X 1 -2), the polyorganosiloxane compound of the liquid crystal aligning agent has a specific structure represented by the above formula (1). It becomes easy to introduce a side chain group derived from a compound.

当該液晶配向剤は、[B]ポリアミック酸及びポリイミドからなる群より選択される少なくとも1種の重合体(以下、「[B]重合体」と称することがある)をさらに含有することが好ましい。上記のような重合体を用いて液晶配向膜を作製すると、より電気特性が改善された液晶表示素子が得られる。   The liquid crystal aligning agent preferably further contains at least one polymer selected from the group consisting of [B] polyamic acid and polyimide (hereinafter sometimes referred to as “[B] polymer”). When a liquid crystal alignment film is produced using the polymer as described above, a liquid crystal display element with improved electrical characteristics can be obtained.

本発明の液晶表示素子は、当該液晶配向剤から形成された液晶配向膜を具備する。これにより、配向性や電圧保持率、残像特性等の電気特性に優れ、かつ高速化された電気光学応答性を備える液晶表示素子が得られる。   The liquid crystal display element of this invention comprises the liquid crystal aligning film formed from the said liquid crystal aligning agent. As a result, a liquid crystal display element having excellent electrical characteristics such as orientation, voltage holding ratio, and afterimage characteristics and high-speed electro-optical response can be obtained.

本発明には、透明電極と、この透明電極上に積層される上記液晶配向膜とを備え、液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子も好適に含まれる。また、配向方位の異なる2以上の領域を有する手段としては、上記透明電極としてパターニングされた透明電極を用いる手段又は上記液晶配向膜に配向分割機能を付与する手段が好ましい。かかる液晶表示素子では、TN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等の駆動モードにおいても好適に適用でき、さらにはコントラストが向上し、また高速応答性もより向上する。   In the present invention, a liquid crystal display device comprising a transparent electrode and the liquid crystal alignment film laminated on the transparent electrode, and having a liquid crystal alignment mode of a vertical type and having two or more regions having different alignment directions is also suitable. included. Moreover, as a means having two or more regions having different orientation directions, a means using a transparent electrode patterned as the transparent electrode or a means for imparting an alignment division function to the liquid crystal alignment film is preferable. Such a liquid crystal display device can be suitably applied in drive modes such as TN, STN, IPS, and VA (including VA-MVA method, VA-PVA method, etc.), further improves contrast, and has high-speed response. More improved.

本発明には、透明電極とこの透明電極上に積層される液晶配向膜とを備え、液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子における上記液晶配向膜形成用の液晶配向剤であって、下記式(3)で表される基を有する化合物を含有することを特徴とする液晶配向剤も好適に含まれる。また、配向方位の異なる2以上の領域を有する手段としては、パターニングされた透明電極又は配向分割機能を有する液晶配向膜を用いることが好ましい。

Figure 0005776152
(式(3)中、Rは二重結合、三重結合、エーテル結合、エステル結合又は酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。「*」は結合手であることを示す。) In the present invention, the liquid crystal alignment film in a liquid crystal display device comprising a transparent electrode and a liquid crystal alignment film laminated on the transparent electrode, wherein the liquid crystal alignment mode is a vertical type and has two or more regions having different alignment directions. A liquid crystal aligning agent which is a liquid crystal aligning agent for formation and contains a compound having a group represented by the following formula (3) is also preferably included. Further, as a means having two or more regions having different orientation directions, it is preferable to use a patterned transparent electrode or a liquid crystal alignment film having an alignment division function.
Figure 0005776152
(In Formula (3), R 2 is a linking group containing any of a double bond, a triple bond, an ether bond, an ester bond, or an oxygen atom. R 3 is a group having at least two monocyclic structures. a is an integer of 0 to 1. “*” indicates a bond.)

本発明には液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子であって、上記液晶配向剤(上記式(3)で表される基を有する化合物を含有することを特徴とする液晶配向剤)から形成される液晶配向膜を備えることを特徴とする液晶表示素子も好適に含まれる。   The present invention relates to a liquid crystal display device having two or more regions having different liquid crystal orientation modes and different orientation orientations, including the liquid crystal aligning agent (compound having a group represented by the formula (3) above) The liquid crystal display element characterized by including the liquid crystal aligning film formed from the liquid crystal aligning agent characterized by the above is also contained suitably.

本発明のポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンに由来する部分と、下記式(1)で表されるカルボキシル基を有する化合物、又は式(1)のRが下記式(2)で表されるカルボキシル基を有する化合物に由来する部分とを有する。

Figure 0005776152
(式(1)中、Rはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基である。これらの基は置換基を有していてもよい。Rは二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。)
Figure 0005776152
(式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであり、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。) The polyorganosiloxane compound of the present invention is a compound derived from a polyorganosiloxane having an epoxy group and a compound having a carboxyl group represented by the following formula (1), or R 3 of the formula (1) is represented by the following formula (2 And a portion derived from a compound having a carboxyl group represented by:
Figure 0005776152
(In Formula (1), R 1 is a methylene group or an alkylene group having 2 to 30 carbon atoms, a phenylene group, or a cyclohexylene group. These groups may have a substituent. R 2 is double. A linking group containing any one of a bond, a triple bond, an ether bond, an ester bond, and an oxygen atom, R 3 is a group having at least two monocyclic structures, and a is an integer of 0 to 1.)
Figure 0005776152
(In formula (2), R 4 and R 6 are each a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring, and these further have a substituent. R 5 is a linking group containing any one of an optionally substituted alkylene group having 1 to 10 carbon atoms, a double bond, a triple bond, an ether bond, an ester bond and a heterocyclic ring. R 7 is any one of a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group, and an alkoxy group, and when R 6 has a plurality of substituents, they are the same or different. (B may be an integer of 0 to 1. c is an integer of 1 to 9.)

当該ポリオルガノシロキサン化合物は、配向性や高速応答性、電圧特性に加え残像特性等の諸性能を備える液晶表示素子を構成するための液晶配向剤に好適に用いることができる。   The polyorganosiloxane compound can be suitably used as a liquid crystal aligning agent for constituting a liquid crystal display device having various properties such as an afterimage characteristic in addition to the orientation property, the high-speed response property, and the voltage property.

本発明によれば、配向性に優れ、高速応答が可能であり、かつ電圧特性や残像特性等の諸性能に優れた液晶表示素子を形成可能な液晶配向剤を提供できる。従って、当該液晶表示素子はTN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等の駆動モードにおいても好適に適用できる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal aligning agent which can form the liquid crystal display element which is excellent in various orientations, such as an orientation property and high-speed response, and excellent in various performances, such as a voltage characteristic and an afterimage characteristic, can be provided. Therefore, the liquid crystal display element can also be suitably applied in drive modes such as TN, STN, IPS, and VA (including VA-MVA method and VA-PVA method).

(a)本発明に用いられるパターニングされた透明電極の一形態を示す平面図である。(b)上記平面図におけるX−X’の拡大断面図である。(A) It is a top view which shows one form of the patterned transparent electrode used for this invention. (B) It is an expanded sectional view of X-X 'in the said top view. 本発明に用いられるパターニングされた透明電極の一形態を示す平面図である。It is a top view which shows one form of the patterned transparent electrode used for this invention. 本発明に用いられるパターニングされた透明電極の一形態を示す平面図である。It is a top view which shows one form of the patterned transparent electrode used for this invention.

<液晶配向剤>
本発明の液晶配向剤は、[A]ポリオルガノシロキサン化合物を含有する。当該液晶配向剤は、[A]ポリオルガノシロキサン化合物を含んでいることから、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、配向性が良好で高い電圧保持特性を有し、また残像特性に優れるとともに応答時間を短縮できる。また、[B]重合体等の後述する「他の重合体」を含有できる。さらに、本発明の効果を損なわない範囲でその他の任意成分を含有してもよい。以下、各成分について詳述する。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention contains a [A] polyorganosiloxane compound. Since the liquid crystal aligning agent contains [A] a polyorganosiloxane compound, a liquid crystal display device including a liquid crystal aligning film formed using the liquid crystal aligning agent has good alignment properties and high voltage holding characteristics. In addition, the afterimage characteristics are excellent and the response time can be shortened. Moreover, "B" polymer and other "other polymers" described later can be contained. Furthermore, you may contain another arbitrary component in the range which does not impair the effect of this invention. Hereinafter, each component will be described in detail.

<[A]ポリオルガノシロキサン化合物>
[A]ポリオルガノシロキサン化合物はエポキシ基を有するポリオルガノシロキサンに由来する部分と、上記式(1)で表される特定カルボン酸に由来する部分とを有する。当該液晶配向剤が特定の構造単位を有することで、側鎖に誘電異方性を有する構造が導入され、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、さらに電気特性及び残像特性が向上し、より応答時間が短縮される。また、エポキシ基とカルボキシル基との間の反応性を利用することで、主鎖としてのポリオルガノシロキサンに側鎖としての上記式(1)で表される誘電異方性を有する構造を容易に導入できる。
<[A] polyorganosiloxane compound>
[A] The polyorganosiloxane compound has a part derived from a polyorganosiloxane having an epoxy group and a part derived from a specific carboxylic acid represented by the above formula (1). Since the liquid crystal aligning agent has a specific structural unit, a structure having dielectric anisotropy in the side chain is introduced, and a liquid crystal display device including a liquid crystal aligning film formed using this liquid crystal aligning agent further has electrical characteristics. In addition, the afterimage characteristics are improved and the response time is further shortened. Further, by utilizing the reactivity between the epoxy group and the carboxyl group, the structure having the dielectric anisotropy represented by the above formula (1) as the side chain can be easily formed on the polyorganosiloxane as the main chain. Can be introduced.

[A]ポリオルガノシロキサン化合物は、主としてポリオルガノシロキサンのエポキシ基と特定カルボン酸のカルボキシル基との反応物として得られることになると考えられるが、以降の説明を容易にするために、便宜的にエポキシ基を有するポリオルガノシロキサン(とその誘導体)に由来する部分と、特定カルボン酸に由来する部分とに分けて当該液晶配向剤に含有される[A]ポリオルガノシロキサン化合物を説明する。   [A] It is considered that the polyorganosiloxane compound is mainly obtained as a reaction product between the epoxy group of the polyorganosiloxane and the carboxyl group of the specific carboxylic acid. The [A] polyorganosiloxane compound contained in the liquid crystal aligning agent will be described separately for a part derived from a polyorganosiloxane having an epoxy group (and its derivative) and a part derived from a specific carboxylic acid.

[エポキシ基を有するポリオルガノシロキサンに由来する部分]
この部分は、[A]ポリオルガノシロキサン化合物の構造のうち、ポリマー主鎖としてのポリオルガノシロキサン骨格と、このポリオルガノシロキサン主鎖から延びている側鎖としてのエポキシ基含有骨格とを含む概念である。上述のように[A]ポリオルガノシロキサン化合物では、大部分のエポキシ基は特定カルボン酸と反応してその初期の構造を有していないと考えられるが、特定カルボン酸がエポキシ基以外の部分と結合している場合もあり得る。そこで、本発明では両者の態様を含めて「エポキシ基を有するポリオルガノシロキサンに由来する部分」ということとする。
[Part derived from polyorganosiloxane having epoxy group]
This part is a concept including a polyorganosiloxane skeleton as a polymer main chain and an epoxy group-containing skeleton as a side chain extending from the polyorganosiloxane main chain in the structure of [A] polyorganosiloxane compound. is there. As described above, in the [A] polyorganosiloxane compound, it is considered that most of the epoxy groups do not have the initial structure by reacting with the specific carboxylic acid. In some cases, they may be combined. Therefore, in the present invention, both the embodiments are referred to as “parts derived from polyorganosiloxane having an epoxy group”.

[A]ポリオルガノシロキサン化合物が、グリシジル基、グリシジルオキシ基、エポキシシクロヘキシル基を含む基等のエポキシ基を有することで当該液晶配向剤はより配向性や電圧保持率といった電気特性が向上する。エポキシ基としては上記式(X−1)又は(X−2)で表される基であることが好ましい。上記式(1)で表される構造単位を有するポリオルガノシロキサンに上記式(X−1)又は(X−2)で表される基を含ませることにより、当該液晶配向剤のポリオルガノシロキサン化合物に、上記式(1)で表される特定構造を有する化合物に由来する側鎖基を導入しやすくなる。 [A] When the polyorganosiloxane compound has an epoxy group such as a group containing a glycidyl group, a glycidyloxy group, or an epoxycyclohexyl group, the liquid crystal aligning agent further improves electrical characteristics such as orientation and voltage holding ratio. The epoxy group is preferably a group represented by the above formula (X 1 -1) or (X 1 -2). The polyorganosiloxane having the structural unit represented by the above formula (1) contains the group represented by the above formula (X 1 -1) or (X 1 -2) to thereby form a polyorgano of the liquid crystal aligning agent. It becomes easy to introduce a side chain group derived from a compound having a specific structure represented by the above formula (1) into the siloxane compound.

上記式(X−1)又は(X−2)のうち、下記式で表される基が好ましい。 Of the above formula (X 1 -1) or (X 1 -2), a group represented by the following formula is preferred.

Figure 0005776152
(式(X−1−1)及び(X−2−1)中、「*」は結合手であることを示す。)
Figure 0005776152
(In formulas (X 1 -1-1) and (X 1 -2-1), “*” indicates a bond).

エポキシ基を有するポリオルガノシロキサンのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量は、500〜100,000が好ましく、1,000〜50,000がより好ましく、1,000〜20,000が特に好ましい。   The polystyrene-reduced weight average molecular weight of the polyorganosiloxane having an epoxy group measured by gel permeation chromatography (GPC) is preferably 500 to 100,000, more preferably 1,000 to 50,000, and 1,000 to 1,000. 20,000 is particularly preferred.

[エポキシ基を有するポリオルガノシロキサンの合成方法]
このようなエポキシ基を有するポリオルガノシロキサンは、好ましくはエポキシ基を有するシラン化合物、又はエポキシ基を有するシラン化合物と、他のシラン化合物の混合物を、好ましくは適当な有機溶媒、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成することができる。
[Method for synthesizing polyorganosiloxane having epoxy group]
Such polyorganosiloxane having an epoxy group is preferably a silane compound having an epoxy group or a mixture of a silane compound having an epoxy group and another silane compound, preferably in the presence of a suitable organic solvent, water and a catalyst. It can be synthesized by hydrolysis or hydrolysis / condensation below.

上記エポキシ基を有するシラン化合物としては、例えば3−グリシジロキシプロピルトリメトキシシラン、3−グリシジロキシプロピルトリエトキシシラン、3−グリシジロキシプロピルメチルジメトキシシラン、3−グリシジロキシプロピルメチルジエトキシシラン、3−グリシジロキシプロピルジメチルメトキシシラン、3−グリシジロキシプロピルジメチルエトキシシラン、2−グリシジロキシエチルトリメトキシシラン、2−グリシジロキシエチルトリエトキシシラン、2−グリシジロキシエチルメチルジメトキシシラン、2−グリシジロキシエチルメチルジエトキシシラン、2−グリシジロキシエチルジメチルメトキシシラン、2−グリシジロキシエチルジメチルエトキシシラン、4−グリシジロキシブチルトリメトキシシラン、4−グリシジロキシブチルトリエトキシシラン、4−グリシジロキシブチルメチルジメトキシシラン、4−グリシジロキシブチルメチルジエトキシシラン、4−グリシジロキシブチルジメチルメトキシシラン、4−グリシジロキシブチルジメチルエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリエトキシシラン等が挙げられる。これらは単独で又は2種以上を使用してもよい。   Examples of the silane compound having an epoxy group include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, 3-glycidyloxypropylmethyldiethoxy. Silane, 3-glycidyloxypropyldimethylmethoxysilane, 3-glycidyloxypropyldimethylethoxysilane, 2-glycidyloxyethyltrimethoxysilane, 2-glycidyloxyethyltriethoxysilane, 2-glycidyloxyethylmethyldimethoxy Silane, 2-glycidyloxyethylmethyldiethoxysilane, 2-glycidyloxyethyldimethylmethoxysilane, 2-glycidyloxyethyldimethylethoxysilane, 4-glycidyloxybutyltrimethoxysilane, -Glycidyloxybutyltriethoxysilane, 4-glycidyloxybutylmethyldimethoxysilane, 4-glycidyloxybutylmethyldiethoxysilane, 4-glycidyloxybutyldimethylmethoxysilane, 4-glycidyloxybutyldimethylethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 3- (3 4-epoxycyclohexyl) propyltriethoxysilane and the like. These may be used alone or in combination of two or more.

上記他のシラン化合物としては、例えばテトラクロロシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、トリクロロシラン、トリメトキシシラン、トリエトキシシラン、トリ−n−プロポキシシラン、トリ−i−プロポキシシラン、トリ−n−ブトキシシラン、トリ−sec−ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ−n−プロポキシシラン、フルオロトリ−i−プロポキシシラン、フルオロトリ−n−ブトキシシラン、フルオロトリ−sec−ブトキシシラン、メチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−i−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、2−(トリフルオロメチル)エチルトリクロロシシラン、2−(トリフルオロメチル)エチルトリメトキシシラン、2−(トリフルオロメチル)エチルトリエトキシシラン、2−(トリフルオロメチル)エチルトリ−n−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−i−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−n−ブトキシシラン、2−(トリフルオロメチル)エチルトリ−sec−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリクロロシラン、2−(パーフルオロ−n−ヘキシル)エチルトリメトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリエトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−sec−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリクロロシラン、2−(パーフルオロ−n−オクチル)エチルトリメトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリエトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−sec−ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ−n−プロポキシシラン、ヒドロキシメチルトリ−i−プロポキシシラン、ヒドロキシメチルトリ−n−ブトキシシラン、ヒドロキシメチルトリ−sec−ブトキシシラン、3−(メタ)アクリロキシプロピルトリクロロシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリ−n−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−i−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−n−ブトキシシラン、3−(メタ)アクリロキシプロピルトリ−sec−ブトキシシラン、3−メルカプトプロピルトリクロロシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリ−n−プロポキシシラン、3−メルカプトプロピルトリ−i−プロポキシシラン、3−メルカプトプロピルトリ−n−ブトキシシラン、3−メルカプトプロピルトリ−sec−ブトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロポキシシラン、ビニルトリ−i−プロポキシシラン、ビニルトリ−n−ブトキシシラン、ビニルトリ−sec−ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ−n−プロポキシシラン、アリルトリ−i−プロポキシシラン、アリルトリ−n−ブトキシシラン、アリルトリ−sec−ブトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロポキシシラン、フェニルトリ−i−プロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−sec−ブトキシシラン、メチルジクロロシラン、メチルジメトキシシラン、メチルジエトキシシラン、メチルジ−n−プロポキシシラン、メチルジ−i−プロポキシシラン、メチルジ−n−ブトキシシラン、メチルジ−sec−ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジ−i−プロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジクロロシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジエメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−i−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−sec−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジクロロシラン、(メチル)(3−メルカプトプロピル)ジメトキシシラン、(メチル)(3−メルカプトプロピル)ジエトキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−i−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジ−sec−ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ−n−プロポキシシラン、(メチル)(ビニル)ジ−i−プロポキシシラン、(メチル)(ビニル)ジ−n−ブトキシシラン、(メチル)(ビニル)ジ−sec−ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ−n−プロポキシシラン、ジビニルジ−i−プロポキシシラン、ジビニルジ−n−ブトキシシラン、ジビニルジ−sec−ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ−n−プロポキシシラン、ジフェニルジ−i−プロポキシシラン、ジフェニルジ−n−ブトキシシラン、ジフェニルジ−sec−ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n−プロポキシトリメチルシラン、i−プロポキシトリメチルシラン、n−ブトキシトリメチルシラン、sec−ブトキシトリメチルシラン、t−ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等のケイ素原子を1個有するシラン化合物が挙げられる。   Examples of the other silane compounds include tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, trichlorosilane, Trimethoxysilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluorotrimethoxysilane, fluorotriethoxysilane, Fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methyltrichlorosilane, methyltrimethoxysilane, Rutriethoxysilane, methyltri-n-propoxysilane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, 2- (trifluoromethyl) ethyltrichlorosilane, 2- (trifluoromethyl) ) Ethyltrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (tri Fluoromethyl) ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltri Methoxy Lan, 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane 2- (perfluoro-n-hexyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-hexyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-octyl) ethyltrichlorosilane, 2 -(Perfluoro-n-octyl) ethyltrimethoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-propoxysilane, 2- (perfluorosilane Fluoro-n-octyl) ethyltri-i-propoxysilane, 2- (Perful Olo-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-octyl) ethyltri-sec-butoxysilane, hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltrimethoxysilane, hydroxymethyltri -N-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri-n-butoxysilane, hydroxymethyltri-sec-butoxysilane, 3- (meth) acryloxypropyltrichlorosilane, 3- (meth) acryl Loxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propo Sisilane, 3- (meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxypropyltri-sec-butoxysilane, 3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercapto Propyltriethoxysilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, 3-mercaptopropyltri-n-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane, mercapto Methyltrimethoxysilane, mercaptomethyltriethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri-n-propoxysilane, vinyltri-i-propoxy Vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane, allyltri-i-propoxysilane, allyltri-n-butoxysilane Allyltri-sec-butoxysilane, phenyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltri-n-propoxysilane, phenyltri-i-propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec -Butoxysilane, methyldichlorosilane, methyldimethoxysilane, methyldiethoxysilane, methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxy Silane, methyldi-sec-butoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane, (Methyl) [2- (perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n- Octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i -Propoxysilane, (methyl) [2- (perfluoro-n- (Cutyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane, (methyl) (3-mercaptopropyl) dichlorosilane, (methyl) ( 3-mercaptopropyl) dimethoxysilane, (methyl) (3-mercaptopropyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n-propoxysilane, (methyl) (3-mercaptopropyl) di-i- Propoxysilane, (methyl) (3-mercaptopropyl) di-n-butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane, (methyl) (vinyl) dichlorosilane, (methyl) (vinyl) Dimethoxysilane, (methyl) (vinyl) diethoxysilane, (methyl) (vinyl) di n-propoxysilane, (methyl) (vinyl) di-i-propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane, divinyldichlorosilane, divinyldimethoxy Silane, divinyldiethoxysilane, divinyldi-n-propoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane, diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi -N-propoxysilane, diphenyldi-i-propoxysilane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane Chlorotrimethylsilane, bromotrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane , (Chloro) (vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane, (chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane, (ethoxy) ( Examples thereof include silane compounds having one silicon atom such as methyl) diphenylsilane.

市販品としては、例えば
KC−89、KC−89S、X−21−3153、X−21−5841、X−21−5842、X−21−5843、X−21−5844、X−21−5845、X−21−5846、X−21−5847、X−21−5848、X−22−160AS、X−22−170B、X−22−170BX、X−22−170D、X−22−170DX、X−22−176B、X−22−176D、X−22−176DX、X−22−176F、X−40−2308、X−40−2651、X−40−2655A、X−40−2671、X−40−2672、X−40−9220、X−40−9225、X−40−9227、X−40−9246、X−40−9247、X−40−9250、X−40−9323、X−41−1053、X−41−1056、X−41−1805、X−41−1810、KF6001、KF6002、KF6003、KR212、KR−213、KR−217、KR220L、KR242A、KR271、KR282、KR300、KR311、KR401N、KR500、KR510、KR5206、KR5230、KR5235、KR9218、KR9706(以上、信越化学工業社);
グラスレジン(昭和電工社);
SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング社);
FZ3711、FZ3722(以上、日本ユニカー社);
DMS−S12、DMS−S15、DMS−S21、DMS−S27、DMS−S31、DMS−S32、DMS−S33、DMS−S35、DMS−S38、DMS−S42、DMS−S45、DMS−S51、DMS−227、PSD−0332、PDS−1615、PDS−9931、XMS−5025(以上、チッソ社);
メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学社);
エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート社);
GR100、GR650、GR908、GR950(以上、昭和電工社)等の部分縮合物が挙げられる。
Examples of commercially available products include KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5843, X-21-5844, X-21-5845, X-21-5586, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X- 22-176B, X-22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40- 2672, X-40-9220, X-40-9225, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-41 -1053, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR212, KR-213, KR-217, KR220L, KR242A, KR271, KR282, KR300, KR311, KR401N , KR500, KR510, KR5206, KR5230, KR5235, KR9218, KR9706 (Shin-Etsu Chemical Co., Ltd.);
Glass resin (Showa Denko);
SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (above, Toray Dow Corning);
FZ3711, FZ3722 (above, Nippon Unicar Company);
DMS-S12, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS- 227, PSD-0332, PDS-1615, PDS-9931, XMS-5025 (above, Chisso);
Methyl silicate MS51, Methyl silicate MS56 (Mitsubishi Chemical Corporation);
Ethyl silicate 28, ethyl silicate 40, ethyl silicate 48 (above, Colcoat);
Examples include partial condensates such as GR100, GR650, GR908, and GR950 (shown above, Showa Denko).

これらの他のシラン化合物のうち、得られる液晶表示素子の配向性及び保存安定性の観点から、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシランが好ましい。   Among these other silane compounds, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, 3- (meth) acryloxy from the viewpoint of the orientation and storage stability of the obtained liquid crystal display device. Propyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-mercapto Propyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, dimethyldimethoxysilane, and dimethyldiethoxysilane are preferred.

本発明に好ましく用いられるエポキシ基を有するポリオルガノシロキサンは誘電異方性を有する側鎖を充分な量で導入するため、そのエポキシ当量が100〜10,000g/モルであることが好ましく、150〜1,000g/モルであることがより好ましく、150〜300g/モルであることが特に好ましい。従って、エポキシ基を有するポリオルガノシロキサンの前駆体を合成するに際し、シラン化合物と他のシラン化合物との使用割合を、得られるエポキシ基を有するポリオルガノシロキサンのエポキシ当量が上記の範囲となるように調製して設定することが好ましい。本発明で用いられるエポキシ基を有するポリオルガノシロキサンを合成するに際しては、シラン化合物のみを用い、他のシラン化合物を使用しないことがより好ましい。   Since the polyorganosiloxane having an epoxy group preferably used in the present invention introduces a sufficient amount of side chains having dielectric anisotropy, the epoxy equivalent is preferably from 100 to 10,000 g / mol, and from 150 to More preferably, it is 1,000 g / mol, and it is especially preferable that it is 150-300 g / mol. Therefore, when synthesizing a precursor of a polyorganosiloxane having an epoxy group, the use ratio of the silane compound and the other silane compound is set so that the epoxy equivalent of the polyorganosiloxane having an epoxy group is within the above range. It is preferable to prepare and set. In synthesizing the polyorganosiloxane having an epoxy group used in the present invention, it is more preferable to use only a silane compound and not to use another silane compound.

エポキシ基を有するポリオルガノシロキサンを合成するにあたって使用できる有機溶媒としては、例えば炭化水素化合物、ケトン化合物、エステル化合物、エーテル化合物、アルコール化合物等が挙げられる。   Examples of the organic solvent that can be used for synthesizing the polyorganosiloxane having an epoxy group include hydrocarbon compounds, ketone compounds, ester compounds, ether compounds, alcohol compounds, and the like.

上記炭化水素としては、例えばトルエン、キシレン等;上記ケトンとしては、例えばメチルエチルケトン、メチルイソブチルケトン、メチルn−アミルケトン、ジエチルケトン、シクロヘキサノン等;上記エステルとしては、例えば酢酸エチル、酢酸n−ブチル、酢酸i−アミル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート、乳酸エチル等;上記エーテルとしては、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン、ジオキサン等;上記アルコールとしては、例えば1−ヘキサノール、4−メチル−2−ペンタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエー
テル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル等が挙げられる。これらのうち非水溶性のものが好ましい。これらの有機溶媒は単独で又は2種以上を使用してもよい。
Examples of the hydrocarbon include toluene and xylene; Examples of the ketone include methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, diethyl ketone, and cyclohexanone; Examples of the ester include ethyl acetate, n-butyl acetate, and acetic acid. i-amyl, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, ethyl lactate and the like; as the ether, for example, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetrahydrofuran, dioxane and the like; as the alcohol, for example, 1-hexanol, 4-methyl-2-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-pro Ether, ethylene glycol monobutyl -n- butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono -n- propyl ether. Of these, water-insoluble ones are preferred. These organic solvents may be used alone or in combination of two or more.

有機溶媒の使用量は、全シラン化合物100質量部に対して、好ましくは10〜10,000質量部、より好ましくは50〜1,000質量部である。エポキシ基を有するポリオルガノシロキサンを製造する際の水の使用量は、全シラン化合物に対して、好ましくは0.5〜100倍モルであり、より好ましくは1〜30倍モルである。   The amount of the organic solvent used is preferably 10 to 10,000 parts by mass, and more preferably 50 to 1,000 parts by mass with respect to 100 parts by mass of the total silane compounds. The amount of water used in producing the polyorganosiloxane having an epoxy group is preferably 0.5 to 100 times mol, more preferably 1 to 30 times mol, based on the total silane compound.

上記触媒としては例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物等を用いることができる。   As said catalyst, an acid, an alkali metal compound, an organic base, a titanium compound, a zirconium compound etc. can be used, for example.

上記アルカリ金属化合物としては、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド等が挙げられる。   Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide and the like.

上記有機塩基としては、例えばエチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロール等の1〜2級有機アミン;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、ジアザビシクロウンデセン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミン等を、それぞれ挙げることができる。これらの有機塩基のうち、反応が穏やかに進行する点を考慮して、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミンが好ましい。   Examples of the organic base include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine and pyrrole; triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, Examples thereof include tertiary organic amines such as diazabicycloundecene; quaternary organic amines such as tetramethylammonium hydroxide, and the like. Of these organic bases, tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, etc. Quaternary organic amines such as methylammonium hydroxide are preferred.

エポキシ基を有するポリオルガノシロキサンを製造する際の触媒としては、アルカリ金属化合物又は有機塩基が好ましい。アルカリ金属化合物又は有機塩基を触媒として用いることにより、エポキシ基の開環等の副反応を生じることなく、高い加水分解・縮合速度で目的とするポリオルガノシロキサンを得ることができるため、生産安定性に優れることとなり好ましい。また、触媒としてアルカリ金属化合物又は有機塩基を用いて合成されたエポキシ基を有するポリオルガノシロキサンと特定カルボン酸との反応物を含有する当該液晶配向剤は、保存安定性が極めて優れるため好都合である。その理由は、Chemical Reviews、95巻、p1409(1995年)に指摘されているように、加水分解、縮合反応において触媒としてアルカリ金属化合物又は有機塩基を用いると、ランダム構造、はしご型構造又はかご型構造が形成され、シラノール基の含有割合が少ないポリオルガノシロキサンが得られるためではないかと推察される。シラノール基の含有割合が少ないため、シラノール基同士の縮合反応が抑えられ、さらに、当該液晶配向剤が後述の他の重合体を含有するものである場合には、シラノール基と他の重合体との縮合反応が抑えられるため、保存安定性に優れる結果になるものと推察される。   As a catalyst for producing a polyorganosiloxane having an epoxy group, an alkali metal compound or an organic base is preferable. By using an alkali metal compound or organic base as a catalyst, the desired polyorganosiloxane can be obtained at a high hydrolysis / condensation rate without causing side reactions such as ring opening of the epoxy group, so that production stability is achieved. This is preferable. In addition, the liquid crystal aligning agent containing a reaction product of a polyorganosiloxane having an epoxy group synthesized with an alkali metal compound or an organic base as a catalyst and a specific carboxylic acid is advantageous because it has excellent storage stability. . The reason is that, as pointed out in Chemical Reviews, Vol. 95, p1409 (1995), when an alkali metal compound or an organic base is used as a catalyst in a hydrolysis or condensation reaction, a random structure, a ladder structure or a cage structure is used. It is presumed that a structure is formed and a polyorganosiloxane having a low content of silanol groups is obtained. Since the content ratio of silanol groups is small, the condensation reaction between silanol groups is suppressed, and when the liquid crystal aligning agent contains other polymers described later, silanol groups and other polymers Since the condensation reaction is suppressed, it is presumed that the storage stability is excellent.

触媒としては、特に有機塩基が好ましい。有機塩基の使用量は、有機塩基の種類、温度等の反応条件等により異なり、適宜に設定されるべきであるが、例えば、全シラン化合物に対して好ましくは0.01〜3倍モルであり、より好ましくは0.05〜1倍モルである。   As the catalyst, an organic base is particularly preferable. The amount of organic base used varies depending on the reaction conditions such as the type of organic base and temperature, and should be set appropriately. For example, it is preferably 0.01 to 3 times the moles of all silane compounds. More preferably, it is 0.05-1 times mole.

エポキシ基を有するポリオルガノシロキサンを製造する際の加水分解又は加水分解・縮合反応は、エポキシ基を有するシラン化合物と必要に応じて他のシラン化合物とを有機溶媒に溶解し、この溶液を有機塩基及び水と混合して、例えば油浴等により加熱することにより実施することが好ましい。   Hydrolysis or hydrolysis / condensation reaction when producing polyorganosiloxane having an epoxy group is carried out by dissolving an epoxy group-containing silane compound and, if necessary, another silane compound in an organic solvent, and dissolving the solution in an organic base. And it is preferable to carry out by mixing with water and heating with, for example, an oil bath.

加水分解・縮合反応時には、油浴の加熱温度を好ましくは130℃以下、より好ましくは40〜100℃として、好ましくは0.5〜12時間、より好ましくは1〜8時間加熱するのが望ましい。加熱中は、混合液を撹拌してもよいし、還流下に置いてもよい。   During the hydrolysis / condensation reaction, the heating temperature of the oil bath is preferably 130 ° C. or lower, more preferably 40 to 100 ° C., and preferably 0.5 to 12 hours, more preferably 1 to 8 hours. During heating, the mixture may be stirred or placed under reflux.

反応終了後、反応液から分取した有機溶媒層を水で洗浄することが好ましい。この洗浄に際しては、少量の塩を含む水、例えば0.2質量%程度の硝酸アンモニウム水溶液等で洗浄することにより、洗浄操作が容易になる点で好ましい。洗浄は洗浄後の水層が中性になるまで行い、その後有機溶媒層を、必要に応じて無水硫酸カルシウム、モレキュラーシーブス等の乾燥剤で乾燥した後、溶媒を除去することにより、目的とするエポキシ基を有するポリオルガノシロキサンを得ることができる。   After completion of the reaction, the organic solvent layer separated from the reaction solution is preferably washed with water. In this washing, washing with water containing a small amount of salt, for example, an aqueous ammonium nitrate solution of about 0.2% by mass is preferred in that the washing operation is facilitated. Washing is performed until the aqueous layer after washing becomes neutral, and then the organic solvent layer is dried with a desiccant such as anhydrous calcium sulfate or molecular sieves as necessary, and then the target is removed by removing the solvent. A polyorganosiloxane having an epoxy group can be obtained.

本発明においては、エポキシ基を有するポリオルガノシロキサンとして市販されているものを用いてもよい。このような市販品としては、例えばDMS−E01,DMS−E12、DMS−E21,EMS−32(以上、チッソ社)等が挙げられる。   In the present invention, a commercially available polyorganosiloxane having an epoxy group may be used. As such a commercial item, DMS-E01, DMS-E12, DMS-E21, EMS-32 (above, Chisso) etc. are mentioned, for example.

[A]ポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンそのものが加水分解されて生じる加水分解物に由来する部分や、エポキシ基を有するポリオルガノシロキサン同士が加水分解縮合した加水分解縮合物に由来する部分を含んでいてもよい。当該部分の構成材料であるこれらの加水分解物や加水分解縮合物もエポキシ基を有するポリオルガノシロキサンの加水分解、縮合条件と同様に調製することができる。   [A] The polyorganosiloxane compound is a part derived from a hydrolyzate produced by hydrolyzing an epoxy group-containing polyorganosiloxane itself, or a hydrolyzed condensate obtained by hydrolytic condensation of polyorganosiloxanes having an epoxy group. The part which originates may be included. These hydrolysates and hydrolysis condensates which are constituent materials of the part can also be prepared in the same manner as the hydrolysis and condensation conditions of polyorganosiloxane having an epoxy group.

[特定カルボン酸に由来する部分]
上記式(1)で表されるこの部分は、当該液晶配向剤に含有される[A]成分のポリオルガノシロキサン化合物の構造のうち、主としてポリオルガノシロキサン主鎖から延びているエポキシ基に由来する構造と結合しているカルボシキル基に由来する構造を始点とする側鎖構造に相当する。但し、本発明では、特定カルボン酸がエポキシ基以外の部分と結合している場合も含めて「特定カルボン酸に由来する部分」ということとする。
[Part derived from specific carboxylic acid]
This part represented by the above formula (1) is mainly derived from an epoxy group extending from the polyorganosiloxane main chain in the structure of the polyorganosiloxane compound of [A] component contained in the liquid crystal aligning agent. It corresponds to a side chain structure starting from a structure derived from a carboxyl group bonded to the structure. However, in the present invention, the term “part derived from the specific carboxylic acid” includes the case where the specific carboxylic acid is bonded to a part other than the epoxy group.

上記式(1)のRはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基であり、これらはさらに置換基を有していてもよい。 R 1 in the above formula (1) is a methylene group or an alkylene group having 2 to 30 carbon atoms, a phenylene group or a cyclohexylene group, and these may further have a substituent.

炭素数2〜30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基、ヘンイコシレン基、ドコシレン基、トリコシレン基、テトラコシレン基、ペンタコシレン基、ヘキサコシレン基、ヘプタコシレン基、オクタコシレン基、ノナコシレン基、及びトリアコンチレン基等が挙げられる。これらのうち、液晶配向を安定に発現させるためにオクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基等の炭素数が8以上20以下のアルキレン基が好ましい。   Examples of the alkylene group having 2 to 30 carbon atoms include ethylene group, propylene group, butylene group, pentylene group, hexylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tetradecylene group, hexadecylene group, octadecylene group, Nonadecylene group, icosylene group, hencosylene group, docosylene group, tricosylene group, tetracosylene group, pentacosylene group, hexacosylene group, heptacosylene group, octacosylene group, nonacosylene group, triaconylene group and the like can be mentioned. Among these, in order to stably develop the liquid crystal alignment, the number of carbon atoms of octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tetradecylene group, hexadecylene group, octadecylene group, nonadecylene group, icosylene group, etc. The following alkylene groups are preferred.

は、二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。なお、Rは上記結合のいずれかを含んでいればよいが、各結合を組み合わせて含んでいてもよい。また、Rがフェニレン基又はシクロヘキシレン基である場合は、形成される配向膜の配向性や溶媒への溶解性の観点から、Rは炭素数が1〜30のアルキレン基を含んでいることが好ましい。なお、aは0〜1の整数である。 R 2 is a linking group containing any one of a double bond, a triple bond, an ether bond, an ester bond and an oxygen atom. Incidentally, R 2 need only comprise one of the binding, but may contain a combination of the binding. When R 1 is a phenylene group or a cyclohexylene group, R 2 contains an alkylene group having 1 to 30 carbon atoms from the viewpoint of the orientation of the formed alignment film and the solubility in a solvent. It is preferable. In addition, a is an integer of 0-1.

は少なくとも2つの単環構造を有する基であり、好ましくは、正又は負の誘電異方性を示す。単環構造とは、一の環構造が他の環構造から独立して存在しており、一の環構造の結合が他の環構造と共有されている、いわゆる縮合環構造を有しない構造である。また、単環構造としては、脂環式構造、芳香環式構造、複素環式構造のいずれでもよく、これらを組み合わせて有していてもよい。 R 3 is a group having at least two monocyclic structures, and preferably exhibits positive or negative dielectric anisotropy. A monocyclic structure is a structure that does not have a so-called fused ring structure, in which one ring structure exists independently of the other ring structure, and a bond of one ring structure is shared with another ring structure. is there. Moreover, as a monocyclic structure, any of an alicyclic structure, an aromatic ring structure, and a heterocyclic structure may be sufficient, and you may have combining these.

は少なくとも2つ以上の単環構造を有する基である限り特に限定されないが、代表的にはRは上記式(2)で表される基が好ましい。当該液晶配向剤のポリオルガノシロキサン化合物の側鎖に、上記式(2)で表される構造を導入することにより、得られる液晶配向素子の電気光学応答性をさらに高速化させることができる。式(2)中、R及びRはそれぞれ独立して、フェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環である。複素環としては、例えばピリジン環、ピリダジン環、ピリミジン環等が挙げられる。 R 3 is not particularly limited as long as it is a group having at least two monocyclic structures. Typically, R 3 is preferably a group represented by the above formula (2). By introducing the structure represented by the above formula (2) into the side chain of the polyorganosiloxane compound of the liquid crystal aligning agent, the electro-optical response of the obtained liquid crystal aligning element can be further accelerated. In formula (2), R 4 and R 6 are each independently a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring. Examples of the heterocyclic ring include a pyridine ring, a pyridazine ring, and a pyrimidine ring.

上記式(2)において、Rは、置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む、RとRとを連結する連結基であり、ポリオルガノシロキサン化合物に必要とされる配向性や誘導異方性に応じて適宜選択することができる。なお、bは0又は1の整数であるので、側鎖構造の設計においてRは含まれていても含まれていなくてもよい。 In the above formula (2), R 5 includes any one of an optionally substituted alkylene group having 1 to 10 carbon atoms, a double bond, a triple bond, an ether bond, an ester bond, and a heterocyclic ring. It is a linking group for linking R 4 and R 6 and can be appropriately selected according to the orientation and induced anisotropy required for the polyorganosiloxane compound. Since b is an integer of 0 or 1, R 5 may or may not be included in the side chain structure design.

上記式(2)中、Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかである。アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基等、アルキル基としては、例えばメチル基、エチル基、プロピル基、n−ブチル基、イソブチル基等の炭素数が1〜20の直鎖又は分岐鎖状のアルキル基等、アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられる。 In the above formula (2), R 7 is any one of a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group and an alkoxy group. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, and a propoxycarbonyl group. Examples of the alkyl group include, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, and an isobutyl group. Examples of the alkoxy group such as a linear or branched alkyl group include a methoxy group, an ethoxy group, and a propoxy group.

上記式(2)において、Rが複数の置換基(R)を有する場合は、それぞれ異なるものを組み合わせて用いても良い。Rが複数の置換基を有する場合の組み合わせとしては、所望の誘電異方性を安定して発現させるために、フッ素原子とシアノ基との組み合わせ、フッ素原子とアルキル基との組み合わせ、シアノ基とアルキル基との組み合わせが好ましい。なお、cは0〜9の整数である。 In the above formula (2), when R 6 has a plurality of substituents (R 7 ), different ones may be used in combination. In the case where R 6 has a plurality of substituents, in order to stably express desired dielectric anisotropy, a combination of a fluorine atom and a cyano group, a combination of a fluorine atom and an alkyl group, a cyano group And a combination of alkyl groups are preferred. In addition, c is an integer of 0-9.

上記式(1)で表されるカルボキシル基を有する化合物としては例えば、下記式(D−1)〜(D−25)で表される化合物が挙げられる。   Examples of the compound having a carboxyl group represented by the above formula (1) include compounds represented by the following formulas (D-1) to (D-25).

Figure 0005776152
(式(D−1)〜(D−25)中、Rは上記式(1)と同義である。mは1〜30の整数である。)
Figure 0005776152
(In the formulas (D-1) to (D-25), R 3 has the same meaning as the above formula (1). M is an integer of 1 to 30.)

上記式(2)で表される基としては、例えば下記式(E−1)〜(E−58)で
表される基が挙げられる。
Examples of the group represented by the formula (2) include groups represented by the following formulas (E-1) to (E-58).

Figure 0005776152
Figure 0005776152
Figure 0005776152
Figure 0005776152
(式(E−1)〜(E−58)中、Rは炭素数1から20のアルキル基(メチル基、エチル基、プロピル基、n−ブチル基、イソブチル基、n−ペンチル基、n−ヘキシル基等)又はアルコキシ基(メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基等)である。)
Figure 0005776152
Figure 0005776152
Figure 0005776152
Figure 0005776152
(In the formulas (E-1) to (E-58), R represents an alkyl group having 1 to 20 carbon atoms (methyl group, ethyl group, propyl group, n-butyl group, isobutyl group, n-pentyl group, n- Hexyl group or the like) or alkoxy group (methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, etc.).

[特定カルボン酸の合成方法]
特定カルボン酸の合成手順は特に限定されず、従来公知の方法を組み合わせて行うことができる。代表的な合成手順としては、例えば(1)フェノール骨格を有する化合物と、高級脂肪酸エステルのアルキル鎖部分をハロゲンで置換した化合物とを塩基性条件下で反応させ、フェノール骨格の水酸基とハロゲンで置換された炭素との結合を形成し、その後エステルを還元して特定カルボン酸とする方法、(2)フェノール骨格を有する化合物とエチレンカーボネートとを反応させて末端アルコール化合物を生成させ、その水酸基とハロゲン化ベンゼンスルホニルクロリドとを反応させて活性化し、その後活性化部分に水酸基を含む安息香酸メチルを反応させて、スルホニル部分の脱離とともに末端アルコール化合物の水酸基と置換基として水酸基を含む安息香酸メチルの水酸基との結合を生成させ、
次いでエステルを還元して特定カルボン酸とする方法等が例示される。但し、特定カルボン酸の合成手順はこれらに限定されるものではない。
[Method for synthesizing specific carboxylic acid]
The procedure for synthesizing the specific carboxylic acid is not particularly limited, and can be performed by combining conventionally known methods. As a typical synthesis procedure, for example, (1) a compound having a phenol skeleton is reacted with a compound in which the alkyl chain portion of a higher fatty acid ester is substituted with a halogen under a basic condition, and the hydroxyl group of the phenol skeleton is substituted with a halogen. A method of forming a bond with the formed carbon and then reducing the ester to a specific carboxylic acid; (2) reacting a compound having a phenol skeleton with ethylene carbonate to form a terminal alcohol compound, the hydroxyl group and halogen It is activated by reacting with benzenesulfonyl chloride, and then reacting with methyl benzoate containing a hydroxyl group in the activated moiety, and with the elimination of the sulfonyl moiety, the hydroxyl group of the terminal alcohol compound and the methyl benzoate containing a hydroxyl group as a substituent Create a bond with a hydroxyl group,
Next, a method of reducing an ester to a specific carboxylic acid is exemplified. However, the synthesis procedure of the specific carboxylic acid is not limited to these.

<[A]ポリオルガノシロキサン化合物の合成方法>
[A]ポリオルガノシロキサン化合物の合成方法としては、特に限定されず一般的な公知の方法で合成するこができる。エポキシ基を有する[A]ポリオルガノシロキサン化合物の合成方法としては、エポキシ基を有するポリオルガノシロキサンと特定カルボン酸とを、好ましくは触媒の存在下に反応させることにより合成することができる。
<[A] Synthesis method of polyorganosiloxane compound>
[A] The method for synthesizing the polyorganosiloxane compound is not particularly limited, and can be synthesized by a generally known method. As a method for synthesizing the [A] polyorganosiloxane compound having an epoxy group, it can be synthesized by reacting a polyorganosiloxane having an epoxy group with a specific carboxylic acid, preferably in the presence of a catalyst.

ここで特定カルボン酸は、ポリオルガノシロキサンの有するエポキシ基1モルに対して好ましくは0.001〜10モル、より好ましくは0.01〜5モル、さらに好ましくは0.05〜2モル使用される。   Here, the specific carboxylic acid is preferably used in an amount of 0.001 to 10 mol, more preferably 0.01 to 5 mol, still more preferably 0.05 to 2 mol based on 1 mol of the epoxy group of the polyorganosiloxane. .

本発明においては、本発明の効果を損なわない範囲で特定カルボン酸の一部を下記式(5)で表される化合物で置き換えて使用してもよい。この場合、[A]ポリオルガノシロキサン化合物の合成は、エポキシ基を有するポリオルガノシロキサンと、特定カルボン酸及び下記式(4)で表される化合物の混合物とを反応させることにより行われる。   In the present invention, a part of the specific carboxylic acid may be replaced with a compound represented by the following formula (5) within a range not impairing the effects of the present invention. In this case, the synthesis of [A] polyorganosiloxane compound is carried out by reacting a polyorganosiloxane having an epoxy group with a mixture of a specific carboxylic acid and a compound represented by the following formula (4).

Figure 0005776152
Figure 0005776152

上記式(4)中、
は炭素数1〜30の直鎖状又は分岐状のアルキル基、炭素数1〜20のアルキル基若しくはアルコキシル基で置換されていてもよい炭素数3〜10のシクロアルキル基又はステロイド骨格を有する炭素数17〜51の炭化水素基である。但し、上記アルキル基及びアルコキシ基の水素原子の一部又は全部がシアノ基、フッ素原子、トリフルオロメチル基等の置換基で置換されていてもよい。
は単結合、*−O−、*−COO−又は*−OCO−である。「*」を付した結合手がAと結合する。
は単結合、炭素数1〜20のアルキレン基、フェニレン基、ビフェニレン基、シクロへキシレン基、ビシクロへキシレン基又は下記式(L−1)若しくは(L−2)で表される基である。
Zは[A]ポリオルガノシロキサン化合物中のエポキシ基と反応して結合基を形成しうる1価の有機基である。
但し、Lが単結合であるときにはLは単結合である。
In the above formula (4),
A 1 represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms or an alkoxyl group, or a steroid skeleton. It is a hydrocarbon group having 17 to 51 carbon atoms. However, part or all of the hydrogen atoms of the alkyl group and alkoxy group may be substituted with a substituent such as a cyano group, a fluorine atom, or a trifluoromethyl group.
L 0 is a single bond, * —O—, * —COO— or * —OCO—. Bond marked with "*" is bound to A 1.
L 1 is represented by a single bond, an alkylene group having 1 to 20 carbon atoms, a phenylene group, biphenylene group, cyclohexylene group, cyclohexylene group or the following formula bicyclo (L 1 -1) or (L 1 -2) It is a group.
Z is a monovalent organic group capable of reacting with an epoxy group in the [A] polyorganosiloxane compound to form a bonding group.
However, L 0 is a single bond when L 1 is a single bond.

Figure 0005776152
Figure 0005776152

上記式(L−1)及び(L−2)において「*」を付した結合手がそれぞれZと結合する。 In the above formulas (L 1 -1) and (L 1 -2), the bonds marked with “*” are each bonded to Z.

Zはカルボキシル基であることが好ましい。   Z is preferably a carboxyl group.

上記式(4)においてAが示す炭素数1〜30の直鎖状又は分岐状のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、3−メチルブチル基、2−メチルブチル基、1−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、4−メチルペンチル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、3,3−ジメチルブチル基、2,3−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、1,2−ジメチルブチル基、1,2−ジメチルブチル基、1,1−ジメチルブチル基、n−ヘプチル基、5−メチルヘキシル基、4−メチルヘキシル基、3−メチルヘキシル基、2−メチルヘキシル基、1−メチルヘキシル基、4,4−ジメチルペンチル基、3,4−ジメチルペンチル基、2,4−ジメチルペンチル基、1,4−ジメチルペンチル基、3,3−ジメチルペンチル基、2,3−ジメチルペンチル基、1,3−ジメチルペンチル基、2,2−ジメチルペンチル基、1,2−ジメチルペンチル基、1,1−ジメチルペンチル基、2,3,3−トリメチルブチル基、1,3,3−トリメチルブチル基、1,2,3−トリメチルブチル基、n−オクチル基、6−メチルヘプチル基、5−メチルヘプチル基、4−メチルヘプチル基、3−メチルヘプチル基、2−メチルヘプチル基、1−メチルヘプチル基、2−エチルヘキシル基、n−ノナニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ヘプタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基等が挙げられる。 Examples of the linear or branched alkyl group having 1 to 30 carbon atoms represented by A 1 in the above formula (4) include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 3-methylbutyl group, 2-methylbutyl group, 1-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 4-methylpentyl group, 3 -Methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1 , 2-dimethylbutyl group, 1,2-dimethylbutyl group, 1,1-dimethylbutyl group, n-heptyl group, 5-methylhexyl group, 4-methylhexyl group, 3-methylhexyl group, 2-methylhexyl group, 1-methylhexyl group, 4,4-dimethylpentyl group, 3,4-dimethylpentyl group, 2,4-dimethylpentyl group, 1,4-dimethylpentyl group, 3,3-dimethylpentyl Group, 2,3-dimethylpentyl group, 1,3-dimethylpentyl group, 2,2-dimethylpentyl group, 1,2-dimethylpentyl group, 1,1-dimethylpentyl group, 2,3,3-trimethylbutyl Group, 1,3,3-trimethylbutyl group, 1,2,3-trimethylbutyl group, n-octyl group, 6-methylheptyl group, 5-methylheptyl group, 4-methylheptyl group, 3-methylheptyl group 2-methylheptyl group, 1-methylheptyl group, 2-ethylhexyl group, n-nonanyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group Group, n- tetradecyl, n- heptadecyl group, n- hexadecyl group, n- heptadecyl group, n- octadecyl, n- nonadecyl group and the like.

炭素数1〜20のアルキル基又はアルコキシ基で置換されていてもよい炭素数3〜10のシクロアルキル基としては、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノナニル基、シクロデシル基、シクロドデシル基等が挙げられる。   Examples of the cycloalkyl group having 3 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms or an alkoxy group include, for example, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononanyl group, and a cyclodecyl group. And cyclododecyl group.

ステロイド骨格を有する炭素数17〜51の炭化水素基としては、例えば下記式(A−1)〜(A−3)で表される基が挙げられる。   Examples of the hydrocarbon group having 17 to 51 carbon atoms having a steroid skeleton include groups represented by the following formulas (A-1) to (A-3).

Figure 0005776152
Figure 0005776152

上記式(4)におけるAとしては、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基及び上記式(A−1)又は(A−3)から選ばれる基が好ましい。 A 1 in the above formula (4) is preferably a group selected from an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group having 1 to 20 carbon atoms and the above formula (A-1) or (A-3).

上記式(4)で表される化合物としては、下記式(4−1)〜(4〜6)のいずれかで表される化合物が好ましい。   As a compound represented by the said Formula (4), the compound represented by either of following formula (4-1)-(4-6) is preferable.

Figure 0005776152
Figure 0005776152

上記式(4−1)〜(4−6)中、uは1〜5の整数である。vは1〜18の整数である。wは1〜20の整数である。kは1〜5の整数である。pは0又は1である。qは0〜18の整数である。rは0〜18の整数である。s及びtはそれぞれ独立して0〜2の整数である。   In the above formulas (4-1) to (4-6), u is an integer of 1 to 5. v is an integer of 1-18. w is an integer of 1-20. k is an integer of 1-5. p is 0 or 1. q is an integer of 0-18. r is an integer of 0-18. s and t are each independently an integer of 0 to 2.

これらの化合物の中でも、下記式(5−1)〜(5−7)で表される化合物がより好ましい。   Among these compounds, compounds represented by the following formulas (5-1) to (5-7) are more preferable.

Figure 0005776152
Figure 0005776152

上記式(4)で表される化合物は、特定カルボン酸とともにエポキシ基を有するポリオルガノシロキサンと反応し、得られる液晶配向膜にプレチルト角発現性を付与する部位となる化合物である。本明細書においては上記式(4)で表される化合物を、以下、「他のプレチルト角発現性化合物」と称することがある。   The compound represented by the above formula (4) is a compound that reacts with a polyorganosiloxane having an epoxy group together with a specific carboxylic acid and becomes a site that imparts pretilt angle expression to the obtained liquid crystal alignment film. In the present specification, the compound represented by the above formula (4) may be hereinafter referred to as “another pretilt angle-expressing compound”.

本発明において、特定カルボン酸とともに他のプレチルト角発現性化合物を使用する場合、特定カルボン酸及び他のプレチルト角発現性化合物の合計の使用割合は、ポリオルガノシロキサンの有するエポキシ基1モルに対して好ましくは0.001〜1.5モル、より好ましくは0.01〜1モル、さらに好ましくは0.05〜0.9モルである。この場合、他のプレチルト角発現性化合物は、特定カルボン酸との合計に対して好ましくは75モル%以下、より好ましくは50モル%以下の範囲で使用される。他のプレチルト角発現性化合物の使用割合が75モル%を超えると、液晶の高速応答性に悪影響が出る場合がある。   In the present invention, when another pretilt angle-expressing compound is used together with the specific carboxylic acid, the total use ratio of the specific carboxylic acid and the other pretilt angle-expressing compound is 1 mol of the epoxy group of the polyorganosiloxane. Preferably it is 0.001-1.5 mol, More preferably, it is 0.01-1 mol, More preferably, it is 0.05-0.9 mol. In this case, the other compound having a pretilt angle is preferably used in a range of 75 mol% or less, more preferably 50 mol% or less, based on the total with the specific carboxylic acid. If the proportion of other pretilt angle-expressing compounds exceeds 75 mol%, the high-speed response of the liquid crystal may be adversely affected.

ポリオルガノシロキサン中のエポキシ基と上記式(4)及び他のプレチルト角発現性化合物で表されるカルボン酸基含有化合物の反応に使用される触媒としては、有機塩基、又はエポキシ化合物と酸無水物との反応を促進する、いわゆる硬化促進剤として公知の化合物を用いることができる。   The catalyst used for the reaction of the epoxy group in the polyorganosiloxane with the carboxylic acid group-containing compound represented by the above formula (4) and other compounds having a pretilt angle is an organic base or an epoxy compound and an acid anhydride. A known compound can be used as a so-called curing accelerator that accelerates the reaction with the compound.

上記有機塩基としては、例えばエチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロール等の1〜2級有機アミン;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、ジアザビシクロウンデセン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミン等が挙げられる。これらの有機塩基のうち、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、テトラメチルアンモニウムヒドロキシドが好ましい。   Examples of the organic base include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine and pyrrole; triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, And tertiary organic amines such as diazabicycloundecene; quaternary organic amines such as tetramethylammonium hydroxide. Of these organic bases, triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, and tetramethylammonium hydroxide are preferable.

上記硬化促進剤としては、例えば
ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミン等の3級アミン;
2−メチルイミダゾール、2−n−ヘプチルイミダゾール、2−n−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾール、1−(2−シアノエチル)−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジ(ヒドロキシメチル)イミダゾール、1−(2−シアノエチル)−2−フェニル−4,5−ジ〔(2’−シアノエトキシ)メチル〕イミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−フェニルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾリウムトリメリテート、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2,4−ジアミノ−6−(2’−n−ウンデシルイミダゾリル)エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2−メチルイミダゾールのイソシアヌル酸付加物、2−フェニルイミダゾールのイソシアヌル酸付加物、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジンのイソシアヌル酸付加物等のイミダゾール化合物;
ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニル等の有機リン化合物;ベンジルトリフェニルフォスフォニウムクロライド、テトラ−n−ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n−ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、テトラ−n−ブチルフォスフォニウムo,o−ジエチルフォスフォロジチオネート、テトラ−n−ブチルフォスフォニウムベンゾトリアゾレート、テトラ−n−ブチルフォスフォニウムテトラフルオロボレート、テトラ−n−ブチルフォスフォニウムテトラフェニルボレート、テトラフェニルフォスフォニウムテトラフェニルボレート等の4級フォスフォニウム塩;
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩等のジアザビシクロアルケン;
オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体等の有機金属化
合物;
テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライド等の4級アンモニウム塩;
三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;
塩化亜鉛、塩化第二錫等の金属ハロゲン化合物;
ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
上記イミダゾール化合物、有機リン化合物や4級フォスフォニウム塩等の硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;
アミン塩型潜在性硬化促進剤;
ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤等が挙げられる。
Examples of the curing accelerator include tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, and triethanolamine;
2-methylimidazole, 2-n-heptylimidazole, 2-n-undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl Imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- ( 2-cyanoethyl) -2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-di (Hydroxymethyl) imidazole, 1- (2-cyanoethyl) -2-fur Nyl-4,5-di [(2′-cyanoethoxy) methyl] imidazole, 1- (2-cyanoethyl) -2-n-undecylimidazolium trimellitate, 1- (2-cyanoethyl) -2-phenyl Imidazolium trimellitate, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')] ethyl-s -Triazine, 2,4-diamino-6- (2'-n-undecylimidazolyl) ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ' )] Ethyl-s-triazine, isocyanuric acid adduct of 2-methylimidazole, isocyanuric acid adduct of 2-phenylimidazole, 2,4-diamino-6- [2'-methyl] An imidazole compound such as an isocyanuric acid adduct of Louis-imidazolyl- (1 ′)] ethyl-s-triazine;
Organophosphorus compounds such as diphenylphosphine, triphenylphosphine, triphenyl phosphite; benzyltriphenylphosphonium chloride, tetra-n-butylphosphonium bromide, methyltriphenylphosphonium bromide, ethyltriphenylphosphine Phonium bromide, n-butyltriphenylphosphonium bromide, tetraphenylphosphonium bromide, ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, tetra-n-butylphosphonium o, o- Diethylphosphorodithionate, tetra-n-butylphosphonium benzotriazolate, tetra-n-butylphosphonium tetrafluoroborate, tetra-n-buty Phosphonium tetraphenylborate, quaternary phosphonium salts such as tetraphenyl phosphonium tetraphenyl borate;
Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof;
Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex;
Quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, tetraethylammonium chloride, tetra-n-butylammonium chloride;
Boron compounds such as boron trifluoride and triphenyl borate;
Metal halides such as zinc chloride and stannic chloride;
High melting point dispersion type latent curing accelerators such as amine addition accelerators such as dicyandiamide and adducts of amine and epoxy resin;
A microcapsule type latent curing accelerator in which the surface of a curing accelerator such as an imidazole compound, an organic phosphorus compound or a quaternary phosphonium salt is coated with a polymer;
An amine salt type latent curing accelerator;
Examples include latent curing accelerators such as high temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts.

これらの触媒の中でも、テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライド等の4級アンモニウム塩が好ましい。   Among these catalysts, quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, tetraethylammonium chloride, and tetra-n-butylammonium chloride are preferable.

触媒は、エポキシ基を有するポリオルガノシロキサン100質量部に対して好ましくは100質量部以下、より好ましくは0.01〜100質量部、さらに好ましくは0.1〜20質量部の量で使用される。   The catalyst is used in an amount of preferably 100 parts by mass or less, more preferably 0.01 to 100 parts by mass, and still more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polyorganosiloxane having an epoxy group. .

反応温度は、好ましくは0〜200℃、より好ましくは50〜150℃である。反応時間は、好ましくは0.1〜50時間、より好ましくは0.5〜20時間である。   The reaction temperature is preferably 0 to 200 ° C, more preferably 50 to 150 ° C. The reaction time is preferably 0.1 to 50 hours, more preferably 0.5 to 20 hours.

[A]ポリオルガノシロキサン化合物の合成反応は、必要に応じて有機溶媒の存在下に行うことができる。かかる有機溶媒としては、例えば炭化水素化合物、エーテル化合物、エステル化合物、ケトン化合物、アミド化合物、アルコール化合物等が挙げられる。これらのうち、エーテル化合物、エステル化合物、ケトン化合物が、原料及び生成物の溶解性並びに生成物の精製のし易さの観点から好ましい。溶媒は、固形分濃度(反応溶液中の溶媒以外の成分の質量が溶液の全質量に占める割合)が、好ましくは0.1質量%以上70質量%以下、より好ましくは5質量%以上50質量%以下となる量で使用される。   [A] The synthesis reaction of the polyorganosiloxane compound can be carried out in the presence of an organic solvent, if necessary. Examples of the organic solvent include hydrocarbon compounds, ether compounds, ester compounds, ketone compounds, amide compounds, alcohol compounds, and the like. Of these, ether compounds, ester compounds, and ketone compounds are preferred from the viewpoints of solubility of raw materials and products and ease of purification of the products. The solvent has a solid content concentration (the ratio of the mass of components other than the solvent in the reaction solution to the total mass of the solution), preferably 0.1% by mass to 70% by mass, more preferably 5% by mass to 50% by mass. % Is used in an amount of less than%.

こうして得られた[A]ポリオルガノシロキサン化合物のゲルパーミエーションクロマトグラフィーによるスチレン換算での重量平均分子量は特に限定されないが、1,000〜200,000であることが好ましく、2,000〜20,000であることがより好ましい。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。   Although the weight average molecular weight in terms of styrene by gel permeation chromatography of the [A] polyorganosiloxane compound thus obtained is not particularly limited, it is preferably 1,000 to 200,000, preferably 2,000 to 20, More preferably, it is 000. By being in such a molecular weight range, it is possible to ensure good orientation and stability of the liquid crystal display element.

本発明の[A]ポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンに、特定カルボン酸のカルボキシレート部分のエポキシ基への開環付加により特定カルボン酸に由来する構造を導入している。この製造方法は簡便であり、しかも特定カルボン酸に由来する構造の導入率を高くすることができる点で極めて好適な方法である。   [A] The polyorganosiloxane compound of the present invention introduces a structure derived from a specific carboxylic acid into the polyorganosiloxane having an epoxy group by ring-opening addition of the carboxylate moiety of the specific carboxylic acid to the epoxy group. This production method is simple and is an extremely suitable method in that the introduction rate of the structure derived from the specific carboxylic acid can be increased.

<任意成分>
当該液晶配向剤は、上記等の[A]ポリオルガノシロキサン化合物のほかに、本発明の効果を損なわない限り、例えば[A]ポリオルガノシロキサン化合物以外の重合体(以下、「他の重合体」と称することがある)、硬化剤、硬化触媒、硬化促進剤、分子内に少なくとも一つのエポキシ基を有する化合物(以下、「エポキシ化合物」と称することがある)、官能性シラン化合物、界面活性剤等のその他の任意成分を含有してもよい。
<Optional component>
The liquid crystal aligning agent is, for example, a polymer other than the [A] polyorganosiloxane compound (hereinafter referred to as “other polymer”) unless the effects of the present invention are impaired in addition to the above-mentioned [A] polyorganosiloxane compound. ), Curing agent, curing catalyst, curing accelerator, compound having at least one epoxy group in the molecule (hereinafter sometimes referred to as “epoxy compound”), functional silane compound, surfactant Other optional components such as may be contained.

[他の重合体]
他の重合体は、当該液晶配向剤の溶液特性及び得られる液晶配向素子の電気特性をより改善するために使用できる。他の重合体としては、例えば
ポリアミック酸及びポリイミドよりなる群から選択される少なくとも1種の重合体([B]重合体);
下記式(5)で表されるポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物よりなる群から選択される少なくとも1種(以下、「他のポリオルガノシロキサン」と称することがある);
ポリアミック酸エステル、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等が挙げられる。
[Other polymers]
Other polymers can be used to further improve the solution properties of the liquid crystal aligning agent and the electrical properties of the resulting liquid crystal aligning device. Examples of the other polymer include at least one polymer selected from the group consisting of polyamic acid and polyimide ([B] polymer);
At least one selected from the group consisting of a polyorganosiloxane represented by the following formula (5), a hydrolyzate thereof and a condensate of the hydrolyzate (hereinafter sometimes referred to as “other polyorganosiloxane”). );
Examples include polyamic acid esters, polyesters, polyamides, cellulose derivatives, polyacetals, polystyrene derivatives, poly (styrene-phenylmaleimide) derivatives, poly (meth) acrylates, and the like.

Figure 0005776152
(式(5)中、Xは水酸基、ハロゲン原子、炭素数1〜20のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜20のアリール基である。Yは水酸基又は炭素数1〜10のアルコキシ基である。)
Figure 0005776152
(In Formula (5), X 1 is a hydroxyl group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Y 1 is a hydroxyl group or carbon. (It is an alkoxy group of formula 1 to 10.)

<[B]重合体>
[B]重合体はポリアミック酸及びポリイミドからなる群より選択される少なくとも1種の重合体である。以下、ポリアミック酸、ポリイミドについて詳述する。
<[B] polymer>
[B] The polymer is at least one polymer selected from the group consisting of polyamic acid and polyimide. Hereinafter, polyamic acid and polyimide will be described in detail.

[ポリアミック酸]
ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得られる。ポリアミック酸の合成に用いることのできるテトラカルボン酸二無水物としては、例えば2,3,5−トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、3,5,6−トリカルボキシノルボルナン−2−酢酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−8−メチル−ナフト[1,2−c]−フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、ビシクロ[2.2.2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、下記式(F−1)〜(F−14)で表されるテトラカルボン酸二無水物等の脂肪族又は脂環式テトラカルボン酸二無水物;
[Polyamic acid]
A polyamic acid is obtained by reacting a tetracarboxylic dianhydride and a diamine compound. Examples of tetracarboxylic dianhydrides that can be used for the synthesis of polyamic acid include 2,3,5-tricarboxycyclopentylacetic acid dianhydride, butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutane. Tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3,5, 6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2, 5-Dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydride) -2,5-dioxo-3-furanyl) -8-methyl-naphtho [1,2-c] -furan-1,3-dione, 5- (2,5-dioxotetrahydrofuranyl) -3-methyl- 3-cyclohexene-1,2-dicarboxylic anhydride, bicyclo [2.2.2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, the following formula (F-1) Aliphatic or alicyclic tetracarboxylic dianhydride such as tetracarboxylic dianhydride represented by ~ (F-14);

Figure 0005776152
Figure 0005776152

ピロメリット酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−パーフルオロイソプロピリデン
テトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、m−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン二無水物、下記式(F−15)〜(F−18)で表されるテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物等が挙げられる。
Pyromellitic dianhydride, 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7- Naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3 ', 4,4'-Tetraphenylsilane tetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenyl sulfide Dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ′ , 4 4′-perfluoroisopropylidenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis ( Triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4'-diphenyl ether dianhydride, bis (triphenylphthalic acid)- Examples include 4,4′-diphenylmethane dianhydride and aromatic tetracarboxylic dianhydrides such as tetracarboxylic dianhydrides represented by the following formulas (F-15) to (F-18).

Figure 0005776152
Figure 0005776152

これらのうち、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−8−メチル−ナフト[1,2−c]−フラン−1,3−ジオン、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、上記式(F−1)、(F−2)、(F−15)〜(F−18)で表されるテトラカルボン酸二無水物が好ましい。これらテトラカルボン酸二無水物は、単独で又は2種以上を使用してもよい。   Of these, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione 1,3,3a, 4,5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -8-methyl-naphtho [1,2-c] -furan-1,3- Dione, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, butanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2, 3,4-cyclobutanetetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic acid Dianhydride, 2, , 6,7-Naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, the above formulas (F-1), (F-2), (F-15) ) To (F-18) are preferred tetracarboxylic dianhydrides. These tetracarboxylic dianhydrides may be used alone or in combination of two or more.

ポリアミック酸の合成に用いることのできるジアミン化合物としては、例えばp−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,3’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノベンズアニリド、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノ−2,2’−ジメチルビフェニル、1,5−ジアミノナフタレン、3,3−ジメチル−4,4’−ジアミノビフェニル、5−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、6−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、3,4’−ジアミノジフェニルエーテル、2,2−ビス(4
−アミノフェノキシ)プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]スルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)−10−ヒドロアントラセン、2,7−ジアミノフルオレン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−メチレン−ビス(2−クロロアニリン)、2,2’,5,5’−テトラクロロ−4,4’−ジアミノビフェニル、2,2’−ジクロロ−4,4’−ジアミノ−5,5’−ジメトキシビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンイソプロピリデン)ビスアニリン、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ビス[(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル、6−(4−カルコニルオキシ)ヘキシルオキシ(2,4−ジアミノベンゼン)、6−(4’−フルオロ−4−カルコニルオキシ)ヘキシルオキシ(2,4−ジアミノベンゼン)、8−(4−カルコニルオキシ)オクチルオキシ(2,4−ジアミノベンゼン)、8−(4’−フルオロ−4−カルコニルオキシ)オクチルオキシ(2,4−ジアミノベンゼン)、1−ドデシルオキシ−2,4−ジアミノベンゼン、1−テトラデシルオキシ−2,4−ジアミノベンゼン、1−ペンタデシルオキシ−2,4−ジアミノベンゼン、1−ヘキサデシルオキシ−2,4−ジアミノベンゼン、1−オクタデシルオキシ−2,4−ジアミノベンゼン、1−コレステリルオキシ−2,4−ジアミノベンゼン、1−コレスタニルオキシ−2,4−ジアミノベンゼン、ドデシルオキシ(3,5−ジアミノベンゾイル)、テトラデシルオキシ(3,5−ジアミノベンゾイル)、ペンタデシルオキシ(3,5−ジアミノベンゾイル)、ヘキサデシルオキシ(3,5−ジアミノベンゾイル)、オクタデシルオキシ(3,5−ジアミノベンゾイル)、コレステリルオキシ(3,5−ジアミノベンゾイル)、コレスタニルオキシ(3,5−ジアミノベンゾイル)、(2,4−ジアミノフェノキシ)パルミテート、(2,4−ジアミノフェノキシ)ステアリレート、(2,4−ジアミノフェノキシ)−4−トリフルオロメチルベンゾエート、下記式(G−1)〜(G−7)で表されるジアミン化合物等の芳香族ジアミン;
Examples of the diamine compound that can be used for the synthesis of polyamic acid include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, and 4,4′-diaminodiphenyl sulfide. 4,4′-diaminodiphenyl sulfone, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide, 4,4′-diaminodiphenyl ether, 4,4′-diamino-2 , 2′-dimethylbiphenyl, 1,5-diaminonaphthalene, 3,3-dimethyl-4,4′-diaminobiphenyl, 5-amino-1- (4′-aminophenyl) -1,3,3-trimethylindane 6-amino-1- (4′-aminophenyl) -1,3,3-trimethylindane, 3,4′-diaminodi Phenyl ether, 2,2-bis (4
-Aminophenoxy) propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis ( 4-aminophenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) ) Benzene, 1,3-bis (3-aminophenoxy) benzene, 9,9-bis (4-aminophenyl) -10-hydroanthracene, 2,7-diaminofluorene, 9,9-bis (4-aminophenyl) ) Fluorene, 4,4′-methylene-bis (2-chloroaniline), 2,2 ′, 5,5′-tetrachloro-4,4′-diaminobiphenyl 2,2′-dichloro-4,4′-diamino-5,5′-dimethoxybiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 4,4 ′-(p-phenyleneisopropylidene) Bisaniline, 4,4 ′-(m-phenyleneisopropylidene) bisaniline, 2,2-bis [4- (4-amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′-diamino-2 , 2′-bis (trifluoromethyl) biphenyl, 4,4′-bis [(4-amino-2-trifluoromethyl) phenoxy] -octafluorobiphenyl, 6- (4-chalconyloxy) hexyloxy (2 , 4-diaminobenzene), 6- (4′-fluoro-4-chalconyloxy) hexyloxy (2,4-diaminobenzene), 8- (4-chalcone) Ruoxy) octyloxy (2,4-diaminobenzene), 8- (4′-fluoro-4-chalconyloxy) octyloxy (2,4-diaminobenzene), 1-dodecyloxy-2,4-diaminobenzene, 1-tetradecyloxy-2,4-diaminobenzene, 1-pentadecyloxy-2,4-diaminobenzene, 1-hexadecyloxy-2,4-diaminobenzene, 1-octadecyloxy-2,4-diaminobenzene 1-cholesteryloxy-2,4-diaminobenzene, 1-cholestanyloxy-2,4-diaminobenzene, dodecyloxy (3,5-diaminobenzoyl), tetradecyloxy (3,5-diaminobenzoyl), penta Decyloxy (3,5-diaminobenzoyl), hexadecyloxy (3,5-dia Nobenzoyl), octadecyloxy (3,5-diaminobenzoyl), cholesteryloxy (3,5-diaminobenzoyl), cholestanyloxy (3,5-diaminobenzoyl), (2,4-diaminophenoxy) palmitate, (2 , 4-diaminophenoxy) stearylate, (2,4-diaminophenoxy) -4-trifluoromethylbenzoate, aromatic diamines such as diamine compounds represented by the following formulas (G-1) to (G-7);

Figure 0005776152
Figure 0005776152

ジアミノテトラフェニルチオフェン等のヘテロ原子を有する芳香族ジアミン;
メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4−ジアミノヘプタメチレンジアミン、1,4−ジアミノシクロヘキサン、シクロヘキサンビス(メチルアミン)、イソホロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミン、トリシクロ[6.2.1.02,7]−ウンデシレンジメチルジアミン、4,4’−メチレンビス(シクロヘキシルアミン)等の脂肪族又は脂環式ジアミン;
ジアミノヘキサメチルジシロキサン等のジアミノオルガノシロキサン等が挙げられる。
An aromatic diamine having a heteroatom such as diaminotetraphenylthiophene;
Metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, 4,4-diaminoheptamethylenediamine, 1,4-diamino Cyclohexane, cyclohexanebis (methylamine), isophoronediamine, tetrahydrodicyclopentadienylenediamine, hexahydro-4,7-methanoindanylene methylenediamine, tricyclo [6.2.1.0 2,7 ] -undecylenedimethyl Aliphatic or alicyclic diamines such as diamine, 4,4′-methylenebis (cyclohexylamine);
And diaminoorganosiloxanes such as diaminohexamethyldisiloxane.

これらのうち、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−2,2’−ジメチルビフェニル、シクロヘキサンビス(メチルアミン)、1,5−ジアミノナフタレン、2,7−ジアミノフルオレン、4,4’−ジアミノジフェニルエーテル、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ビス[(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル、1−ヘキサデシルオキシ−2,4−ジアミノベンゼン、1−オクタデシルオキシ−2,4−ジアミノベンゼン、1−コレステリルオキシ−2,4−ジアミノベンゼン、1−コレスタニルオキシ−2,4−ジアミノベンゼン、ヘキサデシルオキシ(3,5−ジアミノベンゾイル)、オクタデシルオキシ(3,5−ジアミノベンゾイル)、コレステリルオキシ(3,5−ジアミノベンゾイル)、コレスタニルオキシ(3,5−ジアミノベンゾイル)、上記式(G−1)〜(G−7)で表されるジアミンが好ましい。これらジアミンは単独で又は2種以上を使用してもよい。   Among these, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diamino-2,2′-dimethylbiphenyl, cyclohexanebis (methylamine), 1,5-diaminonaphthalene, 2,7- Diaminofluorene, 4,4′-diaminodiphenyl ether, 4,4 ′-(p-phenyleneisopropylidene) bisaniline, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis [4- (4-amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′-diamino-2,2′-bis ( Trifluoromethyl) biphenyl, 4,4′-bis [(4-amino-2-trifluoromethyl Phenoxy] -octafluorobiphenyl, 1-hexadecyloxy-2,4-diaminobenzene, 1-octadecyloxy-2,4-diaminobenzene, 1-cholesteryloxy-2,4-diaminobenzene, 1-cholestanyloxy- 2,4-diaminobenzene, hexadecyloxy (3,5-diaminobenzoyl), octadecyloxy (3,5-diaminobenzoyl), cholesteryloxy (3,5-diaminobenzoyl), cholestanyloxy (3,5-diamino) Benzoyl) and diamines represented by the above formulas (G-1) to (G-7) are preferred. These diamines may be used alone or in combination of two or more.

ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物の使用割合は、ジアミン化合物に含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2〜2当量となる割合が好ましく、さらに好ましくは0.3〜1.2当量となる割合である。   The ratio of the tetracarboxylic dianhydride and the diamine compound used for the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.1 relative to 1 equivalent of the amino group contained in the diamine compound. A ratio of 2 to 2 equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable.

ポリアミック酸の合成反応は、好ましくは有機溶媒中において、好ましくは−20〜150℃、より好ましくは0〜100℃の温度条件下において、好ましくは0.5〜24時間、より好ましくは2〜10時間行われる。ここで、有機溶媒としては、合成されるポリアミック酸を溶解できるものであれば特に制限はなく、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジメチルイミダゾリジノン、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド等の非プロトン系極性溶媒;m−クレゾール、キシレノール、フェノール、ハロゲン化フェノール等のフェノール系溶媒が挙げられる。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミン化合物の総量(b)が反応溶液の全量(a+b)に対して、好ましくは0.1〜50質量%、より好ましくは5〜30質量%となるような量である。   The polyamic acid synthesis reaction is preferably performed in an organic solvent, preferably at a temperature of −20 to 150 ° C., more preferably at a temperature of 0 to 100 ° C., preferably 0.5 to 24 hours, more preferably 2 to 10 Done for hours. Here, the organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, Aprotic polar solvents such as N-dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea and hexamethylphosphortriamide; and phenolic solvents such as m-cresol, xylenol, phenol and halogenated phenol . The amount (a) of the organic solvent used is such that the total amount (b) of tetracarboxylic dianhydride and diamine compound is preferably 0.1 to 50% by mass, more preferably 5%, based on the total amount (a + b) of the reaction solution. The amount is -30% by mass.

なお、上記有機溶媒には、ポリアミック酸の貧溶媒であるアルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素類等を、生成するポリアミック酸が析出しない範囲で併用できる。かかる貧溶媒としては、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリエチレングリコール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、乳酸エチル、乳酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ−ト、エチルエトキシプロピオネ−ト、プロピレンカーボネート、シュウ酸ジエチル、マロン酸ジエチル、ジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル、エチレングリコール−i−プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、テトラヒドロフラン、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、トリクロロエタン、クロルベンゼン、o−ジクロルベンゼン、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等が挙げられる。これらの貧溶媒は、単独で又は2種以上を使用してもよい。   In addition, the said organic solvent can use together the alcohol, ketone, ester, ether, halogenated hydrocarbon, hydrocarbons, etc. which are poor solvents of a polyamic acid in the range in which the polyamic acid to produce | generate does not precipitate. Examples of the poor solvent include methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol, ethylene glycol monomethyl ether, ethyl lactate, and butyl lactate. , Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, propylene carbonate, diethyl oxalate, diethyl malonate, diethyl ether, ethylene glycol Methyl ether, ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-pro Ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, tetrahydrofuran, dichloromethane 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene, o-dichlorobenzene, hexane, heptane, octane, benzene, toluene, xylene and the like. These poor solvents may be used alone or in combination of two or more.

以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリアミック酸を精製したうえで液晶配向剤の調製に供してもよい。ポリアミック酸の単離は、上記反応溶液を大量の貧溶媒中に注いで析出物を得、この析出物を減圧下乾燥する方法、若しくは、反応溶液をエバポレーターで減圧留去する方法により行うことができる。また、このポリアミック酸を再び有機溶媒に溶解し、次いで貧溶媒で析出させる方法、若しくは、エバポレーターで減圧留去する工程を1回又は数回行う方法により、ポリアミック酸を精製することができる。   As described above, a reaction solution obtained by dissolving polyamic acid is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution, or the isolated polyamic acid was purified. You may use for preparation of a liquid crystal aligning agent. Polyamic acid can be isolated by pouring the reaction solution into a large amount of poor solvent to obtain a precipitate, and drying the precipitate under reduced pressure, or by distilling the reaction solution under reduced pressure using an evaporator. it can. Further, the polyamic acid can be purified by a method in which the polyamic acid is dissolved again in an organic solvent and then precipitated with a poor solvent, or a method in which the step of distilling off with an evaporator under reduced pressure is performed once or several times.

[ポリイミド]
上記ポリイミドは、上述のようにして得られたポリアミック酸の有するアミック酸構造を脱水閉環することにより製造することができる。このとき、アミック酸構造の全部を脱水閉環して完全にイミド化してもよく、又はアミック酸構造のうちの一部のみを脱水閉環してアミック酸構造とイミド構造とが併存する部分イミド化物としてもよい。
[Polyimide]
The polyimide can be produced by dehydrating and ring-closing the amic acid structure of the polyamic acid obtained as described above. At this time, all of the amic acid structure may be dehydrated and cyclized to completely imidize, or only a part of the amic acid structure may be dehydrated and cyclized to form a partially imidized product in which the amic acid structure and the imide structure coexist. Also good.

ポリアミック酸の脱水閉環は、(i)ポリアミック酸を加熱する方法により、又は(ii)ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。   The polyamic acid is dehydrated and closed by (i) a method of heating the polyamic acid, or (ii) dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to this solution, and heating as necessary. By the method.

上記(i)のポリアミック酸を加熱する方法における反応温度は、好ましくは50〜200℃であり、より好ましくは60〜170℃である。反応温度を50℃以上とすることで脱水閉環反応を十分に進行させることができ、反応温度を200℃以下とすることで、得られるイミド化重合体の分子量の低下を抑制することができる。ポリアミック酸を加熱する方法における反応時間は、好ましくは0.5〜48時間であり、より好ましくは2〜20時間である。   The reaction temperature in the method of heating the polyamic acid (i) is preferably 50 to 200 ° C, more preferably 60 to 170 ° C. By setting the reaction temperature to 50 ° C. or higher, the dehydration ring-closing reaction can be sufficiently advanced, and by setting the reaction temperature to 200 ° C. or lower, it is possible to suppress a decrease in the molecular weight of the resulting imidized polymer. The reaction time in the method of heating the polyamic acid is preferably 0.5 to 48 hours, more preferably 2 to 20 hours.

一方、上記(ii)のポリアミック酸の溶液中に脱水剤及び脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸構造単位の1モルに対して0.01〜20モルとするのが好ましい。また、脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。しかし、これらに限定されるものではない。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01〜10モルとするのが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒が挙げられる。脱水閉環反応の反応温度は好ましくは0〜180℃、より好ましくは10〜150℃であり、反応時間は好ましくは0.5〜20時間であり、より好ましくは1〜8時間である。   On the other hand, in the method (ii) of adding a dehydrating agent and a dehydrating ring-closing catalyst to the polyamic acid solution, as the dehydrating agent, for example, an acid anhydride such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride is used. Can do. The amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the polyamic acid structural unit. Moreover, as a dehydration ring closure catalyst, tertiary amines, such as a pyridine, a collidine, a lutidine, a triethylamine, can be used, for example. However, it is not limited to these. The amount of the dehydration ring-closing catalyst used is preferably 0.01 to 10 mol with respect to 1 mol of the dehydrating agent used. Examples of the organic solvent used for the dehydration ring closure reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., more preferably 10 to 150 ° C., and the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 8 hours.

方法(ii)においては、上記のようにして、ポリイミドを含有する反応溶液が得られる。この反応溶液は、これをそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリイミドを精製したうえで液晶配向剤の調製に供してもよい。反応溶液から脱水剤及び脱水閉環触媒を除くには、例えば溶媒置換等の方法を適用することができる。ポリイミドの単離、精製は、ポリアミック酸の単離、精製方法として上記したのと同様の操作を行うことにより行うことができる。   In the method (ii), a reaction solution containing polyimide is obtained as described above. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution. May be used for the preparation of a liquid crystal aligning agent, or may be used for the preparation of a liquid crystal aligning agent after purifying the isolated polyimide. In order to remove the dehydrating agent and the dehydration ring closure catalyst from the reaction solution, for example, a method such as solvent replacement can be applied. The isolation and purification of the polyimide can be performed by performing the same operation as described above as the isolation and purification method of the polyamic acid.

[他のポリオルガノシロキサン]
当該液晶配向剤は、[A]ポリオルガノシロキサン化合物以外にも他のポリオルガノシロキサンを含んでいてもよい。他のポリオルガノシロキサンは、上記式(5)で表されるポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種であることが好ましい。なお、当該液晶配向剤が他のポリオルガノシロキサンを含む場合、他のポリオルガノシロキサンの大部分は、[A]ポリオルガノシロキサン化合物とは独立して存在しているもの、その一部は[A]ポリオルガノシロキサン化合物との縮合物として存在していても良い。
[Other polyorganosiloxanes]
The liquid crystal aligning agent may contain other polyorganosiloxane in addition to the [A] polyorganosiloxane compound. The other polyorganosiloxane is preferably at least one selected from the group consisting of the polyorganosiloxane represented by the above formula (5), a hydrolyzate thereof, and a condensate of the hydrolyzate. In addition, when the liquid crystal aligning agent contains other polyorganosiloxane, most of the other polyorganosiloxane exists independently from the [A] polyorganosiloxane compound, and a part thereof is [A It may exist as a condensate with a polyorganosiloxane compound.

上記式(5)中のX及びYにおいて、
炭素数1〜20のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ラウリル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基等;
炭素数1〜16のアルコキシ基としては、例えばメトキシ基、エトキシ基等;
炭素数6〜20のアリール基としては、例えばフェニル基等が挙げられる。
In X 1 and Y 1 in the above formula (5),
Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- Nonyl group, n-decyl group, n-lauryl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n- Nonadecyl group, n-eicosyl group, etc .;
Examples of the alkoxy group having 1 to 16 carbon atoms include a methoxy group and an ethoxy group;
Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group.

他のポリオルガノシロキサンは、例えばアルコキシシラン化合物及びハロゲン化シラン化合物よりなる群から選択される少なくとも1種のシラン化合物(以下、「原料シラン化合物」と称することがある)を、好ましくは適当な有機溶媒中で、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成することができる。   The other polyorganosiloxane is, for example, at least one silane compound selected from the group consisting of an alkoxysilane compound and a halogenated silane compound (hereinafter sometimes referred to as “raw silane compound”), preferably a suitable organic It can be synthesized by hydrolysis or hydrolysis / condensation in a solvent in the presence of water and a catalyst.

ここで使用できる原料シラン化合物としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラクロロシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリ−iso−プロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−
sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン等が挙げられる。これらのうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシランが好ましい。
Examples of the raw material silane compound that can be used here include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-. Butoxysilane, tetrachlorosilane; methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, methyltri-tert-butoxysilane , Methyltriphenoxysilane, methyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-n-propoxysilane, ethyltri-iso-propoxy Run, ethyltri -n- butoxysilane, ethyltri -
sec-butoxysilane, ethyltri-tert-butoxysilane, ethyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltrichlorosilane; dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldichlorosilane; trimethylmethoxysilane, trimethylethoxysilane And trimethylchlorosilane. Of these, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, and trimethylethoxysilane are preferred. .

他のポリオルガノシロキサンを合成する際に、任意的に使用することのできる有機溶媒としては、例えばアルコール化合物、ケトン化合物、アミド化合物もしくはエステル化合物又はその他の非プロトン性化合物が挙げられる。これらは単独で又は2種以上を使用してもよい。   Examples of organic solvents that can optionally be used in the synthesis of other polyorganosiloxanes include alcohol compounds, ketone compounds, amide compounds or ester compounds, and other aprotic compounds. These may be used alone or in combination of two or more.

アルコール化合物としては、例えば
メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、ヘプタノール−3、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチルヘプタノール−4、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキ
サノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール化合物;
エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ペンタンジオール−2,4、2−メチルペンタンジオール−2,4、ヘキサンジオール−2,5、ヘプタンジオール−2,4、2−エチルヘキサンジオール−1,3、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール化合物;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノ
エチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール化合物の部分エーテル等が挙げられる。これらのアルコール化合物は、単独で又は2種以上を使用してもよい。
Examples of alcohol compounds include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec -Pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, heptanol-3, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethylheptanol-4, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, Monoalcohol compounds such as phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, diacetone alcohol;
Ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, pentanediol-2,4, 2-methylpentanediol-2,4, hexanediol-2,5, heptanediol-2,4, 2- Polyhydric alcohol compounds such as ethylhexanediol-1,3, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol;
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, partial ethers of a polyhydric alcohol compound and dipropylene glycol monopropyl ether, and the like. These alcohol compounds may be used alone or in combination of two or more.

ケトン化合物としては、例えば
アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロヘキサノン、2−ヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、アセトフェノン、フェンチョン等のモノケトン化合物;
アセチルアセトン、2,4−ヘキサンジオン、2,4−ヘプタンジオン、3,5−ヘプタンジオン、2,4−オクタンジオン、3,5−オクタンジオン、2,4−ノナンジオン、3,5−ノナンジオン、5−メチル−2,4−ヘキサンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1,5,5,5−ヘキサフルオロ−2,4−ヘプタンジオン等のβ−ジケトン化合物等が挙げられる。これらのケトン化合物は、単独で又は2種以上を使用してもよい。
Examples of the ketone compound include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, and methyl-n-hexyl. Monoketone compounds such as ketone, di-i-butyl ketone, trimethylnonanone, cyclohexanone, 2-hexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, fencheon;
Acetylacetone, 2,4-hexanedione, 2,4-heptanedione, 3,5-heptanedione, 2,4-octanedione, 3,5-octanedione, 2,4-nonanedione, 3,5-nonanedione, 5 -Methyl-2,4-hexanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, 1,1,1,5,5,5-hexafluoro-2,4-heptanedione, etc. Β-diketone compounds and the like. These ketone compounds may be used alone or in combination of two or more.

上記アミド化合物としては、例えばホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン、N−ホルミルモルホリン、N−ホルミルピペリジン、N−ホルミルピロリジン、N−アセチルモルホリン、N−アセチルピペリジン、N−アセチルピロリジン等が挙げられる。これらアミド化合物は、単独で又は2種以上を使用してもよい。   Examples of the amide compound include formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-ethyl. Acetamide, N, N-diethylacetamide, N-methylpropionamide, N-methylpyrrolidone, N-formylmorpholine, N-formylpiperidine, N-formylpyrrolidine, N-acetylmorpholine, N-acetylpiperidine, N-acetylpyrrolidine, etc. Is mentioned. These amide compounds may be used alone or in combination of two or more.

エステル化合物としては、例えばジエチルカーボネート、炭酸エチレン、炭酸プロピレン、炭酸ジエチル、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢
酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。これらエステル化合物は、単独で又は2種以上を使用してもよい。
Examples of the ester compound include diethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, γ-valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, and i-acetate. -Butyl, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-acetate -Nonyl, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diacetate Ethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, diethylene ether Glycol acetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-lactate Examples include amyl, diethyl malonate, dimethyl phthalate, and diethyl phthalate. These ester compounds may be used alone or in combination of two or more.

その他の非プロトン性化合物としては、例えばアセトニトリル、ジメチルスルホキシド、N,N,N’,N’−テトラエチルスルファミド、ヘキサメチルリン酸トリアミド、N−メチルモルホロン、N−メチルピロール、N−エチルピロール、N−メチル−Δ3−ピロリン、N−メチルピペリジン、N−エチルピペリジン、N,N−ジメチルピペラジン、N−メチルイミダゾール、N−メチル−4−ピペリドン、N−メチル−2−ピペリドン、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチルテトラヒドロ−2(1H)−ピリミジノン等が挙げられる。これら溶媒のうち、多価アルコール化合物、多価アルコール化合物の部分エーテル、又はエステル化合物が特に好ましい。   Examples of other aprotic compounds include acetonitrile, dimethyl sulfoxide, N, N, N ′, N′-tetraethylsulfamide, hexamethylphosphoric triamide, N-methylmorpholone, N-methylpyrrole, and N-ethyl. Pyrrole, N-methyl-Δ3-pyrroline, N-methylpiperidine, N-ethylpiperidine, N, N-dimethylpiperazine, N-methylimidazole, N-methyl-4-piperidone, N-methyl-2-piperidone, N- Examples include methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyltetrahydro-2 (1H) -pyrimidinone. Of these solvents, polyhydric alcohol compounds, partial ethers of polyhydric alcohol compounds, or ester compounds are particularly preferred.

他のポリオルガノシロキサンの合成に際して使用する水の量としては、原料シラン化合物の有するアルコキシ基及びハロゲン原子の総量の1モルに対して、好ましくは0.01〜100モルであり、より好ましくは0.1〜30モルであり、さらに1〜1.5モルであることが好ましい。   The amount of water used in the synthesis of the other polyorganosiloxane is preferably 0.01 to 100 mol, more preferably 0, relative to 1 mol of the total amount of alkoxy groups and halogen atoms of the starting silane compound. 0.1 to 30 mol, and preferably 1 to 1.5 mol.

他のポリオルガノシロキサンの合成に際して使用できる触媒としては、例えば金属キレート化合物、有機酸、無機酸、有機塩基、アンモニア、アルカリ金属化合物等が挙げられる。   Examples of catalysts that can be used in the synthesis of other polyorganosiloxanes include metal chelate compounds, organic acids, inorganic acids, organic bases, ammonia, and alkali metal compounds.

上記金属キレート化合物としては、例えばトリエトキシ・モノ(アセチルアセトナート)チタン、トリ−n−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−i−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−n−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−sec−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−t−ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ−n−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−i−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−n−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−sec−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−t−ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・ト
リス(アセチルアセトナート)チタン、モノ−n−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−i−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−n−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−sec−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−t−ブトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ−n−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−i−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−n−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−t−ブトキシ・モノ(エチルアセトアセテート)チ
タン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ−n−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−i−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−n−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−t−ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ−n−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−i−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−n−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−t−ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エ
チルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン等のチタンキレート化合物;
Examples of the metal chelate compound include triethoxy mono (acetylacetonato) titanium, tri-n-propoxy mono (acetylacetonato) titanium, tri-i-propoxy mono (acetylacetonato) titanium, tri-n- Butoxy mono (acetylacetonato) titanium, tri-sec-butoxy mono (acetylacetonato) titanium, tri-t-butoxy mono (acetylacetonato) titanium, diethoxybis (acetylacetonato) titanium, di- n-propoxy bis (acetylacetonato) titanium, di-i-propoxy bis (acetylacetonato) titanium, di-n-butoxy bis (acetylacetonato) titanium, di-sec-butoxy bis (acetylacetate) Natto) titanium, di-t-butoxy Su (acetylacetonato) titanium, monoethoxy-tris (acetylacetonato) titanium, mono-n-propoxy-tris (acetylacetonato) titanium, mono-i-propoxy-tris (acetylacetonato) titanium, mono-n -Butoxy-tris (acetylacetonato) titanium, mono-sec-butoxy-tris (acetylacetonato) titanium, mono-t-butoxy-tris (acetylacetonato) titanium, tetrakis (acetylacetonato) titanium, triethoxy mono (Ethyl acetoacetate) titanium, tri-n-propoxy mono (ethyl acetoacetate) titanium, tri-i-propoxy mono (ethyl acetoacetate) titanium, tri-n-butoxy mono (ethyl acetoacetate) titanium, tri -S c-butoxy mono (ethyl acetoacetate) titanium, tri-t-butoxy mono (ethyl acetoacetate) titanium, diethoxy bis (ethyl acetoacetate) titanium, di-n-propoxy bis (ethyl acetoacetate) titanium, Di-i-propoxy bis (ethyl acetoacetate) titanium, di-n-butoxy bis (ethyl acetoacetate) titanium, di-sec-butoxy bis (ethyl acetoacetate) titanium, di-t-butoxy bis ( Ethyl acetoacetate) titanium, monoethoxy tris (ethyl acetoacetate) titanium, mono-n-propoxy tris (ethyl acetoacetate) titanium, mono-i-propoxy tris (ethyl acetoacetate) titanium, mono-n-butoxy・ Tris (ethyl aceto Acetate) titanium, mono-sec-butoxy tris (ethyl acetoacetate) titanium, mono-t-butoxy tris (ethyl acetoacetate) titanium, tetrakis (ethyl acetoacetate) titanium, mono (acetylacetonate) tris (ethyl aceto) Titanium chelate compounds such as acetate) titanium, bis (acetylacetonato) bis (ethylacetoacetate) titanium, tris (acetylacetonato) mono (ethylacetoacetate) titanium;

トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−i−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−sec−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−t−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−i−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−sec−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−t−ブトキシ・ビス(アセチルアセトナー
ト)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−i−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−sec−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−t−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−i−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−sec−
ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−t−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−i−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−t−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−i−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−ブトキシ・トリス(エチ
ルアセトアセテート)ジルコニウム、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−t−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等のジルコニウムキレート化合物;
Triethoxy mono (acetylacetonato) zirconium, tri-n-propoxy mono (acetylacetonato) zirconium, tri-i-propoxy mono (acetylacetonato) zirconium, tri-n-butoxy mono (acetylacetonate) Zirconium, tri-sec-butoxy mono (acetylacetonato) zirconium, tri-t-butoxy mono (acetylacetonato) zirconium, diethoxybis (acetylacetonato) zirconium, di-n-propoxybis (acetylacetate) Nato) zirconium, di-i-propoxy bis (acetylacetonato) zirconium, di-n-butoxy bis (acetylacetonato) zirconium, di-sec-butoxy bis (acetylacetonato) ziru Ni, di-t-butoxy bis (acetylacetonato) zirconium, monoethoxy tris (acetylacetonato) zirconium, mono-n-propoxytris (acetylacetonato) zirconium, mono-i-propoxytris (acetyl) Acetonato) zirconium, mono-n-butoxy-tris (acetylacetonato) zirconium, mono-sec-butoxy-tris (acetylacetonato) zirconium, mono-t-butoxy-tris (acetylacetonato) zirconium, tetrakis (acetyl) Acetonato) zirconium, triethoxy mono (ethyl acetoacetate) zirconium, tri-n-propoxy mono (ethyl acetoacetate) zirconium, tri-i-propoxy mono (ethyl acetate) Acetate) zirconium, tri -n- butoxy mono (ethylacetoacetate) zirconium, tri -sec-
Butoxy mono (ethyl acetoacetate) zirconium, tri-t-butoxy mono (ethyl acetoacetate) zirconium, diethoxy bis (ethyl acetoacetate) zirconium, di-n-propoxy bis (ethyl acetoacetate) zirconium, di- i-propoxy bis (ethyl acetoacetate) zirconium, di-n-butoxy bis (ethyl acetoacetate) zirconium, di-sec-butoxy bis (ethyl acetoacetate) zirconium, di-t-butoxy bis (ethyl aceto) Acetate) zirconium, monoethoxy-tris (ethylacetoacetate) zirconium, mono-n-propoxy-tris (ethylacetoacetate) zirconium, mono-i-propoxy-tris (ethylacetoacetate) Zirconium, mono-n-butoxy tris (ethyl acetoacetate) zirconium, mono-sec-butoxy tris (ethyl acetoacetate) zirconium, mono-t-butoxy tris (ethyl acetoacetate) zirconium, tetrakis (ethyl) Zirconium chelates such as acetoacetate) zirconium, mono (acetylacetonato) tris (ethylacetoacetate) zirconium, bis (acetylacetonato) bis (ethylacetoacetate) zirconium, tris (acetylacetonato) mono (ethylacetoacetate) zirconium Compound;

トリス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム等のアルミニウムキレート化合物等が挙げられる。
上記有機酸としては、例えば酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等が挙げられる。
Examples thereof include aluminum chelate compounds such as tris (acetylacetonate) aluminum and tris (ethylacetoacetate) aluminum.
Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid, and gallic acid. Acid, butyric acid, meritic acid, arachidonic acid, mikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfone Examples include acids, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citric acid, tartaric acid and the like.

上記無機酸としては、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等が挙げられる。   Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.

上記有機塩基としては、例えばピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセン、テトラメチルアンモニウムハイドロオキサイド等が挙げられる。   Examples of the organic base include pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, trimethylamine, triethylamine, monoethanolamine, diethanolamine, dimethylmonoethanolamine, monomethyldiethanolamine, triethanolamine, diazabicycloocrane, diazabicyclo. Nonane, diazabicycloundecene, tetramethylammonium hydroxide and the like can be mentioned.

上記アルカリ金属化合物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等が挙げられる。これら触媒は、単独で又は2種以上を使用してもよい。   Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like. These catalysts may be used alone or in combination of two or more.

これら触媒のうち、金属キレート化合物、有機酸、無機酸が好ましい。金属キレート化合物としては、チタンキレート化合物がより好ましい。   Of these catalysts, metal chelate compounds, organic acids, and inorganic acids are preferred. As the metal chelate compound, a titanium chelate compound is more preferable.

触媒の使用量は、原料シラン化合物100質量部に対して好ましくは0.001〜10質量部であり、より好ましくは0.001〜1質量部である。   The amount of the catalyst to be used is preferably 0.001 to 10 parts by mass, more preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the raw material silane compound.

触媒は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に予め添加しておいてもよく、又は添加される水中に溶解又は分散させておいてもよい。   The catalyst may be added in advance to a raw material silane compound or a solution in which a silane compound is dissolved in an organic solvent, or may be dissolved or dispersed in added water.

他のポリオルガノシロキサンの合成に際して添加される水は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に、断続的又は連続的に添加することが
できる。
Water added in the synthesis of another polyorganosiloxane can be added intermittently or continuously in the raw material silane compound or in a solution obtained by dissolving the silane compound in an organic solvent.

他のポリオルガノシロキサンの合成の際の反応温度としては、好ましくは0〜100℃であり、より好ましくは15〜80℃である。反応時間は好ましくは0.5〜24時間であり、より好ましくは1〜8時間である。   The reaction temperature in the synthesis of other polyorganosiloxane is preferably 0 to 100 ° C, more preferably 15 to 80 ° C. The reaction time is preferably 0.5 to 24 hours, more preferably 1 to 8 hours.

当該液晶配向剤が、[A]ポリオルガノシロキサン化合物とともに他の重合体を含有するものである場合、他の重合体の含有量としては、[A]ポリオルガノシロキサン化合物100質量部に対して10,000質量部以下であることが好ましい。他の重合体のより好ましい含有量は、他の重合体の種類により異なる。   When the liquid crystal aligning agent contains another polymer together with the [A] polyorganosiloxane compound, the content of the other polymer is 10 with respect to 100 parts by mass of the [A] polyorganosiloxane compound. 000 parts by mass or less is preferable. The more preferable content of the other polymer varies depending on the type of the other polymer.

当該液晶配向剤が、[A]ポリオルガノシロキサン化合物及び[B]重合体を含有する場合における両者の好ましい使用割合としては、[A]ポリオルガノシロキサン化合物100質量部に対して[B]重合体の合計量100〜5,000質量部が好ましく、200〜3,000質量部がより好ましい。   When the liquid crystal aligning agent contains the [A] polyorganosiloxane compound and the [B] polymer, the preferred use ratio of both is [B] the polymer with respect to 100 parts by mass of the [A] polyorganosiloxane compound. The total amount of is preferably 100 to 5,000 parts by mass, more preferably 200 to 3,000 parts by mass.

一方、当該液晶配向剤が、[A]ポリオルガノシロキサン化合物及び他のポリオルガノシロキサンを含有するものである場合における両者の好ましい使用割合は、[A]ポリオルガノシロキサン化合物100質量部に対する他のポリオルガノシロキサンの量として100〜2,000質量部である。   On the other hand, when the liquid crystal aligning agent contains [A] a polyorganosiloxane compound and another polyorganosiloxane, the preferred use ratio of both is the ratio of the other polyorganosiloxane compound to 100 parts by weight of the other polyorganosiloxane compound. The amount of the organosiloxane is 100 to 2,000 parts by mass.

当該液晶配向剤が、[A]ポリオルガノシロキサン化合物とともに他の重合体を含有するものである場合、他の重合体としては、[B]重合体、又は他のポリオルガノシロキサンが好ましい。   When the liquid crystal aligning agent contains another polymer together with the [A] polyorganosiloxane compound, the other polymer is preferably a [B] polymer or another polyorganosiloxane.

[硬化剤、硬化触媒及び硬化促進剤]
硬化剤及び硬化触媒は、[A]ポリオルガノシロキサン化合物の架橋反応をより強固にする目的で当該液晶配向剤に含ませることができる。硬化促進剤は、硬化剤の司る硬化反応を促進する目的で当該液晶配向剤に含ませることができる。
[Curing agent, curing catalyst and curing accelerator]
The curing agent and the curing catalyst can be included in the liquid crystal aligning agent for the purpose of strengthening the crosslinking reaction of the [A] polyorganosiloxane compound. The curing accelerator can be included in the liquid crystal aligning agent for the purpose of accelerating the curing reaction controlled by the curing agent.

硬化剤としては、エポキシ基を有する硬化性化合物、又はエポキシ基を有する化合物を含有する硬化性組成物の硬化に一般に用いられている硬化剤を用いることができる。このような硬化剤としては、例えば多価アミン、多価カルボン酸無水物、多価カルボン酸が挙げられる。   As the curing agent, a curing agent generally used for curing a curable compound having an epoxy group or a curable composition containing a compound having an epoxy group can be used. Examples of such curing agents include polyvalent amines, polyvalent carboxylic acid anhydrides, and polyvalent carboxylic acids.

多価カルボン酸無水物としては、例えばシクロヘキサントリカルボン酸の無水物及びその他の多価カルボン酸無水物が挙げられる。   Examples of the polyvalent carboxylic acid anhydride include cyclohexanetricarboxylic acid anhydride and other polyvalent carboxylic acid anhydrides.

シクロヘキサントリカルボン酸無水物としては、例えばシクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、シクロヘキサン−1,3,5−トリカルボン酸−3,5−無水物、シクロヘキサン−1,2,3−トリカルボン酸−2,3−酸無水物等が挙げられる。その他の多価カルボン酸無水物としては、例えば4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、無水こはく酸、無水マレイン酸、無水フタル酸、無水トリメリット酸、下記式(6)で表される化合物、ポリアミック酸の合成に一般に用いられるテトラカルボン酸二無水物の他、α−テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物及びこれらの水素添加物等が挙げられる。   Examples of the cyclohexanetricarboxylic acid anhydride include, for example, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1,2 and the like. , 3-tricarboxylic acid-2,3-acid anhydride and the like. Examples of other polyvalent carboxylic acid anhydrides include 4-methyltetrahydrophthalic anhydride, methylnadic acid anhydride, dodecenyl succinic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, Compound of formula (6), tetracarboxylic dianhydride generally used for the synthesis of polyamic acid, alicyclic compound having conjugated double bond such as α-terpinene, allocymene and maleic anhydride Examples include Diels-Alder reaction products and hydrogenated products thereof.

Figure 0005776152
(式(6)中、xは1〜20の整数である。)
Figure 0005776152
(In Formula (6), x is an integer of 1-20.)

硬化触媒としては、例えば6フッ化アンチモン化合物、6フッ化リン化合物、アルミニウムトリスアセチルアセトナート等を用いることができる。これらの触媒は、加熱によりエポキシ基のカチオン重合を触媒することができる。   As the curing catalyst, for example, an antimony hexafluoride compound, a phosphorus hexafluoride compound, aluminum trisacetylacetonate, or the like can be used. These catalysts can catalyze the cationic polymerization of epoxy groups by heating.

上記硬化促進剤としては、例えばイミダゾール化合物;4級リン化合物;4級アミン化合物;1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩等のジアザビシクロアルケン;オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体等の有機金属化合物;三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;塩化亜鉛、塩化第二錫等の金属ハロゲン化合物;ジシアンジアミド、アミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;4級フォスフォニウム塩等の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;アミン塩型潜在性硬化促進剤;ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等が挙げられる。   Examples of the curing accelerator include imidazole compounds; quaternary phosphorus compounds; quaternary amine compounds; diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof; octylic acid Organometallic compounds such as zinc, tin octylate and aluminum acetylacetone complexes; Boron compounds such as boron trifluoride and triphenylborate; Metal halide compounds such as zinc chloride and stannic chloride; Dicyandiamide, amines and epoxy resins High melting point dispersion type latent curing accelerators such as amine addition type accelerators such as adducts; Microcapsule type latent curing accelerators whose surface is covered with a polymer such as quaternary phosphonium salt; Amine salt type latent curing Accelerators: high temperature dissociation type thermal cationic polymerization latent curing accelerators such as Lewis acid salts and Bronsted acid salts.

[エポキシ化合物]
上記エポキシ化合物は、形成される液晶配向膜の基板表面に対する接着性を向上させる観点から、当該液晶配向剤に含ませることができる。
[Epoxy compound]
The said epoxy compound can be included in the said liquid crystal aligning agent from a viewpoint of improving the adhesiveness with respect to the substrate surface of the liquid crystal aligning film formed.

エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N,−ジグリシジル−ベンジルアミン、N,N−ジグリシジル−アミノメチルシクロヘキサンが好ましい。   Examples of the epoxy compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol diester. Glycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl -M-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ', N'-tetraglycidyl-4,4'-diaminodi Enirumetan, N, N, - diglycidyl - benzylamine, N, N-diglycidyl - aminomethyl cyclohexane are preferred.

当該液晶配向剤がエポキシ化合物を含有する場合、その含有割合としては、上記の[A]ポリオルガノシロキサン化合物と任意的に使用される他の重合体との合計100質量部に対して、好ましくは0.01〜40質量部以下、より好ましくは0.1〜30質量部である。   When the liquid crystal aligning agent contains an epoxy compound, the content is preferably 100 parts by mass with respect to a total of 100 parts by mass of the above-mentioned [A] polyorganosiloxane compound and other polymer optionally used. 0.01-40 mass parts or less, More preferably, it is 0.1-30 mass parts.

なお、当該液晶配向剤がエポキシ化合物を含有する場合、その架橋反応を効率良く起こす目的で、1−ベンジル−2−メチルイミダゾール等の塩基触媒を併用してもよい。   In addition, when the said liquid crystal aligning agent contains an epoxy compound, you may use together basic catalysts, such as 1-benzyl-2-methylimidazole, in order to raise | generate the crosslinking reaction efficiently.

[官能性シラン化合物]
官能性シラン化合物は、得られる液晶配向膜の基板との接着性を向上する目的で使用することができる。官能性シラン化合物としては、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレント
リアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、3−グリシジロキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられ、さらに特開昭63−291922号公報に記載されているテトラカルボン酸二無水物とアミノ基を有するシラン化合物との反応物等が挙げられる。
[Functional silane compounds]
The functional silane compound can be used for the purpose of improving the adhesion of the resulting liquid crystal alignment film to the substrate. Examples of the functional silane compound include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3. -Aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltri Methoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7 Triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl- 3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene ) -3-Aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane In addition, JP-A 63-2 The reaction products of the silane compound having a tetracarboxylic dianhydride and an amino group described in 1922 JP thereof.

当該液晶配向剤が官能性シラン化合物を含有する場合、その含有割合としては、上記の[A]ポリオルガノシロキサン化合物と任意的に使用される他の重合体との合計100質量部に対して、50質量部以下が好ましく、20質量部以下がより好ましい。   When the liquid crystal aligning agent contains a functional silane compound, the content ratio thereof is a total of 100 parts by mass of the above-mentioned [A] polyorganosiloxane compound and other polymer optionally used, 50 parts by mass or less is preferable, and 20 parts by mass or less is more preferable.

[界面活性剤]
界面活性剤としては、例えばノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、シリコーン界面活性剤、ポリアルキレンオキシド界面活性剤、含フッ素界面活性剤等が挙げられる。
[Surfactant]
Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, polyalkylene oxide surfactants, and fluorine-containing surfactants.

当該液晶配向剤が界面活性剤を含有する場合、その含有割合としては、液晶配向剤の全体100質量部に対して、好ましくは10質量部以下であり、より好ましくは1質量部以下である。   When the liquid crystal aligning agent contains a surfactant, the content is preferably 10 parts by mass or less, more preferably 1 part by mass or less, with respect to 100 parts by mass as a whole of the liquid crystal aligning agent.

<液晶配向剤の調製方法>
当該液晶配向剤は、上述の通り、[A]ポリオルガノシロキサン化合物を必須成分として含有し、必要に応じてその他の任意成分を含有できるが、好ましくは各成分が有機溶媒に溶解された溶液状の組成物として調製される。
<Method for preparing liquid crystal aligning agent>
As described above, the liquid crystal aligning agent contains [A] a polyorganosiloxane compound as an essential component, and may contain other optional components as necessary. Preferably, each component is dissolved in an organic solvent. It is prepared as a composition.

当該液晶配向剤を調製するために使用することのできる有機溶媒としては、特定ポリオルガノシロキサン及び任意的に使用される他の成分を溶解し、これらと反応しないものが好ましい。当該液晶配向剤に好ましく使用することのできる有機溶媒は、任意的に添加される他の重合体の種類により異なる。   As the organic solvent that can be used for preparing the liquid crystal aligning agent, those that dissolve the specific polyorganosiloxane and other components optionally used and do not react with these are preferable. The organic solvent that can be preferably used for the liquid crystal aligning agent varies depending on the type of other polymer that is optionally added.

当該液晶配向剤が、[A]ポリオルガノシロキサン化合物及び[B]重合体を含有する場合における好ましい有機溶媒としては、ポリアミック酸の合成に用いられるものとして上記に例示した有機溶媒が挙げられる。このとき、本発明のポリアミック酸の合成に用いられるものとして例示した貧溶媒を併用してもよい。これら有機溶媒は、単独で又は2種以上を使用してもよい。   Preferred organic solvents in the case where the liquid crystal aligning agent contains a [A] polyorganosiloxane compound and a [B] polymer include the organic solvents exemplified above as those used for the synthesis of polyamic acid. At this time, you may use together the poor solvent illustrated as what is used for the synthesis | combination of the polyamic acid of this invention. These organic solvents may be used alone or in combination of two or more.

一方、当該液晶配向剤が、重合体として[A]ポリオルガノシロキサン化合物のみを含有する場合、又は[A]ポリオルガノシロキサン化合物及び他のポリオルガノシロキサンを含有する場合における好ましい有機溶媒としては、例えば1−エトキシ−2−プロパノール、プロピレングリコールモノエチルエーテル、プロピレンブリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノアミルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコール、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテート、メチルカルビトール、エチルカルビトール、プロピルカルビトール、ブチルカルビトール、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸n−ヘキシル、酢酸シクロヘキシル、酢酸オクチル、酢酸アミル、酢酸イソアミル等が挙げられる。これらのうち、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチルが好ましい。   On the other hand, when the liquid crystal aligning agent contains only the [A] polyorganosiloxane compound as a polymer, or when it contains the [A] polyorganosiloxane compound and another polyorganosiloxane, a preferable organic solvent is, for example, 1-ethoxy-2-propanol, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monoacetate, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, di Propylene glycol dimethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether Ter, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monoamyl ether, ethylene glycol monohexyl ether, diethylene glycol, methyl cellosolve acetate, ethyl cellosolve acetate, propyl cellosolve acetate, butyl cellosolve acetate, methyl carbitol, ethyl carbitol, propyl carbitol Butyl carbitol, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, n-hexyl acetate, cyclohexyl acetate, octyl acetate, amyl acetate, isoacetate Mill and the like. Of these, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, and sec-pentyl acetate are preferred.

当該液晶配向剤の調製に用いられる好ましい溶媒は、他の重合体の使用の有無及びその種類に従って、上記した有機溶媒の1種以上を組み合わせて得ることができる。このような溶媒は、下記の好ましい固形分濃度において液晶配向剤に含有される各成分が析出せず、かつ液晶配向剤の表面張力が25〜40mN/mの範囲となるものである。   A preferable solvent used for the preparation of the liquid crystal aligning agent can be obtained by combining one or more of the above-described organic solvents in accordance with the presence or absence of other polymers and their types. Such a solvent is one in which each component contained in the liquid crystal aligning agent does not precipitate at the following preferable solid content concentration, and the surface tension of the liquid crystal aligning agent is in the range of 25 to 40 mN / m.

当該液晶配向剤の固形分濃度、すなわち液晶配向剤中の溶媒以外の全成分の重量が液晶配向剤の全重量に占める割合は、粘性、揮発性等を考慮して選択されるが、好ましくは1〜10質量%の範囲である。当該液晶配向剤は、基板表面に塗布され、液晶配向膜となる塗膜を形成するが、固形分濃度が1質量%以上である場合には、この塗膜の膜厚が過小となりにくくなって良好な液晶配向膜を得ることができる。一方、固形分濃度が10質量%以下の場合には、塗膜の膜厚が過大となることを抑制して良好な液晶配向膜を得ることができ、また、液晶配向剤の粘性が増大することを防止して塗布特性を良好なものとすることができる。特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に採用する方法によって異なる。例えば、スピンナー法による場合には1.5〜4.5質量%の範囲が特に好ましい。印刷法による場合には、固形分濃度を3〜9質量%の範囲とし、それによって溶液粘度を12〜50mPa・sの範囲とするのが特に好ましい。インクジェット法による場合には、固形分濃度を1〜5質量%の範囲とし、それによって溶液粘度を3〜15mPa・sの範囲とするのが特に好ましい。当該液晶配向剤を調製する際の温度は、好ましくは、0℃〜200℃、より好ましくは0℃〜40℃である。   The solid content concentration of the liquid crystal aligning agent, that is, the ratio of the weight of all components other than the solvent in the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent is selected in consideration of viscosity, volatility, etc. It is the range of 1-10 mass%. The liquid crystal aligning agent is applied to the substrate surface to form a coating film that becomes a liquid crystal aligning film. When the solid content concentration is 1% by mass or more, the film thickness of the coating film is less likely to be too small. A good liquid crystal alignment film can be obtained. On the other hand, when the solid content concentration is 10% by mass or less, it is possible to obtain an excellent liquid crystal alignment film by suppressing the film thickness of the coating film from becoming excessive, and the viscosity of the liquid crystal alignment agent increases. This can be prevented and the coating properties can be improved. The particularly preferable range of the solid content concentration varies depending on the method employed when the liquid crystal aligning agent is applied to the substrate. For example, when the spinner method is used, the range of 1.5 to 4.5% by mass is particularly preferable. In the case of the printing method, it is particularly preferable that the solid content concentration is in the range of 3 to 9% by mass, and thereby the solution viscosity is in the range of 12 to 50 mPa · s. In the case of the ink jet method, it is particularly preferable that the solid content concentration is in the range of 1 to 5% by mass, and thereby the solution viscosity is in the range of 3 to 15 mPa · s. The temperature for preparing the liquid crystal aligning agent is preferably 0 ° C to 200 ° C, more preferably 0 ° C to 40 ° C.

<液晶表示素子>
本発明の液晶表示素子は、その駆動方式に特に制限はなく、TN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等公知の各種方式に本技術を適用することが可能であり、上記液晶配向剤から形成された上記液晶配向膜を具備する。一般的に、液晶表示素子は表面に透明電極及び液晶配向膜がこの順に積層された一対の基板を備え、この一対の基板が内側に対向配設されており、この一対の基板間に液晶が充填され、周辺部がシール剤でシールされている。
<Liquid crystal display element>
The driving method of the liquid crystal display element of the present invention is not particularly limited, and the present technology is applied to various known methods such as TN, STN, IPS, VA (including VA-MVA method, VA-PVA method, etc.). The liquid crystal alignment film is formed from the liquid crystal alignment agent. In general, a liquid crystal display element includes a pair of substrates on the surface of which a transparent electrode and a liquid crystal alignment film are laminated in this order. The pair of substrates are disposed to face each other, and a liquid crystal is interposed between the pair of substrates. Filled and the periphery is sealed with a sealant.

<液晶表示素子の製造方法>
当該液晶配向剤を用いて形成される液晶表示素子は、例えば以下のようにして製造することができる。本発明に用いられる液晶配向膜は、基板上に当該液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に形成される。基板としては、例えばフロートガラス、ソーダガラス等のガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、脂環式ポリオレフィン等のプラスチックからなる透明基板を用いることができる。上記のようにして液晶配向膜が形成された基板を2枚準備し、この2枚の基板間に液晶を配置することにより、液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。
<Method for manufacturing liquid crystal display element>
The liquid crystal display element formed using the said liquid crystal aligning agent can be manufactured as follows, for example. The liquid crystal alignment film used in the present invention is formed on a substrate by applying the liquid crystal aligning agent on the substrate and then heating the coated surface. As the substrate, for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, alicyclic polyolefin, or the like can be used. A liquid crystal cell is manufactured by preparing two substrates on which a liquid crystal alignment film is formed as described above, and disposing a liquid crystal between the two substrates. In order to manufacture a liquid crystal cell, the following two methods are mentioned, for example.

第一の方法は、従来から知られている方法である。まず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより、液晶セルを製造することができる。   The first method is a conventionally known method. First, two substrates are arranged to face each other through a gap (cell gap) so that the respective liquid crystal alignment films face each other, and the peripheral portions of the two substrates are bonded together using a sealant, and the substrate surface and the sealant A liquid crystal cell can be manufactured by injecting and filling liquid crystal into the cell gap partitioned by the step, and then sealing the injection hole.

第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外光硬化性のシール材を塗布し、さらに液晶配向膜面上に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより、液晶セルを製造することができる。   The second method is a method called an ODF (One Drop Fill) method. For example, an ultraviolet light curable sealing material is applied to a predetermined location on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystal is dropped on the liquid crystal alignment film surface. The other substrate is bonded so as to face each other, and then the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant, whereby a liquid crystal cell can be manufactured.

いずれの方法による場合でも、次いで液晶セルを用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、注入時の流動配向を除去することが望ましい。そして、液晶セルの外側表面に偏光板を貼り合わせることにより、本発明の液晶表示素子を得ることができる。   In any case, it is desirable to remove the flow alignment at the time of injection by heating to a temperature at which the liquid crystal using the liquid crystal cell takes an isotropic phase and then gradually cooling to room temperature. And the liquid crystal display element of this invention can be obtained by bonding a polarizing plate on the outer surface of a liquid crystal cell.

上記シール剤としては、例えばスペーサーとしての酸化アルミニウム球及び硬化剤を含有するエポキシ樹脂等を用いることができる。   As the sealing agent, for example, an aluminum oxide sphere as a spacer and an epoxy resin containing a curing agent can be used.

上記液晶としては、例えばネマティック型液晶、スメクティック型液晶等を用いることができる。TN型液晶セル又はSTN型液晶セルの場合、ネマティック型液晶を形成する正の誘電異方性を有するものが好ましい。このような液晶としては、例えばビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶等が用いられる。また上記液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネート等のコレステリック液晶;商品名C−15、CB−15(メルク社)として販売されているようなカイラル剤;p−デシロキシベンジリデン−p−アミノ−2−メチルブチルシンナメート等の強誘電性液晶等を、さらに添加して使用することもできる。   As the liquid crystal, for example, a nematic liquid crystal, a smectic liquid crystal, or the like can be used. In the case of a TN liquid crystal cell or an STN liquid crystal cell, those having positive dielectric anisotropy for forming a nematic liquid crystal are preferable. Examples of such liquid crystals include biphenyl liquid crystals, phenyl cyclohexane liquid crystals, ester liquid crystals, terphenyl liquid crystals, biphenyl cyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, and cubane liquid crystals. It is done. In addition, cholesteric liquid crystals such as cholesteryl chloride, cholesteryl nonate, cholesteryl carbonate; chiral agents such as those sold under the trade names C-15 and CB-15 (Merck); p-decyloxybenzylidene- Ferroelectric liquid crystals such as p-amino-2-methylbutyl cinnamate can be further added and used.

一方、垂直配向型液晶セルの場合には、ネマティック型液晶を形成する負の誘電異方性を有するものが好ましい。このような液晶としては、例えばジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶等が用いられる。   On the other hand, in the case of a vertical alignment type liquid crystal cell, a cell having negative dielectric anisotropy that forms a nematic liquid crystal is preferable. As such a liquid crystal, for example, a dicyanobenzene liquid crystal, a pyridazine liquid crystal, a Schiff base liquid crystal, an azoxy liquid crystal, a biphenyl liquid crystal, and a phenylcyclohexane liquid crystal are used.

液晶セルの外側に使用される偏光板としては、特に限定されないが、ポリビニルアルコールフィルムを延伸配向させながらヨウ素を吸収させた「H膜」と呼ばれる偏光膜を酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板等が挙げられる。   The polarizing plate used outside the liquid crystal cell is not particularly limited, but is a polarizing plate in which a polarizing film called an “H film” in which iodine is absorbed while stretching and aligning a polyvinyl alcohol film is sandwiched between cellulose acetate protective films, Or the polarizing plate etc. which consist of H film | membrane itself are mentioned.

かくして製造された本発明の液晶表示素子は、液晶の応答速度、表示特性に加え、配向性や電圧保持率、残像特性等の諸性能に優れるものである。   The liquid crystal display element of the present invention thus produced is excellent in various performances such as orientation, voltage holding ratio, and afterimage characteristics in addition to the response speed and display characteristics of the liquid crystal.

<配向方位の異なる2以上の領域を有する液晶表示素子>
当該液晶表示素子は、液晶配向モードが垂直型であり、かつ配向方位が異なる2以上の領域を有しており、基本構造は上記液晶表示素子と同様である。この配向方法が異なる2以上の領域を有する手段としては、特に限定されず、例えばパターニングされた透明電極を用いる手段や、液晶配向膜のラビング処理等による配向分割手段等が挙げられる。かかる液晶表示素子では、TN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等の駆動モードにおいても好適に適用でき、さらにはコントラストが向上し、また高速応答性もより向上する。
<Liquid crystal display element having two or more regions having different orientation directions>
The liquid crystal display element has two or more regions in which the liquid crystal alignment mode is vertical and the alignment directions are different, and the basic structure is the same as that of the liquid crystal display element. The means having two or more regions having different alignment methods is not particularly limited, and examples thereof include a means using a patterned transparent electrode and an alignment dividing means by a rubbing treatment of a liquid crystal alignment film. Such a liquid crystal display device can be suitably applied in drive modes such as TN, STN, IPS, and VA (including VA-MVA method, VA-PVA method, etc.), further improves contrast, and has high-speed response. More improved.

上記パターニングされた透明電極の製造方法としては、当該液晶配向剤を好ましくはオフセット印刷法、スピンコート法又はインクジェット印刷法により塗布し、次いで、各塗布面を加熱することにより塗膜を形成する。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム−酸化スズ(In−SnO)からなるITO膜等を用いることができる。次いで、例えばパターンなしの透明導電膜を形成した後フォト・エッチングによりパターンを形成する方法、透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法等によりパターンを形成する。 As a method for producing the patterned transparent electrode, the liquid crystal aligning agent is preferably applied by an offset printing method, a spin coating method, or an ink jet printing method, and then each coated surface is heated to form a coating film. As a transparent conductive film provided on one surface of a substrate, a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ), etc. Can be used. Next, for example, a pattern is formed by a method of forming a pattern by photo-etching after forming a transparent conductive film without a pattern, a method using a mask having a desired pattern when forming the transparent conductive film, and the like.

具体的なパターニングされた透明電極としては、図1〜図3に示すものが挙げられる。図1を参照しつつパターニングされた透明電極を説明する。図1(b)を参照すると、透明基板3は複数の領域に区画されたITO膜1を有し、スリット2が複数設けられパターニングされている。スリット2の幅w1としては、例えば10μm程度であり、スリット2間の距離w2としては例えば35μm程度である。この場合、図1(a)に示すITOラインW1は、9mm(35μm幅で200本)程度となる。透明基板の材料としては、例えばガラス等が挙げられる。なお、図1に示すパターニングされた透明電極を用いて液晶表示素子を製造する場合、かかるパターニングされた透明電極を備える基板を2枚準備し、この2枚の基板を対向させたときにスリット2同士が重ならないように(スリット2が互いにずれて、ITO膜1と接するように)配置することを要する。   Specific examples of the patterned transparent electrode include those shown in FIGS. The patterned transparent electrode will be described with reference to FIG. Referring to FIG. 1B, the transparent substrate 3 has an ITO film 1 partitioned into a plurality of regions, and a plurality of slits 2 are provided and patterned. The width w1 of the slit 2 is, for example, about 10 μm, and the distance w2 between the slits 2 is, for example, about 35 μm. In this case, the ITO line W1 shown in FIG. 1A is about 9 mm (200 lines with a width of 35 μm). Examples of the material for the transparent substrate include glass. In the case of manufacturing a liquid crystal display element using the patterned transparent electrode shown in FIG. 1, two substrates provided with the patterned transparent electrode are prepared, and the slit 2 is formed when the two substrates are opposed to each other. It is necessary to arrange them so that they do not overlap each other (so that the slits 2 are displaced from each other and are in contact with the ITO film 1).

液晶配向膜の配向分割手段としては、例えば上述の「液晶表示素子の製造方法」と同様に操作して液晶配向膜を有する基板を一対(2枚)作成し、これらの基板の一画素に2以上の配向方位が異なる領域を有するように、マスクを介してラビング処理する方法が挙げられる。マスクの形態としては、一つの領域の大きさに相当する穴を有する一画素を4分割するマスク(画素サイズの1/4のマトリックスで、一つ置きで穴が設けられており、その穴が対角線に並んでいるようなマスク)が挙げられる。   As the alignment dividing means of the liquid crystal alignment film, for example, a pair (two sheets) of substrates having the liquid crystal alignment film is prepared by operating in the same manner as in the above-mentioned “Liquid Crystal Display Device Manufacturing Method”. A method of rubbing through a mask so as to have regions having different orientation directions as described above can be mentioned. As a form of the mask, a mask that divides a pixel having a hole corresponding to the size of one area into four (a matrix of 1/4 of the pixel size, every other hole is provided, and the hole is Masks arranged in a diagonal line).

本発明の配向方位の異なる2以上の領域を有する液晶表示素子の製造に用いられる液晶配向剤は、上記式(3)で表される基を有する化合物を含有することが好ましい。   It is preferable that the liquid crystal aligning agent used for manufacture of the liquid crystal display element which has two or more area | regions from which the orientation orientation differs of this invention contains the compound which has group represented by the said Formula (3).

式(3)中、Rは二重結合、三重結合、エーテル結合、エステル結合又は酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。これらの符合の詳細な説明については、[A]ポリオルガノシロキサン化合物の説明の項で行っているので、ここでは省略する。 In Formula (3), R 2 is a linking group containing any of a double bond, a triple bond, an ether bond, an ester bond, or an oxygen atom. R 3 is a group having at least two monocyclic structures. a is an integer of 0-1. Detailed explanations of these symbols are omitted in the description of [A] polyorganosiloxane compound, and are omitted here.

<ポリオルガノシロキサン化合物>
本発明のポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンに由来する部分と、下記式(1)で表されるカルボキシル基を有する化合物、又は式(1)のRが下記式(2)で表されるカルボキシル基を有する化合物に由来する部分とを有する。当該ポリオルガノシロキサン化合物の詳細な説明は、当該液晶配向剤に含まれる[A]ポリオルガノシロキサン化合物の説明の項で行っているので、ここでは省略する。当該ポリオルガノシロキサン化合物は配向性や高速応答性、電圧特性に加え残像特性等の諸性能を備える液晶表示素子を構成するための液晶配向剤に好適に用いることができる。
<Polyorganosiloxane compound>
The polyorganosiloxane compound of the present invention is a compound derived from a polyorganosiloxane having an epoxy group and a compound having a carboxyl group represented by the following formula (1), or R 3 of the formula (1) is represented by the following formula (2 And a portion derived from a compound having a carboxyl group represented by: Since the detailed description of the polyorganosiloxane compound is given in the description of [A] polyorganosiloxane compound contained in the liquid crystal aligning agent, it is omitted here. The polyorganosiloxane compound can be suitably used as a liquid crystal aligning agent for constituting a liquid crystal display device having various properties such as alignment characteristics, high-speed response, voltage characteristics, and afterimage characteristics.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

以下の実施例において得られたエポキシ基を有するポリオルガノシロキサン及び[A]ポリオルガノシロキサン化合物の重量平均分子量(Mw)は、下記仕様のGPCにより測定したポリスチレン換算値である。
カラム:東ソー社、TSKgelGRCXLII
溶媒:テトラヒドロフラン
温度:40℃
圧力:68kgf/cm
なお、以下の実施例において用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの原料化合物及び重合体の合成を必要に応じて繰り返すことにより確保した。
The weight average molecular weight (Mw) of the polyorganosiloxane having an epoxy group and the [A] polyorganosiloxane compound obtained in the following examples is a polystyrene conversion value measured by GPC having the following specifications.
Column: Tosoh Corporation, TSKgelGRCXLII
Solvent: Tetrahydrofuran Temperature: 40 ° C
Pressure: 68 kgf / cm 2
In addition, the required amount of the raw material compound and the polymer used in the following examples was ensured by repeating the synthesis of the raw material compound and the polymer on the synthetic scale shown in the following synthesis examples as necessary.

<エポキシ基を有するポリオルガノシロキサンの合成>
[合成例1]
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒及び水を留去することにより、エポキシ基を有するポリオルガノシロキサンを粘調な透明液体として得た。
このエポキシ基を有するポリオルガノシロキサンについて、H−NMR分析を行なったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。
<Synthesis of polyorganosiloxane having epoxy group>
[Synthesis Example 1]
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (ECETS), 500 g of methyl isobutyl ketone and 10.0 g of triethylamine were added. Charged and mixed at room temperature. Next, 100 g of deionized water was dropped from the dropping funnel over 30 minutes, and the mixture was reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2% by mass aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to give a polyorgano having an epoxy group. Siloxane was obtained as a viscous transparent liquid.
As a result of 1 H-NMR analysis of the polyorganosiloxane having an epoxy group, a peak based on the epoxy group was obtained in the vicinity of chemical shift (δ) = 3.2 ppm according to the theoretical intensity. It was confirmed that no side reaction occurred.

[合成例2〜3]
仕込み原料を下記表1に示すとおりとした以外は、合成例1と同様に操作してエポキシ基を有するポリオルガノシロキサンをそれぞれ粘稠な透明液体として得た。合成例1〜3で得られたエポキシ基を有するポリオルガノシロキサンのMw及びエポキシ当量を表1にあわせて示す。なお、表1における原料シラン化合物の略称は以下の意味である。
ECETS:2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
MTMS:メチルトリメトキシシラン
PTMS:フェニルトリメトキシシラン
[Synthesis Examples 2-3]
A polyorganosiloxane having an epoxy group was obtained as a viscous transparent liquid in the same manner as in Synthesis Example 1 except that the raw materials used were as shown in Table 1 below. Table 1 shows the Mw and epoxy equivalent of the polyorganosiloxane having an epoxy group obtained in Synthesis Examples 1 to 3. In addition, the abbreviation of the raw material silane compound in Table 1 has the following meaning.
ECETS: 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane MTMS: methyltrimethoxysilane PTMS: phenyltrimethoxysilane

Figure 0005776152
Figure 0005776152

<特定カルボン酸の合成>
下記反応スキームに従い特定カルボン酸1を合成した。
<Synthesis of specific carboxylic acid>
Specific carboxylic acid 1 was synthesized according to the following reaction scheme.

Figure 0005776152
Figure 0005776152

[合成例4]
冷却管を備えた500mLの三口フラスコに4−シアノ−4’−ヒドロキシビフェニル6.3g、11−ブロモウンデカン酸メチル10g、炭酸カリウム14.2g、N,N−ジメチルホルムアミド200mLを加え、160℃で5時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を水500mLに投入し、混合撹拌した。析出した白色固体をろ別し、水で更に洗浄した。得られた固体を80℃で真空乾燥することで、化合物1を11g得た。
[Synthesis Example 4]
To a 500 mL three-necked flask equipped with a condenser tube was added 6.3 g of 4-cyano-4′-hydroxybiphenyl, 10 g of methyl 11-bromoundecanoate, 14.2 g of potassium carbonate, and 200 mL of N, N-dimethylformamide at 160 ° C. The mixture was heated and stirred for 5 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. The reaction solution was put into 500 mL of water and mixed and stirred. The precipitated white solid was filtered off and further washed with water. The obtained solid was vacuum dried at 80 ° C. to obtain 11 g of Compound 1.

[合成例5]
次に、冷却管を備えた200mLの三口フラスコに、化合物1を10g、水酸化リチウム・1水和物1.6g、メタノール30mL、水15mLを加え、80℃で4時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を撹拌した状態で、希塩酸を反応溶液にゆっくり滴下した。析出固体をろ過し、水、エタノールの順で洗浄した。得られた固体を80℃で真空乾燥することで、特定カルボン酸1を8g得た。
[Synthesis Example 5]
Next, 10 g of Compound 1, 1.6 g of lithium hydroxide monohydrate, 30 mL of methanol, and 15 mL of water were added to a 200 mL three-necked flask equipped with a condenser, and the mixture was heated and stirred at 80 ° C. for 4 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. While stirring the reaction solution, dilute hydrochloric acid was slowly added dropwise to the reaction solution. The precipitated solid was filtered and washed with water and ethanol in this order. The obtained solid was vacuum dried at 80 ° C. to obtain 8 g of the specific carboxylic acid 1.

下記反応スキームに従い特定カルボン酸2を合成した。   Specific carboxylic acid 2 was synthesized according to the following reaction scheme.

Figure 0005776152
Figure 0005776152

[合成例6]
冷却管を備えた500mLの三口フラスコに4−シアノ−4’−ヒドロキシビフェニル15g、エチレンカーボネート13.5g、テトラブチルアンモニウムブロミド(TBAB)2.5g、N,N−ジメチルホルムアミド300mLを加え、150℃で9時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を酢酸エチル300mL、1N−水酸化ナトリウム水溶液100mLの混合溶液で分液洗浄した。有機層を抽出した後、更に1N−水酸化ナトリウム水溶液100mL、水100mLの順で分液洗浄した。有機層を硫酸マグネシウムで乾燥後、有機溶媒を留去した。得られた固体を真空乾燥後、エタノール100mL/ヘキサン250mLで再結晶することにより、化合物2を13.1g得た。
[Synthesis Example 6]
To a 500 mL three-necked flask equipped with a condenser tube was added 15 g of 4-cyano-4′-hydroxybiphenyl, 13.5 g of ethylene carbonate, 2.5 g of tetrabutylammonium bromide (TBAB), and 300 mL of N, N-dimethylformamide, and 150 ° C. And stirred for 9 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. The reaction solution was separated and washed with a mixed solution of 300 mL of ethyl acetate and 100 mL of 1N sodium hydroxide aqueous solution. After extracting the organic layer, it was further separated and washed in the order of 100 mL of 1N sodium hydroxide aqueous solution and 100 mL of water. The organic layer was dried over magnesium sulfate, and then the organic solvent was distilled off. The obtained solid was vacuum-dried and then recrystallized with 100 mL of ethanol / 250 mL of hexane to obtain 13.1 g of Compound 2.

[合成例7]
冷却管、滴下漏斗を備えた200mLの三口フラスコに化合物2を12g、4−クロロベンゼンスルホニルクロリド12.7g、脱水塩化メチレン60mLを加え混合した。氷浴で反応溶液を冷却した状態で、トリエチルアミン6.6gの脱水塩化メチレン10mL溶液を10分かけて滴下した。氷浴状態のまま、30分撹拌し、室温に戻して更に6時間撹拌した。反応溶液にクロロホルム150mLを加え、水100mLで4回分液洗浄を行った。抽出した有機層を硫酸マグネシウムで乾燥し、有機溶媒を留去した。得られた固体をエタノールで洗浄することで化合物3を16.1g得た。
[Synthesis Example 7]
To a 200 mL three-necked flask equipped with a condenser and a dropping funnel, 12 g of Compound 2, 12.7 g of 4-chlorobenzenesulfonyl chloride, and 60 mL of dehydrated methylene chloride were added and mixed. While the reaction solution was cooled in an ice bath, a solution of triethylamine (6.6 g) in dehydrated methylene chloride (10 mL) was added dropwise over 10 minutes. The mixture was stirred for 30 minutes in the ice bath state, returned to room temperature, and further stirred for 6 hours. Chloroform 150mL was added to the reaction solution, and liquid separation washing | cleaning was performed 4 times with water 100mL. The extracted organic layer was dried over magnesium sulfate, and the organic solvent was distilled off. 16.1g of compound 3 was obtained by wash | cleaning the obtained solid with ethanol.

[合成例8]
冷却管を備えた300mLの三口フラスコに化合物3を15g、4−ヒドロキシ安息香酸メチル11g、炭酸カリウム12.5g、N,N−ジメチルホルムアミド180mLを加え、80℃で9時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。応溶液を水500mLに投入し、混合撹拌した。析出した白色固体をろ別し、エタノールで更に洗浄した。得られた固体を80℃で真空乾燥することで、化合物4を10g得た。
[Synthesis Example 8]
15 g of compound 3, 11 g of methyl 4-hydroxybenzoate, 12.5 g of potassium carbonate, and 180 mL of N, N-dimethylformamide were added to a 300 mL three-necked flask equipped with a condenser, and the mixture was heated and stirred at 80 ° C. for 9 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. The reaction solution was poured into 500 mL of water and mixed and stirred. The precipitated white solid was filtered off and further washed with ethanol. The obtained solid was vacuum-dried at 80 ° C. to obtain 10 g of Compound 4.

[合成例9]
冷却管を備えた100mLの三口フラスコに、化合物4を9.5g、水酸化リチウム・1水和物1.6g、メタノール30mL、テトラヒドロフラン15mL、水15mLを加え、80℃で4時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を撹拌した状態で、希塩酸を反応溶液にゆっくり滴下した。析出固体をろ過し、水、エタノールの順で洗浄した。得られた固体を80℃で真空乾燥することで、特定カルボン酸2を9g得た。
[Synthesis Example 9]
To a 100 mL three-necked flask equipped with a condenser tube, 9.5 g of compound 4, 1.6 g of lithium hydroxide monohydrate, 30 mL of methanol, 15 mL of tetrahydrofuran, and 15 mL of water were added and stirred with heating at 80 ° C. for 4 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. While stirring the reaction solution, dilute hydrochloric acid was slowly added dropwise to the reaction solution. The precipitated solid was filtered and washed with water and ethanol in this order. The obtained solid was vacuum dried at 80 ° C. to obtain 9 g of the specific carboxylic acid 2.

下記反応スキームに従い特定カルボン酸3を合成した。   Specific carboxylic acid 3 was synthesized according to the following reaction scheme.

Figure 0005776152
Figure 0005776152

[合成例10]
合成例4において、4−シアノ−4’−ヒドロキシビフェニルの代わりに2、3、5、6−テトラフルオロ−4−(ペンタフルオロフェニル)フェノールを10.7g用いることで化合物5を13.7g得た。
[Synthesis Example 10]
In Synthesis Example 4, 13.7 g of Compound 5 was obtained by using 10.7 g of 2,3,5,6-tetrafluoro-4- (pentafluorophenyl) phenol instead of 4-cyano-4′-hydroxybiphenyl. It was.

[合成例11]
合成例5において、化合物1の代わりに化合物5を13.5g用いることで、特定カルボン酸3を11.2g得た。
[Synthesis Example 11]
In Synthesis Example 5, 13.5 g of the specific carboxylic acid 3 was obtained by using 13.5 g of the compound 5 instead of the compound 1.

下記反応スキームに従い特定カルボン酸4を合成した。   Specific carboxylic acid 4 was synthesized according to the following reaction scheme.

Figure 0005776152
Figure 0005776152

[合成例12]
合成例6において、4−シアノ−4’−ヒドロキシビフェニルの代わりに2、3、5、6−テトラフルオロ−4−(ペンタフルオロフェニル)フェノールを25.5g用いることで、化合物6を23.1g得た。
[Synthesis Example 12]
In Synthesis Example 6, 25.5 g of 2,3,5,6-tetrafluoro-4- (pentafluorophenyl) phenol was used in place of 4-cyano-4′-hydroxybiphenyl to obtain 23.1 g of compound 6. Obtained.

[合成例13]
合成例7において化合物2の代わりに化合物6を18.9g用いることで、化合物7を24.1g得た。
[Synthesis Example 13]
In Synthesis Example 7, 18.9 g of Compound 6 was used instead of Compound 2 to obtain 24.1 g of Compound 7.

[合成例14]
合成例8において化合物3の代わりに化合物7を20g用いることで、化合物8を15.4g得た。
[Synthesis Example 14]
By using 20 g of compound 7 instead of compound 3 in Synthesis Example 8, 15.4 g of compound 8 was obtained.

[合成例15]
合成例9において化合物4の代わりに化合物8を13g用いることで、特定カルボン酸4を11.4g得た。
[Synthesis Example 15]
In Synthesis Example 9, 11.4 g of the specific carboxylic acid 4 was obtained by using 13 g of the compound 8 instead of the compound 4.

下記反応スキームに従い特定カルボン酸5を合成した。   Specific carboxylic acid 5 was synthesized according to the following reaction scheme.

Figure 0005776152
Figure 0005776152

[合成例16]
特定カルボン酸1の合成と同様にしてメチレン基の数を10から5へ変更した特定カルボン酸5を15g合成した。
[Synthesis Example 16]
15 g of the specific carboxylic acid 5 in which the number of methylene groups was changed from 10 to 5 was synthesized in the same manner as the synthesis of the specific carboxylic acid 1.

<[A]ポリオルガノシロキサン化合物の合成>
[実施例1]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を5.0g、上記式(5)で表される化合物の一つとして例示した式(5−5)で表される4−オクチルオキシ安息香酸3.3g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、該溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−1を白色粉末として14.5g得た。[A]ポリオルガノシロキサン化合物A−1のMwは6,500であった。
<[A] Synthesis of polyorganosiloxane compound>
[Example 1]
In a 100 mL three-necked flask, 9.8 g of the polyorganosiloxane having an epoxy group obtained in Synthesis Example 1 above, 28 g of methyl isobutyl ketone, 5.0 g of the specific carboxylic acid 1 obtained in Synthesis Example 5 above, the above formula (5) 80 g of 4-octyloxybenzoic acid represented by the formula (5-5) and 0.20 g of UCAT 18X (quaternary amine salt of San Apro) exemplified as one of the compounds represented by For 12 hours. After completion of the reaction, reprecipitation with methanol was performed, and the precipitate was dissolved in ethyl acetate to obtain a solution. The solution was washed with water three times, and then the solvent was distilled off to remove [A] polyorganosiloxane compound A- 14.5 g of 1 was obtained as a white powder. [A] Mw of the polyorganosiloxane compound A-1 was 6,500.

[実施例2]
特定カルボン酸1の代わりに合成例9で得た特定カルボン酸2を4g用いたこと以外は実施例1と同様に操作して、[A]ポリオルガノシロキサン化合物A−2の白色粉末を12.8g得た。A−2のMwは、6,000であった。
[Example 2]
Except that 4 g of the specific carboxylic acid 2 obtained in Synthesis Example 9 was used in place of the specific carboxylic acid 1, the same operation as in Example 1 was carried out to obtain [A] a white powder of the polyorganosiloxane compound A-2. 8 g was obtained. The Mw of A-2 was 6,000.

[実施例3]
特定カルボン酸1の代わりに合成例11で得た特定カルボン酸3を6.8g用いたこと以外は実施例1と同様に操作して、[A]ポリオルガノシロキサン化合物A−3の白色粉末を14.7g得た。A−3のMwは8,100であった。
[Example 3]
A white powder of [A] polyorganosiloxane compound A-3 was prepared in the same manner as in Example 1 except that 6.8 g of the specific carboxylic acid 3 obtained in Synthesis Example 11 was used instead of the specific carboxylic acid 1. 14.7 g was obtained. The Mw of A-3 was 8,100.

[実施例4]
特定カルボン酸1の代わりに合成例15で得た特定カルボン酸4を5.6g用いたこと以外は実施例1と同様に[A]ポリオルガノシロキサン化合物の合成を行った。その結果、[A]ポリオルガノシロキサン化合物A−4の白色粉末を15.0g得た。A−4のMwは7,500であった。
[Example 4]
[A] The polyorganosiloxane compound was synthesized in the same manner as in Example 1 except that 5.6 g of the specific carboxylic acid 4 obtained in Synthesis Example 15 was used instead of the specific carboxylic acid 1. As a result, 15.0 g of white powder of [A] polyorganosiloxane compound A-4 was obtained. The Mw of A-4 was 7,500.

[実施例5]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を10g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−5を白色粉末として16.0g得た。A−5のMwは8,500であった。
[Example 5]
In a 100 mL three-necked flask, 9.8 g of polyorganosiloxane having an epoxy group obtained in Synthesis Example 1 above, 28 g of methyl isobutyl ketone, 10 g of the specific carboxylic acid 1 obtained in Synthesis Example 5 above, and UCAT 18X (San Apro 4) Secondary amine salt) 0.20 g was charged and stirred at 80 ° C. for 12 hours. After completion of the reaction, reprecipitation was carried out with methanol, the precipitate was dissolved in ethyl acetate, this solution was washed with water three times, and then the solvent was distilled off to obtain [A] polyorganosiloxane compound A-5 in white. 16.0 g was obtained as a powder. The Mw of A-5 was 8,500.

[実施例6]
特定カルボン酸1の代わりに合成例16で得た特定カルボン酸5を4.1g用いたこと以外は実施例1と同様に操作して[A]ポリオルガノシロキサン化合物A−6の白色粉末を12.4g得た。A−6のMwは6,200であった。
[Example 6]
A white powder of [A] polyorganosiloxane compound A-6 was prepared in the same manner as in Example 1 except that 4.1 g of the specific carboxylic acid 5 obtained in Synthesis Example 16 was used instead of the specific carboxylic acid 1. .4 g was obtained. The Mw of A-6 was 6,200.

[実施例7]
4−オクチルオキシ安息香酸の代わりに上記式(5)で表される化合物の一つとして例示した式(5−7)で表される4−(4−ペンチルシクロヘキシル)安息香酸を3.6g用いたこと以外は実施例1と同様に操作して、[A]ポリオルガノシロキサン化合物A−7の白色粉末を13.4g得た。A−7のMwは7,900であった。
[Example 7]
For 3.6 g of 4- (4-pentylcyclohexyl) benzoic acid represented by the formula (5-7) exemplified as one of the compounds represented by the above formula (5) instead of 4-octyloxybenzoic acid 13.4 g of a white powder of [A] polyorganosiloxane compound A-7 was obtained in the same manner as in Example 1 except for the above. The Mw of A-7 was 7,900.

[実施例8]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を8.0g、上記式(5−7)で表される4−(4−ペンチルシクロヘキシル)安息香酸1.4g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−8を白色粉末として13.9g得た。A−8のMwは8,900であった。
[Example 8]
In a 100 mL three-necked flask, 9.8 g of the polyorganosiloxane having an epoxy group obtained in Synthesis Example 1 above, 28 g of methyl isobutyl ketone, 8.0 g of the specific carboxylic acid 1 obtained in Synthesis Example 5 above, 7) 4- (4-pentylcyclohexyl) benzoic acid represented by 1.4 g and UCAT 18X (quaternary amine salt of San Apro) 0.20 g were charged and stirred at 80 ° C. for 12 hours. After completion of the reaction, reprecipitation was carried out with methanol, the precipitate was dissolved in ethyl acetate, this solution was washed with water three times, and the solvent was distilled off to obtain [A] polyorganosiloxane compound A-8 in white. 13.9 g was obtained as a powder. The Mw of A-8 was 8,900.

[実施例9]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を2.0g、上記式(5−7)で表される4−(4−ペンチルシクロヘキシル)安息香酸5.8g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、該溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−9を白色粉末として13.4g得た。A−9のMwは7,600であった。
[Example 9]
In a 100 mL three-necked flask, 9.8 g of the polyorganosiloxane having an epoxy group obtained in Synthesis Example 1 above, 28 g of methyl isobutyl ketone, 2.0 g of the specific carboxylic acid 1 obtained in Synthesis Example 5 above, 7) 4- (4-pentylcyclohexyl) benzoic acid represented by 5.8 g and UCAT 18X (quaternary amine salt of San Apro) 0.20 g were charged and stirred at 80 ° C. for 12 hours. After completion of the reaction, reprecipitation with methanol was performed, and the precipitate was dissolved in ethyl acetate to obtain a solution. The solution was washed with water three times, and then the solvent was distilled off to remove [A] polyorganosiloxane compound A- 13.4 g of 9 was obtained as white powder. The Mw of A-9 was 7,600.

[実施例10]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を8.0g、上記式(5−6)で表されるカルボン酸誘導体2.6g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−10を白色粉末として15.5g得た。A−10のMwは9,200であった。
[Example 10]
In a 100 mL three-necked flask, 9.8 g of the polyorganosiloxane having an epoxy group obtained in Synthesis Example 1 above, 28 g of methyl isobutyl ketone, 8.0 g of the specific carboxylic acid 1 obtained in Synthesis Example 5 above, 6 g of carboxylic acid derivative represented by 6) and 0.20 g of UCAT 18X (quaternary amine salt of San Apro) were charged and stirred at 80 ° C. for 12 hours. After completion of the reaction, reprecipitation was carried out with methanol, the precipitate was dissolved in ethyl acetate, this solution was washed with water three times, and then the solvent was distilled off to obtain [A] polyorganosiloxane compound A-10 in white. 15.5 g was obtained as a powder. The Mw of A-10 was 9,200.

[比較合成例1]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、4−オクチルオキシ安息香酸3.3g及びUCAT 18X(サンアプロ社の4級アミン塩)0.10gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物CA−1を白色粉末として9.6g得た。CA−1のMwは6,000であった。
<ポリアミック酸の合成>
[合成例17]
1,2,3,4−シクロブタンテトラカルボン酸二無水物19.61g(0.1モル)と4,4’−ジアミノ−2,2’−ジメチルビフェニル21.23g(0.1モル)とをN−メチル−2−ピロリドン367.6gに溶解し、室温で6時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸PA−1を35g得た。
[Comparative Synthesis Example 1]
In a 100 mL three-necked flask, 9.8 g of polyorganosiloxane having an epoxy group obtained in Synthesis Example 1 above, 28 g of methyl isobutyl ketone, 3.3 g of 4-octyloxybenzoic acid, and UCAT 18X (quaternary amine salt of San Apro) 0.10 g was charged and stirred at 80 ° C. for 12 hours. After completion of the reaction, reprecipitation was carried out with methanol, the precipitate was dissolved in ethyl acetate, this solution was washed with water three times, and then the solvent was distilled off to obtain [A] polyorganosiloxane compound CA-1 in white. As a powder, 9.6 g was obtained. The Mw of CA-1 was 6,000.
<Synthesis of polyamic acid>
[Synthesis Example 17]
19.61 g (0.1 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 21.23 g (0.1 mol) of 4,4′-diamino-2,2′-dimethylbiphenyl It was dissolved in 367.6 g of N-methyl-2-pyrrolidone and reacted at room temperature for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain 35 g of polyamic acid PA-1.

[合成例18]
2,3,5−トリカルボキシシクロペンチル酢酸二無水物22.4g(0.1モル)とシクロヘキサンビス(メチルアミン)14.23g(0.1モル)とをN−メチル−2−ピロリドン329.3gに溶解させ、60℃で6時間反応させた。次いで、反応物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸PA−2を32g得た。
[Synthesis Example 18]
2,3,5-tricarboxycyclopentylacetic acid dianhydride (22.4 g, 0.1 mol) and cyclohexanebis (methylamine) (14.23 g, 0.1 mol) were mixed with N-methyl-2-pyrrolidone (329.3 g). And reacted at 60 ° C. for 6 hours. The reaction was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain 32 g of polyamic acid PA-2.

<ポリイミドの合成>
[合成例19]
上記合成例18で得たポリアミック酸PA−2を17.5gとり、これにN−メチル−2−ピロリドン232.5g、ピリジン3.8g及び無水酢酸4.9gを添加し、120℃において4時間反応させてイミド化を行った。次いで、反応混合液を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下で15時間乾燥することにより、ポリイミドPI−1を15g得た。
<Synthesis of polyimide>
[Synthesis Example 19]
17.5 g of the polyamic acid PA-2 obtained in Synthesis Example 18 was taken, and 232.5 g of N-methyl-2-pyrrolidone, 3.8 g of pyridine and 4.9 g of acetic anhydride were added thereto, and the mixture was heated at 120 ° C. for 4 hours. It was made to react and imidation was performed. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure for 15 hours to obtain 15 g of polyimide PI-1.

[合成例20]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物19.88g、ジアミン化合物としてp−フェニレンジアミン6.83g、ジアミノジフェニルメタン3.58gと上記式(G−4)で表されるジアミン4.72gをN−メチル−2−ピロリドン140gに溶解させ、60℃で4時間反応させた。次いで、反応溶液を大過剰のメチルアルコール中に注いで反応生成物を沈澱させた。その後、メチルアルコールで洗浄し、減圧下40℃で24時間乾燥させることによりポリアミック酸32.8gを得た。得られたポリアミック30gをN−メチル−2−ピロリドン400gに溶解させ、ピリジン12.0g及び無水酢酸15.5gを添加し110℃で4時間脱水閉環させ、上記と同様にして沈殿、洗浄、減圧乾燥を行い、Mw=92,000、Mw/Mn=4.19、イミド化率79%のポリイミドPI−2を25g得た。
[Synthesis Example 20]
As tetracarboxylic dianhydride 19.88 g of 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, diamine compound 6.83 g of p-phenylenediamine, 3.58 g of diaminodiphenylmethane and the above formula (G-4) The diamine 4.72 g was dissolved in N-methyl-2-pyrrolidone 140 g and reacted at 60 ° C. for 4 hours. The reaction solution was then poured into a large excess of methyl alcohol to precipitate the reaction product. Thereafter, it was washed with methyl alcohol and dried at 40 ° C. under reduced pressure for 24 hours to obtain 32.8 g of polyamic acid. 30 g of the resulting polyamic was dissolved in 400 g of N-methyl-2-pyrrolidone, 12.0 g of pyridine and 15.5 g of acetic anhydride were added, and dehydration was carried out at 110 ° C. for 4 hours. Drying was performed to obtain 25 g of polyimide PI-2 having Mw = 92,000, Mw / Mn = 4.19, and an imidization ratio of 79%.

<液晶配向剤の調製>
[実施例11]
合成例17で得たポリアミック酸PA−1を含有する溶液を、これに含有されるポリアミック酸PA−1に換算して1,000質量部に相当する量をとり、[A]ポリオルガノシロキサン化合物A−1(100質量部)を加え、さらにN−メチル−2−ピロリドン及びブチルセロソルブを加えて、溶媒組成がN−メチル−2−ピロリドン:ブチルセロソルブ=50:50(質量比)、固形分濃度が3.0質量%の溶液とした。この溶液を孔径10.2μmのフィルターで濾過することにより、液晶配向剤S−1を調製した。
<Preparation of liquid crystal aligning agent>
[Example 11]
The solution containing the polyamic acid PA-1 obtained in Synthesis Example 17 was converted to the polyamic acid PA-1 contained therein, and an amount corresponding to 1,000 parts by mass was taken. [A] Polyorganosiloxane compound A-1 (100 parts by mass) was added, N-methyl-2-pyrrolidone and butyl cellosolve were added, the solvent composition was N-methyl-2-pyrrolidone: butyl cellosolve = 50: 50 (mass ratio), and the solid content concentration was A 3.0 mass% solution was obtained. Liquid crystal aligning agent S-1 was prepared by filtering this solution with a filter having a pore diameter of 10.2 μm.

[実施例12〜24及び比較例1]
[B]重合体としてのポリアミック酸又はポリイミド、[A]成分としてのポリオルガノシロキサン化合物の組み合わせを表2に記載のとおりとし、実施例11と同様に操作して、液晶配向剤S−2〜S−14及びCS−1を調製した。
[Examples 12 to 24 and Comparative Example 1]
[B] A combination of polyamic acid or polyimide as a polymer and a polyorganosiloxane compound as a component [A] is as shown in Table 2, and the same operation as in Example 11 was performed. S-14 and CS-1 were prepared.

[比較例2]
上記合成例20で得たポリイミドPI−2に、溶媒組成がN−メチル−2−ピロリドン:ブチルセロソルブ=70:30(質量比)となるようにN−メチル−2−ピロリドン及びブチルセロソルブをそれぞれ加えて、固形分濃度が3.0質量%の溶液とした。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤CS−2を調製した。なお、表中の「−」は該当する成分を使用しなかったことを示す。
[Comparative Example 2]
N-methyl-2-pyrrolidone and butyl cellosolve were added to the polyimide PI-2 obtained in Synthesis Example 20 so that the solvent composition was N-methyl-2-pyrrolidone: butyl cellosolve = 70: 30 (mass ratio). A solution having a solid content concentration of 3.0% by mass was obtained. Liquid crystal aligning agent CS-2 was prepared by filtering this solution with a filter having a pore size of 0.2 μm. In addition, “-” in the table indicates that the corresponding component was not used.

<液晶表示素子の製造>
上記実施例11で調製した液晶配向剤S−1を、ITO膜からなる透明電極付きガラス基板の透明電極面上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、窒素に置換したオーブン中、200℃で1時間加熱して溶媒を除去することにより、膜厚0.08μmの塗膜(液晶配向膜)を形成した。この操作を繰り返し、液晶配向膜を有する基板を一対(2枚)作成した。
<Manufacture of liquid crystal display elements>
After apply | coating the liquid crystal aligning agent S-1 prepared in the said Example 11 on the transparent electrode surface of the glass substrate with a transparent electrode which consists of an ITO film | membrane using a spinner, and prebaking for 1 minute with an 80 degreeC hotplate. Then, the coating film (liquid crystal alignment film) having a film thickness of 0.08 μm was formed by removing the solvent by heating at 200 ° C. for 1 hour in an oven substituted with nitrogen. This operation was repeated to produce a pair (two) of substrates having a liquid crystal alignment film.

上記基板のうちの1枚の液晶配向膜を有する面の外周に直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を、対向させて重ね合わせて圧着し、150℃で1時間加熱して接着剤を熱硬化した。次いで、液晶注入口より基板の間隙にネガ型液晶(メルク社、MLC−6608)を充填した後、エポキシ系接着剤で液晶注入口を封止し、さらに液晶注入時の流動配向を除くために、これを150℃で10分間加熱した後に室温まで徐冷した。   After applying an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 μm to the outer periphery of the surface having one liquid crystal alignment film of the above substrates by screen printing, the liquid crystal alignment film surfaces of the pair of substrates are made to face each other. The adhesive was heat cured by heating at 150 ° C. for 1 hour. Next, after filling the liquid crystal injection hole into the gap between the substrates with negative type liquid crystal (Merck, MLC-6608), the liquid crystal injection hole is sealed with an epoxy adhesive, and the flow alignment at the time of liquid crystal injection is removed. This was heated at 150 ° C. for 10 minutes and then gradually cooled to room temperature.

さらに、基板の外側両面に、偏光板を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより、液晶表示素子を製造した。実施例12〜24及び比較例1〜2として調製した液晶配向剤を用いて、同様に操作し液晶表示素子を製造した。   Furthermore, a liquid crystal display element was manufactured by bonding a polarizing plate on both outer surfaces of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other. Using the liquid crystal aligning agent prepared as Examples 12-24 and Comparative Examples 1-2, it operated similarly and manufactured the liquid crystal display element.

<配向方位の異なる2以上の領域を有する液晶表示素子>
[実施例25]
図1に示すパターニングされた透明電極を用いた以外は上記液晶表示素子の製造と同様に操作して、配向方位の異なる2以上の領域を有する液晶表示素子を製造した。
<Liquid crystal display element having two or more regions having different orientation directions>
[Example 25]
A liquid crystal display element having two or more regions having different orientation directions was produced in the same manner as in the production of the liquid crystal display element except that the patterned transparent electrode shown in FIG. 1 was used.

[実施例26]
上記実施例11で調整した液晶配向剤A−1を、透明電極が設けられた基板上に塗布し、さらに80℃のホットプレートで1分間プレベークを行った後、窒素に置換したオーブン中、200℃で1時間加熱して溶媒を除去することにより、膜厚0.08μmの塗膜(液晶配向膜)を形成した。この操作を繰り返し、液晶配向膜を有する基板を一対(2枚)作成した。これらの基板に一画素を4分割するマスクを介してラビング処理を施した。このように、一画素に2以上の配向方位が異なる領域を持つようにラビング処理を施した以外は、上記垂直型液液晶表示素子の製造と同様に操作して、配向方位の異なる2以上の領域を有する液晶表示素子を製造した。
[Example 26]
The liquid crystal aligning agent A-1 prepared in Example 11 was applied on a substrate provided with a transparent electrode, pre-baked for 1 minute on a hot plate at 80 ° C., and then replaced with nitrogen in an oven. A coating film (liquid crystal alignment film) having a film thickness of 0.08 μm was formed by heating at 0 ° C. for 1 hour to remove the solvent. This operation was repeated to produce a pair (two) of substrates having a liquid crystal alignment film. These substrates were rubbed through a mask that divides one pixel into four. As described above, except that the rubbing process is performed so that one pixel has regions having different orientation directions, two or more different orientation directions are operated in the same manner as in the manufacture of the vertical liquid crystal display element. A liquid crystal display element having a region was manufactured.

<評価>
製造した液晶表示素子について以下の評価を行った。結果を表2にあわせて示す。
[配向性]
上記で製造した液晶表示素子につき、電圧無印加状態における光漏れ・配向乱れの有無をバックライト照射下、目視により観察し、光漏れ・配向乱れのない場合を「○」とし、一部に光漏れ・配向乱れが存在する場合を「△」とし、全く垂直配向状態が得られていないものを「×」とした。
<Evaluation>
The manufactured liquid crystal display element was evaluated as follows. The results are shown in Table 2.
[Orientation]
For the liquid crystal display device manufactured above, the presence or absence of light leakage / alignment disturbance in the absence of applied voltage was visually observed under backlight illumination. A case where leakage / alignment disorder was present was indicated by “Δ”, and a case where no vertical alignment state was obtained was indicated by “X”.

[電圧保持率]
上記で製造した液晶表示素子に、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率(%)を測定した。測定装置は東陽テクニカ社VHR−1を使用した。
[Voltage holding ratio]
A voltage of 5 V was applied to the liquid crystal display device manufactured above for 60 microseconds with a 167 millisecond span, and then the voltage holding ratio (%) after 167 milliseconds from the release of application was measured. The measuring device used was Toyo Technica VHR-1.

[残像特性]
上記と同様にして製造した液晶表示素子につき、100℃の環境温度において直流17Vの電圧を20時間印加し、直流電圧を切った直後の液晶セル内に残留した電圧(残留DC電圧)を、フリッカ−消去法により求めた。
[Afterimage characteristics]
For the liquid crystal display device manufactured in the same manner as described above, a voltage of 17 V DC was applied for 20 hours at an environmental temperature of 100 ° C., and the voltage remaining in the liquid crystal cell immediately after the DC voltage was turned off (residual DC voltage) was flickered. -Determined by the elimination method.

[応答速度(立ち上がり時の電気光学応答性)]
偏光顕微鏡、光検出器、及びパルス発生機を含む装置で液晶応答の立ち上がりの時間を測定した。ここで液晶応答速度とは、作製した液晶表示素子に電圧無印加状態から5Vの電圧を最大1秒間印加した際に、透過率10%から透過率90%に変化するのに要した時間(msec.)とした。
[Response speed (electro-optical response at startup)]
The rise time of the liquid crystal response was measured with an apparatus including a polarizing microscope, a photodetector, and a pulse generator. Here, the liquid crystal response speed is the time (msec) required to change from 10% transmittance to 90% transmittance when a voltage of 5 V is applied to the manufactured liquid crystal display element from a state where no voltage is applied for a maximum of 1 second. .)

[コントラスト]
実施例11で製造した液晶表示素子及び実施例25及び26で製造した配向方位の異なる2以上の領域を有する液晶表示素子についてコントラストの評価を行った。上記のように作製した液晶セルを2枚の偏光板の間に配置し、ライトボックスの上に固定した。一枚の偏光板を回転させ、透過する光の最小強度を測定し、最小透過率を得た。また、同じ偏光板を回転させ、透過する光の最大強度を測定し、最大透過率を得た。最大透過率−最小透過率を相対透過率と定義し、相対透過率をコントラストの代用指標として用いた。相対透過率は40以上である場合、良好と判断できる。
[contrast]
The contrast was evaluated for the liquid crystal display device produced in Example 11 and the liquid crystal display device produced in Examples 25 and 26 and having two or more regions having different orientation directions. The liquid crystal cell produced as described above was placed between two polarizing plates and fixed on a light box. One polarizing plate was rotated, and the minimum intensity of transmitted light was measured to obtain the minimum transmittance. In addition, the same polarizing plate was rotated, the maximum intensity of the transmitted light was measured, and the maximum transmittance was obtained. The maximum transmittance-minimum transmittance was defined as the relative transmittance, and the relative transmittance was used as a substitute index for contrast. When the relative transmittance is 40 or more, it can be determined to be good.

その結果、実施例11で製造した液晶表示素子の相対透過率は20であった。実施例25及び26で製造した配向方位の異なる2以上の領域を有する液晶表示素子の相対透過率は49であった。また、図2及び図3に示すパターニングされた透明電極を用いて配向方位の異なる2以上の領域を有する液晶表示素子を製造した場合においてもそれぞれ同様の相対透過率が得られた。   As a result, the relative transmittance of the liquid crystal display device produced in Example 11 was 20. The relative transmittance of the liquid crystal display element having two or more regions having different orientation directions produced in Examples 25 and 26 was 49. Further, when the liquid crystal display element having two or more regions having different orientation directions was manufactured using the patterned transparent electrode shown in FIGS. 2 and 3, the same relative transmittance was obtained.

Figure 0005776152
Figure 0005776152

表2の結果から明らかなように、実施例11〜24の液晶配向剤を用いて作製した液晶配向膜を備える液晶表示素子は、一般的に要求される配向性、電圧保持率及び残像特性を備えていることが分かった。液晶の応答速度については、最も差の小さい値でみても、比較例1の液晶表示素子と比べて約24%以上も高速化されていることが分かった。また、当該組成物を用いて製造した配向方位の異なる2以上の領域を有する液晶表示素子はコントラストに優れることがわかった。   As is clear from the results in Table 2, the liquid crystal display device including the liquid crystal alignment film prepared using the liquid crystal alignment agents of Examples 11 to 24 has generally required alignment properties, voltage holding ratios, and afterimage characteristics. I found out that I have it. As for the response speed of the liquid crystal, even when the difference is the smallest, it was found that the response speed was increased by about 24% or more compared to the liquid crystal display element of Comparative Example 1. Moreover, it turned out that the liquid crystal display element which has two or more area | regions from which the orientation orientation differs manufactured using the said composition is excellent in contrast.

本発明によれば、配向性に優れ、高速応答が可能であり、かつ電圧特性や残像特性等の諸性能に優れた液晶表示素子を形成可能な液晶配向剤を提供できる。従って、当該液晶表示素子はTN、STN、IPS、VA(MVA、PVA、光垂直配向、PSA等の方式を含む)等の駆動モードにおいても好適に適用できる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal aligning agent which can form the liquid crystal display element which is excellent in various orientations, such as an orientation property and high-speed response, and excellent in various performances, such as a voltage characteristic and an afterimage characteristic, can be provided. Therefore, the liquid crystal display element can be suitably applied in a drive mode such as TN, STN, IPS, and VA (including MVA, PVA, optical vertical alignment, PSA, and the like).

1 ITO膜
2 スリット
3 透明基板
1 ITO film 2 Slit 3 Transparent substrate

Claims (9)

[A]ポリオルガノシロキサン化合物を含有し、
この[A]ポリオルガノシロキサン化合物が、
エポキシ基を有するポリオルガノシロキサンに由来する部分と、
下記式(1)で表されるカルボキシル基を有する化合物に由来する部分と
を有する液晶配向剤。
Figure 0005776152
(式(1)中、Rはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基である。これらの基は置換基を有していてもよい。Rは二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有すると共に下記式(2)で表される基である。aは0〜1の整数である。)
Figure 0005776152
(式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであると共に、これらのうちの少なくともシアノ基又はフッ素原子を含み、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。)
[A] containing a polyorganosiloxane compound,
This [A] polyorganosiloxane compound is
A portion derived from a polyorganosiloxane having an epoxy group;
The liquid crystal aligning agent which has a part derived from the compound which has a carboxyl group represented by following formula (1).
Figure 0005776152
(In Formula (1), R 1 is a methylene group or an alkylene group having 2 to 30 carbon atoms, a phenylene group, or a cyclohexylene group. These groups may have a substituent. R 2 is double. R 3 is a linking group containing any one of a bond, a triple bond, an ether bond, an ester bond and an oxygen atom, and R 3 is a group having at least two monocyclic structures and represented by the following formula (2). It is an integer from 0 to 1.)
Figure 0005776152
(In formula (2), R 4 and R 6 are each a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring, and these further have a substituent. R 5 is a linking group containing any one of an optionally substituted alkylene group having 1 to 10 carbon atoms, a double bond, a triple bond, an ether bond, an ester bond and a heterocyclic ring. R 7 is any one of a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group and an alkoxy group, and includes at least a cyano group or a fluorine atom, and R 6 In the case where has a plurality of substituents, the same or different ones may be combined, b is an integer of 0 to 1, and c is an integer of 1 to 9. In is.)
上記エポキシ基が、下記式(X−1)又は(X−2)で表される基である請求項1に記載の液晶配向剤。
Figure 0005776152
(式(X−1)中、Aは酸素原子又は単結合である。hは1〜3の整数である。iは0〜6の整数である。但し、iが0の場合、Aは単結合である。「*」は結合手であることを示す。)
The liquid crystal aligning agent according to claim 1, wherein the epoxy group is a group represented by the following formula (X 1 -1) or (X 1 -2).
Figure 0005776152
(In the formula (X 1 -1), A is an oxygen atom or a single bond. H is an integer of 1 to 3. i is an integer of 0 to 6. However, when i is 0, A is (It is a single bond. “*” Indicates a bond.)
[B]ポリアミック酸及びポリイミドからなる群より選択される少なくとも1種の重合体をさらに含有する請求項1又は請求項2に記載の液晶配向剤。   [B] The liquid crystal aligning agent according to claim 1 or 2, further comprising at least one polymer selected from the group consisting of polyamic acid and polyimide. 請求項1から請求項3のいずれか1項に記載の液晶配向剤から形成される液晶配向膜を備える液晶表示素子。   A liquid crystal display element provided with the liquid crystal aligning film formed from the liquid crystal aligning agent of any one of Claims 1-3. 透明電極と、
この透明電極上に積層される上記液晶配向膜とを備え、
液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する請求項4に記載の液晶表示素子。
A transparent electrode;
The liquid crystal alignment film laminated on the transparent electrode,
The liquid crystal display element according to claim 4, wherein the liquid crystal alignment mode is a vertical type and has two or more regions having different alignment directions.
配向方位の異なる2以上の領域を有する手段が、上記透明電極としてパターニングされた透明電極を用いる手段又は上記液晶配向膜に配向分割機能を付与する手段である請求項5に記載の液晶表示素子。   6. The liquid crystal display element according to claim 5, wherein the means having two or more regions having different orientation directions is a means using a transparent electrode patterned as the transparent electrode or a means for imparting an alignment division function to the liquid crystal alignment film. 透明電極と、
この透明電極上に積層される液晶配向膜とを備え、
液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子における上記液晶配向膜形成用の液晶配向剤であって、
下記式(3)で表される基を有するポリオルガノシロキサン化合物を含有することを特徴とする液晶配向剤。
Figure 0005776152
(式(3)中、Rは二重結合、三重結合、エーテル結合、エステル結合又は酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有すると共に下記式(2)で表される基である。aは0〜1の整数である。「*」は結合手であることを示す。)
Figure 0005776152
(式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであると共に、これらのうちの少なくともシアノ基又はフッ素原子を含み、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。)
A transparent electrode;
A liquid crystal alignment film laminated on the transparent electrode,
A liquid crystal alignment agent for forming the liquid crystal alignment film in a liquid crystal display element having a liquid crystal alignment mode of a vertical type and having two or more regions having different alignment directions,
A liquid crystal aligning agent comprising a polyorganosiloxane compound having a group represented by the following formula (3).
Figure 0005776152
(In Formula (3), R 2 is a linking group containing any one of a double bond, a triple bond, an ether bond, an ester bond or an oxygen atom. R 3 has at least two monocyclic structures and has the following formula ( 2) a is an integer of 0 to 1. “*” represents a bond.)
Figure 0005776152
(In formula (2), R 4 and R 6 are each a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring, and these further have a substituent. R 5 is a linking group containing any one of an optionally substituted alkylene group having 1 to 10 carbon atoms, a double bond, a triple bond, an ether bond, an ester bond and a heterocyclic ring. R 7 is any one of a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group and an alkoxy group, and includes at least a cyano group or a fluorine atom, and R 6 In the case where has a plurality of substituents, the same or different ones may be combined, b is an integer of 0 to 1, and c is an integer of 1 to 9. In is.)
配向方位の異なる2以上の領域を有する手段として、パターニングされた透明電極又は配向分割機能を有する液晶配向膜を用いる請求項7に記載の液晶配向剤。   The liquid crystal aligning agent according to claim 7, wherein a patterned transparent electrode or a liquid crystal alignment film having an alignment division function is used as a means having two or more regions having different alignment directions. 液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子であって、請求項7又は請求項8に記載の液晶配向剤から形成される液晶配向膜を備えることを特徴とする液晶表示素子。   A liquid crystal display element having a liquid crystal alignment mode of a vertical type and having two or more regions having different alignment directions, comprising a liquid crystal alignment film formed from the liquid crystal aligning agent according to claim 7 or 8. A characteristic liquid crystal display element.
JP2010191576A 2009-10-14 2010-08-27 Liquid crystal aligning agent, liquid crystal display element, and polyorganosiloxane compound Active JP5776152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191576A JP5776152B2 (en) 2009-10-14 2010-08-27 Liquid crystal aligning agent, liquid crystal display element, and polyorganosiloxane compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009237747 2009-10-14
JP2009237747 2009-10-14
JP2010191576A JP5776152B2 (en) 2009-10-14 2010-08-27 Liquid crystal aligning agent, liquid crystal display element, and polyorganosiloxane compound

Publications (2)

Publication Number Publication Date
JP2011102963A JP2011102963A (en) 2011-05-26
JP5776152B2 true JP5776152B2 (en) 2015-09-09

Family

ID=43907557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191576A Active JP5776152B2 (en) 2009-10-14 2010-08-27 Liquid crystal aligning agent, liquid crystal display element, and polyorganosiloxane compound

Country Status (4)

Country Link
JP (1) JP5776152B2 (en)
KR (1) KR101642788B1 (en)
CN (1) CN102041007B (en)
TW (1) TWI487719B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787445B1 (en) * 2011-01-13 2017-10-18 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal display device and its manufacturing method
JP5884618B2 (en) * 2012-04-20 2016-03-15 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP2015132635A (en) * 2012-04-27 2015-07-23 シャープ株式会社 Liquid crystal display device and method for manufacturing the same
JP6212912B2 (en) * 2012-07-03 2017-10-18 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP2014016389A (en) * 2012-07-05 2014-01-30 Jsr Corp Liquid crystal aligning agent, liquid crystal display element and method for manufacturing the same
CN113698575B (en) * 2021-09-02 2022-04-26 四川大学 Siloxane Schiff base structure-based high-impact-resistance remodelable flame-retardant epoxy resin and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8615527D0 (en) * 1986-06-25 1986-07-30 Secr Defence Liquid crystal polymers
JP3430705B2 (en) * 1994-04-28 2003-07-28 日産化学工業株式会社 Novel diaminobenzene derivative and polyimide using it
SE0303041D0 (en) 2003-06-23 2003-11-18 Ecsibeo Ab A liquid crystal device and a method for manufacturing thereof
JP4459026B2 (en) * 2004-11-12 2010-04-28 日本化薬株式会社 (Meth) acrylic group-containing silicon compound, photosensitive resin composition using the same, and cured product thereof
JP4605376B2 (en) * 2005-06-06 2011-01-05 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5041124B2 (en) * 2005-07-12 2012-10-03 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP2007241249A (en) * 2006-02-07 2007-09-20 Jsr Corp Vertically aligned liquid crystal alignment agent and vertically aligned liquid crystal display element
JP5035523B2 (en) * 2006-04-25 2012-09-26 Jsr株式会社 Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP2007332357A (en) * 2006-05-17 2007-12-27 Jsr Corp Vertically orientated liquid crystal aligning agent and vertically orientated liquid crystal display device
EP2131233B1 (en) * 2007-03-26 2017-03-29 Sharp Kabushiki Kaisha Liquid crystal display device and polymer for aligning film material
KR101143129B1 (en) * 2007-08-02 2012-05-08 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, method for producing the same, and liquid crystal display device
WO2009025386A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
EP2182405B1 (en) * 2007-08-21 2016-01-13 JSR Corporation Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
KR101534887B1 (en) * 2007-12-26 2015-07-07 제이에스알 가부시끼가이샤 Liquid crystal aligning agent and method for forming liquid crystal alignment film
CN101889243B (en) * 2008-01-30 2012-10-17 Jsr株式会社 A liquid crystal orientating agent, a liquid crystal orientating film and a liquid crystal display element

Also Published As

Publication number Publication date
KR20110040681A (en) 2011-04-20
TW201120070A (en) 2011-06-16
CN102041007A (en) 2011-05-04
CN102041007B (en) 2014-03-19
JP2011102963A (en) 2011-05-26
TWI487719B (en) 2015-06-11
KR101642788B1 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
JP4458306B2 (en) Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JP4458305B2 (en) Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JP5454772B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, method for forming the same, and liquid crystal display element
JP4416054B2 (en) Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
JP5552894B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5708957B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4507024B2 (en) Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
JP5483005B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5640471B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, method for forming liquid crystal alignment film, and liquid crystal display element
JP5927859B2 (en) Manufacturing method of liquid crystal display element
JP5866999B2 (en) Liquid crystal alignment agent, liquid crystal display element, liquid crystal alignment film, and polyorganosiloxane compound
WO2009096598A1 (en) A liquid crystal orientating agent, a liquid crystal orientating film and a liquid crystal display element
KR101787445B1 (en) Liquid crystal aligning agent, liquid crystal display device and its manufacturing method
JP4544439B2 (en) Liquid crystal aligning agent and method for forming liquid crystal aligning film
JP2013080193A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5776152B2 (en) Liquid crystal aligning agent, liquid crystal display element, and polyorganosiloxane compound
JP5668577B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and polyorganosiloxane compound
JP5867021B2 (en) Liquid crystal aligning agent, liquid crystal display element and method for producing the same
JP5790358B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5853631B2 (en) Liquid crystal display element
JP2014016389A (en) Liquid crystal aligning agent, liquid crystal display element and method for manufacturing the same
JP5767800B2 (en) Liquid crystal aligning agent and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250