JP5774355B2 - Thermal equipment structure - Google Patents

Thermal equipment structure Download PDF

Info

Publication number
JP5774355B2
JP5774355B2 JP2011089974A JP2011089974A JP5774355B2 JP 5774355 B2 JP5774355 B2 JP 5774355B2 JP 2011089974 A JP2011089974 A JP 2011089974A JP 2011089974 A JP2011089974 A JP 2011089974A JP 5774355 B2 JP5774355 B2 JP 5774355B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
metal member
metal
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011089974A
Other languages
Japanese (ja)
Other versions
JP2012220174A (en
Inventor
顕生 佐谷野
顕生 佐谷野
雅士 高橋
雅士 高橋
博 菅野
博 菅野
修一 稲垣
修一 稲垣
佳英 柳原
佳英 柳原
光明 吉田
光明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011089974A priority Critical patent/JP5774355B2/en
Publication of JP2012220174A publication Critical patent/JP2012220174A/en
Application granted granted Critical
Publication of JP5774355B2 publication Critical patent/JP5774355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バイオマス燃焼炉,廃棄物焼却炉,火力発電機器,化学プラント等の熱機器を構成する熱機器構造体に関する。   The present invention relates to a thermal device structure that constitutes a thermal device such as a biomass combustion furnace, a waste incinerator, a thermal power generation device, or a chemical plant.

種々の熱を利用した熱機器(例えば,バイオマス燃焼炉,廃棄物焼却炉,火力発電機器,化学プラント)が用いられている。例えばバイオマス燃焼炉では、家畜排泄物や生ゴミ,木くずなどの動植物から生まれた再生可能な有機性資源(バイオマス)を利用して発電等を行う試みがなされている。   Thermal equipment using various heats (for example, a biomass combustion furnace, a waste incinerator, a thermal power generation equipment, a chemical plant) is used. For example, in a biomass combustion furnace, attempts are being made to generate electricity using renewable organic resources (biomass) born from animals and plants such as livestock excrement, garbage, and wood scraps.

一般的に、これらの熱機器の燃焼室を構成する構造材料として、耐熱性,耐酸化性,耐食性,高温強度,コスト等の観点からステンレス鋼等のクロムを含有する金属が多く用いられる。また、燃焼室で発生した熱を外へ逃がさないためにステンレス鋼の外側に保温材が配置され、発生した熱の有効利用が図られる。   In general, a metal containing chromium such as stainless steel is often used as a structural material constituting the combustion chamber of these thermal devices from the viewpoint of heat resistance, oxidation resistance, corrosion resistance, high temperature strength, cost, and the like. Moreover, in order not to escape the heat generated in the combustion chamber to the outside, a heat insulating material is disposed outside the stainless steel, so that the generated heat can be effectively used.

従来、燃焼室の保温材としては、アスベストが使用されてきた。アスベストは断熱性(保温特性),耐熱性,耐食性,電気絶縁性などに優れ、かつ安価であるため広く使用されてきた。しかし、現在では健康被害を引き起こす確率が高いとされ使われなくなっている。   Conventionally, asbestos has been used as a heat insulating material for a combustion chamber. Asbestos has been widely used because it is excellent in heat insulation (heat retention characteristics), heat resistance, corrosion resistance, electrical insulation, and the like, and is inexpensive. However, it is no longer used because of its high probability of causing health damage.

現在では、燃焼室等の保温材として、主としてカルシウムシリケート(酸化カルシウムと酸化シリコンの複合酸化物)を主成分とする保温材が用いられる。カルシウムシリケートは安全であるとともに断熱性(保温特性),耐熱性,耐食性に優れ、またコストにおいても安価であることによる。   At present, as a heat insulating material for a combustion chamber or the like, a heat insulating material mainly composed of calcium silicate (a composite oxide of calcium oxide and silicon oxide) is used. This is because calcium silicate is safe and has excellent heat insulation (heat retention characteristics), heat resistance and corrosion resistance, and is inexpensive.

しかしながら燃焼室等において、ステンレス鋼等のクロムを含有する金属と保温材を接触させて長期間使用した場合、六価クロムが形成される可能性があると指摘されている(例えば,非特許文献1参照)。即ち、ステンレス鋼等の表面Cr皮膜と保温材のカルシウム成分が次のように反応し、六価クロムが形成される。
2Cr+4CaO+3O → 4CaCrO
However, it has been pointed out that hexavalent chromium may be formed when a heat insulating material is brought into contact with a metal containing chromium such as stainless steel in a combustion chamber or the like (for example, non-patent literature). 1). That is, the surface Cr 2 O 3 film of stainless steel or the like and the calcium component of the heat insulating material react as follows to form hexavalent chromium.
2Cr 2 O 3 + 4CaO + 3O 2 → 4CaCrO 4

この六価クロムの形成はバイオマス燃焼炉に限らず、廃棄物焼却炉,火力発電機器や配管装置の高温部、化学プラント等多くの高温機器において発生する。即ち、クロムを含有する構造部材とそれに接触し、カルシウムを含む保温材とが存在すれば六価クロムが形成される可能性がある。この現象(六価クロムの形成)は、クロム含有量の多い金属部材においてより顕著となる。
なお、この現象はカルシウムを含む保温材に限定されず、カリウム,マグネシウム,ナトリウムを含む保温材についても認められる。
The formation of hexavalent chromium is not limited to biomass combustion furnaces, but occurs in many high-temperature equipment such as waste incinerators, thermal power generation equipment, high-temperature parts of piping equipment, and chemical plants. That is, if there is a structural member containing chromium and a heat insulating material in contact with it and containing calcium, hexavalent chromium may be formed. This phenomenon (formation of hexavalent chromium) becomes more prominent in a metal member having a high chromium content.
This phenomenon is not limited to a heat insulating material containing calcium, but is also observed for a heat insulating material containing potassium, magnesium, and sodium.

これに対し例えば、次のような対策が検討されている。(1)使用する材料を変更する。例えば、クロムに替え、モリブデンやシリコン等を添加して耐食性を向上させる(実質的にクロムを含まない金属を使用する)。あるいは、カルシウム等を含む保温材に替えて耐熱性の高いセラミックスを使用する。(2)冷却システムを設け、金属部材と保温材の界面が高温にならないようにする。   For example, the following countermeasures are being studied. (1) Change the material to be used. For example, instead of chromium, molybdenum, silicon, or the like is added to improve corrosion resistance (a metal that does not substantially contain chromium is used). Alternatively, a highly heat-resistant ceramic is used instead of a heat insulating material containing calcium or the like. (2) A cooling system is provided so that the interface between the metal member and the heat insulating material does not reach a high temperature.

「腐食センターニュース」,No.034,2005年6月1日,腐食防食協会発行"Corrosion Center News", No.034, published on June 1, 2005, Corrosion Protection Association

しかしながら、上記の対策はいずれも十分とは言えず、いずれも実用化に至っていないのが現状である。即ち、(1)モリブデンやシリコン等の添加,セラミックスの使用は、コストを上げることになる。(2)冷却システムを設ける場合、コストを上げると同時に機器システムの効率も下がる。   However, none of the above measures are sufficient, and none of them have been put into practical use. That is, (1) the addition of molybdenum, silicon, etc. and the use of ceramics increase the cost. (2) In the case where a cooling system is provided, the efficiency of the equipment system is lowered at the same time as increasing the cost.

本発明は、クロムとカルシウム等の化学反応が抑制され、かつコストに優れる熱機器構造体を提供することを目的とする。   An object of the present invention is to provide a thermal equipment structure in which chemical reactions such as chromium and calcium are suppressed and the cost is excellent.

本発明の一態様に係る熱機器構造体は、少なくともクロムを含む金属部材と、前記金属部材上に形成され、金属からなるシートと、前記金属からなるシート上に形成され、カルシウム,カリウム,マグネシウム,ナトリウムの中から選ばれる少なくとも1種を含む本材と、を具備する。   A thermal equipment structure according to an aspect of the present invention includes a metal member containing at least chromium, a sheet made of metal formed on the metal member, and formed on the sheet made of metal, calcium, potassium, magnesium. And this material containing at least one selected from sodium.

本発明によれば、クロムとカルシウム等の化学反応が抑制され、かつコストに優れる熱機器構造体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, chemical reactions, such as chromium and calcium, are suppressed, and the thermal equipment structure excellent in cost can be provided.

本発明の一実施形態に係る構造体10を模式的に表す横断面図である。It is a transverse cross section showing typically structure 10 concerning one embodiment of the present invention.

本発明者らは、熱機器における金属部材と保温材との反応により生じる六価クロムの発生を抑えるための方法について鋭意研究を重ねた。その結果、金属部材の表面に金属からなるシートを形成することにより、金属部材表面に存在するクロム成分と保温材中のカルシウム成分とを隔離し、六価クロムの発生を抑制できることを見出した。   The inventors of the present invention have made extensive studies on a method for suppressing the generation of hexavalent chromium caused by the reaction between a metal member and a heat insulating material in a thermal apparatus. As a result, it has been found that by forming a sheet made of metal on the surface of the metal member, the chromium component present on the surface of the metal member and the calcium component in the heat insulating material can be isolated and the generation of hexavalent chromium can be suppressed.

図1は、本発明の一実施形態に係る構造体10を模式的に表す横断面図である。構造体10は、バイオマス燃焼炉,廃棄物焼却炉,火力発電機器や配管装置の高温部、化学プラント等の熱機器(特に,その燃焼室)を構成し、金属部材11,金属シート12,保温材13を有する。   FIG. 1 is a cross-sectional view schematically showing a structure 10 according to an embodiment of the present invention. The structure 10 constitutes a biomass combustion furnace, a waste incinerator, a high-temperature part of a thermal power generation device or a piping device, a thermal device (especially its combustion chamber) such as a chemical plant, a metal member 11, a metal sheet 12, and a thermal insulation. A material 13 is provided.

金属部材11は、少なくともクロムを含有する。金属部材11はステンレス鋼が望ましい。これは、ステンレス鋼は耐熱性,耐食性,高温強度が優れると同時にコストについても比較的安価であるためである。ここで、ステンレス鋼とはクロムを11%以上含む鋼と定義され、マルテンサイト系ステンレス鋼,フェライト系ステンレス鋼,オーステナイト系ステンレス鋼,オーステナイト・フェライト二相ステンレス鋼,析出硬化ステンレス鋼に分類される。   The metal member 11 contains at least chromium. The metal member 11 is preferably stainless steel. This is because stainless steel is excellent in heat resistance, corrosion resistance, and high-temperature strength, and at the same time is relatively inexpensive. Here, stainless steel is defined as steel containing 11% or more of chromium, and is classified into martensitic stainless steel, ferritic stainless steel, austenitic stainless steel, austenitic / ferritic duplex stainless steel, and precipitation hardened stainless steel. .

金属シート12は、鉄またはニッケル等の金属からなるシートであり、金属部材11の表面に配置される。金属シート12は緻密質でも良いが、多孔質(気孔を有する)でも良い。金属シート12を多孔質とすることで金属部材11から保温材13に至る(金属シート12内の)クロムの拡散の経路長が長くなり、緻密質とする場合よりも金属シート12の厚さを低減可能となる。   The metal sheet 12 is a sheet made of a metal such as iron or nickel, and is disposed on the surface of the metal member 11. The metal sheet 12 may be dense, but may be porous (having pores). By making the metal sheet 12 porous, the path length of the diffusion of chromium (in the metal sheet 12) from the metal member 11 to the heat insulating material 13 becomes longer, and the thickness of the metal sheet 12 can be made larger than when it is made dense. It can be reduced.

ここで、金属シート12の厚さは1μm以上、1mm以下であることが好ましい。金属シート12の厚さが1μmより小さいと次のような問題が発生する可能性がある。即ち、金属シート12の強度が弱く、金属シート12を金属部材上に配置する際に破れ等が発生する可能性がある。また、クロムの拡散距離(金属シート12の厚み)が短く十分な反応抑制効果が得られ難くなる。一方、金属シート12の厚さが1mmより厚いと曲面等の複雑形状に適用できず、実質的に反応抑制機能を果たし難くなる。   Here, the thickness of the metal sheet 12 is preferably 1 μm or more and 1 mm or less. If the thickness of the metal sheet 12 is less than 1 μm, the following problem may occur. That is, the strength of the metal sheet 12 is weak, and there is a possibility that tearing or the like may occur when the metal sheet 12 is disposed on the metal member. Moreover, the diffusion distance of chromium (the thickness of the metal sheet 12) is short, and it becomes difficult to obtain a sufficient reaction suppression effect. On the other hand, if the thickness of the metal sheet 12 is greater than 1 mm, it cannot be applied to a complicated shape such as a curved surface, and it is difficult to substantially perform the reaction suppressing function.

保温材13は、熱機器内で発生する熱の外部への移動を制限するための部材(断熱部材)である。このため保温材13は、その内部に多数の空孔を有する。保温材13の空孔率(保温材13の体積中に空孔が示す割合,気孔率とも言う)は、好ましくは80%以上、より好ましくは90%以上である。   The heat insulating material 13 is a member (heat insulating member) for restricting the movement of heat generated in the thermal equipment to the outside. For this reason, the heat insulating material 13 has a large number of holes therein. The porosity of the heat insulating material 13 (ratio indicated by the voids in the volume of the heat insulating material 13, also referred to as porosity) is preferably 80% or more, more preferably 90% or more.

保温材13は、カルシウム,カリウム,マグネシウム,ナトリウムから選ばれる少なくとも1種を含み、金属シート12と接触して配置される。ここで保温材13は、酸化カルシウムと酸化シリコンの複合酸化物を主成分とするものが望ましい。これは、酸化カルシウムと酸化シリコンの複合酸化物を主成分する保温材は、保温効果に優れると同時に耐熱性,耐酸化性,高温強度等が優れており、さらにコストにおいても比較的安価であるためである。   The heat insulating material 13 includes at least one selected from calcium, potassium, magnesium, and sodium, and is disposed in contact with the metal sheet 12. Here, the heat insulating material 13 is preferably composed mainly of a composite oxide of calcium oxide and silicon oxide. This is because the heat insulating material mainly composed of a composite oxide of calcium oxide and silicon oxide has an excellent heat insulating effect and at the same time has excellent heat resistance, oxidation resistance, high temperature strength, etc., and is relatively inexpensive. Because.

次に構造体10の形成方法について説明する。
構造体10は、金属部材11上への金属シート12の配置、金属シート12上への保温材13の配置によって形成される。
Next, a method for forming the structure 10 will be described.
The structure 10 is formed by the arrangement of the metal sheet 12 on the metal member 11 and the arrangement of the heat insulating material 13 on the metal sheet 12.

金属シート12(金属部材11)に、保温材13が固定される。即ち、金属シート12の表裏それぞれに金属部材11および保温材13が配置され、金属シート12によって金属部材11と保温材13の接触が防止される。この固定には機械的な手法を採用できる。金属部材11上に金属シート12を配置し、さらに金属シート12上に保温材13を配置し、例えばニッケル等の耐熱性の金属からなる針金等を巻きつけることで金属部材11に保温材13が固定される。   The heat insulating material 13 is fixed to the metal sheet 12 (metal member 11). That is, the metal member 11 and the heat insulating material 13 are disposed on the front and back surfaces of the metal sheet 12, and the metal sheet 12 prevents the metal member 11 and the heat insulating material 13 from contacting each other. A mechanical method can be used for this fixing. The metal sheet 12 is arranged on the metal member 11, the heat insulating material 13 is further arranged on the metal sheet 12, and the heat insulating material 13 is wound around the metal member 11 by winding a wire made of a heat resistant metal such as nickel. Fixed.

以下,本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
寸法50×50×10mmのSUS304角板試験体の表面全体に厚さ200μmの純ニッケルシートを配置した。さらに酸化カルシウムと酸化シリコンの複合酸化物を主成分とする保温材(商品名:ロックウール)を準備し、これを50×50×10mmの寸法に加工した後ニッケルシート上に配置した。これを大気中にて熱処理した。熱処理条件は、600℃,500時間とした。
Example 1
A pure nickel sheet having a thickness of 200 μm was disposed on the entire surface of a SUS304 square plate specimen having dimensions of 50 × 50 × 10 mm. Furthermore, a heat insulating material (trade name: Rockwool) mainly composed of a composite oxide of calcium oxide and silicon oxide was prepared, processed to a size of 50 × 50 × 10 mm, and then placed on a nickel sheet. This was heat-treated in the atmosphere. The heat treatment conditions were 600 ° C. and 500 hours.

熱処理を行った後、ステンレスSUS304鋼角板試験体及び酸化カルシウムと酸化シリコンの複合酸化物を主成分する保温材の両者の接触表面を目視により観察した。その結果、反応生成物等による色の変化は認められなかった。   After the heat treatment, the contact surfaces of both the stainless steel SUS304 steel square plate specimen and the heat insulating material mainly composed of a composite oxide of calcium oxide and silicon oxide were visually observed. As a result, no change in color due to the reaction product or the like was observed.

(実施例2)
保温材の材質を商品名撥水性パーライト(SiOを主成分とし,NaOを約7%含む)とした他は実施例1同様の方法で評価した。この結果、反応生成物等による色の変化は認められなかった。
(Example 2)
Evaluation was made in the same manner as in Example 1 except that the material of the heat insulating material was trade name water-repellent perlite (SiO 2 was the main component and Na 2 O was contained about 7%). As a result, no change in color due to the reaction product or the like was observed.

(実施例3)
保温材の材質を商品名ケイカルエース・スーパーシリカ(ケイ酸カルシウムを主成分とし、少量のカリウムを含む)とした他は実施例1と同様の方法で反応を評価した。この結果、反応生成物等による色の変化は認められなかった。
(Example 3)
The reaction was evaluated in the same manner as in Example 1 except that the material of the heat insulating material was the trade name Keical Ace Super Silica (calcium silicate as a main component and a small amount of potassium). As a result, no change in color due to the reaction product or the like was observed.

(比較例1)
実施例1において、ニッケルシートを介せず直接SUS304角板試験体と酸化カルシウムと酸化シリコンの複合酸化物を主成分とする保温材(商品名:ロックウール)を接触させた以外はまったく同じ条件にて熱処理を行った。
(Comparative Example 1)
In Example 1, exactly the same conditions except that a SUS304 square plate specimen and a heat insulating material (commercial name: rock wool) mainly composed of a composite oxide of calcium oxide and silicon oxide were contacted directly without using a nickel sheet. Heat treatment was performed at

熱処理を行った後、ステンレスSUS304鋼角板試験体及び酸化カルシウムと酸化シリコンの複合酸化物を主成分する保温材の両者の接触表面を目視により観察した。その結果、保温材側に黄色の物質が確認された。この黄色の物質を採取しX線回折により分析したところ、六価クロムであることが確認された。   After the heat treatment, the contact surfaces of both the stainless steel SUS304 steel square plate specimen and the heat insulating material mainly composed of a composite oxide of calcium oxide and silicon oxide were visually observed. As a result, a yellow substance was confirmed on the heat insulating material side. When this yellow substance was collected and analyzed by X-ray diffraction, it was confirmed to be hexavalent chromium.

(比較例2)
保温材の材質を商品名撥水性パーライト(SiOを主成分とし、NaOを約7%含む)とした他は比較例1同様の方法で評価した。この結果、X線回折によりクロムとナトリウムの複合酸化物が認められた。
(Comparative Example 2)
Evaluation was made in the same manner as in Comparative Example 1 except that the material of the heat insulating material was trade name water-repellent perlite (SiO 2 was the main component and Na 2 O was contained in about 7%). As a result, a complex oxide of chromium and sodium was observed by X-ray diffraction.

(比較例3)
保温材の材質を商品名ケイカルエース・スーパーシリカ(ケイ酸カルシウムを主成分とし、少量のカリウムを含む)とした他は比較例1同様の方法で評価した。この結果、X線回折によりクロムとカルシウムの複合酸化物が認められた。また、クロムとカリウムの複合酸化物も微量検出された。
(Comparative Example 3)
Evaluation was made in the same manner as in Comparative Example 1 except that the material of the heat insulating material was trade name Keical Ace Super Silica (calcium silicate as a main component and a small amount of potassium). As a result, a complex oxide of chromium and calcium was observed by X-ray diffraction. A trace amount of complex oxide of chromium and potassium was also detected.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず、拡張,変更可能であり、拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

10 構造体
11 金属部材
12 金属シート
13 保温材
DESCRIPTION OF SYMBOLS 10 Structure 11 Metal member 12 Metal sheet 13 Heat insulating material

Claims (4)

少なくともクロムを含む金属部材と、
前記金属部材上に形成され、金属からなるシートと、
記シート上に形成され、酸化カルシウムと酸化シリコンの複合酸化物を主成分とする保温材と、
を具備する熱機器構造体。
A metal member containing at least chromium;
A sheet made of metal and formed on the metal member;
Formed before carboxymethyl over preparative on a heat insulating material composed mainly of a composite oxide of calcium oxide and silicon oxide,
A thermal equipment structure comprising:
少なくともクロムを含む金属部材と、
前記金属部材上に形成され、鉄またはニッケルを主成分とする金属からなるシートと、
前記シート上に形成され、カルシウム,カリウム,マグネシウム,ナトリウムの中から選ばれる少なくとも1種を含む保温材と、
を具備する熱機器構造体。
A metal member containing at least chromium;
A sheet formed on the metal member and made of a metal mainly composed of iron or nickel ;
A heat insulating material formed on the sheet and containing at least one selected from calcium, potassium, magnesium, and sodium;
A thermal equipment structure comprising:
前記保温材の気孔率が、80%以上であることを特徴とする請求項1または2に記載の熱機器構造体。 The thermal equipment structure according to claim 1 or 2, wherein the heat insulating material has a porosity of 80% or more. 前記金属部材が、ステンレス鋼であることを特徴とする請求項1乃至3のいずれか1項に記載の熱機器構造体。 The thermal equipment structure according to any one of claims 1 to 3, wherein the metal member is stainless steel.
JP2011089974A 2011-04-14 2011-04-14 Thermal equipment structure Active JP5774355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089974A JP5774355B2 (en) 2011-04-14 2011-04-14 Thermal equipment structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089974A JP5774355B2 (en) 2011-04-14 2011-04-14 Thermal equipment structure

Publications (2)

Publication Number Publication Date
JP2012220174A JP2012220174A (en) 2012-11-12
JP5774355B2 true JP5774355B2 (en) 2015-09-09

Family

ID=47271882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089974A Active JP5774355B2 (en) 2011-04-14 2011-04-14 Thermal equipment structure

Country Status (1)

Country Link
JP (1) JP5774355B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021290996A1 (en) 2020-06-16 2023-03-02 Ingrid Lipp Hot-metal-part insulating element for preventing or reducing the formation of heavy-metal compounds which are harmful to the environment and/or to health
DE102020115860A1 (en) 2020-06-16 2021-12-16 Ingrid Lipp Hot metal insulation element to prevent or reduce the formation of heavy metal compounds that are harmful to the environment and / or health

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0133631Y2 (en) * 1984-11-19 1989-10-12
JPH11350106A (en) * 1998-06-04 1999-12-21 Hitachi Ltd Production of structural member
JP3813413B2 (en) * 2000-06-09 2006-08-23 トーカロ株式会社 Externally heated rotary kiln
DE10126896A1 (en) * 2000-12-23 2002-07-11 Alstom Switzerland Ltd Protective coating used for turbines comprises a mono- or multi-layer sealing layer made from an amorphous material
JP2003042403A (en) * 2001-07-25 2003-02-13 Babcock Hitachi Kk Furnace-wall structural material and furnace structure comprising structural material
JP2004182528A (en) * 2002-12-03 2004-07-02 Ebara Ballard Corp Fuel treating equipment
JP2004339018A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Porous structure and composite material provided with the same
JP2009293058A (en) * 2008-06-03 2009-12-17 Fujifilm Corp Ceramic laminate, and structure for thermal barrier coating

Also Published As

Publication number Publication date
JP2012220174A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Lith et al. Lab-scale investigation of deposit-induced chlorine corrosion of superheater materials under simulated biomass-firing conditions. Part 1: Exposure at 560 C
JP5774355B2 (en) Thermal equipment structure
Nguyen et al. Water vapor effects on corrosion of Fe–Cr and Fe–Cr–Ni alloys containing silicon in CO 2 gas at 818 C
KR20130124398A (en) Inorganic fiberous parer, and method and equipment for manufacturing same
Singh et al. High temperature corrosion behavior of Ni-based superalloy Superni-75 in the real service environment of medical waste incinerator
KR20160058176A (en) Layer protecting the surface of zirconium alloys used in nuclear reactors
Eklund et al. Field exposure of FeCrAl model alloys in a waste‐fired boiler at 600 C: The influence of Cr and Si on the corrosion behaviour
Singh et al. Behavior of Ni-based superalloys in an actual waste incinerator plant under cyclic conditions for 1,000 h at 900 C
JP5611877B2 (en) Thermal equipment structural member and manufacturing method thereof
Jiamin et al. Corrosion behavior of TP316L of superheater in biomass boiler with simulated atmosphere and deposit
Chun et al. Materials challenges in cyclic carburizing and oxidizing environments for petrochemical applications
Ma et al. Investigation on High Temperature Corrosion Characteristic of Super304H, TP347H, and HR3C Steel in an Ultra‐supercritical Coal‐fired Boiler▴
Guo et al. Influence of surface condition on the high-temperature corrosion of 12Cr1MoVG, T91, and TP347H steels in waste-to-energy boilers
JP2014157002A (en) Joined body and thermal equipment structure
Liu et al. Impacts of temperature and KCl on corrosion behavior of 12Cr1MoVG and T91 in HCl-containing atmosphere
Brady et al. Degradation of Components After Exposure in a Biomass Pyrolysis System
CN102424948A (en) Method of preparing CoAlNi coating on Ni-based high-temperature alloy through pack cementation
JP2006265580A (en) High corrosion resistance heat-resisting alloy
Hu et al. Corrosion behavior of 45 steel in molten nitrate salts with 3wt% impurities at 773.15 K
Montgomery et al. Steam oxidation of X20CrMoV121: Comparison of laboratory exposures and in situ exposure in power plants
Mudgal et al. Evaluation of corrosion performance of Superni 600 hung in secondary chamber of medical waste incinerator operating at 1050 C
Gerczak Understanding Ag release from TRISO fuel through surrogate diffusion experiments and fuel analysis
KR101223263B1 (en) Thermal insulator for pipes
Li et al. The influence of Cu content on high temperature corrosion behavior of heat-resistant molten salt steel
Wang et al. Microscopic residual stresses beneath a scratch and their effects on scratch-related crack initiation of thermally treated UNS N06690 in high-temperature pressurized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150701

R151 Written notification of patent or utility model registration

Ref document number: 5774355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151