JP5772883B2 - Hot water storage hot water supply system - Google Patents

Hot water storage hot water supply system Download PDF

Info

Publication number
JP5772883B2
JP5772883B2 JP2013129270A JP2013129270A JP5772883B2 JP 5772883 B2 JP5772883 B2 JP 5772883B2 JP 2013129270 A JP2013129270 A JP 2013129270A JP 2013129270 A JP2013129270 A JP 2013129270A JP 5772883 B2 JP5772883 B2 JP 5772883B2
Authority
JP
Japan
Prior art keywords
hot water
reheating
temperature
water storage
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013129270A
Other languages
Japanese (ja)
Other versions
JP2013178095A (en
Inventor
智 赤木
智 赤木
正樹 豊島
正樹 豊島
畝崎 史武
史武 畝崎
平岡 宗
宗 平岡
稔則 杉木
稔則 杉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013129270A priority Critical patent/JP5772883B2/en
Publication of JP2013178095A publication Critical patent/JP2013178095A/en
Application granted granted Critical
Publication of JP5772883B2 publication Critical patent/JP5772883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、貯湯式給湯システムに関する。   The present invention relates to a hot water storage type hot water supply system.

加熱手段により沸き上げた高温の湯を貯湯タンクに貯めておき、給湯負荷の発生に応じて、貯湯タンク内から湯を取り出して給湯する貯湯式給湯システムが広く用いられている。一般に、貯湯式給湯システムは、瞬間式給湯システム等と比べて、加熱手段の加熱能力が比較的小さい、加熱手段の起動時における能力の立ち上りが遅い、等の特徴がある。このため、貯湯式給湯システムでは、給湯負荷の発生に対して湯切れが生じることのないように、事前に貯湯タンクに湯を貯めておく必要がある。一方、エネルギー効率の観点からは、貯湯タンクに蓄えた熱量をできるだけ有効に活用することが求められる。   2. Description of the Related Art Hot water storage hot water supply systems that store hot water boiled by heating means in a hot water storage tank and take out the hot water from the hot water storage tank in response to the occurrence of a hot water supply load are widely used. In general, the hot water storage type hot water supply system has features such that the heating capability of the heating means is relatively small compared to the instantaneous hot water supply system and the like, and the rise of the capability at the time of starting the heating means is slow. For this reason, in the hot water storage type hot water supply system, it is necessary to store hot water in a hot water storage tank in advance so that hot water does not run out due to the occurrence of a hot water supply load. On the other hand, from the viewpoint of energy efficiency, it is required to utilize the heat stored in the hot water storage tank as effectively as possible.

また、湯栓からの湯の放出による給湯だけでなく、貯湯タンク内から取り出した高温の湯と浴槽から循環する浴槽水とを熱交換することによって浴槽の追焚きを行う機能を有する貯湯式給湯システムも知られている。このような貯湯式給湯システムでは、追焚きに要する熱負荷に対する湯切れ(以下、「追焚き湯切れ」と称する)の発生を防止する必要もある。   In addition to hot water supply by discharging hot water from the hot water tap, hot water storage type hot water supply has a function of reheating the bathtub by exchanging heat between the hot water taken out from the hot water storage tank and the bathtub water circulating from the bathtub. Systems are also known. In such a hot water storage type hot water supply system, it is also necessary to prevent the occurrence of hot water shortage (hereinafter referred to as “hot water hot water out”) with respect to the heat load required for reheating.

従来の貯湯式給湯システムとして、特許文献1には、追焚き熱交換器から戻る中温の追焚き戻り湯を貯湯タンクの2/3程度の高さ位置に戻すことにより、追焚き戻り湯(中温水)を給湯に再利用する発明が開示されている。   As a conventional hot water storage type hot water supply system, Patent Document 1 discloses that a medium temperature additional hot water returning from the additional heat exchanger is returned to a height position of about 2/3 of the hot water storage tank, so An invention for reusing hot water) for hot water supply is disclosed.

また、特許文献2には、追焚き戻り湯を貯湯タンクに流入させる接続部を、貯湯タンクの中間部と下部とにそれぞれ設け、貯湯タンク中間部の温度が所定値以下の時に追焚き戻り湯を貯湯タンク中間部に戻すことにより、貯湯タンク上部の高温部分の温度低下を避けるとともに、追焚き戻り湯(中温水)を給湯に再利用する発明が開示されている。   Further, in Patent Document 2, a connection portion for allowing additional hot water to flow into the hot water storage tank is provided at each of an intermediate portion and a lower portion of the hot water storage tank, and when the temperature of the hot water storage tank intermediate portion is equal to or lower than a predetermined value, Is returned to the middle part of the hot water tank, thereby avoiding a temperature drop in the high temperature portion at the upper part of the hot water tank and reusing the reclaimed hot water (medium temperature water) for hot water supply.

特公平8−30605号公報Japanese Patent Publication No.8-30605 特許第3945511号公報Japanese Patent No. 3945511

追焚き戻り湯の温度や、貯湯タンク内の高温領域と低温領域との間の温度境界層の位置は、使用状況に応じて変化する。特許文献1の発明では、追焚き戻り湯の温度が低かった場合、貯湯タンク内の上部の温度が大きく低下するので、追焚きに利用できる蓄熱量が大きく低下し、追焚き湯切れが発生し易いという問題がある。また、貯湯タンクの2/3程度の高さ位置に貯湯タンク内の高温領域と低温領域との温度境界層があった場合、追焚き戻り湯の噴流によって温度境界層が乱され、高温領域と低温領域とが混合し、蓄熱量が低下するという問題もある。   The temperature of the reclaimed hot water and the position of the temperature boundary layer between the high temperature region and the low temperature region in the hot water storage tank vary depending on the use situation. In the invention of Patent Document 1, when the temperature of the reheating hot water is low, the temperature of the upper part in the hot water storage tank is greatly reduced, so that the amount of heat storage available for reheating is greatly reduced, and the reheating hot water runs out. There is a problem that it is easy. In addition, when there is a temperature boundary layer between the high temperature region and the low temperature region in the hot water storage tank at a height of about 2/3 of the hot water storage tank, the temperature boundary layer is disturbed by the jet flow of the reheating hot water, There is also a problem that the amount of heat storage decreases due to mixing with the low temperature region.

また、特許文献2の発明では、追焚き戻り湯を貯湯タンク中間部に戻したとしても、追焚き戻り湯が結局利用されないまま残る場合も多く、追焚き戻り湯が持つ熱量を必ずしも有効に再利用できない。   Further, in the invention of Patent Document 2, even if the reclaimed hot water is returned to the intermediate portion of the hot water storage tank, the reclaimed hot water often remains unused after all, and the amount of heat of the reclaimed hot water is not necessarily effectively restored. Not available.

本発明は、上述のような課題を解決するためになされたもので、簡単な構成で、追焚き戻り湯が持つ熱量を有効に再利用して省エネルギーを図ることのできる貯湯式給湯システムを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and provides a hot water storage hot water supply system that can save energy by effectively reusing the amount of heat of the reheating hot water with a simple configuration. The purpose is to do.

本発明に係る貯湯式給湯システムは、水を加熱して湯にする加熱手段と、加熱手段により生成された湯を上側から貯留し、下側から水を貯留する貯湯タンクと、浴槽から循環する浴槽水と該浴槽水を加温するための湯との熱交換を行う追焚き熱交換器と、貯湯タンクの上部から取り出された湯を追焚き熱交換器に導く追焚き用ポンプと、追焚き熱交換器から貯湯タンクに戻る追焚き戻り湯を貯湯タンクの上部に戻す上部戻し流路と、追焚き戻り湯を貯湯タンクの下部に戻す下部戻し流路と、使用者の指示に基づいて、運転モードを設定する運転モード設定手段と、加熱手段を使用しない追焚き運転において追焚き戻り湯を貯湯タンクに戻す場合に上部戻し流路と下部戻し流路との何れを優先して用いるかを、運転モード設定手段により設定されている運転モードに基づいて決定する追焚き戻り湯制御手段と、を備え、運転モード設定手段は、浴槽温度を自動で維持する自動保温モードを設定可能であり、追焚き戻り湯制御手段は、自動保温モードが設定されている場合には、上部戻し流路を優先するものである。
The hot water storage type hot water supply system according to the present invention is a heating means that heats water to make hot water, hot water generated by the heating means is stored from above, a hot water storage tank that stores water from below, and circulates from a bathtub. A reheating heat exchanger for exchanging heat between the bathtub water and hot water for heating the bathtub water, a reheating pump for guiding the hot water taken out from the upper part of the hot water storage tank to the reheating heat exchanger, Based on the user's instructions, an upper return channel that returns the reclaimed hot water that returns from the soaking heat exchanger to the hot water storage tank to the upper portion of the hot water storage tank, a lower return channel that returns the additional hot water to the lower portion of the hot water storage tank, and The operation mode setting means for setting the operation mode, and which of the upper return flow path and the lower return flow path should be used preferentially when returning the return hot water to the hot water storage tank in the additional operation without using the heating means Is set by the operation mode setting means. Comprising a reheating returns the hot water control means for determining on the basis of the operating mode and, the, operation mode setting means can set an automatic heat retention mode maintaining the bath temperature automatically, reheating return water control means, When the automatic heat retention mode is set, the upper return flow path has priority .

本発明によれば、追焚き熱交換器から貯湯タンクに戻る追焚き戻り湯を、なるべく貯湯タンクの上部に戻すことができる。貯湯タンクの上部に追焚き戻り湯を戻すことにより、追焚き戻り湯が持つ熱量を確実に再利用することができ、追焚き残り湯が再利用されないまま貯湯タンク内に残ることを防止することができる。このため、追焚き戻り湯が持つ熱量の有効な再利用を促進することができ、省エネルギーが図れる。また、追焚き戻り湯を貯湯タンクの上部に戻すことが不都合となる場合には、追焚き戻り湯を貯湯タンクの下部に戻すことにより、そのような不都合を回避することができる。更に、追焚き戻り湯の戻し口を貯湯タンクの上部と下部との2箇所に設けるだけでよく、3箇所以上の戻し口を設ける必要がないので、貯湯タンクの構造の複雑化や、追焚き戻り湯の流路を切り替える機構の複雑化を回避することができ、簡単な構成で上記効果を達成することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reheating hot water which returns to a hot water storage tank from a reheating heat exchanger can be returned to the upper part of a hot water storage tank as much as possible. By returning the reclaimed hot water to the upper part of the hot water storage tank, the amount of heat of the reheated hot water can be reliably reused, and the remaining hot water remaining in the hot water tank can be prevented from remaining in the hot water storage tank. Can do. For this reason, it is possible to promote effective reuse of the amount of heat of the reclaimed hot water and to save energy. Further, when it is inconvenient to return the reclaimed hot water to the upper part of the hot water storage tank, such inconvenience can be avoided by returning the reclaimed hot water to the lower part of the hot water storage tank. Furthermore, it is only necessary to provide the return port of the reclaimed hot water at two locations, the upper and lower portions of the hot water storage tank, and it is not necessary to provide three or more return ports. It is possible to avoid complication of a mechanism for switching the flow path of the return hot water, and the above effect can be achieved with a simple configuration.

本発明の実施の形態1の貯湯式給湯システムを示す構成図である。It is a block diagram which shows the hot water storage type hot-water supply system of Embodiment 1 of this invention. 本発明の実施の形態1の貯湯式給湯システムにおける信号の流れを表すブロック図である。It is a block diagram showing the flow of the signal in the hot water storage type hot-water supply system of Embodiment 1 of this invention. 本発明の実施の形態1に係る2つの追焚き戻し回路を表す概要図である。It is a schematic diagram showing two tracking back circuits according to the first embodiment of the present invention. 本発明の実施の形態1に係る追焚き時の熱量挙動を表す概要図である。It is a schematic diagram showing the calorie | heat amount behavior at the time of reheating according to Embodiment 1 of this invention. 本発明の実施の形態1に係る制御動作を表すフローチャートである。It is a flowchart showing the control action which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る追焚き有効蓄熱量を表す概要図である。It is a schematic diagram showing the additional effective heat storage amount which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る制御動作を表すフローチャートである。It is a flowchart showing the control action which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る温度境界層の挙動を表す概要図である。It is a schematic diagram showing the behavior of the temperature boundary layer which concerns on Embodiment 3 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
≪機器構成≫
図1は、本発明の実施の形態1の貯湯式給湯システムを示す構成図である。図1に示すように、本実施形態の貯湯式給湯システムは、貯湯タンク1、加熱手段2、加熱用ポンプ31、追焚き用ポンプ32、浴槽用ポンプ33、混合手段4、追焚き熱交換器5、浴槽6、流路切替弁7(流路切替弁)、加熱用配管301、給水用配管302、導出用配管303、混合用配管304、給湯用配管305、浴槽往き配管306a、浴槽戻り配管306b、追焚き往き配管307a、追焚き上部戻り配管307b、追焚き下部戻り配管307c、追焚き戻り配管307d、および制御手段100等を備えている。
Embodiment 1 FIG.
≪Device configuration≫
FIG. 1 is a configuration diagram showing a hot water storage type hot water supply system according to Embodiment 1 of the present invention. As shown in FIG. 1, the hot water storage type hot water supply system of the present embodiment includes a hot water storage tank 1, a heating means 2, a heating pump 31, a reheating pump 32, a bathtub pump 33, a mixing means 4, a reheating heat exchanger. 5, bathtub 6, flow path switching valve 7 (flow path switching valve), heating pipe 301, water supply pipe 302, outlet pipe 303, mixing pipe 304, hot water supply pipe 305, bathtub outlet pipe 306a, bathtub return pipe 306b, a tracking return pipe 307a, a tracking upper return pipe 307b, a tracking lower return pipe 307c, a tracking return pipe 307d, the control means 100, and the like.

加熱用配管301は、貯湯タンク1の下部と加熱手段2とを接続するとともに、加熱手段2と貯湯タンク1の上部とを接続している。加熱用配管301の途中には、加熱用ポンプ31が設けられている。加熱手段2は、水を沸き上げて高温の湯とするものであり、例えばヒートポンプサイクルを用いて構成される。給水用配管302は、市水等の水源から水を供給するものであり、貯湯タンク1の下部に接続されている。貯湯タンク1内には、給水用配管302から供給される低温の水を下側から貯留し、加熱手段2で沸き上げられた高温の湯を上側から貯留することができる。貯湯タンク1内の下側の水と上側の湯とは、比重差があるため、温度境界層を介して、混じり合うことなく維持される。   The heating pipe 301 connects the lower part of the hot water storage tank 1 and the heating means 2, and connects the heating means 2 and the upper part of the hot water storage tank 1. A heating pump 31 is provided in the middle of the heating pipe 301. The heating means 2 boils water into high-temperature hot water, and is configured using, for example, a heat pump cycle. The water supply pipe 302 supplies water from a water source such as city water, and is connected to the lower part of the hot water storage tank 1. In the hot water storage tank 1, low-temperature water supplied from the water supply pipe 302 can be stored from the lower side, and hot water boiled by the heating means 2 can be stored from the upper side. The lower water and the upper hot water in the hot water storage tank 1 are maintained without being mixed with each other through the temperature boundary layer because of the specific gravity difference.

導出用配管303は、貯湯タンク1の上部と、混合手段4とを接続している。混合手段4には、給水用配管302から分岐した混合用配管304と、給湯用配管305とが更に接続されている。貯湯タンク1から導出用配管303を通って供給される湯と、混合用配管304から供給される水とを混合手段4にて混合することにより、温度調節された湯が生成され、この温度調節された湯が給湯用配管305を通って、入浴用の浴槽6、蛇口、シャワー等の給湯端末に供給される。   The lead-out piping 303 connects the upper part of the hot water storage tank 1 and the mixing means 4. The mixing means 4 is further connected to a mixing pipe 304 branched from the water supply pipe 302 and a hot water supply pipe 305. The hot water supplied from the hot water storage tank 1 through the outlet pipe 303 and the water supplied from the mixing pipe 304 are mixed by the mixing means 4 to generate temperature-controlled hot water. The hot water is supplied through a hot water supply pipe 305 to a hot water supply terminal such as a bath tub 6, a faucet, or a shower.

追焚き熱交換器5は、貯湯タンク1から供給される湯と、浴槽6から循環する浴槽水とを熱交換することによって、浴槽水を加熱するものである。浴槽往き配管306aは、追焚き熱交換器5と浴槽6とを接続している。浴槽戻り配管306bは、浴槽6から浴槽用ポンプ33を経由して追焚き熱交換器5に接続されている。これらの浴槽側回路により、浴槽6から浴槽水が追焚き熱交換器5に循環する。   The reheating heat exchanger 5 heats the bathtub water by exchanging heat between the hot water supplied from the hot water storage tank 1 and the bathtub water circulating from the bathtub 6. The bathtub outlet pipe 306 a connects the reheating heat exchanger 5 and the bathtub 6. The bathtub return pipe 306 b is connected to the reheating heat exchanger 5 from the bathtub 6 via the bathtub pump 33. By these bathtub side circuits, the bathtub water is circulated from the bathtub 6 to the heat exchanger 5.

追焚き往き配管307aは、貯湯タンク1の上部と追焚き熱交換器5とを接続している。貯湯タンク1から追焚き往き配管307aを通って追焚き熱交換器5に送られた湯は、熱交換により温度低下し、貯湯タンク1に戻される。本明細書では、追焚き熱交換器5から貯湯タンク1に戻る湯(中温水)を「追焚き戻り湯」と称する。追焚き戻り湯は、まず、追焚き戻り配管307dに流入する。追焚き戻り配管307dは、追焚き熱交換器5から追焚き用ポンプ32を経由して流路切替弁7に接続されている。追焚き上部戻り配管307b(上部戻し流路)は、流路切替弁7と、貯湯タンク1の上部とを接続している。追焚き下部戻り配管307c(下部戻し流路)は、流路切替弁7と、貯湯タンク1の下部とを接続している。流路切替弁7は、追焚き戻り配管307dから流入する追焚き戻り湯を追焚き上部戻り配管307bと追焚き下部戻り配管307cとに分配する三方弁で構成されており、追焚き上部戻り配管307bの流量と追焚き下部戻り配管307cの流量との割合を制御可能とされている。   The follow-up piping 307 a connects the upper part of the hot water storage tank 1 and the follow-up heat exchanger 5. The hot water sent from the hot water storage tank 1 through the follow-up piping 307a to the follow-up heat exchanger 5 is lowered in temperature by heat exchange and returned to the hot water storage tank 1. In the present specification, hot water (medium temperature water) returning from the reheating heat exchanger 5 to the hot water storage tank 1 is referred to as “reheating hot water”. The reclaimed hot water first flows into the reclaimed return pipe 307d. The tracking return pipe 307 d is connected to the flow path switching valve 7 from the tracking heat exchanger 5 via the tracking pump 32. An additional upper return pipe 307 b (upper return flow path) connects the flow path switching valve 7 and the upper part of the hot water storage tank 1. The chasing lower return pipe 307 c (lower return flow path) connects the flow path switching valve 7 and the lower part of the hot water storage tank 1. The flow path switching valve 7 is composed of a three-way valve that distributes the return hot water flowing from the additional return pipe 307d to the upper return pipe 307b and the additional lower return pipe 307c. It is possible to control the ratio between the flow rate of 307b and the flow rate of the additional lower return pipe 307c.

なお、図示の構成では、追焚き上部戻り配管307bは、貯湯タンク1の最上部に接続されているが、貯湯タンク1に対する追焚き上部戻り配管307bの接続位置は必ずしも貯湯タンク1の最上部でなくてもよく、追焚き上部戻り配管307bから貯湯タンク1内に流入する追焚き戻り湯が貯湯タンク1の上部に貯留されている高温の湯に混合するような位置であればよい。また、貯湯タンク1に対する追焚き下部戻り配管307cの接続位置は、貯湯タンク1の最下部でなくてもよく、追焚き下部戻り配管307cから貯湯タンク1内に流入する追焚き戻り湯が貯湯タンク1の上部に貯留されている高温の湯に混合せず、貯湯タンク1の上部に貯留されている高温の湯の温度を低下させることがないような位置であればよい。   In the illustrated configuration, the reheating upper return pipe 307 b is connected to the uppermost part of the hot water storage tank 1, but the connection position of the renewal upper return pipe 307 b to the hot water storage tank 1 is not necessarily the uppermost part of the hot water storage tank 1. There may be no position as long as the hot water stored in the upper portion of the hot water storage tank 1 is mixed with the high temperature hot water flowing into the hot water storage tank 1 from the additional hot water return pipe 307b. Further, the connection position of the reheating lower return pipe 307c with respect to the hot water storage tank 1 may not be the lowermost part of the hot water storage tank 1, and reheating hot water flowing into the hot water storage tank 1 from the reheating lower return pipe 307c is stored in the hot water storage tank. The hot water stored in the upper part of 1 is not mixed with the hot water, and the position of the hot water stored in the upper part of the hot water storage tank 1 is not lowered.

制御手段100は、加熱手段2、加熱用ポンプ31、追焚き用ポンプ32、浴槽用ポンプ33、および混合手段4、流路切替弁7の動作を制御する。また、制御手段100には、例えば浴室や台所に設置されるリモコン等のユーザーインターフェース装置(図示せず)が、有線または無線により通信可能に接続されている。   The control unit 100 controls operations of the heating unit 2, the heating pump 31, the reheating pump 32, the bathtub pump 33, the mixing unit 4, and the flow path switching valve 7. In addition, a user interface device (not shown) such as a remote controller installed in a bathroom or kitchen is connected to the control means 100 so as to be communicable by wire or wirelessly.

また、貯湯タンク1には、高さ方向に間隔をおいて、6個の貯湯温度センサ501a〜501fが設けられている。これらの貯湯温度センサ501a〜501fによれば、貯湯タンク1の内の貯湯温度を高さ方向の分布とともに検出することができる。なお、貯湯温度センサの個数は、これに限定されるものではなく、貯湯タンク1内の高さ方向の温度分布を検出可能な個数であればよい。   The hot water storage tank 1 is provided with six hot water storage temperature sensors 501a to 501f at intervals in the height direction. According to these hot water storage temperature sensors 501a to 501f, the hot water storage temperature in the hot water storage tank 1 can be detected together with the distribution in the height direction. The number of hot water storage temperature sensors is not limited to this, and may be any number that can detect the temperature distribution in the hot water tank 1 in the height direction.

加熱用配管301には、加熱手段2の下流側にて加熱後の湯温を検出する沸上温度センサ502が設けられている。給水用配管302には、給水温度を検出する給水温度センサ504が設けられている。貯湯タンク1の最上部には、貯湯タンク1から導出される湯の温度を検出するための導出温度センサ503が設けられている。給湯用配管305には、混合手段4から流出して給湯端末に供給される湯の温度を検出する給湯温度センサ505が設けられている。浴槽戻り配管306bには、浴槽6から追焚き熱交換器5に流れ込む浴槽水の温度を検出する浴槽戻り温度センサ506が設けられている。なお、この浴槽戻り温度センサ506は、定期的に浴槽用ポンプ33を運転させることにより、浴槽6内の浴槽水の温度(以下、「浴槽温度」と称する)を検出する手段として利用してもよい。給湯用配管305には、給湯端末に供給される湯量を検出する給湯流量センサ601が設けられている。追焚き戻り配管307dには、追焚き熱交換器5から貯湯タンク1に戻る追焚き戻り湯の温度を検出する追焚き戻り湯温度センサ507(追焚き戻り湯温度取得手段)が設けられている。なお、本発明における追焚き戻り湯温度取得手段としては、追焚き戻り湯温度センサ507で追焚き戻り湯温度を直接検出することに代えて、追焚き用ポンプ32の回転数、浴槽用ポンプ33の回転数、導出温度センサ503および浴槽戻り温度センサ506の検出温度等からの推定によって追焚き戻り湯温度の値を取得するものであってもよい。   The heating pipe 301 is provided with a boiling temperature sensor 502 that detects the hot water temperature after heating on the downstream side of the heating means 2. The water supply pipe 302 is provided with a water supply temperature sensor 504 for detecting the water supply temperature. At the uppermost part of the hot water storage tank 1, a derived temperature sensor 503 for detecting the temperature of the hot water derived from the hot water storage tank 1 is provided. The hot water supply pipe 305 is provided with a hot water supply temperature sensor 505 that detects the temperature of hot water that flows out of the mixing means 4 and is supplied to the hot water supply terminal. The bathtub return pipe 306b is provided with a bathtub return temperature sensor 506 that detects the temperature of bathtub water flowing from the bathtub 6 into the reheating heat exchanger 5. The bathtub return temperature sensor 506 may be used as a means for detecting the temperature of bathtub water in the bathtub 6 (hereinafter referred to as “bath temperature”) by periodically operating the bathtub pump 33. Good. The hot water supply pipe 305 is provided with a hot water supply flow rate sensor 601 for detecting the amount of hot water supplied to the hot water supply terminal. The retrace return pipe 307d is provided with a retrace return hot water temperature sensor 507 (recovery return hot water temperature acquisition means) for detecting the temperature of the retrace return hot water returning from the reheating heat exchanger 5 to the hot water storage tank 1. . In addition, as the reheating hot water temperature acquisition means in the present invention, instead of directly detecting the reheating hot water temperature by the reheating hot water temperature sensor 507, the number of revolutions of the reheating pump 32, the bathtub pump 33, and the like. The value of the reheating hot water temperature may be acquired by estimation from the rotation number of the water, the detection temperature of the derivation temperature sensor 503 and the detection temperature of the bathtub return temperature sensor 506, and the like.

図2は、本発明の実施の形態1の貯湯式給湯システムにおける信号の流れを表すブロック図である。図2に示すように、制御手段100は、追焚き有効蓄熱量算出手段101、追焚き必要熱量予測手段104、加熱制御手段105、流路切替弁制御手段106、浴槽目標温度設定手段107、ポンプ制御手段108、運転モード設定手段としてのシステムモード設定手段109および追焚きモード設定手段110等を有している。   FIG. 2 is a block diagram showing a signal flow in the hot water storage type hot water supply system according to Embodiment 1 of the present invention. As shown in FIG. 2, the control means 100 includes a reheating effective heat storage amount calculation means 101, a reheating required heat amount prediction means 104, a heating control means 105, a flow path switching valve control means 106, a bath target temperature setting means 107, a pump. A control unit 108, a system mode setting unit 109 as an operation mode setting unit, a tracking mode setting unit 110, and the like are included.

制御手段100には、時刻検出手段であるタイマー、貯湯温度センサ501a〜501f、沸上温度センサ502、導出温度センサ503、給水温度センサ504、給湯温度センサ505、浴槽戻り温度センサ506、追焚き戻り湯温度センサ507および給湯流量センサ601からの情報が入力される。この制御手段100は、入力されたこれらの情報に基づいて、加熱手段2、加熱用ポンプ31、追焚き用ポンプ32、浴槽用ポンプ33、混合手段4、流路切替弁7を制御する。   The control means 100 includes a timer that is time detection means, hot water storage temperature sensors 501a to 501f, a boiling temperature sensor 502, a derivation temperature sensor 503, a feed water temperature sensor 504, a hot water supply temperature sensor 505, a bathtub return temperature sensor 506, and a return return. Information from the hot water temperature sensor 507 and the hot water supply flow rate sensor 601 is input. The control means 100 controls the heating means 2, the heating pump 31, the reheating pump 32, the bathtub pump 33, the mixing means 4, and the flow path switching valve 7 based on the input information.

浴槽目標温度設定手段107は、ユーザーインターフェース装置に入力される使用者の指示に基づいて、追焚き運転によって浴槽6を昇温する際の目標温度(以下、「浴槽目標温度」と称する)を設定する。   The bathtub target temperature setting means 107 sets a target temperature (hereinafter referred to as “bath target temperature”) for raising the temperature of the bathtub 6 by a chasing operation based on a user instruction input to the user interface device. To do.

追焚き有効蓄熱量算出手段101は、浴槽目標温度設定手段107で設定された浴槽目標温度と、貯湯温度センサ501a〜501fにより検出された情報とに基づいて、貯湯タンク1内の湯の有する蓄熱量のうちで浴槽6の追焚きに利用可能な蓄熱量(以下、「追焚き有効蓄熱量」と称する)を算出する。   The reheating effective heat storage amount calculation unit 101 stores heat stored in the hot water in the hot water storage tank 1 based on the bath target temperature set by the bath target temperature setting unit 107 and the information detected by the hot water storage temperature sensors 501a to 501f. Of the amount, the amount of heat storage that can be used for reheating the bathtub 6 (hereinafter referred to as “reheating effective heat storage amount”) is calculated.

追焚き必要熱量予測手段104は、使用者の過去の追焚き使用実績、または現在の浴槽6の温度や湯量の状況あるいはその両方の情報に基づいて、浴槽6の追焚きに必要な熱量(以下、「追焚き必要熱量」と称する)を予測する。   The reheating required heat amount predicting means 104 is based on the past renewal use results of the user or the current temperature and / or hot water amount of the bathtub 6 or information on the reheating of the bathtub 6 (hereinafter referred to as the amount of heat necessary for reheating the bathtub 6). , Referred to as “required heat amount”).

加熱制御手段105は、追焚き有効蓄熱量算出手段101により算出された追焚き有効蓄熱量と、追焚き必要熱量予測手段104により予測された追焚き必要熱量とに基づいて、加熱手段2および加熱用ポンプ31の起動の必要性を判定する。   The heating control unit 105 includes the heating unit 2 and the heating unit 2 based on the additional effective heat storage amount calculated by the additional effective heat storage amount calculation unit 101 and the required additional heat amount predicted by the additional required heat amount prediction unit 104. The necessity for starting the pump 31 is determined.

流路切替弁制御手段106(追焚き戻り湯制御手段)は、流路切替弁7を動作させるパルスモータのパルス数を調節することにより、追焚き上部戻り配管307bと追焚き下部戻り配管307cとの流量分配を制御する。例えば、図3(A)に示すように、流路切替弁7の開度を追焚き上部戻り配管307bの側に全開にした場合、追焚き戻り湯はその全量が貯湯タンク1の上部から貯湯タンク1内に流入する。逆に、図3(B)に示すように、流路切替弁7の開度を追焚き下部戻り配管307cの側に全開にした場合、追焚き戻り湯はその全量が貯湯タンク1の下部から貯湯タンク1内に流入する。流路切替弁7の制御は、図3に示す制御に限るものではなく、追焚き戻り湯の一部を貯湯タンク1の上部に戻し、残りを貯湯タンク1の下部に戻すように制御してもよい。   The flow path switching valve control means 106 (remaining return hot water control means) adjusts the number of pulses of the pulse motor that operates the flow path switching valve 7, so that the renewal upper return pipe 307 b and reheating lower return pipe 307 c Control the flow distribution of For example, as shown in FIG. 3 (A), when the opening of the flow path switching valve 7 is opened and fully opened to the upper return pipe 307b side, the entire amount of additional return hot water is stored from the upper part of the hot water storage tank 1. It flows into the tank 1. Conversely, as shown in FIG. 3B, when the opening of the flow path switching valve 7 is opened and fully opened to the lower return pipe 307 c, the total amount of the return hot water is from the lower part of the hot water storage tank 1. It flows into the hot water storage tank 1. Control of the flow path switching valve 7 is not limited to the control shown in FIG. 3, and control is performed so that a part of the refilling return hot water is returned to the upper part of the hot water storage tank 1 and the rest is returned to the lower part of the hot water storage tank 1. Also good.

ポンプ制御手段108は、加熱用ポンプ31、追焚き用ポンプ32および浴槽用ポンプ33の各々の回転数を制御し、ポンプ循環量を調節する。   The pump control means 108 controls the rotation speed of each of the heating pump 31, the reheating pump 32, and the bathtub pump 33, and adjusts the pump circulation amount.

システムモード設定手段109は、ユーザーインターフェース装置に入力される使用者の指示に基づいて、システムの省エネルギーを優先する運転モード(以下、「省エネモード」と称する)や、この省エネモードと比べて湯切れの回避を優先する運転モード(以下、「湯切れ回避モード」と称する)を設定する。   The system mode setting means 109 is based on a user's instruction input to the user interface device. The system mode setting means 109 prioritizes the energy saving of the system (hereinafter referred to as “energy saving mode”), or the hot water runs out compared to this energy saving mode. An operation mode giving priority to avoiding the hot water (hereinafter referred to as “hot water avoidance mode”) is set.

追焚きモード設定手段110は、ユーザーインターフェース装置に入力される使用者の指示に基づいて、浴槽6の追焚き運転に関する運転モードを設定する。本実施形態では、追焚きモード設定手段110は、浴槽温度を所定の範囲内に自動で維持する自動保温モード、中低温まで冷めた浴槽温度を一括して浴槽目標温度まで昇温する一括追焚きモード、短時間で追焚きを完了するために追焚き能力(単位時間当たりの浴槽加熱量)を最優先して追焚きを行う急速追焚きモードなどから選択する形で設定する。   The chasing mode setting means 110 sets an operation mode related to chasing operation of the bathtub 6 based on a user instruction input to the user interface device. In the present embodiment, the chasing mode setting means 110 is an automatic warming mode that automatically maintains the bath temperature within a predetermined range, and the batch chasing that collectively raises the bath temperature that has been cooled to a mid-low temperature to the bath target temperature. In order to complete the chasing in a short time, the chasing ability (bath heating amount per unit time) is set in a form selected from the quick chasing mode in which chasing is performed with the highest priority.

≪基本的な動作≫
次に、本実施形態の貯湯式給湯システムの基本的な動作について説明する。貯湯タンク1の下部には、給水用配管302を通じて低温の水が流入し、貯留される。加熱手段2によって貯湯タンク1の沸き上げを行う際には、貯湯タンク1の下部に貯留された低温の水が、加熱用ポンプ31によって加熱用配管301に引き込まれ、加熱手段2に導かれる。加熱手段2は、導かれた低温の水を加熱して、高温の湯に沸き上げる。沸き上げられた高温の湯は、加熱用配管301を通じて貯湯タンク1に上部から流入し、貯留される。
≪Basic operation≫
Next, the basic operation of the hot water storage type hot water supply system of this embodiment will be described. Low temperature water flows into the lower part of the hot water storage tank 1 through the water supply pipe 302 and is stored. When the hot water storage tank 1 is boiled by the heating means 2, low-temperature water stored in the lower part of the hot water storage tank 1 is drawn into the heating pipe 301 by the heating pump 31 and guided to the heating means 2. The heating means 2 heats the led low-temperature water and boils it into high-temperature hot water. The boiled hot water flows from the upper part into the hot water storage tank 1 through the heating pipe 301 and is stored.

給湯端末に湯を供給する際には、貯湯タンク1の上部に貯留された湯が、導出用配管303から流出し、混合手段4に導かれる。このとき、取り出された湯と同量の水が給水用配管302から貯湯タンク1の下部に流入する。混合手段4は、混合用配管304から供給される水と、貯湯タンク1から供給される湯とを混合させ、給湯用配管305を通じて、蛇口、シャワー、浴槽6などの給湯端末へ供給する。   When hot water is supplied to the hot water supply terminal, hot water stored in the upper part of the hot water storage tank 1 flows out from the outlet pipe 303 and is guided to the mixing means 4. At this time, the same amount of water as the extracted hot water flows from the water supply pipe 302 into the lower part of the hot water storage tank 1. The mixing means 4 mixes the water supplied from the mixing pipe 304 and the hot water supplied from the hot water storage tank 1 and supplies the mixed water to the hot water supply terminals such as the faucet, shower, and bathtub 6 through the hot water supply pipe 305.

また、浴槽6の追焚き運転を行う際には、追焚き用ポンプ32および浴槽用ポンプ33が駆動される。これにより、貯湯タンク1の上部に貯留された湯は、追焚き往き配管307aを通って、追焚き熱交換器5に導かれる。同時に、浴槽6内の浴槽水は、浴槽戻り配管306bを通って、追焚き熱交換器5に導かれる。追焚き熱交換器5で浴槽水へ熱を与えて温度の低下した追焚き戻り湯は、追焚き上部戻り配管307bまたは追焚き下部戻り配管307cを通って貯湯タンク1内に戻る。追焚き熱交換器5で熱を受け取って温度の上昇した浴槽水は、浴槽往き配管306aを通って浴槽6に戻る。このような追焚き運転は、ユーザーインターフェース装置に入力される使用者の指示により強制的に開始されるか、あるいは、浴槽戻り温度センサ506によって定期的に検出される浴槽温度が浴槽目標温度設定手段107により設定された浴槽目標温度よりも所定量以上低くなったときに自動的に開始される。その後、ユーザーインターフェース装置に入力される使用者の指示により強制的に追焚き運転が終了されるか、あるいは、浴槽戻り温度センサ506によって検出される浴槽温度が上記浴槽目標温度よりも所定量以上高くなったときに自動的に追焚き運転が終了する。   Further, when performing the chasing operation of the bathtub 6, the chasing pump 32 and the bathtub pump 33 are driven. Thereby, the hot water stored in the upper part of the hot water storage tank 1 is guided to the reheating heat exchanger 5 through the retreating piping 307a. At the same time, the bathtub water in the bathtub 6 is led to the reheating heat exchanger 5 through the bathtub return pipe 306b. The reclaimed hot water whose temperature is lowered by applying heat to the bathtub water in the reheating heat exchanger 5 returns to the hot water storage tank 1 through the reheating upper return pipe 307b or the reheating lower return pipe 307c. The bathtub water that has received heat at the reheating heat exchanger 5 and has risen in temperature returns to the bathtub 6 through the bathtub outlet pipe 306a. Such a chasing operation is forcibly started by a user's instruction input to the user interface device, or the bathtub temperature periodically detected by the bathtub return temperature sensor 506 is the bathtub target temperature setting means. This is automatically started when the temperature becomes lower than the predetermined target temperature set by 107 by a predetermined amount or more. Thereafter, the chasing operation is forcibly terminated by the user's instruction input to the user interface device, or the bath temperature detected by the bath return temperature sensor 506 is higher than the bath target temperature by a predetermined amount or more. When this happens, the chasing operation ends automatically.

≪特徴的な動作≫
次に、本実施形態の貯湯式給湯システムの特徴的な動作について説明する。まず、図4を参照して、特徴的な動作に関連する現象について説明する。
≪Characteristic action≫
Next, a characteristic operation of the hot water storage type hot water supply system of the present embodiment will be described. First, with reference to FIG. 4, a phenomenon related to a characteristic operation will be described.

本実施形態の貯湯式給湯システムでは、流路切替弁7を制御することにより、追焚き戻り湯を貯湯タンク1の上部に戻すか貯湯タンク1の下部に戻すかを選択することができる。すなわち、追焚き上部戻り配管307bを優先して用いるように流路切替弁7を制御することにより、追焚き戻り湯を貯湯タンク1の上部に優先的に戻すことができる。逆に、追焚き下部戻り配管307cを優先して用いるように流路切替弁7を制御することにより、追焚き戻り湯を貯湯タンク1の下部に優先的に戻すことができる。本明細書において、「追焚き上部戻り配管307bを優先して用いる」とは、追焚き戻り湯の全量を追焚き上部戻り配管307bに流入させること、あるいは、追焚き上部戻り配管307bの流量を追焚き下部戻り配管307cの流量より大きくすることを意味する。これに対し、「追焚き下部戻り配管307cを優先して用いる」とは、追焚き戻り湯の全量を追焚き下部戻り配管307cに流入させること、あるいは、追焚き下部戻り配管307cの流量を追焚き上部戻り配管307bの流量より大きくすることを意味する。   In the hot water storage type hot water supply system of the present embodiment, it is possible to select whether to return the additional hot water to the upper part of the hot water storage tank 1 or the lower part of the hot water storage tank 1 by controlling the flow path switching valve 7. That is, by controlling the flow path switching valve 7 so as to preferentially use the reheating upper return pipe 307 b, reheating hot water can be preferentially returned to the upper portion of the hot water storage tank 1. Conversely, by controlling the flow path switching valve 7 so that the reheating lower return pipe 307 c is used with priority, the reheating hot water can be returned preferentially to the lower portion of the hot water storage tank 1. In this specification, “use preferentially the upper return pipe 307b” means that the entire amount of hot return water is added to the upper return pipe 307b or the flow rate of the upper return pipe 307b is adjusted. This means that it is larger than the flow rate of the tracking lower return pipe 307c. On the other hand, “use preferentially the lower return pipe 307c” means that the entire amount of hot return hot water is added to the lower return pipe 307c or the flow rate of the lower return pipe 307c is added. This means that the flow rate is larger than that of the upper upper return pipe 307b.

また、以下の説明では、追焚き戻り湯を貯湯タンク1に戻す際に、追焚き上部戻り配管307bを優先して用いることを「タンク上部に戻す」と略称し、追焚き下部戻り配管307cを優先して用いることを「タンク下部に戻す」と略称する。   Further, in the following description, when the reheating hot water is returned to the hot water storage tank 1, the preferential use of the reheating upper return pipe 307b is abbreviated as “returning to the upper tank” and the reheating lower return pipe 307c is referred to as “returning to the hot water tank 1”. Preferential use is abbreviated as “returning to the bottom of the tank”.

本実施形態では、追焚き戻り湯をタンク上部に戻すかタンク下部に戻すかを決定する基準として、省エネルギー、追焚き湯切れへの耐力、追焚き能力という3つの観点を考慮する。   In the present embodiment, as a reference for determining whether to return the reclaimed hot water to the upper part of the tank or to the lower part of the tank, three viewpoints of energy saving, resistance to renewed hot water shortage, and renewal ability are considered.

追焚き戻り湯の温度は、使用状況によって異なるが、給水温度よりは高いことが普通であるので、追焚き戻り湯は熱量を有している。追焚き戻り湯をタンク上部に戻した場合には、追焚き戻り湯の熱量が貯湯タンク1内の上部の高温領域に戻るので、追焚き戻り湯の熱量を給湯に再利用できる。これに対し、追焚き戻り湯をタンク下部に戻した場合には、給湯に利用されない貯湯タンク1内の下部の低温領域に追焚き戻り湯が混合するので、追焚き戻り湯の熱量を再利用できない。このため、省エネルギーの観点からは、追焚き戻り湯をタンク下部に戻すよりタンク上部に戻す方が省エネルギーとなる。ただし、タンク上部の高温領域の温度が給湯に有効な温度を下回らないという条件は必要である。   Although the temperature of the reclaimed hot water varies depending on the use situation, it is usually higher than the water supply temperature, and therefore the reclaimed rejuvenated hot water has an amount of heat. When the return hot water is returned to the upper part of the tank, the amount of heat of the additional return hot water returns to the high temperature region in the upper part of the hot water storage tank 1, so that the amount of heat of the additional return hot water can be reused for hot water supply. On the other hand, when the return hot water is returned to the lower part of the tank, the hot return hot water mixes with the lower temperature region in the hot water storage tank 1 that is not used for hot water supply, so the heat amount of the additional return hot water is reused. Can not. For this reason, from the viewpoint of energy saving, it is more energy saving to return the reclaimed hot water to the upper part of the tank than to return it to the lower part of the tank. However, the condition that the temperature in the high temperature region at the upper part of the tank does not fall below the temperature effective for hot water supply is necessary.

追焚き湯切れへの耐力に関しては、追焚き戻り湯の温度が浴槽目標温度と比べて高いか低いかにより、追焚き戻り湯をタンク上部に戻した方が良いかタンク下部に戻した方が良いかが異なる。図4中の左側の欄に示すように、貯湯タンク1から追焚き熱交換器5に循環する流量(以下、「タンク側流量」と称する)が低い場合や、浴槽温度が低い場合、追焚き熱交換器5の性能が高い場合などには、追焚き戻り湯の温度が浴槽目標温度より低くなり易い。一方、図4中の右側の欄に示すように、タンク側流量が高い場合や、浴槽温度が高い場合、追焚き熱交換器5の性能が低い場合などには、追焚き戻り湯の温度が浴槽目標温度より高くなり易い。なお、図4中の数値は、すべて一例である。   With regard to the resistance to running out of hot water, it is better to return the hot water to the upper part of the tank or return it to the lower part of the tank depending on whether the temperature of the hot water is higher or lower than the bath target temperature. Good is different. As shown in the left column of FIG. 4, when the flow rate circulating from the hot water storage tank 1 to the reheating heat exchanger 5 (hereinafter referred to as “tank side flow rate”) is low, or when the bath temperature is low, reheating is performed. When the performance of the heat exchanger 5 is high, the temperature of the reclaimed hot water tends to be lower than the bath target temperature. On the other hand, as shown in the right column in FIG. 4, when the tank-side flow rate is high, the bath temperature is high, or the performance of the reheating heat exchanger 5 is low, the temperature of reheating hot water is It tends to be higher than the bath tub target temperature. Note that the numerical values in FIG. 4 are all examples.

追焚き戻り湯の温度が浴槽目標温度より高い場合には、追焚き戻り湯は、浴槽水を加熱可能な熱量を有しているので、追焚き戻り湯をタンク上部に戻すことにより、タンク上部の高温領域が有する追焚きに有効な熱量が増え、追焚き湯切れへの耐力が高くなる。これに対し、追焚き戻り湯の温度が浴槽目標温度より低い場合には、追焚き戻り湯は浴槽水に対して負の熱量を有しているので、追焚き戻り湯をタンク上部に戻すと、タンク上部の高温領域が有する追焚きに有効な熱量が減少する。このため、追焚き戻り湯の温度が浴槽目標温度より低い場合には、追焚き戻り湯をタンク下部に戻した方が追焚き湯切れへの耐力が高くなる。   When the temperature of the reheating water is higher than the bath target temperature, the reheating water has a heat quantity that can heat the bath water. The amount of heat effective for reheating in the high temperature region increases, and the resistance to reheating hot water becomes high. On the other hand, when the temperature of the reheating water is lower than the bath target temperature, the reheating water has a negative amount of heat with respect to the bath water. In addition, the amount of heat effective for replenishment of the high temperature region at the top of the tank is reduced. For this reason, when the temperature of the reclaimed hot water is lower than the bath target temperature, the return heat of the reclaimed hot water to the lower part of the tank increases the resistance to reheating of the reclaimed hot water.

追焚き能力の観点からは、次のようになる。追焚き戻り湯の温度は、タンク上部の高温領域の温度よりは確実に低いので、追焚き戻り湯をタンク上部に戻すと、タンク上部の高温領域の温度は必ず低下する。タンク上部の高温領域の温度、すなわち貯湯タンク1から追焚き熱交換器5に送られる湯の温度が高いほど、追焚き能力は高くなる。このため、追焚き能力に関しては、追焚き戻り湯の温度にかかわらず、追焚き戻り湯をタンク下部に戻した方が、追焚き能力を高く維持することができる。なお、追焚き用ポンプ32の回転数を上げることで追焚き能力をある程度は維持することも可能であるが、一般的にポンプ回転数には上限があるので、タンク上部の高温領域の温度が低下すると追焚き能力の上限が低下することは避けられない。   From the perspective of memorial ability, it is as follows. Since the temperature of the refilling hot water is surely lower than the temperature in the high temperature region at the top of the tank, the temperature in the high temperature region at the top of the tank is always lowered when the reheating water is returned to the top of the tank. The higher the temperature in the high temperature region at the top of the tank, that is, the temperature of hot water sent from the hot water storage tank 1 to the reheating heat exchanger 5, the higher the renewal capability. For this reason, regarding the reheating ability, regardless of the temperature of the reheating hot water, it is possible to maintain a high renewal ability by returning the reheating hot water to the bottom of the tank. It is possible to maintain the reheating capability to some extent by increasing the revolving speed of the reheating pump 32. However, since the revolving speed of the pump generally has an upper limit, the temperature in the high temperature region above the tank It is inevitable that the upper limit of the chasing ability will be lowered if it falls.

以上の事項をまとめると、追焚き戻り湯をタンク上部に戻すかタンク下部に戻すかについての利害得失は、図4中の表に示すようになる。すなわち、追焚き戻り湯の温度が浴槽目標温度より低い場合において、追焚き戻り湯をタンク上部に戻すと、省エネルギーの点で有利であるが、追焚き湯切れへの耐力および追焚き能力の2点で不利となる。これに対し、追焚き戻り湯をタンク下部に戻すと、省エネルギーの点で不利であるが、追焚き湯切れへの耐力および追焚き能力の2点で有利となり、メリットが大きい。そこで、本実施形態では、追焚き戻り湯の温度が浴槽目標温度より低い場合には、追焚き戻り湯をタンク下部に戻すように流路切替弁7を制御する。   Summarizing the above items, the advantages and disadvantages of whether to return the reclaimed hot water to the upper part of the tank or to the lower part of the tank are as shown in the table in FIG. That is, when the temperature of the reclaimed hot water is lower than the bath target temperature, it is advantageous in terms of energy saving to return the reclaimed hot water to the upper part of the tank. This is disadvantageous. On the other hand, when the return hot water is returned to the lower part of the tank, it is disadvantageous in terms of energy saving, but it is advantageous in terms of the resistance to the hot water shortage and the renewal ability, and has a great merit. Therefore, in the present embodiment, when the temperature of the reclaimed hot water is lower than the bath target temperature, the flow path switching valve 7 is controlled so as to return the reclaimed hot water to the lower part of the tank.

追焚き戻り湯の温度が浴槽目標温度より高い場合においては、追焚き戻り湯をタンク下部に戻すと、追焚き能力の点で有利であるが、省エネルギーおよび追焚き湯切れへの耐力の2点で不利となる。これに対し、追焚き戻り湯をタンク上部に戻すと、追焚き能力の点で不利であるが、省エネルギーおよび追焚き湯切れへの耐力の2点で有利となり、メリットが大きい。そこで、本実施形態では、追焚き戻り湯の温度が浴槽目標温度より高い場合には、追焚き戻り湯をタンク上部に戻すように流路切替弁7を制御する。   When the temperature of the reclaimed hot water is higher than the target bath temperature, returning the reclaimed hot water to the bottom of the tank is advantageous in terms of reheating ability, but it has two points of energy saving and resistance to reheating hot water. Is disadvantageous. On the other hand, when the reclaimed hot water is returned to the upper part of the tank, it is disadvantageous in terms of renewal ability, but it is advantageous in terms of energy saving and resistance to renewed hot water shortage, and has a great merit. Therefore, in the present embodiment, when the temperature of the reclaimed hot water is higher than the bath target temperature, the flow path switching valve 7 is controlled so as to return the reclaimed hot water to the upper part of the tank.

図5は、上記の機能を実現するために本発明の実施の形態1において制御手段100が実行する制御動作を表すルーチンのフローチャートである。図5に示すルーチンによれば、まず、追焚き運転が実行中であるかどうかが判断され(ステップS1)、追焚き運転が実行されていない場合には、流路切替弁7がデフォルトの状態(例えば、追焚き下部戻り配管307cの側に全開の状態)に制御される(ステップS2)。一方、追焚き運転が実行中であった場合には、次に、追焚き戻り湯温度センサ507により検出される浴槽戻り湯温度と、浴槽目標温度設定手段107により設定された浴槽目標温度とが比較される(ステップS3)。   FIG. 5 is a flowchart of a routine representing a control operation executed by the control means 100 in the first embodiment of the present invention to realize the above function. According to the routine shown in FIG. 5, it is first determined whether or not the follow-up operation is being executed (step S1). If the follow-up operation is not executed, the flow path switching valve 7 is in the default state. (For example, the state is fully opened on the side of the bottom return return pipe 307c) (step S2). On the other hand, when the reheating operation is being executed, the bath return hot water temperature detected by the reheating hot water temperature sensor 507 and the bath target temperature set by the bath target temperature setting means 107 are next calculated. Comparison is made (step S3).

ステップS3の比較の結果、浴槽戻り湯温度が浴槽目標温度より高い場合には、追焚き戻り湯をタンク上部に戻すように流路切替弁7が制御される(ステップS4)。このステップS4では、追焚き戻り湯の全量を追焚き上部戻り配管307bに流入させるように流路切替弁7を制御してもよいし、あるいは、追焚き上部戻り配管307bに流入する追焚き戻り湯の量が追焚き下部戻り配管307cに流入する追焚き戻り湯の量より多くなるように流路切替弁7を制御してもよい。   As a result of the comparison in step S3, when the bathtub return hot water temperature is higher than the bath target temperature, the flow path switching valve 7 is controlled so as to return the additional return hot water to the upper part of the tank (step S4). In this step S4, the flow path switching valve 7 may be controlled so that the entire amount of the reclaimed hot water flows into the retreat upper return pipe 307b, or the refill return that flows into the retreat upper return pipe 307b. You may control the flow-path switching valve 7 so that the quantity of hot water may become larger than the quantity of the extra return hot water which flows into the additional lower return piping 307c.

一方、ステップS3の比較の結果、浴槽戻り湯温度が浴槽目標温度以下である場合には、追焚き戻り湯をタンク下部に戻すように流路切替弁7が制御される(ステップS5)。このステップS5では、追焚き戻り湯の全量を追焚き下部戻り配管307cに流入させるように流路切替弁7を制御してもよいし、あるいは、追焚き下部戻り配管307cに流入する追焚き戻り湯の量が追焚き上部戻り配管307bに流入する追焚き戻り湯の量より多くなるように流路切替弁7を制御してもよい。   On the other hand, as a result of the comparison in step S3, when the bathtub return hot water temperature is equal to or lower than the bath target temperature, the flow path switching valve 7 is controlled so as to return the additional return hot water to the bottom of the tank (step S5). In this step S5, the flow path switching valve 7 may be controlled so that the entire amount of the reclaimed hot water flows into the retreat lower return pipe 307c, or the retrace return flowing into the retreat lower return pipe 307c. You may control the flow-path switching valve 7 so that the quantity of hot water may become larger than the quantity of the extra return hot water which flows into the additional upper return piping 307b.

本発明の貯湯式給湯システムでは、追焚き戻り湯をタンク上部に戻した場合、追焚き戻り湯が貯湯タンク1内の上部の高温領域に混合するので、追焚き戻り湯が持つ熱量を確実に再利用することができる。本発明と異なり、追焚き戻り湯を貯湯タンク1の中間部に戻す構成の場合、貯湯タンク1中間部に戻された追焚き戻り湯が結局使用されないまま残る場合がある。これに対し、本発明では、追焚き戻り湯をタンク上部に戻した場合、追焚き戻り湯が持つ熱量が確実に再利用されるので、省エネルギーが図れる。また、追焚き戻り湯をタンク上部に戻すことがシステムの状態や使用者の意向との兼ね合いで不都合となる場合には、追焚き戻り湯をタンク下部に戻すことができるので、そのような不都合を回避することができる。更に、本発明では、追焚き戻り湯の戻し口を貯湯タンク1の上部と下部との2箇所に設けるだけでよく、3箇所以上の戻し口を設ける必要がないので、貯湯タンク1の構造の複雑化や、追焚き戻り湯の流路を切り替える機構の複雑化を回避することができ、簡単な構成で上記効果を達成することができる。   In the hot water storage type hot water supply system of the present invention, when the reheating hot water is returned to the upper part of the tank, the reheating hot water is mixed with the high temperature region in the upper part of the hot water storage tank 1, so Can be reused. Unlike the present invention, in the case of the configuration in which the reclaimed hot water is returned to the intermediate portion of the hot water storage tank 1, the reclaimed hot water returned to the intermediate portion of the hot water storage tank 1 may remain unused after all. In contrast, in the present invention, when the reclaimed hot water is returned to the upper part of the tank, the amount of heat of the reclaimed hot water is reliably reused, so that energy saving can be achieved. In addition, if it is inconvenient to return the reclaimed hot water to the upper part of the tank due to the state of the system and the intention of the user, the reclaimed hot water can be returned to the lower part of the tank. Can be avoided. Furthermore, in the present invention, it is only necessary to provide the return ports for the reclaimed hot water at two locations, the upper portion and the lower portion of the hot water storage tank 1, and it is not necessary to provide three or more return ports. The complexity and the complexity of the mechanism for switching the flow path of the reclaimed hot water can be avoided, and the above effect can be achieved with a simple configuration.

また、本実施の形態1では、追焚き戻り湯をタンク上部に戻すかタンク下部に戻すかを図5のフローチャートに示す手順で決定することにより、省エネルギー、追焚き湯切れへの耐力、追焚き能力確保の3点の特性をバランス良く向上することができる。特に、タンク上部の高温領域が有する追焚きに有効な熱量を最大化できるので、追焚き湯切れへの耐力を最大化させることができる。   Further, in the first embodiment, it is determined by the procedure shown in the flowchart of FIG. 5 whether to return the reclaimed hot water to the upper part of the tank or to the lower part of the tank, thereby saving energy, resistance to reheating hot water, and reheating. It is possible to improve the characteristics of the three points for securing the capability with a good balance. In particular, since the amount of heat effective for reheating that the high temperature region of the upper part of the tank has can be maximized, it is possible to maximize the resistance to reheating hot water.

なお、上記ステップS3では、浴槽戻り湯温度と浴槽目標温度とを直接に比較しているが、浴槽目標温度に所定値を加算した温度と浴槽戻り湯温度とを比較し、浴槽戻り湯温度が浴槽目標温度に当該所定値を加算した温度より高い場合に追焚き戻り湯をタンク上部に戻し、浴槽戻り湯温度が浴槽目標温度に当該所定値を加算した温度以下である場合に追焚き戻り湯をタンク下部に戻すようにしてもよい。この場合には、追焚き能力の低下を更に抑制することが可能となる。   In step S3, the bath return hot water temperature and the bath target temperature are directly compared, but the temperature obtained by adding a predetermined value to the bath target temperature is compared with the bath return hot water temperature. If the temperature is higher than the temperature obtained by adding the predetermined value to the bath target temperature, return hot water is returned to the upper part of the tank, and if the temperature of the bath returning hot water is equal to or lower than the temperature obtained by adding the predetermined value to the bath target temperature, May be returned to the bottom of the tank. In this case, it is possible to further suppress a decrease in the tracking ability.

また、本実施形態では、システムモード設定手段109で省エネモードが設定されている場合には、図5に示す制御を実行せず、追焚き戻り湯をその温度にかかわらずタンク上部に戻すように流路切替弁7を制御してもよい。これにより、追焚き戻り湯の熱量をより確実に回収して再利用できるので、使用者の意向に従い、省エネルギーを最優先することができる。   Further, in the present embodiment, when the energy saving mode is set by the system mode setting means 109, the control shown in FIG. 5 is not executed and the reclaimed hot water is returned to the upper part of the tank regardless of the temperature. The flow path switching valve 7 may be controlled. Thereby, since the calorie | heat amount of reheating hot water can be collect | recovered more reliably and can be reused, according to a user's intention, energy saving can be given top priority.

また、本実施形態では、追焚きモード設定手段110で急速追焚きモードが設定されている場合には、図5に示す制御を実行せず、追焚き戻り湯をその温度にかかわらずタンク下部に戻すように流路切替弁7を制御してもよい。これにより、タンク上部の温度を最大化することができるので、使用者の意向に従い、追焚き能力の保持を最優先とし、急速に追焚きを行うことができる。   Further, in the present embodiment, when the quick chasing mode is set by the chasing mode setting means 110, the control shown in FIG. 5 is not executed, and the chasing hot water is placed at the lower part of the tank regardless of the temperature. The flow path switching valve 7 may be controlled to return. Thereby, since the temperature of the tank upper part can be maximized, according to the intention of the user, the highest priority is to maintain the tracking capability, and the tracking can be performed rapidly.

実施の形態2.
次に、図6および図7を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。
Embodiment 2. FIG.
Next, the second embodiment of the present invention will be described with reference to FIG. 6 and FIG. 7. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted.

本実施の形態2においては、特に、追焚き戻り湯をタンク上部に戻すことによって得られる省エネルギー効果を追焚き湯切れの回避と両立して実現させる上で有利な動作について説明する。   In the second embodiment, particularly, an operation that is advantageous in realizing the energy saving effect obtained by returning the reclaimed hot water to the upper part of the tank in combination with avoidance of the renewed hot water will be described.

≪本実施形態に特徴的な動作≫
[追焚き有効蓄熱量の算出]
まず、追焚き有効蓄熱量算出手段101により追焚き有効蓄熱量を算出する方法について説明する。図6中の右図は、追焚き戻り湯をタンク上部に戻す場合の、追焚き中の貯湯温度の変化を表している。追焚き戻り湯をタンク上部に戻す場合には、中温の追焚き戻り湯が高温領域に流入することになるので、高温の湯と比べて密度の大きい中温の追焚き戻り湯は、高温領域と熱交換を行いながら、同じ温度となる領域の高さまで下降していく。従って、追焚き中の貯湯温度は、温度境界層の位置はほとんど変わらないまま、温度境界層より高い領域の温度が全体的に低下する。また、貯湯タンク1の湯は、浴槽目標温度より高い温度でないと、追焚きに利用できない。
<< Operations Characteristic of this Embodiment >>
[Calculation of reheating effective heat storage]
First, a method of calculating the additional effective heat storage amount by the additional effective heat storage amount calculation unit 101 will be described. The right diagram in FIG. 6 shows the change in the hot water storage temperature during reheating when returning reheating hot water to the upper part of the tank. When returning the reclaimed hot water to the upper part of the tank, the intermediate reheated hot water flows into the high temperature region. While performing heat exchange, the temperature drops to the height of the region where the temperature is the same. Therefore, the temperature of the hot water storage during the chasing is generally lowered in the region higher than the temperature boundary layer while the position of the temperature boundary layer remains almost unchanged. Moreover, the hot water in the hot water storage tank 1 cannot be used for chasing unless the temperature is higher than the bath target temperature.

以上の考察から、追焚き戻り湯をタンク上部に戻す場合に、追焚き有効蓄熱量は、浴槽目標温度を熱量換算のゼロ点である基準温度とし、貯湯温度が基準温度以上の領域にわたって積分した熱量として定義できる(図6中の左図参照)。したがって、追焚き有効蓄熱量算出手段101は、貯湯温度センサ501a〜501fにより検出される温度分布に基づいて、貯湯温度が浴槽目標温度以上となる領域の熱量を積分し、その積分値を追焚き有効蓄熱量として算出する。   Based on the above considerations, when returning additional hot water to the upper part of the tank, the additional effective heat storage amount is integrated over the region where the hot water storage temperature is equal to or higher than the reference temperature, with the bath target temperature as the reference temperature, which is the zero point of heat conversion It can be defined as the amount of heat (see the left figure in FIG. 6). Therefore, the reheating effective heat storage amount calculation means 101 integrates the heat amount in the region where the hot water storage temperature is equal to or higher than the bathtub target temperature based on the temperature distribution detected by the hot water storage temperature sensors 501a to 501f, and tracks the integrated value. Calculated as effective heat storage.

[追焚き必要熱量の予測]
次に、追焚き必要熱量予測手段104により追焚き必要熱量を予測する動作について説明する。追焚き必要熱量は、浴槽6の温度を現時点の温度から浴槽目標温度まで上昇させるのに必要な熱量である。したがって、浴槽6の湯量(例えば200L)と、浴槽目標温度(例えば40℃)と現時点の浴槽温度(例えば30℃)との温度差と、水の密度(例えば1kg/L)と、水の比熱(例えば1kcal/g℃)とを乗算して算出することができる。この計算において、浴槽6の湯量は、予め定めた所定値(例えば200L)を使用してもよいし、あるいは使用者がユーザーインターフェース装置にて設定した値を使用してもよい。また、給湯流量センサ601により検出した流量を積算することによって求めた浴槽6への総注入量を浴槽6の湯量としてもよい。また、例えば浴槽戻り配管306b内に圧力センサなどによる水位検出手段を設け、給湯流量センサ601の積算流量と浴槽水位との相間を初期学習しておき、以後は、浴槽水位から浴槽6の湯量を求めるようにしてもよい。
[Prediction of additional heat required]
Next, an operation for predicting the amount of heat required for reheating by the reheating required heat amount prediction unit 104 will be described. The amount of heat required for reheating is the amount of heat necessary to raise the temperature of the bathtub 6 from the current temperature to the bathtub target temperature. Therefore, the amount of hot water in the bathtub 6 (for example, 200 L), the temperature difference between the bath target temperature (for example, 40 ° C.) and the current bath temperature (for example, 30 ° C.), the density of water (for example, 1 kg / L), and the specific heat of water (For example, 1 kcal / g ° C.). In this calculation, as the amount of hot water in the bathtub 6, a predetermined value (for example, 200 L) may be used, or a value set by the user using the user interface device may be used. Alternatively, the total amount of water injected into the bathtub 6 obtained by integrating the flow rates detected by the hot water supply flow sensor 601 may be used as the amount of hot water in the bathtub 6. Further, for example, a water level detection means such as a pressure sensor is provided in the bathtub return pipe 306b, and an initial learning is made between the integrated flow rate of the hot water supply flow rate sensor 601 and the bathtub water level. You may make it ask.

また、過去の追焚き必要熱量を学習して記憶するようなシステムの場合は、当該学習結果の過去所定期間内の最大値や平均値といった形で当日予測される値を追焚き必要熱量の予測値としてもよい。この場合、追焚き必要熱量の学習は、浴槽6の湯量と、追焚き運転の開始時と終了時の浴槽温度の差とから算出される値を学習してもよいし、浴槽戻り配管306bあるいは浴槽往き配管306aを循環する流量を流量センサ(図示せず)または浴槽用ポンプ33の回転数に基づいて検出するとともに追焚き熱交換器5の浴槽水の出入り口の温度差を温度センサで検出することによって学習してもよい。   In addition, in the case of a system that learns and stores the amount of heat required for the past renewal, the value of the learning result that is predicted on the day in the form of the maximum value or average value within a predetermined period in the past is predicted for the amount of heat required for renewal. It may be a value. In this case, the learning of the amount of heat required for reheating may be learned from the amount of hot water in the bathtub 6 and the difference between the bath temperatures at the start and end of the reheating operation, or the bathtub return pipe 306b or The flow rate circulating through the bathtub outlet pipe 306a is detected based on the flow rate sensor (not shown) or the rotation speed of the bathtub pump 33, and the temperature difference between the inlet and outlet of the bathtub water of the reheating heat exchanger 5 is detected by the temperature sensor. You may learn by doing.

前述した実施の形態1では、追焚き戻り湯の温度が浴槽目標温度より低い場合には、追焚き湯切れへの耐力を高めるため、追焚き戻り湯をタンク下部に戻すようにしている。しかしながら、追焚き戻り湯の温度が浴槽目標温度より低い場合であっても、追焚き有効蓄熱量が追焚き必要熱量より大きい場合には、追焚き湯切れが発生するおそれはないと予測できる。そこで、本実施形態では、追焚き戻り湯の温度が浴槽目標温度より低い場合であっても、追焚き有効蓄熱量が追焚き必要熱量より大きい場合には、追焚き戻り湯をタンク上部に戻し、追焚き戻り湯の熱量を回収することとした。   In the first embodiment described above, when the temperature of the reheating hot water is lower than the bath target temperature, the reheating hot water is returned to the lower part of the tank in order to increase the resistance to reheating hot water. However, even when the temperature of the reheating hot water is lower than the bath target temperature, it can be predicted that there is no possibility that the reheating hot water runs out if the reheating effective heat storage amount is larger than the reheating required heat amount. Therefore, in this embodiment, even if the temperature of the reclaimed hot water is lower than the bath target temperature, if the effective heat storage amount is larger than the required heat amount, the reclaimed return hot water is returned to the upper part of the tank. Then, it was decided to recover the calorie of the reclaimed hot water.

図7は、上記の機能を実現するために本発明の実施の形態2において制御手段100が実行する制御動作を表すルーチンのフローチャートである。図7に示すルーチンによれば、ステップS1〜S4は前述した図5のルーチンと同様の処理が行われる。ステップS3で浴槽戻り湯温度が浴槽目標温度以下である場合には、次に、追焚き有効蓄熱量算出手段101により算出される追焚き有効蓄熱量と、追焚き必要熱量予測手段104により予測される追焚き必要熱量とを比較する(ステップS6)。このステップS6の比較の結果、追焚き有効蓄熱量が追焚き必要熱量より大きい場合には、追焚き戻り湯をタンク上部に戻すように流路切替弁7が制御される(ステップS7)。これに対し、追焚き有効蓄熱量が追焚き必要熱量以下である場合には、追焚き戻り湯をタンク下部に戻すように流路切替弁7が制御される(ステップS8)。   FIG. 7 is a flowchart of a routine representing a control operation executed by the control means 100 in the second embodiment of the present invention to realize the above function. According to the routine shown in FIG. 7, steps S1 to S4 are performed in the same manner as the routine shown in FIG. When the bath return hot water temperature is equal to or lower than the bath target temperature in step S3, the reheating effective heat storage amount calculated by the reheating effective heat storage amount calculation unit 101 and the reheating required heat amount prediction unit 104 are predicted next. The reheating required heat amount is compared (step S6). As a result of the comparison in step S6, when the additional effective heat storage amount is larger than the additional required heat amount, the flow path switching valve 7 is controlled to return the additional return hot water to the upper part of the tank (step S7). On the other hand, when the reheating effective heat storage amount is equal to or less than the reheating necessary heat amount, the flow path switching valve 7 is controlled so as to return the reheating hot water to the lower part of the tank (step S8).

上述した本実施形態の制御によれば、追焚き湯切れを確実に回避しつつ、追焚き戻り湯の熱量を回収する機会を増やすことができるので、更なる省エネルギーが図れる。特に、本実施形態では、追焚き有効蓄熱量を算出する際に、浴槽目標温度を熱量換算のゼロ点である基準温度とし、貯湯温度がこの基準温度以上の領域に基づいて追焚き有効蓄熱量を算出する。これにより、追焚き有効蓄熱量をより正確に算出することができるので、追焚き湯切れの回避をより高精度に実現することができる。   According to the control of this embodiment described above, it is possible to increase the chances of recovering the amount of heat of the reclaimed hot water while reliably avoiding the renewed hot water shortage, and thus further energy saving can be achieved. In particular, in this embodiment, when calculating the additional effective heat storage amount, the bath target temperature is set as a reference temperature that is a zero point in terms of heat amount, and the additional effective heat storage amount is based on a region where the hot water storage temperature is equal to or higher than the reference temperature. Is calculated. As a result, the reheating effective heat storage amount can be calculated more accurately, so that avoiding reheating hot water can be achieved with higher accuracy.

なお、上記ステップS6では、追焚き有効蓄熱量と追焚き必要熱量とを直接に比較しているが、追焚き必要熱量に余裕度としての所定値を加算した値と追焚き有効蓄熱量とを比較し、追焚き有効蓄熱量が追焚き必要熱量に当該所定値を加算した値より大きい場合に追焚き戻り湯をタンク上部に戻し、追焚き有効蓄熱量が追焚き必要熱量に当該所定値を加算した値以下である場合に追焚き戻り湯をタンク下部に戻すようにしてもよい。また、追焚き運転中に加熱手段2を運転して沸き上げを行う場合には、追焚き運転中に加熱手段2が増加させることができる熱量を追焚き有効蓄熱量に含めてもよい。また、追焚き必要熱量は、現在の追焚き運転一回分の必要熱量として予測してもよいし、当日にまだ発生する可能性のある追焚き必要熱量を含めた合計として予測してもよい。   In step S6, the additional effective heat storage amount and the additional required heat amount are directly compared. However, a value obtained by adding a predetermined value as a margin to the additional required heat amount and the additional effective heat storage amount are obtained. In comparison, when the additional effective heat storage amount is larger than the value obtained by adding the predetermined value to the additional heat amount, the additional return hot water is returned to the upper part of the tank, and the additional effective heat storage amount is set to the additional required heat amount. When the value is equal to or less than the added value, the reclaimed hot water may be returned to the lower part of the tank. In addition, when the heating means 2 is operated during boiling operation to perform boiling, the amount of heat that can be increased by the heating means 2 during the tracking operation may be included in the additional effective heat storage amount. Further, the amount of heat required for additional heating may be predicted as the required amount of heat for one current additional operation, or may be predicted as a total including the additional amount of required heat that may still occur on the day.

また、追焚き有効蓄熱量を算出する際には、貯湯タンク1内の蓄熱量のうち、蛇口やシャワー等への給湯に必要になると予測される熱量を除いた領域から追焚き有効蓄熱量を算出するようにしてもよい。この場合、給湯に必要になると予測される熱量は、過去の使用者の給湯使用実績、または所定の設計値に基づいて、予測してもよい。過去の使用者の給湯使用実績に基づいて予測する場合には、例えば、タイマー、給湯温度センサ505、および給湯流量センサ601からの情報に基づいて、時間帯ごとの給湯負荷実績を日々記憶し、当該記憶した給湯負荷実績に基づいて、当日の給湯負荷を予測し、予測される給湯負荷に対して湯切れが発生しないように給湯用必要蓄熱量を予測する方法を用いることができる。また、所定の設計値に基づいて予測する場合には、例えば、一般的に多量の給湯が予測される時間帯(例えば午後6時〜午後11時)では給湯用必要蓄熱量を大きく設定(例えば42℃換算300L)し、それ以外の時間帯では給湯用必要蓄熱量を小さく設定(例えば42℃換算80L)する方法を用いることができる。   In addition, when calculating the additional effective heat storage amount, the additional effective heat storage amount is calculated from the area excluding the amount of heat stored in the hot water storage tank 1 that is predicted to be required for hot water supply to a faucet or shower. You may make it calculate. In this case, the amount of heat predicted to be required for hot water supply may be predicted based on past hot water supply usage results of users or predetermined design values. When predicting based on the past hot water usage history of the user, for example, based on information from the timer, the hot water temperature sensor 505, and the hot water flow rate sensor 601, the hot water load performance for each time zone is stored every day. Based on the stored hot water supply load results, it is possible to use a method of predicting the hot water supply load on the day and predicting the necessary heat storage amount for hot water supply so that hot water does not run out with respect to the predicted hot water supply load. Further, when predicting based on a predetermined design value, for example, in a time zone in which a large amount of hot water is generally predicted (for example, from 6:00 pm to 11:00 pm), the necessary heat storage amount for hot water supply is set to a large value (for example, It is possible to use a method of setting the required heat storage amount for hot water supply to be small (for example, 80 L converted to 42 ° C.).

なお、追焚きモード設定手段110で自動保温モードが設定されている場合には、追焚き有効蓄熱量と追焚き必要熱量との比較を行うことなく、追焚き戻り湯をタンク上部に戻すように流路切替弁7を制御してもよい。自動保温モードが設定されている場合には、追焚き運転一回当りに必要な熱量が小さいため、追焚き湯切れが発生する可能性は小さいからである。このような制御によれば、簡易な方法にて、省エネルギーと同時に追焚き湯切れの回避を実現させることができる。   When the automatic heat retention mode is set by the reheating mode setting means 110, the reheating hot water is returned to the upper part of the tank without comparing the reheating effective heat storage amount and the requisite heating amount. The flow path switching valve 7 may be controlled. This is because when the automatic heat retention mode is set, the amount of heat necessary for one reheating operation is small, and therefore, the possibility of occurrence of reheating hot water is small. According to such control, it is possible to realize the energy saving and avoidance of running-off hot water with a simple method.

実施の形態3.
次に、図8を参照して、本発明の実施の形態3について説明するが、上述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 8. The description will focus on the differences from the above-described embodiment, and the same or corresponding parts will be described with the same reference numerals. Omitted.

本実施の形態3においては、特に、大流速の追焚き戻り湯をタンク上部に戻した場合に、追焚き有効蓄熱量が著しく減少するという問題を回避する方法について説明する。   In the present third embodiment, a method for avoiding the problem that the amount of effective reheating heat remarkably decreases particularly when reflowing hot water having a high flow rate is returned to the upper part of the tank will be described.

≪本実施形態に特徴的な動作≫
まず、本実施形態に係る現象を図8にて説明する。追焚き戻り湯をタンク上部に戻す場合において、追焚き戻り湯が貯湯タンク1内に噴出する流速が小さく、その運動量が温度境界層に届かない場合には、追焚き運転中の温度分布は、温度境界層の位置がほとんど変わらず、温度境界層より高い位置の温度が全体的に均一に低下する(図8の上段参照)。
<< Operations Characteristic of this Embodiment >>
First, the phenomenon according to the present embodiment will be described with reference to FIG. In the case where the return hot water is returned to the upper part of the tank, when the flow rate of the hot return hot water ejected into the hot water storage tank 1 is small and the momentum does not reach the temperature boundary layer, the temperature distribution during the follow-up operation is The position of the temperature boundary layer is hardly changed, and the temperature at a position higher than the temperature boundary layer is uniformly reduced as a whole (see the upper part of FIG. 8).

これに対し、追焚き戻り湯が貯湯タンク1内に噴出する流速が大きく、その運動量が温度境界層に届くような場合には、追焚き運転によって温度境界層の上側の高温領域と下側の低温領域とが混合され、温度境界層の位置が低下するとともに、温度境界層の上側の温度が大きく低下し、追焚き有効蓄熱量が著しく減少する(図8の下段参照)。この事態を回避するため、本実施形態では、追焚き戻り湯の運動量が温度境界層に届くか否かに応じて、追焚き戻り湯をタンク上部に戻すかタンク下部に戻すかを切り替える。   On the other hand, in the case where the flow rate at which the reclaimed hot water spouts into the hot water storage tank 1 is large and the momentum reaches the temperature boundary layer, the high temperature region above the temperature boundary layer and the The low temperature region is mixed, the position of the temperature boundary layer is lowered, the temperature on the upper side of the temperature boundary layer is greatly lowered, and the reheating effective heat storage amount is remarkably reduced (see the lower part of FIG. 8). In order to avoid this situation, in the present embodiment, switching between returning the return hot water to the upper part of the tank or returning to the lower part of the tank is performed depending on whether or not the momentum of the return hot water reaches the temperature boundary layer.

具体的には、まず、追焚き上部戻り配管307bから貯湯タンク1内に噴出する追焚き戻り湯の運動量が届く範囲(以下、「影響範囲」と称する)を実験や計算によって予め把握しておく。この影響範囲の下限の位置を以下「所定位置」と称する。追焚き運転時には、貯湯温度センサ501a〜501fで検出される温度分布に基づいて、温度境界層の位置を決定する。この場合、例えば、温度勾配が最も急峻な位置を温度境界層の位置と決定すればよい。そして、温度境界層の位置が上記所定位置より低い場合には、追焚き戻り湯をタンク上部に戻すように流路切替弁7を制御し、温度境界層の位置が上記所定位置より高い場合には、追焚き戻り湯をタンク下部に戻すように流路切替弁7を制御する。本実施形態では、このような制御を行うことにより、温度境界層の上側の高温領域と下側の低温領域とが追焚き戻り湯により混合されて追焚き有効蓄熱量が著しく減少することを確実に回避することができる。   Specifically, first, a range (hereinafter referred to as “influence range”) within which the momentum of the chasing return hot water sprayed into the hot water storage tank 1 from the chasing upper return pipe 307b reaches is previously grasped by experiments and calculations. . The lower limit position of the influence range is hereinafter referred to as “predetermined position”. During the chasing operation, the position of the temperature boundary layer is determined based on the temperature distribution detected by the hot water storage temperature sensors 501a to 501f. In this case, for example, the position having the steepest temperature gradient may be determined as the position of the temperature boundary layer. And when the position of the temperature boundary layer is lower than the predetermined position, the flow path switching valve 7 is controlled so as to return the reclaimed hot water to the upper part of the tank, and the position of the temperature boundary layer is higher than the predetermined position. Controls the flow path switching valve 7 so that the return hot water is returned to the lower part of the tank. In this embodiment, by performing such control, it is ensured that the high temperature region on the upper side of the temperature boundary layer and the low temperature region on the lower side are mixed by the reheating hot water, and the reheating effective heat storage amount is remarkably reduced. Can be avoided.

また、本実施形態では、追焚き上部戻り配管307bから貯湯タンク1内に噴出する追焚き戻り湯の噴出流速と影響範囲との関係を実験や計算によって予め把握しておき、追焚き運転時に、追焚き用ポンプ32の回転数と、追焚き上部戻り配管307bが接続された追焚き戻し口の口径とから、追焚き戻り湯が貯湯タンク1内に噴出する流速を算出し、その算出された噴出流速に基づいて影響範囲を算出し、その算出された影響範囲の下限を所定位置として上記の制御を行うようにしてもよい。この場合には、追焚き用ポンプ32の回転数により変化する追焚き戻り湯の噴出流速に応じて影響範囲を設定することができるので、温度境界層の上側の高温領域と下側の低温領域とが追焚き戻り湯により混合されることをより確実に防止することができる。   Further, in the present embodiment, the relationship between the jetting flow rate of the refilling return hot water ejected into the hot water storage tank 1 from the retreat upper return pipe 307b and the influence range is grasped in advance by experiments and calculations, and during the reheating operation, From the number of rotations of the reheating pump 32 and the diameter of the recirculation return port to which the recirculation upper return pipe 307b is connected, the flow velocity at which the recirculation return hot water spouts into the hot water storage tank 1 is calculated. The influence range may be calculated based on the ejection flow velocity, and the above control may be performed with the lower limit of the calculated influence range as a predetermined position. In this case, since the influence range can be set according to the jetting flow rate of the refilling hot water that changes depending on the rotation speed of the reheating pump 32, the high temperature region on the upper side of the temperature boundary layer and the low temperature region on the lower side thereof. And can be more reliably prevented from being mixed with the reheating hot water.

また、本実施形態では、貯湯温度センサ501a〜501fの出力に基づいて検出された温度境界層の位置が上記所定位置より高い場合には、追焚き用ポンプ32の回転数を低下方向に補正するようにしてもよい。これにより、追焚き戻り湯の噴出流速が低下し、上記影響範囲が小さくなるので、温度境界層の上側の高温領域と下側の低温領域とを混合させることなく追焚き戻り湯をタンク上部に戻すことが可能となる。このため、追焚き戻り湯の熱量を回収する機会が増え、省エネルギーが図れる。   Further, in the present embodiment, when the position of the temperature boundary layer detected based on the outputs of the hot water storage temperature sensors 501a to 501f is higher than the predetermined position, the rotational speed of the reheating pump 32 is corrected in the decreasing direction. You may do it. As a result, the jet flow rate of the reclaimed hot water is reduced and the above-mentioned range of influence is reduced, so that the reheated hot water can be placed in the upper part of the tank without mixing the upper high temperature region and the lower low temperature region of the temperature boundary layer. It becomes possible to return. For this reason, the opportunity to collect | recover the calorie | heat amount of reheating hot water increases, and energy saving can be aimed at.

更に、本実施形態では、貯湯温度センサ501a〜501fの出力に基づいて検出された温度境界層の位置が上記所定位置より高い場合に、追焚き用ポンプ32の回転数を低下方向に補正することに代えて、追焚き上部戻り配管307bの流量を低下させ追焚き下部戻り配管307cの流量を増加させる方向に流路切替弁7の開度を補正するようにしてもよい。これにより、追焚き上部戻り配管307bからの追焚き戻り湯の噴出流速が低下し、上記影響範囲が小さくなるので、温度境界層の上側の高温領域と下側の低温領域とが混合することを回避しつつ追焚き戻り湯の熱量を回収することが可能となり、省エネルギーが図れる。   Furthermore, in this embodiment, when the position of the temperature boundary layer detected based on the outputs of the hot water storage temperature sensors 501a to 501f is higher than the predetermined position, the rotational speed of the reheating pump 32 is corrected in the decreasing direction. Instead of this, the flow rate of the flow switching valve 7 may be corrected in a direction in which the flow rate of the tracking upper return pipe 307b is decreased and the flow rate of the tracking lower return pipe 307c is increased. As a result, the jet flow rate of the reclaimed hot water from the reheated upper return pipe 307b is reduced and the above-mentioned influence range is reduced, so that the high temperature region on the upper side of the temperature boundary layer and the low temperature region on the lower side are mixed. While avoiding it, it becomes possible to recover the amount of heat of the reclaimed hot water, thereby saving energy.

1 貯湯タンク、2 加熱手段、4 混合手段、5 追焚き熱交換器、7 流路切替弁、31 加熱用ポンプ、32 追焚き用ポンプ、33 浴槽用ポンプ、100 制御手段、301 加熱用配管、302 給水用配管、303 導出用配管、304 混合用配管、305 給湯用配管、306a 浴槽往き配管、306b 浴槽戻り配管、307a 追焚き往き配管、307b 追焚き上部戻り配管、307c 追焚き下部戻り配管、307d 追焚き戻り配管、501a〜501f 貯湯温度センサ、502 沸上温度センサ、503 導出温度センサ、504 給水温度センサ、505 給湯温度センサ、506 浴槽戻り温度センサ、507 追焚き戻り湯温度センサ、601 給湯流量センサ DESCRIPTION OF SYMBOLS 1 Hot water storage tank, 2 Heating means, 4 Mixing means, 5 Heating heat exchanger, 7 Flow path switching valve, 31 Heating pump, 32 Heating pump, 33 Bath pump, 100 Control means, 301 Heating piping, 302 Water supply piping, 303 Leading piping, 304 Mixing piping, 305 Hot water piping, 306a Bathing piping, 306b Bathing piping, 307a Tracking piping, 307b Tracking top return piping, 307c Tracking bottom return piping, 307d Reheating pipe, 501a to 501f Hot water storage temperature sensor, 502 Boiling temperature sensor, 503 Derived temperature sensor, 504 Feed water temperature sensor, 505 Hot water temperature sensor, 506 Bath return temperature sensor, 507 Reheating water temperature sensor, 601 Hot water supply Flow sensor

Claims (5)

水を加熱して湯にする加熱手段と、
前記加熱手段により生成された湯を上側から貯留し、下側から水を貯留する貯湯タンクと、
浴槽から循環する浴槽水と該浴槽水を加温するための湯との熱交換を行う追焚き熱交換器と、
前記貯湯タンクの上部から取り出された湯を前記追焚き熱交換器に導く追焚き用ポンプと、
前記追焚き熱交換器から前記貯湯タンクに戻る追焚き戻り湯を前記貯湯タンクの上部に戻す上部戻し流路と、
前記追焚き戻り湯を前記貯湯タンクの下部に戻す下部戻し流路と、
使用者の指示に基づいて、運転モードを設定する運転モード設定手段と、
前記加熱手段を使用しない追焚き運転において前記追焚き戻り湯を前記貯湯タンクに戻す場合に前記上部戻し流路と前記下部戻し流路との何れを優先して用いるかを、前記運転モード設定手段により設定されている運転モードに基づいて決定する追焚き戻り湯制御手段と、
を備え
前記運転モード設定手段は、浴槽温度を自動で維持する自動保温モードを設定可能であり、
前記追焚き戻り湯制御手段は、前記自動保温モードが設定されている場合には、前記上部戻し流路を優先する貯湯式給湯システム。
Heating means for heating the water to hot water;
A hot water storage tank for storing hot water generated by the heating means from the upper side and storing water from the lower side,
A reheating heat exchanger for exchanging heat between the bathtub water circulating from the bathtub and hot water for heating the bathtub water;
A reheating pump for guiding hot water taken out from the upper part of the hot water storage tank to the reheating heat exchanger;
An upper return flow path for returning the reclaimed hot water returning from the reheating heat exchanger to the hot water storage tank to the upper portion of the hot water storage tank;
A lower return flow path for returning the reheating hot water to the lower part of the hot water storage tank;
An operation mode setting means for setting an operation mode based on a user's instruction;
In the reheating operation that does not use the heating means, when returning the reheating hot water to the hot water storage tank, which of the upper return flow path and the lower return flow path has priority is used. Reheating hot water control means determined based on the operation mode set by
Equipped with a,
The operation mode setting means can set an automatic heat retention mode for automatically maintaining the bath temperature,
The reheating hot water control means gives priority to the upper return flow path when the automatic heat retention mode is set .
前記貯湯タンクには、前記追焚き戻り湯の戻し口が、前記上部戻し流路の戻し口と、前記下部戻し流路の戻し口との2箇所のみ設けられており、
前記上部戻し流路の戻し口は、前記追焚き戻り湯が前記貯湯タンクの上部に貯留されている高温の湯に混合する位置にあり、
前記下部戻し流路の戻し口は、前記追焚き戻り湯が前記貯湯タンクの上部に貯留されている高温の湯に混合しない位置にある請求項1記載の貯湯式給湯システム。
In the hot water storage tank, the return port of the reheating hot water is provided only in two places, the return port of the upper return channel and the return port of the lower return channel,
The return port of the upper return channel is at a position where the reheating hot water is mixed with hot water stored in the upper part of the hot water storage tank,
2. The hot water storage hot water supply system according to claim 1, wherein the return port of the lower return flow path is located at a position where the reheating hot water does not mix with hot water stored in an upper portion of the hot water storage tank.
前記上部戻し流路の戻し口は、前記貯湯タンクの最上部にある請求項2記載の貯湯式給湯システム。   The hot water storage hot water supply system according to claim 2, wherein a return port of the upper return flow path is at an uppermost part of the hot water storage tank. 前記運転モード設定手段は、追焚き能力を優先する運転モードを設定可能であり、
前記追焚き戻り湯制御手段は、前記追焚き能力を優先する運転モードが設定されている場合には、前記下部戻し流路を優先する請求項1乃至3の何れか1項記載の貯湯式給湯システム。
The operation mode setting means is capable of setting an operation mode giving priority to the tracking ability,
The hot water supply type hot water supply system according to any one of claims 1 to 3, wherein the reheating hot water control means prioritizes the lower return flow path when an operation mode in which the reheating capacity is prioritized is set. system.
前記運転モード設定手段は、省エネルギーを優先する運転モードを設定可能であり、
前記追焚き戻り湯制御手段は、前記省エネルギーを優先する運転モードが設定されている場合には、前記上部戻し流路を優先する請求項1乃至3の何れか1項記載の貯湯式給湯システム。
The operation mode setting means can set an operation mode giving priority to energy saving,
The hot water storage type hot water supply system according to any one of claims 1 to 3, wherein the additional return hot water control means prioritizes the upper return flow path when an operation mode prioritizing the energy saving is set.
JP2013129270A 2013-06-20 2013-06-20 Hot water storage hot water supply system Active JP5772883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129270A JP5772883B2 (en) 2013-06-20 2013-06-20 Hot water storage hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129270A JP5772883B2 (en) 2013-06-20 2013-06-20 Hot water storage hot water supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011140231A Division JP2013007524A (en) 2011-06-24 2011-06-24 Hot water storage type hot water supply system

Publications (2)

Publication Number Publication Date
JP2013178095A JP2013178095A (en) 2013-09-09
JP5772883B2 true JP5772883B2 (en) 2015-09-02

Family

ID=49269875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129270A Active JP5772883B2 (en) 2013-06-20 2013-06-20 Hot water storage hot water supply system

Country Status (1)

Country Link
JP (1) JP5772883B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830605B2 (en) * 1988-09-01 1996-03-27 関西電力株式会社 Bathing device
JP2004125307A (en) * 2002-10-03 2004-04-22 Mitsubishi Electric Corp Hot water storage type water heater
JP3945511B2 (en) * 2005-02-03 2007-07-18 松下電器産業株式会社 Multi-function water heater
JP4893070B2 (en) * 2006-03-31 2012-03-07 株式会社ノーリツ Return hot water recovery method and hot water supply system
JP5171868B2 (en) * 2009-04-14 2013-03-27 三菱電機株式会社 Hot water storage water heater

Also Published As

Publication number Publication date
JP2013178095A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5812043B2 (en) Hot water storage hot water supply system
JP5436933B2 (en) Hot water system
JP5831375B2 (en) Hot water storage water heater
JP6052342B2 (en) Hot water storage hot water supply system
JP2009204239A (en) Cogeneration system
JP5919475B2 (en) Water heater
JP5772883B2 (en) Hot water storage hot water supply system
JP5678812B2 (en) Hot water storage water heater
JP2010085018A (en) Solar heat water heater
JP2013032863A (en) Water heater
JP5454534B2 (en) Hot water storage hot water supply system
JP2013007524A (en) Hot water storage type hot water supply system
JP5106567B2 (en) Hot water storage hot water supply system
JP5831383B2 (en) Hot water storage water heater
JP5945687B2 (en) Hot water storage water heater
JP5126433B1 (en) Water heater
JP5252021B2 (en) Hot water storage hot water supply system
JP4748201B2 (en) Hot water storage hot water bath equipment
JP2013245852A (en) Storage water heater
JP3975989B2 (en) Water heater
JP5226622B2 (en) Bath equipment
JP5582161B2 (en) Hot water storage hot water supply system
JP2013057440A (en) Storage water heater
JP2012251668A (en) Storage type water heater
JP5444799B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250