JP5769187B2 - Microorganism having resolvability of cellulose raw material and method for decomposing cellulose raw material using the same - Google Patents

Microorganism having resolvability of cellulose raw material and method for decomposing cellulose raw material using the same Download PDF

Info

Publication number
JP5769187B2
JP5769187B2 JP2010072056A JP2010072056A JP5769187B2 JP 5769187 B2 JP5769187 B2 JP 5769187B2 JP 2010072056 A JP2010072056 A JP 2010072056A JP 2010072056 A JP2010072056 A JP 2010072056A JP 5769187 B2 JP5769187 B2 JP 5769187B2
Authority
JP
Japan
Prior art keywords
strain
cellulose
raw material
present
bacillus licheniformis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010072056A
Other languages
Japanese (ja)
Other versions
JP2011200184A (en
Inventor
山田 守
守 山田
奈保子 藤元
奈保子 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2010072056A priority Critical patent/JP5769187B2/en
Publication of JP2011200184A publication Critical patent/JP2011200184A/en
Application granted granted Critical
Publication of JP5769187B2 publication Critical patent/JP5769187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、38−45℃という高温条件下でセルロース原料(以下「セルロース系バイオマス」ともいう)の分解及びエタノール生産が可能な微生物株及びこれを用いたセルロース原料の分解処理方法に関する。   The present invention relates to a microorganism strain capable of decomposing a cellulose raw material (hereinafter also referred to as “cellulosic biomass”) and producing ethanol under a high temperature condition of 38 to 45 ° C., and a method for decomposing a cellulose raw material using the same.

石油代替燃料として、微生物が様々な原料から発酵生産するバイオエタノールは化石燃料と異なり、いわゆるカーボン・ニュートラルな燃料として地球温暖化対策に寄与するものとして期待されている。しかしながら現状では、特に食糧と競合しないセルロース系バイオマスからのエタノール生産においては、コスト面での問題が大きく、産業化には到っていないのが現状である。   As a substitute for petroleum, bioethanol, which is produced by fermentation of microorganisms from various raw materials, is expected to contribute to global warming countermeasures as a so-called carbon neutral fuel, unlike fossil fuels. However, at present, in the ethanol production from cellulosic biomass that does not compete with food in particular, there are significant problems in terms of cost, and it has not reached industrialization.

セルロース系バイオマスの利用、セルロース系バイオマスからのバイオエタノール生産には、主成分であるセルロースがグルコースのグリコシド結合によって形成される直鎖状のポリマーであることから、このグリコシド結合を切断して(セルロースを分解処理して)グルコースを生じさせ、得られたグルコースを糖源としてエタノール発酵をさせるための技術が開発されている。セルロースの分解方法には主として化学的な処理方法、すなわち高温・高圧・強酸の条件下でグリコシド結合を切断する方法(特許文献1)と、生物学的な処理方法、すなわちセルラーゼなどのセルロース分解を触媒する酵素を用いる方法(特許文献2)が知られている。   For the use of cellulosic biomass and bioethanol production from cellulosic biomass, the main component cellulose is a linear polymer formed by glycosidic bonds of glucose. Has been developed to produce glucose and ethanol fermentation using the obtained glucose as a sugar source. Cellulose decomposition methods mainly include chemical treatment methods, that is, a method of cleaving glycosidic bonds under conditions of high temperature, high pressure, and strong acid (Patent Document 1), and biological treatment methods, that is, cellulose decomposition such as cellulase. A method using a catalytic enzyme (Patent Document 2) is known.

セルロースの化学的な処理が環境への負荷が高い処理方法であることから、環境への負荷が相対的に低い、生物学的にセルロースを分解するための方法の開発が試みられている。各種生物に由来するセルラーゼはその代表的な例であり、細菌(特許文献3)、糸状菌(特許文献4)、原生動物(特許文献5)等から単離されたセルラーゼが開示されている。   Since chemical treatment of cellulose is a treatment method with a high environmental load, development of a method for biologically degrading cellulose having a relatively low environmental load has been attempted. Cellulases derived from various organisms are typical examples, and cellulases isolated from bacteria (Patent Document 3), filamentous fungi (Patent Document 4), protozoa (Patent Document 5) and the like are disclosed.

更に、セルロース分解能力を持つ微生物自体に着目し、いわゆる発酵によって生きた微生物にセルロースを分解させる方法が、再利用可能という点からも期待されているが、工業的な実用レベルには至っていないのが現状である。セルロースを微生物に分解させる方法としては、遺伝子組換えにより、通常発酵に用いられる微生物に他種生物由来のセルロース分解酵素を組み込んで発現させる方法(特許文献6)があげられるが、組み換え生物の環境への放出の観点等から実現していない。   Furthermore, focusing on the microorganisms having the ability to decompose cellulose, a method of degrading cellulose into living microorganisms by so-called fermentation is also expected from the point that it can be reused, but it has not reached the industrial practical level. Is the current situation. As a method of degrading cellulose into microorganisms, there is a method of expressing by incorporating a cellulolytic enzyme derived from another species into a microorganism usually used for fermentation by gene recombination (Patent Document 6). It has not been realized from the viewpoint of release into the environment.

一方、セルロース分解能/セルロース分解酵素産生能を有する微生物株の利用としては、バチルス属微生物(Bacillus sp.)KSM−N257株(FERM P−17473;特許文献7)、アクレモニウム・セルロリティカス(Acremonium cellulolyticus)C1株(FERM P−18508;特許文献8)、セルロモナス属微生物K32A株(特許文献9)、バチルス属微生物KSM−330(微工研菌寄第11223号;特許文献10)などが開示されている。それぞれ所定の有用性を示すものの、産業的にセルロースを微生物発酵により分解しグルコースを産生するか、またはセルロースそのものから微生物発酵工程でエタノールを生産するには至っていないのが現状であった。   On the other hand, the use of microorganism strains having cellulose resolving ability / cellulolytic enzyme-producing ability includes Bacillus sp. KSM-N257 strain (FERM P-17473; Patent Document 7), Acremonium cellulolyticus (Acremonium). cellulolyticus) C1 strain (FERM P-18508; Patent Document 8), Cellulomonas genus microorganism K32A strain (Patent Document 9), Bacillus genus microorganism KSM-330 (Microtechnological Bacteria No. 11223; Patent Document 10) and the like are disclosed. ing. Although each of them has a predetermined usefulness, it has not been possible to industrially decompose cellulose by microbial fermentation to produce glucose, or to produce ethanol from cellulose itself in a microbial fermentation process.

加えて、微生物を用いた有用物質の発酵生産においては、微生物が原料を代謝する過程で生じる発酵熱が発酵微生物自身の活性を大幅に低下させることが問題となっている。現状ではほとんどの場合、発酵槽に冷却装置を併設し、発酵槽内の温度を一定範囲に保つという形でこの問題を解決しているが、コストダウン、省エネルギーの観点から、幾つかの系では、それぞれの菌種・菌株で通常適用されている温度条件よりも高い温度条件下でも生理活性を保つという形質(本発明においてはこの形質を「耐熱性」と定義する)を有する微生物株を用いる試みがなされている。しかしながら、微生物を用いたセルロース系バイオマスの発酵分解に関する技術では、この様なアプローチはなされていない。   In addition, in the fermentative production of useful substances using microorganisms, there is a problem that the heat of fermentation generated in the process of microorganisms metabolizing raw materials significantly reduces the activity of the fermentation microorganisms themselves. At present, in most cases, a cooling device is installed in the fermenter to solve this problem by keeping the temperature in the fermenter within a certain range, but from the viewpoint of cost reduction and energy saving, some systems A microorganism strain having a trait that maintains physiological activity even under a temperature condition higher than that normally applied for each bacterial species / strain (in the present invention, this trait is defined as “heat-resistant”) is used. Attempts have been made. However, such an approach has not been made in the technology relating to the fermentation decomposition of cellulosic biomass using microorganisms.

特許第4330839号 グルコース及び/又は水溶性セロオリゴ糖の製造方法Patent No. 4330839 Method for producing glucose and / or water-soluble cellooligosaccharide 特許第3075609号 セロオリゴ糖の製造方法Patent No. 3075609 Method for producing cellooligosaccharide 特許第4392778号 新規なセルラーゼを産生する放線菌、その放線菌が産生するセルラーゼ、およびそのセルラーゼを作成する方法Patent No. 4392778 Actinomycetes producing novel cellulases, cellulases produced by the actinomycetes, and methods for producing the cellulases 特許第3962805号 セルラーゼ活性を有するタンパク質およびその製造法Patent No. 3962805 Protein having cellulase activity and method for producing the same 特許第4224601号 シロアリ共生原生動物由来のセルラーゼ遺伝子Patent No. 4224601 Cellulase gene derived from termite symbiotic protozoa 特許第4017824号 エンドグルカナーゼ酵素およびそれを含んでなるセルラーゼ調製物Patent No. 4017824 Endoglucanase enzyme and cellulase preparation comprising the same 特許第4382994号 新規アルカリセルラーゼPatent No. 4382994 Novel alkaline cellulase 特許第4025848号 セルロース原料の分解方法Patent No. 4025848 Method for decomposing cellulose raw material 特許第3710997号 新規微生物、同微生物産生酵素および同酵素を用いる植物繊維分解方法Patent No. 3710997 Novel microorganism, microorganism-producing enzyme, and plant fiber decomposition method using the enzyme 特許第2929023号 セルラーゼ及びこれを産生する微生物及びセルラーゼの製造法Patent No. 2929023 Cellulase, microorganism producing the same, and method for producing cellulase

上記の現状に鑑み、本発明は、セルロース原料を発酵により分解可能で、かつ発酵による温度上昇に耐えうる微生物株、及びこれを用いたセルロース原料の分解処理方法を提供することを目的とする。   In view of the above-mentioned present situation, an object of the present invention is to provide a microorganism strain capable of degrading a cellulose raw material by fermentation and capable of withstanding a temperature increase due to fermentation, and a method for decomposing the cellulose raw material using the same.

上記課題の解決のため、本発明者らは、セルロース分解能力を有する微生物叢(Microbial flora)としてウシルーメン内の微生物群集に着目し、ここに存在する微生物から(1)セルロースのみを糖源とする (2)40℃近辺という高い温度域で培養 という2つのスクリーニング過程を経て培養可能な微生物株の探索を行った。この結果、通性好気性のグラム陽性桿菌の一種バチルス・リケニフォルミス(Bacillus licheniformis)の特定の菌株が、セルロース分解能、40℃近辺での高い生理活性という形質を有することを見いだし、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors pay attention to a microbial community in bovine rumen as a microflora having a cellulose-decomposing ability, and (1) from the microorganisms present here, only cellulose is used as a sugar source. (2) Microbial strains that can be cultured were searched through two screening processes, culturing in a high temperature range around 40 ° C. As a result, they found that a specific strain of Bacillus licheniformis, a kind of facultative aerobic Gram-positive gonococci, has a trait of cellulose resolution and high physiological activity at around 40 ° C., thereby completing the present invention. It was.

すなわち本発明の第1の態様は、以下の性質を有することを特徴とするバチルス・リケニフォルミス(Bacillus
licheniformis)菌株であって、受託番号がNITE P−891で寄託されたバチルス・リケニフォルミス R8菌株、又は、受託番号がNITE P−892で寄託されたバチルス・リケニフォルミス R15菌株を提供する。
(1)38−45℃の温度条件下で生存及び増殖が可能
(2)セルロースを分解して還元糖を生産可能
(3)セルロース原料を糖源としてエタノールを生成可能
That first aspect of the present invention, Bacillus licheniformis (Bacillus characterized by having the following properties
licheniformis) strain having the accession number NITE P-891 and the Bacillus licheniformis R15 strain having the accession number NITE P-892 .
(1) Can survive and grow under the temperature of 38-45 ° C (2) Can produce cellulose by decomposing cellulose (3) Can produce ethanol from cellulose raw material as sugar source

本発明の第の態様は、第1の態様に記載のバチルス・リケニフォルミス菌株を用いる、セルロース原料の分解処理方法を提供する。
The second aspect of the present invention provides a method for decomposing a cellulose raw material using the Bacillus licheniformis strain described in the first aspect .

本発明の第の態様は、第1の態様に記載のバチルス・リケニフォルミス菌株を用いる、エタノールの生産方法を提供する。 A third aspect of the present invention provides a method for producing ethanol using the Bacillus licheniformis strain described in the first aspect .

なおバチルス属細菌に関しては、耐熱性を有する酵素が幾つかの事例で単離されており(特開2006−149374、特開2001−057852、特表2002−529610)、またバチルス属細菌ではないが耐熱性のセルラーゼ及びこれを生産する微生物株(特許第3512981号、特公平7−2113)も提示されているが、これらの発明における『耐熱性』とは、バチルス属細菌が休眠状態に入る際に芽胞を形成しこの芽胞が60℃以上の高温にも耐えうるという観察結果より導かれたもので、主として60℃以上の温度域において酵素自身が活性を失わないという意味での耐熱性であり、本発明における、微生物自身が高い温度条件下で生理活性を失わないという意味での「耐熱性」とは異なる技術思想に基づく発明である。更にバチルス・リケニフォルミス種に関しては、下記実施例にも示すとおり、その標準的な菌株ではセルロース原料を糖源とした生育も38℃以上の増殖もエタノール生産能も認められないため、上記の『耐熱性』やセルロース分解能、エタノール生産能についてもバチルス属細菌に一般的に認められるものではなく、本発明の菌株がバチルス・リケニフォルミス種の中でも際だった性質を有することを示している。   Regarding Bacillus bacteria, enzymes having heat resistance have been isolated in some cases (Japanese Patent Laid-Open No. 2006-149374, Japanese Patent Laid-Open No. 2001-057852, Special Table 2002-529610), and are not Bacillus bacteria. A thermostable cellulase and a microorganism strain producing the same (Patent No. 3512981, Japanese Patent Publication No. 7-2113) have also been presented. The term “thermostable” in these inventions refers to the fact that Bacillus bacteria enter a dormant state. It is derived from the observation result that the spore can withstand a high temperature of 60 ° C. or higher, and is heat resistant in the sense that the enzyme itself does not lose its activity in a temperature range of 60 ° C. or higher. In the present invention, the invention itself is based on a technical idea different from “heat resistance” in the sense that the microorganism itself does not lose its physiological activity under high temperature conditions.Furthermore, regarding the Bacillus licheniformis species, as shown in the examples below, the above-mentioned “heat-resistant” is not observed in the standard strain because growth using a cellulose raw material as a sugar source, growth at 38 ° C. or higher, and ethanol production ability are not recognized. Neither the property, cellulose resolving power nor ethanol-producing ability is generally recognized by Bacillus bacteria, indicating that the strain of the present invention has outstanding properties among Bacillus licheniformis species.

本発明を利用することにより、セルロース系バイオマスの分解処理、セルロース系バイオマスからのエタノール生産を40℃近辺という高い温度条件下で効率的に行うことが可能となる。有用物質の発酵生産におけるコストの大きな部分が発酵熱の冷却コストに起因することから、本発明は特に冷却コストを抑えたセルロース原料からのバイオエタノール生産を可能とする。   By utilizing the present invention, it becomes possible to efficiently perform decomposition treatment of cellulosic biomass and ethanol production from cellulosic biomass under a high temperature condition around 40 ° C. Since a large part of the cost in the fermentation production of useful substances is attributed to the cooling cost of fermentation heat, the present invention enables bioethanol production from a cellulose raw material with particularly reduced cooling cost.

耐熱性セルロース分解菌のスクリーニング結果を示す。The screening result of heat-resistant cellulose decomposing bacteria is shown. 耐熱性セルロース分解菌のセルロース分解能を菌株ごとに比較して示す。The cellulose resolution of heat-resistant cellulose-decomposing bacteria is shown for each strain. 静置・撹拌条件下におけるセルロース分解能を菌株ごとに比較して示す。The cellulose resolution under stationary and stirring conditions is shown for each strain. セルロース分解能を持つ既存の微生物株、及びバチルス・リケニフォルミス標準株と本発明の菌株におけるセルロース分解能を比較して示す。The cellulose resolution in the existing microbial strain with a cellulose resolving power, the Bacillus licheniformis standard strain, and the strain of the present invention is shown in comparison. バチルス・リケニフォルミス標準株と本発明の菌株における42℃における生育とセルロース分解の経時変化を比較して示す。The growth at 42 ° C. and cellulose degradation over time in the Bacillus licheniformis standard strain and the strain of the present invention are shown in comparison. バチルス・リケニフォルミス標準株と本発明の菌株における42℃における生育とエタノール生産の経時変化を比較して示す。The growth at 42 ° C. and the time course of ethanol production in the Bacillus licheniformis standard strain and the strain of the present invention are shown in comparison.

以下に本発明を実施するための形態を示す。本発明は、38−45℃、より好ましくは40−45℃という高い温度条件下で生存及び増殖が可能、セルロース原料の分解処理(セルロースを分解して還元糖を生産可能)が可能という2つの形質を有するバチルス・リケニフォルミス(Bacillus licheniformis)菌株を提供し、好ましい態様として具体的な菌株としては、下記実施例に記載のR1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16菌株のうちいずれかより選択される菌株、より好ましい態様としては受託番号がNITE P−891で寄託された、バチルス・リケニフォルミス R8菌株、または受託番号がNITE P−892で寄託された、バチルス・リケニフォルミス R15菌株を提供する。   The form for implementing this invention is shown below. The present invention is capable of surviving and growing under a high temperature condition of 38-45 ° C., more preferably 40-45 ° C., and capable of decomposing cellulose raw materials (degrading cellulose to produce reducing sugar). A Bacillus licheniformis strain having a trait is provided. As a preferred embodiment, specific strains include R1, R2, R3, R4, R5, R6, R7, R8, R9, R10. , R11, R12, R13, R14, R15, R16, a more preferred embodiment is a Bacillus licheniformis R8 strain deposited with a deposit number of NITE P-891, or a deposit number is Bacillus licheniformis R15 bacteria deposited with NITE P-892 Offer stocks.

バチルス・リケニフォルミスはグラム陽性の桿菌の一種で、土壌中や鳥類の羽毛中に普遍的に観察される菌種であり、また食品の腐敗の原因菌としても知られる。培養条件下における生育の至適温度は30℃近辺(バチルス・リケニフォルミス)であり、セルロース分解との関連性、バイオエタノール生産との関連性などには着目されていなかった。下記実施例に示すとおり、セルロース分解能を有する糸状菌の一種トリコデルマ・リーセイ(Trichoderma reesei)との比較において、30℃という通常用いられる温度ではトリコデルマの方がR8,R15菌株よりも高いセルロース分解能を示すが、40℃ではこれが逆転し、41−42℃ではトリコデルマのセルロース分解能がほぼ0になるのに対しR8,R15菌株はこの温度でも旺盛なセルロース分解能を示すことが本発明者らにより明らかにされ、更に、下記実施例に示すとおり本発明の提供する菌株のセルロース分解能に関しては、静置条件の方が通常用いられる撹拌条件よりも約4−12倍も高いセルロース分解能を示すため、これまでの着眼点ではバチルス・リケニフォルミスの特定の菌株におけるセルロース分解と耐熱性に関する潜在能力が見逃されてきた可能性がある。   Bacillus licheniformis is a kind of Gram-positive bacilli that is commonly observed in soil and bird feathers and is also known as a causative agent of food spoilage. The optimum temperature for growth under culture conditions is around 30 ° C. (Bacillus licheniformis), and attention has not been paid to the relationship with cellulose degradation and the relationship with bioethanol production. As shown in the following examples, in comparison with Trichoderma reesei, a kind of filamentous fungus having cellulose resolving power, Trichoderma exhibits higher cellulose resolving power than R8 and R15 strains at a commonly used temperature of 30 ° C. However, the present inventors have shown that this is reversed at 40 ° C., and that the cellulose resolving power of Trichoderma is almost 0 at 41-42 ° C., whereas the R8 and R15 strains show vigorous cellulose resolving power at this temperature. Furthermore, as shown in the following examples, regarding the cellulose resolving power of the strain provided by the present invention, the stationary condition shows a cellulose resolving power that is about 4-12 times higher than the stirring condition that is usually used. In particular, cells in specific strains of Bacillus licheniformis There is a possibility that the potential for over scan decomposition and heat resistance have been overlooked.

本発明においては、ウシのルーメン内に存在する微生物群集を採取し、セルロースのみを糖源とし40℃近辺の温度条件下で培養するというスクリーニングにより、R8及びR15菌株を単離したが、ウシルーメン内に常在する微生物とセルロースに関する先行研究(半田ら、日本微生物生態学会講演要旨集20 pp39)においては、ブチリビブリオ・フィブリソルベンス(Butyrivibrio fibrisolvens)、プレボテラ属(Prevotella)、セレノモナス・ルミナンチウム(Selenomonas ruminantium)、ルミノバクター・アミロフィルス(Ruminobacter amylophilus)、コリネバクテリウム・ビタルーメン(Corynebacterium vitarumen)及び系統不明の細菌が報告されているが、バチルス・リケニフォルミスとルーメン、及びセルロース分解とを結びつけるような報告は無く、本発明の着眼点がこれまでの着眼点とは異なっていたことを示している。   In the present invention, R8 and R15 strains were isolated by screening microbial communities present in bovine rumen and culturing under a temperature condition around 40 ° C. using only cellulose as a sugar source. In a previous study on microorganisms and cellulose that are normally present in the world (Handa et al., Proceedings of the 20th Annual Meeting of the Japanese Society for Microbial Ecology 20 pp39), Butyrivibrio fibrisolvens, Prevoterra, ), Luminobacter amylophilus, Corynebacterium vitavita. rumen) and bacteria of unknown lineage have been reported, but there has been no report that links Bacillus licheniformis to rumen and cellulose degradation, and that the point of focus of the present invention was different from the points of focus so far. Show.

本発明の提供するバチルス・リケニフォルミスR8菌株は、16s rDNAの塩基配列において配列番号1に記載の塩基配列を有し、45℃で生存可能、カルボキシメチルセルロース(CMC)を唯一の糖源として培養したとき、48時間で約0.4mg/mlの還元糖を、72時間で約0.85mg/mlの還元糖をそれぞれ生成可能で、かつセルロース原料を糖源として48時間で約0.0055%のエタノールを、72時間で約0.0065%のエタノールをそれぞれ生成可能という特徴を持つ菌株である。   The Bacillus licheniformis R8 strain provided by the present invention has the base sequence of SEQ ID NO: 1 in the base sequence of 16s rDNA, can survive at 45 ° C., and is cultured when carboxymethyl cellulose (CMC) is used as the sole sugar source. Can produce about 0.4 mg / ml reducing sugar in 48 hours, about 0.85 mg / ml reducing sugar in 72 hours, and about 0.0055% ethanol in 48 hours using cellulose raw material as a sugar source Is a strain having the characteristic that about 0.0065% ethanol can be produced in 72 hours.

本発明の態様におけるR15菌株(寄託番号:NITE P−892)についても、上記態様におけるR8菌株と同じスクリーニングにより単離された菌株であり、16s rDNAの塩基配列において配列番号2に記載の塩基配列を有し、45℃で生存可能、CMCを唯一の糖源として培養したとき、48時間で約0.3mg/mlの還元糖を、72時間で0.7mg/mlの還元糖をそれぞれ生成可能で、かつセルロース原料を糖源として48時間で約0.0035%のエタノールを、72時間で約0.005%のエタノールをそれぞれ生成可能という特徴を持つ菌株である。   The R15 strain (deposit number: NITE P-892) in the embodiment of the present invention is also a strain isolated by the same screening as the R8 strain in the above embodiment, and the base sequence described in SEQ ID NO: 2 in the base sequence of 16s rDNA And can survive at 45 ° C. When cultured with CMC as the sole sugar source, it can produce approximately 0.3 mg / ml of reducing sugar in 48 hours and 0.7 mg / ml of reducing sugar in 72 hours. And about 0.0035% ethanol in 48 hours and about 0.005% ethanol in 72 hours using a cellulose raw material as a sugar source.

本発明の提供する菌株が利用可能なセルロース原料とは、植物が合成するセルロースを主成分とする繊維質の原料であればどのようなものであっても良く、セルロース以外の植物細胞壁成分、例えばヘミセルロースやリグニン等を含んでいても良い。また形態も、刈り取った植物体を物理的に細かく破砕したもの、パルプかす、加工野菜残渣、パガス、廃材チップ、稲わら、古紙等、セルロースを主成分とするものであればどのようなものであっても良い。   The cellulose raw material that can be used by the strain provided by the present invention may be any fibrous raw material mainly composed of cellulose synthesized by plants, such as plant cell wall components other than cellulose, for example, Hemicellulose, lignin, etc. may be included. In addition, the shape of the plant may be any material that is mainly composed of cellulose, such as a physically crushed plant body, pulp grounds, processed vegetable residue, pagas, waste wood chips, rice straw, waste paper, etc. There may be.

本発明の提供する菌株を用いたセルロース原料の分解処理方法とは、直接・間接を問わずセルロース原料を本発明の提供する菌株を用いて発酵的に分解する方法を指し、その形態は問わない。また本菌株を用いたセルロース原料の分解処理方法とは、セルロース原料からの糖類(好ましくは単糖類、より好ましくは還元糖である単糖類)の生成方法も含むものである。この中でも特に、反応液を撹拌しない、静置条件下でのセルロース原料の分解処理方法に本発明の提供する菌株は適している。
上記態様で得られたセルロース原料に由来する糖類は、他の発酵工程と組み合わせるための原料とすることができる。
The method for decomposing cellulose raw material using the strain provided by the present invention refers to a method for fermentatively decomposing cellulose raw material using the strain provided by the present invention, regardless of direct or indirect, and its form is not limited. . The cellulose raw material decomposition method using the present strain also includes a method for producing a saccharide (preferably a monosaccharide, more preferably a monosaccharide that is a reducing sugar) from the cellulose raw material. Among these, in particular, the strain provided by the present invention is suitable for a method for decomposing a cellulose raw material under stationary conditions without stirring the reaction solution.
The saccharide derived from the cellulose raw material obtained in the above embodiment can be used as a raw material for combining with other fermentation processes.

本発明の提供する菌株はまた、エタノールの生産方法、より好ましくはセルロース原料からのエタノールの生産方法にも適用可能である。ここでいうエタノール生産方法とは、原料の糖化からエタノール発酵までのプロセスを包含するものであり、いずれのプロセスであっても本発明の提供する菌株を用いるエタノールの生産方法であれば、それは本発明に含まれるべきものである。このとき、利用可能な態様は大別して(A)セルロース原料を分解して糖類を生成し、得られた糖類を他種のエタノール発酵微生物、好ましくはサッカロマイセス、クリベロマイセス属等の酵母やザイモモナス属細菌、ザイモバクター属細菌によるエタノール生産の基質とする (B)セルロース原料から本発明の提供する菌株のうち好適なものを用いてエタノールを生産する の2つの態様が利用可能である。(A)の態様においては、セルロース原料を本発明の菌株を用いて発酵分解する工程と、セルロース原料から得られた糖類を原料に上記他種のエタノール発酵微生物を用いてエタノール発酵を行う工程が考えられるが、これは同一の発酵槽内であっても別々の発酵槽内であっても良い。一方(B)では、同一の発酵槽内でセルロース原料から本発明の提供する菌株のうち好適なものを用いて直接エタノール発酵を行うことが可能である。
以下に本発明の実施例を示すが、本発明は実施例にのみ限定されるものではない。
The strain provided by the present invention is also applicable to a method for producing ethanol, more preferably a method for producing ethanol from a cellulose raw material. The ethanol production method here includes a process from saccharification of raw materials to ethanol fermentation, and any process is an ethanol production method using the strain provided by the present invention. It should be included in the invention. At this time, available modes can be broadly divided into (A) a cellulose raw material to decompose to produce saccharides, and the obtained saccharides can be used as other types of ethanol-fermenting microorganisms, preferably yeasts such as Saccharomyces and Kliberomyces, and Zymomonas bacteria. As a substrate for ethanol production by zymobacter bacteria, two modes of (B) producing ethanol from a cellulose raw material using a suitable strain provided by the present invention can be used. In the embodiment of (A), there are a step of fermenting and decomposing a cellulose raw material using the strain of the present invention, and a step of performing ethanol fermentation using the saccharide obtained from the cellulose raw material as a raw material and using the other types of ethanol-fermenting microorganisms. Although contemplated, this may be in the same fermentor or in separate fermenters. On the other hand, in (B), it is possible to perform ethanol fermentation directly from a cellulose raw material using a suitable strain provided by the present invention in the same fermentor.
Examples of the present invention are shown below, but the present invention is not limited to the examples.

(菌株のスクリーニング)山口大学附属農場で飼育しているウシ(肉牛、メス)よりルーメン液を採取し、0.2%カルボキシメチルセルロース(CMC)、0.67%イーストニトロゲンベースw/oアミノ酸・硫酸アンモニウム、0.02%ペプトン、1.7%寒天を含むCMC寒天培地プレートに10μlを塗り広げ、38℃、39℃、40℃、41℃、42℃、45℃で一晩生育させた。それぞれのプレートに生じたコロニーをカウントしたところ、図1Aの通りの結果が得られた。これらのコロニーのうち、より耐熱性が高い菌株として、42℃で生育したコロニーをR1〜R8、45℃で生育したコロニーをR9〜R16とそれぞれ命名した。これらのコロニーを再度上記のCMC寒天培地プレートにスポットし、45℃で一晩培養した結果が図1Cで、どの菌株もこの温度条件下でよく生育した。またこのプレートをヨウ素カリウム2g、ヨウ素1gを蒸留水300mlに溶かした染色液で染色した結果が図1Bである。この染色によりセルロース成分が暗色に染まるが、コロニーが生じた部分ではセルロース成分が分解されているため染色が起こらない。   (Screening of strains) Rumen fluid was collected from cattle (beef cattle, females) raised on Yamaguchi University-affiliated farm, 0.2% carboxymethylcellulose (CMC), 0.67% yeast nitrogen base w / o amino acids. 10 μl was spread on a CMC agar plate containing ammonium sulfate, 0.02% peptone and 1.7% agar and grown overnight at 38 ° C., 39 ° C., 40 ° C., 41 ° C., 42 ° C., 45 ° C. When the colonies generated on each plate were counted, the results shown in FIG. 1A were obtained. Among these colonies, colonies that grew at 42 ° C. were named R1 to R8, and colonies that grew at 45 ° C. were named R9 to R16, respectively, as strains having higher heat resistance. These colonies were spotted again on the above-mentioned CMC agar plate and cultured overnight at 45 ° C. FIG. 1C shows that all the strains grew well under this temperature condition. FIG. 1B shows the result of staining this plate with a staining solution prepared by dissolving 2 g of potassium iodine and 1 g of iodine in 300 ml of distilled water. Although the cellulose component is dyed dark by this dyeing, no dyeing occurs because the cellulose component is decomposed in the portion where the colonies are formed.

(耐熱性セルロース分解菌のカルボキシメチルセルロース分解能)上記で得られた各菌株を、2%カルボキシメチルセルロース、0.67%イーストニトロゲンベースw/oアミノ酸・硫酸アンモニウム、0.02%ペプトンを含む液体培地5mlに植菌し、42℃の静置条件で72時間生育させた。培養開始から48時間後、72時間後の培地を採取し遠心分離機で培地上清を得た。これらの培地上清の還元糖をジニトロサリチル酸法(DNSA法;Miller 1959.Anal.Chem 31 以下同じ)によって測定した。
図2に、スクリーニングで得られた各菌株のCMC分解能を比較して示す。図中R1,R2…は各菌株を表し、縦軸は培養液中の還元糖量(mg/ml)を示し、これがCMC分解能の指標である。白い棒グラフは培養開始後48時間の結果を、黒い棒グラフは72時間の結果をそれぞれ表している。グラフが示す通り、特に72時間後の還元糖量に着目すると、R8株が0.8mg/mlと最も多く、次いでR15株が約0.75mg/mlという結果となった。
(Carboxymethylcellulose resolution of heat-resistant cellulose-degrading bacteria) 5 ml of a liquid medium containing 2% carboxymethylcellulose, 0.67% yeast nitrogen base w / o amino acid / ammonium sulfate, 0.02% peptone And inoculated to 42 ° C. for 72 hours. After 48 hours from the start of the culture, the medium after 72 hours was collected, and a medium supernatant was obtained with a centrifuge. The reducing sugars of these culture supernatants were measured by the dinitrosalicylic acid method (DNSA method; Miller 1959. Anal. Chem 31).
In FIG. 2, the CMC resolution of each strain obtained by screening is compared and shown. In the figure, R1, R2,... Represent each strain, and the vertical axis represents the amount of reducing sugar (mg / ml) in the culture solution, which is an indicator of CMC resolution. The white bar graph represents the results for 48 hours after the start of the culture, and the black bar graph represents the results for 72 hours. As shown in the graph, when focusing attention on the amount of reducing sugar after 72 hours, the R8 strain was the largest at 0.8 mg / ml, and then the R15 strain was about 0.75 mg / ml.

(静置・撹拌条件での比較)上記の各菌株を、2%カルボキシメチルセルロース、0.67%イーストニトロゲンベースw/oアミノ酸・硫酸アンモニウム、0.02%ペプトンを含む液体培地5mlに植菌し、42℃において、静置、撹拌それぞれの条件で48時間生育させた。48時間後の培地を採取し遠心分離機で培地上清を得た。これらの培地上清の還元糖をジニトロサリチル酸法によって測定した。
図3に、静置・撹拌条件での各菌株のCMC分解能を比較して示す。図中R1,R2…は各菌株を、縦軸は培養液中の還元糖量(mg/ml)を示し、薄い灰色の棒グラフは静置条件下での結果を、濃い灰色の棒グラフは撹拌条件下での結果をそれぞれ表している。グラフが示す通り、全ての菌株で静置条件の方が撹拌条件よりもよくCMCを分解し、特にR7菌株(約0.43mg/ml)、R8菌株(約0.4mg/ml)、R15菌株(0.3mg/ml)でその活性が高かった。
(Comparison under standing and stirring conditions) Each of the above strains was inoculated into 5 ml of a liquid medium containing 2% carboxymethylcellulose, 0.67% yeast nitrogen base w / o amino acid / ammonium sulfate, 0.02% peptone. The mixture was grown at 42 ° C. for 48 hours under the conditions of standing and stirring. The culture medium after 48 hours was collected, and a culture supernatant was obtained with a centrifuge. The reducing sugars in these medium supernatants were measured by the dinitrosalicylic acid method.
FIG. 3 shows a comparison of CMC resolution of each strain under static and stirring conditions. In the figure, R1, R2... Indicate each strain, the vertical axis indicates the amount of reducing sugar (mg / ml) in the culture solution, the light gray bar graph indicates the results under static conditions, and the dark gray bar graph indicates the stirring conditions. Each result is shown below. As the graph shows, CMC was decomposed better in the standing condition than in the stirring condition for all the strains, and in particular, the R7 strain (about 0.43 mg / ml), the R8 strain (about 0.4 mg / ml), the R15 strain The activity was high at 0.3 mg / ml.

図2と図3での結果を総合し、R7株が72時間後の還元糖量が少ないことから、以後、セルロース分解能が高い菌株として、R8菌株とR15菌株の2つを検証に用いた。また定法に従い、これらの菌株からゲノムDNAを抽出し、16s rDNAの塩基配列を決定したところ、R8株が配列番号1の塩基配列を、R15株が配列番号2の塩基配列を、それぞれ有することが明らかとなった。これらの塩基配列をBLAST用い、既存のものと比較したところ、バチルス・リケニフォルミス種の細菌とほぼ一致(99%以上)したため、本菌株をバチルス・リケニフォルミス種と同定した。   The results in FIGS. 2 and 3 were combined, and the R7 strain had a small amount of reducing sugar after 72 hours. Therefore, the strains R8 and R15 were used for verification as strains having high cellulose resolution. In addition, when genomic DNA was extracted from these strains and the base sequence of 16s rDNA was determined according to a conventional method, the R8 strain had the base sequence of SEQ ID NO: 1, and the R15 strain had the base sequence of SEQ ID NO: 2, respectively. It became clear. When these base sequences were used with BLAST and compared with existing ones, they almost coincided (99% or more) with bacteria of the Bacillus licheniformis species, so this strain was identified as a Bacillus licheniformis species.

(他種菌株との比較) R8,R15菌株が示したセルロース分解能を、同種の他菌株、及び他種のセルロース分解菌と比較した。同種の比較対象としては、バチルス・リケニフォルミス NBRC12220菌株(同種の標準菌株)を、他種の比較対象としては、糸状菌類の一種トリコデルマ・リーセイ(Trichoderma reesei)NBRC31329菌株を選択した。
2%カルボキシメチルセルロース、0.67%イーストニトロゲンベースw/oアミノ酸・硫酸アンモニウム、0.02%ペプトンを含む液体培地5mlに各菌株を植菌し、30℃、37℃、39℃、40℃、41℃、42℃の静置条件で72時間生育させた。72時間後の培地を採取し、遠心分離機で培地上清を得た。これらの培地上清の還元糖量を、ジニトロサリチル酸法により測定した。
(Comparison with other strains) Cellulose degradability exhibited by the R8 and R15 strains was compared with other strains of the same species and cellulose-degrading bacteria of other species. The Bacillus licheniformis NBRC12220 strain (a standard strain of the same species) was selected as a comparison target of the same species, and the Trichoderma reesei NBRC31329 strain of a filamentous fungus was selected as a comparison target of other species.
Each strain was inoculated into 5 ml of a liquid medium containing 2% carboxymethylcellulose, 0.67% yeast nitrogen base w / o amino acid / ammonium sulfate, 0.02% peptone, 30 ° C, 37 ° C, 39 ° C, 40 ° C, The cells were grown for 72 hours at 41 ° C and 42 ° C. The culture medium after 72 hours was collected, and a culture supernatant was obtained with a centrifuge. The amount of reducing sugar in these medium supernatants was measured by the dinitrosalicylic acid method.

図4に、本発明の菌株及び他菌株との比較結果を示す。グラフ横軸は各温度条件(staは静置条件を示す)を、縦軸は培養液中の還元糖量(mg/ml)を示し、白い棒グラフはR8菌株、黒い棒グラフはR15菌株、薄い灰色のグラフはトリコデルマ・リーセイNBRC31329菌株、濃い灰色のグラフはバチルス・リケニフォルミスNBRC12200菌株の結果をそれぞれ表している。グラフ左寄り、30℃と37℃においては、トリコデルマが最も高いセルロース分解能を示し、反対にバチルス・リケニフォルミスの標準菌株ではセルロース分解能を全く示さなかった。一方、39℃では本発明の2菌株とトリコデルマのセルロース分解能がほぼ同程度になり、40℃以上では逆転した。特に41℃、42℃においては、トリコデルマがほとんどセルロースを分解できないのに対し、本発明の菌株は旺盛なセルロース分解能を維持しており、高温条件下における本発明の菌株の高いセルロース分解能が示された。   In FIG. 4, the comparison result with the strain of this invention and another strain is shown. The horizontal axis of the graph indicates each temperature condition (sta indicates the stationary condition), the vertical axis indicates the amount of reducing sugar (mg / ml) in the culture solution, the white bar graph indicates the R8 strain, the black bar graph indicates the R15 strain, and light gray These graphs represent the results of Trichoderma reesei NBRC 31329 strain, and the dark gray graphs represent the results of Bacillus licheniformis NBRC12200 strain. On the left side of the graph, at 30 ° C. and 37 ° C., Trichoderma showed the highest cellulose resolution, while the standard strain of Bacillus licheniformis showed no cellulose resolution at all. On the other hand, the cellulose resolving power of the two strains of the present invention and Trichoderma was almost the same at 39 ° C., and reversed at 40 ° C. or higher. In particular, at 41 ° C. and 42 ° C., Trichoderma hardly decomposes cellulose, whereas the strain of the present invention maintains vigorous cellulose resolving power, and shows high cellulose resolving power of the strain of the present invention under high temperature conditions. It was.

(R8,R15菌株の生育とセルロース分解、及びエタノール生産の経時変化)本発明の菌株の生育とセルロース分解、及び生育とエタノール生産の経時変化を、バチルス・リケニフォルミス標準菌株(NBRC12200菌株)との間で比較した。2%カルボキシメチルセルロース、0.67%イーストニトロゲンベースw/oアミノ酸・硫酸アンモニウム、0.02%ペプトンを含む液体培地30mlに各菌株を植菌し、42℃の静置条件で72時間生育させた。0,24,48,72時間後の培地を採取し、遠心分離機で培地上清を得た。これらの培地上清に含まれる還元糖量をジニトロサリチル酸法によって、エタノール量を酢酸菌由来の精製アルコールデヒドロゲナーゼを用いた方法(Adachi et al.1978.Agric.Biol.Chem.42)によってそれぞれ測定した。   (Change over time of growth and cellulose degradation of R8, R15 strains and ethanol production) Growth and cellulose degradation of the strain of the present invention, and changes over time in growth and ethanol production were compared with the Bacillus licheniformis standard strain (NBRC12200 strain). Compared. Each strain was inoculated into 30 ml of a liquid medium containing 2% carboxymethylcellulose, 0.67% yeast nitrogen base w / o amino acid / ammonium sulfate, 0.02% peptone, and allowed to grow for 72 hours at 42 ° C. . The culture medium after 0, 24, 48, and 72 hours was collected, and the culture supernatant was obtained with a centrifuge. The amount of reducing sugar contained in these medium supernatants was measured by the dinitrosalicylic acid method, and the amount of ethanol was measured by a method using purified alcohol dehydrogenase derived from acetic acid bacteria (Adachi et al. 1978. Agric. Biol. Chem. 42). .

図5に、生育とセルロース分解の経時変化を示す。グラフ横軸は培養開始からの時間を、左縦軸は生育の指標としてのOD600値(棒グラフに対応)を、右縦軸は培養液中の還元糖量(mg/ml 折れ線グラフに対応)を表し、白い棒グラフはR8菌株の生育、黒い棒グラフはR15菌株の生育、薄い灰色の棒グラフは標準菌株の生育を表し、折れ線―○―はR8菌株のセルロース分解、折れ線―●―はR15菌株のセルロース分解、折れ線―△―は標準菌株のセルロース分解をそれぞれ表す。グラフが示す通り、この温度(42℃)においては、標準菌株が24時間までに幾らかの増殖は示すものの48−72時間では減少するのに対し、本発明の2菌株、特にR8菌株は高い増殖能を示した。R15菌株ではR8菌株に比べ若干増殖能は劣るものの、72時間後には培養液中の還元糖量がR8菌株とほぼ同程度にまでなり、菌体あたりのセルロース分解能という観点では優れた性質を示した。この系では標準菌株はまったくセルロースを分解せず、本発明の菌株の特殊性が裏付けられた。   FIG. 5 shows changes over time in growth and cellulose degradation. The horizontal axis of the graph is the time from the start of culture, the left vertical axis is the OD600 value as a growth index (corresponding to the bar graph), and the right vertical axis is the amount of reducing sugar in the culture solution (corresponding to the mg / ml line graph). The white bar graph shows the growth of the R8 strain, the black bar graph shows the growth of the R15 strain, the light gray bar graph shows the growth of the standard strain. Degradation and broken lines -Δ- represent cellulose degradation of the standard strain, respectively. As the graph shows, at this temperature (42 ° C.), the standard strains show some growth by 24 hours but decrease in 48-72 hours, whereas the two strains of the present invention, particularly the R8 strain, are high. It showed proliferative ability. Although the growth ability of the R15 strain is slightly inferior to that of the R8 strain, after 72 hours, the amount of reducing sugar in the culture becomes almost the same as that of the R8 strain, and shows excellent properties in terms of cellulose resolution per cell. It was. In this system, the standard strain did not degrade the cellulose at all, confirming the peculiarity of the strain of the present invention.

図6に、生育とエタノール生産の経時変化を示す。グラフ横軸は培養開始からの時間を、左縦軸は生育の指標としてのOD600値(棒グラフに対応)を、右縦軸は培養液中のエタノール濃度(% 折れ線グラフに対応)を表し、白い棒グラフはR8菌株の生育、黒い棒グラフはR15菌株の生育、薄い灰色の棒グラフは標準菌株の生育を表し、折れ線―○―はR8菌株のエタノール生産、折れ線―●―はR15菌株のエタノール生産、折れ線―△―は標準菌株のエタノール生産をそれぞれ表す。グラフが示す通り、この温度においてR8菌株は、セルロースのみを糖源とした高いエタノール生産能を示し、24時間で約0.002%、48時間で約0.0055%、72時間で約0.0065%であった。一方R15株も、立ち上がりは若干遅いもののエタノール生産能を示し、48時間で約0.003%、72時間で約0.005%であった。

FIG. 6 shows changes over time in growth and ethanol production. The horizontal axis of the graph represents the time from the start of culture, the left vertical axis represents the OD600 value as a growth index (corresponding to the bar graph), the right vertical axis represents the ethanol concentration in the culture solution (corresponding to the% line graph), white The bar graph shows the growth of the R8 strain, the black bar graph shows the growth of the R15 strain, the light gray bar graph shows the growth of the standard strain, the line-○-indicates the ethanol production of the R8 strain, the line-●-indicates the ethanol production of the R15 strain, the line -△-represents ethanol production of the standard strain, respectively. As shown in the graph, at this temperature, the R8 strain exhibits high ethanol production ability using only cellulose as a sugar source, about 0.002% in 24 hours, about 0.0055% in 48 hours, and about 0.00 in 72 hours. It was 0065%. On the other hand, the R15 strain also exhibited ethanol-producing ability although the start-up was slightly slow, about 0.003% in 48 hours and about 0.005% in 72 hours.

Claims (3)

以下の性質を有することを特徴とするバチルス・リケニフォルミス(Bacillus licheniformis)菌株であって、受託番号がNITE P−891で寄託されたバチルス・リケニフォルミス R8菌株、又は、受託番号がNITE P−892で寄託されたバチルス・リケニフォルミス R15菌株
(1)38−45℃の温度条件下で生存及び増殖が可能
(2)セルロースを分解して還元糖を生産可能
(3)セルロース原料を糖源としてエタノールを生成可能
Bacillus licheniformis strain characterized by having the following properties and deposited with Bacillus licheniformis R8 strain deposited under NITE P-891 or deposited under NITE P-892 Bacillus licheniformis R15 strain .
(1) Can survive and grow under the temperature of 38-45 ° C (2) Can produce cellulose by decomposing cellulose (3) Can produce ethanol from cellulose raw material as sugar source
請求項1に記載のバチルス・リケニフォルミス菌株を用いる、セルロース原料の分解処理方法 A method for decomposing a cellulose raw material using the Bacillus licheniformis strain according to claim 1 . 請求項1に記載のバチルス・リケニフォルミス菌株を用いる、エタノールの生産方法
A method for producing ethanol using the Bacillus licheniformis strain according to claim 1 .
JP2010072056A 2010-03-26 2010-03-26 Microorganism having resolvability of cellulose raw material and method for decomposing cellulose raw material using the same Active JP5769187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072056A JP5769187B2 (en) 2010-03-26 2010-03-26 Microorganism having resolvability of cellulose raw material and method for decomposing cellulose raw material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072056A JP5769187B2 (en) 2010-03-26 2010-03-26 Microorganism having resolvability of cellulose raw material and method for decomposing cellulose raw material using the same

Publications (2)

Publication Number Publication Date
JP2011200184A JP2011200184A (en) 2011-10-13
JP5769187B2 true JP5769187B2 (en) 2015-08-26

Family

ID=44877655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072056A Active JP5769187B2 (en) 2010-03-26 2010-03-26 Microorganism having resolvability of cellulose raw material and method for decomposing cellulose raw material using the same

Country Status (1)

Country Link
JP (1) JP5769187B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426397B2 (en) * 2014-08-12 2018-11-21 石川県公立大学法人 Biomass-degrading bacteria from the digestive tract of Akate crab

Also Published As

Publication number Publication date
JP2011200184A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
Lo et al. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production
Dionisi et al. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review
Saratale et al. Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS
Narra et al. Simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces sp. for ethanol production
Lo et al. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy
Waghmare et al. Production and characterization of cellulolytic enzymes by isolated Klebsiella sp. PRW-1 using agricultural waste biomass.
Saratale et al. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU
JP2011529345A (en) Methods and compositions for improving production of products in microorganisms
Intasit et al. Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi
Sheng et al. Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32
Saratale et al. Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization
Doran et al. Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes
Zhang et al. Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement
Hebbale et al. Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria
Yao et al. Phanerochaete chrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation
JP6022606B2 (en) New strain producing cellulase and saccharification method using the same
Shikata et al. Characterization of an anaerobic, thermophilic, alkaliphilic, high lignocellulosic biomass-degrading bacterial community, ISHI-3, isolated from biocompost
US20130130334A1 (en) Biofuel and electricity producing fuel cells and systems and methods related to same
WO2010031793A2 (en) Thermophilic fermentative bacterium producing butanol and/or hydrogen from glycerol
WO2012068310A2 (en) Compositions and methods for improved saccharification of genetically modified plant-derived biomass
Shokrkar et al. Exploring strategies for the use of mixed microalgae in cellulase production and its application for bioethanol production
Wongwilaiwalin et al. Structural and metabolic adaptation of cellulolytic microcosm in co-digested Napier grass-swine manure and its application in enhancing thermophilic biogas production
Chandel et al. Simultaneous saccharification and fermentation (SSF) of aqueous ammonia pretreated Saccharum spontaneum (wild sugarcane) for second generation ethanol production
Kumar et al. Bioethanol production from apple pomace using co-cultures with Saccharomyces cerevisiae in solid-state fermentation.
JP5629876B2 (en) Lactic acid production method by non-sterile fermentation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R150 Certificate of patent or registration of utility model

Ref document number: 5769187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250