JP5767591B2 - Method for producing artificial cartilage - Google Patents

Method for producing artificial cartilage Download PDF

Info

Publication number
JP5767591B2
JP5767591B2 JP2012011821A JP2012011821A JP5767591B2 JP 5767591 B2 JP5767591 B2 JP 5767591B2 JP 2012011821 A JP2012011821 A JP 2012011821A JP 2012011821 A JP2012011821 A JP 2012011821A JP 5767591 B2 JP5767591 B2 JP 5767591B2
Authority
JP
Japan
Prior art keywords
collagen
proteoglycan
hyaluronic acid
cartilage
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012011821A
Other languages
Japanese (ja)
Other versions
JP2013150648A (en
Inventor
万智子 河東
万智子 河東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Technosurgical Corp
Original Assignee
Hoya Technosurgical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Technosurgical Corp filed Critical Hoya Technosurgical Corp
Priority to JP2012011821A priority Critical patent/JP5767591B2/en
Publication of JP2013150648A publication Critical patent/JP2013150648A/en
Application granted granted Critical
Publication of JP5767591B2 publication Critical patent/JP5767591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

本発明は、生体軟骨の成分を原料とした着色のない弾力性に富んだ人工軟骨を製造する方法に関し、詳しくは、着色が発生せずに、十分な架橋が可能な熱脱水架橋処理の方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing an artificial cartilage rich in elasticity using a component of living cartilage as a raw material, and more particularly, a method of thermal dehydration crosslinking treatment capable of sufficient crosslinking without causing coloring. About.

軟骨組織は軟骨細胞と軟骨基質(マトリックス)とからなる。軟骨細胞は、高度に分化した細胞であり、軟骨組織中の約10%を占めるに過ぎず、また細胞分裂によって増殖することはほとんどないが、軟骨組織内で軟骨基質成分を産生し、軟骨組織の約90%を占める軟骨基質の維持を担っている。   Cartilage tissue consists of chondrocytes and a cartilage matrix (matrix). Chondrocytes are highly differentiated cells that occupy only about 10% of the cartilage tissue and rarely proliferate by cell division, but produce cartilage matrix components in the cartilage tissue. It is responsible for maintaining the cartilage matrix, which accounts for about 90% of the total.

軟骨細胞を用いて人工的に軟骨組織を再現し、軟骨の破壊・変性に対する治療に利用する試みがなされているが、軟骨様組織を形成するためには、軟骨細胞自体に軟骨基質成分を産生させるプロセスが不可欠である。しかしながら、現状の技術では、欠損部補填に十分な量の軟骨基質を軟骨細胞に効率よく作らせることは困難であり、未だ解決すべき問題が多く存在している。   Attempts have been made to artificially reproduce cartilage tissue using chondrocytes and use it for the treatment of cartilage destruction / degeneration. To form cartilage-like tissue, cartilage matrix components are produced in the chondrocytes themselves. The process of making it indispensable. However, with the current technology, it is difficult to make chondrocytes efficiently produce a sufficient amount of cartilage matrix sufficient to fill the defect, and there are still many problems to be solved.

軟骨組織を模した組織再生用材料を化学的に調製する研究もなされている。例えば、特開2002-80501号(特許文献1)は、グリコサミノグリカンとポリカチオンを縮合反応により架橋した組織再生マトリックス用グリコサミノグリカン−ポリカチオン複合体を開示しており、軟骨、肝臓、血管、神経等、さまざまな組織の優れた再生材料として有用であると記載している。しかしながら、特許文献1に記載の複合体は、製造過程で架橋剤及び縮合剤を使用しているため、これらの架橋剤、縮合剤、及びこれらの副生成物を洗浄除去する必要があり、多くの手聞がかかってしまう。またこれらを体内に移植した場合は、化学物質の残留問題が生じるリスクがある。さらには、架橋剤や縮合剤を用いて作られた上記複合体の構造がナノレベルで、生体組織を模したものにならないため、軟骨の機能として必要な低摩擦性、耐荷重性や生体親和性を満たすことができない恐れがある。   Studies have also been made to chemically prepare tissue regeneration materials that mimic cartilage tissue. For example, Japanese Patent Application Laid-Open No. 2002-80501 (Patent Document 1) discloses a glycosaminoglycan-polycation complex for tissue regeneration matrix in which glycosaminoglycan and polycation are cross-linked by a condensation reaction. It is described as being useful as an excellent regeneration material for various tissues such as blood vessels and nerves. However, since the composite described in Patent Document 1 uses a crosslinking agent and a condensing agent in the production process, it is necessary to wash and remove these crosslinking agent, condensing agent, and these by-products. Will be asked. In addition, if these are transplanted into the body, there is a risk of chemical residue problems. Furthermore, the structure of the above complex made using a cross-linking agent or a condensing agent is nano-level and does not resemble a living tissue. Therefore, the low friction, load resistance, and biocompatibility required for cartilage functions are eliminated. There is a possibility that it cannot satisfy sex.

国際公開第2007/032404号(特許文献2)は、(a)グリコサミノグリカンとプロテオグリカンとを混合し、グリコサミノグリカンプロテオグリカン凝集体を調製する工程、及び(b)前記グリコサミノグリカンプロテオグリカン凝集体にコラーゲンを混合する工程を含む、自己組織化グリコサミノグリカン/プロテオグリカン/コラーゲン複合体の製造方法を開示しており、このグリコサミノグリカン/プロテオグリカン/コラーゲン複合体は、軟骨再生医療のバイオマテリアルとして極めて適した性質を有するとともに、自己組織化によって製造されるため架橋剤等の化学物質を使用しないで製造することができると記載している。しかしながら、特許文献2に記載の方法によって得られる複合体は、架橋処理を行っていないため、生体内に使用したときの強度低下が大きく、改良が望まれている。   International Publication No. 2007/032404 (Patent Document 2) includes (a) a step of preparing a glycosaminoglycan proteoglycan aggregate by mixing a glycosaminoglycan and a proteoglycan, and (b) the glycosaminoglycan proteoglycan. Disclosed is a method for producing a self-assembled glycosaminoglycan / proteoglycan / collagen complex including the step of mixing collagen with an aggregate, and the glycosaminoglycan / proteoglycan / collagen complex is used in cartilage regenerative medicine. It describes that it can be manufactured without using chemical substances such as a cross-linking agent because it has properties extremely suitable as a biomaterial and is manufactured by self-assembly. However, since the composite obtained by the method described in Patent Document 2 is not subjected to crosslinking treatment, the strength is greatly reduced when it is used in vivo, and improvement is desired.

特開2011-36320号(特許文献3)は、気孔率の低い多孔質ゼラチン層と、気孔率の高い多孔質ゼラチン層とが積層されてなる多層構造のブロック状軟骨用移植材を開示しており、凍結乾燥後の発泡ゼラチン溶液を常圧にて熱架橋する方法を記載している。しかしながら、特許文献3に記載の熱架橋方法を、引用文献2のグリコサミノグリカン/プロテオグリカン/コラーゲン複合体に適用したところ、前記複合体が着色してしまい、また弾力性が著しく低下してしまった。   Japanese Patent Application Laid-Open No. 2011-36320 (Patent Document 3) discloses a graft material for block-like cartilage having a multilayer structure in which a porous gelatin layer having a low porosity and a porous gelatin layer having a high porosity are laminated. And a method of thermally crosslinking a freeze-dried foamed gelatin solution at normal pressure. However, when the thermal crosslinking method described in Patent Document 3 is applied to the glycosaminoglycan / proteoglycan / collagen complex disclosed in Cited Document 2, the complex is colored, and the elasticity is significantly reduced. It was.

Haugh et al., “Novel Freeze-Drying Methods to Produce a Range of Collagen-Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes,” Tissue Engineering: Part C, vol. 16, No. 5, pp. 887-894.(非特許文献1)は、コラーゲン/グリコサミノグリカン足場材の架橋方法として、0.05 bar及び105℃の条件で24時間水熱処理する方法が記載されている。しかしながら、非特許文献1に記載の方法を人工軟骨の架橋に適用した場合でも、材料の着色の発生、及び弾力性の低下を完全に防止することができない。   Haugh et al., “Novel Freeze-Drying Methods to Produce a Range of Collagen-Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes,” Tissue Engineering: Part C, vol. 16, No. 5, pp. 887-894. Document 1) describes a method of hydrothermal treatment for 24 hours under the conditions of 0.05 bar and 105 ° C. as a method for crosslinking a collagen / glycosaminoglycan scaffold. However, even when the method described in Non-Patent Document 1 is applied to the cross-linking of artificial cartilage, the occurrence of coloring of the material and the decrease in elasticity cannot be completely prevented.

特開2002-80501号公報JP 2002-80501 A 国際公開第2007/032404号パンフレットInternational Publication No. 2007/032404 Pamphlet 特開2011-36320号公報JP 2011-36320 A

Haugh et al.,“Novel Freeze-Drying Methods to Produce a Range of Collagen-Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes,” Tissue Engineering: Part C, vol. 16, No. 5, pp. 887-894.Haugh et al., “Novel Freeze-Drying Methods to Produce a Range of Collagen-Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes,” Tissue Engineering: Part C, vol. 16, No. 5, pp. 887-894.

従って、本発明の目的は、グリコサミノグリカン/プロテオグリカン/コラーゲン複合体からなる人工軟骨を、着色させず、使用時に弾性率の低下を招かないように架橋処理する方法を提供することである。   Accordingly, an object of the present invention is to provide a method for crosslinking an artificial cartilage composed of a glycosaminoglycan / proteoglycan / collagen complex so that the artificial cartilage is not colored and does not cause a decrease in elastic modulus when used.

上記目的に鑑み鋭意研究の結果、本発明者らは、グリコサミノグリカン/プロテオグリカン/コラーゲン複合体からなる人工軟骨を、105〜110℃で16〜23時間熱脱水架橋することにより、人工軟骨の着色が起こらず、かつ使用時に弾性率が低下しないような架橋度で架橋処理することが可能であることを見出し、本発明に想到した。   As a result of diligent research in view of the above object, the inventors of the present invention performed artificial dehydration crosslinking of an artificial cartilage composed of a glycosaminoglycan / proteoglycan / collagen complex at 105 to 110 ° C. for 16 to 23 hours. The present inventors have found that it is possible to perform a crosslinking treatment with a degree of crosslinking so that coloring does not occur and the elastic modulus does not decrease during use.

すなわち、コラーゲン、プロテオグリカン及びヒアルロン酸からなる人工軟骨を製造する本発明の方法は、コラーゲン、プロテオグリカン及びヒアルロン酸からなる成形体を105〜110℃及び0 Pa〜大気圧で16〜23時間熱脱水架橋する工程を有することを特徴とする。   That is, the method of the present invention for producing an artificial cartilage composed of collagen, proteoglycan and hyaluronic acid is obtained by subjecting a molded body composed of collagen, proteoglycan and hyaluronic acid to thermal dehydration crosslinking at 105 to 110 ° C. and 0 Pa to atmospheric pressure for 16 to 23 hours. It has the process to perform.

前記成形体は、コラーゲン、プロテオグリカン及びヒアルロン酸からなる組成物を凍結乾燥して得るのが好ましい。   The molded body is preferably obtained by freeze-drying a composition comprising collagen, proteoglycan and hyaluronic acid.

前記組成物は、15〜95質量%のコラーゲン、4.9〜70質量%のプロテオグリカン及び0.1〜20質量%のヒアルロン酸を含むのが好ましい。   The composition preferably comprises 15 to 95% by weight collagen, 4.9 to 70% by weight proteoglycan and 0.1 to 20% by weight hyaluronic acid.

架橋後の人工軟骨にガンマ線照射処理するのが好ましい。   It is preferable to subject the artificial cartilage after crosslinking to gamma irradiation treatment.

[1]人工軟骨
人工軟骨は、コラーゲン、プロテオグリカン及びヒアルロン酸からなり、15〜95質量%のコラーゲン、4.9〜70質量%のプロテオグリカン及び0.1〜20質量%のヒアルロン酸を含むのが好ましい。コラーゲン線維に、ヒアルロン酸及び/又はプロテオグリカンを添加することにより、柔軟性に優れた人工軟骨を得ることができる。人工軟骨中のコラーゲン、プロテオグリカン及びヒアルロン酸の量は、それぞれ45〜65質量%、20〜40質量%及び2〜5質量%であるのがより好ましい。
[1] Artificial cartilage The artificial cartilage is composed of collagen, proteoglycan and hyaluronic acid, and preferably contains 15 to 95% by mass of collagen, 4.9 to 70% by mass of proteoglycan and 0.1 to 20% by mass of hyaluronic acid. By adding hyaluronic acid and / or proteoglycan to collagen fibers, an artificial cartilage having excellent flexibility can be obtained. More preferably, the amounts of collagen, proteoglycan and hyaluronic acid in the artificial cartilage are 45 to 65% by mass, 20 to 40% by mass and 2 to 5% by mass, respectively.

コラーゲン含有量が15質量%未満の場合、生体中に挿入したときの膨張率が増加し、軟骨欠損部へ適合させにくくなり、また膨張により気孔率が低下する傾向となる。コラーゲン含有量が95質量%超の場合、着色が大きくなる。プロテオグリカン含有量が4.9質量%未満の場合、弾性率が低下して軟骨としての性能が低下する。プロテオグリカン含有量が70質量%超の場合、膨張による大きさの変化が大きくなり、気孔率が低下する傾向となる。ヒアルロン酸含有量が0.1質量%未満の場合弾性率が低下して軟骨としての性能が低下するとともに、人工軟骨表面の潤滑性(低摩擦性)が低下する。ヒアルロン酸含有量が20質量%超の場合、生体軟骨に含まれている割合を大きく超え、生体軟骨とは異なる成分の材料になってしまうため、適用部位によっては、コラーゲンとプロテオグリカンの所望の含有割合を確保することが難しくなる。   When the collagen content is less than 15% by mass, the expansion rate when inserted into a living body increases, making it difficult to adapt to a cartilage defect, and the porosity tends to decrease due to expansion. When the collagen content exceeds 95% by mass, coloring increases. When the proteoglycan content is less than 4.9% by mass, the elastic modulus is lowered and the performance as cartilage is lowered. When the proteoglycan content is more than 70% by mass, the change in size due to expansion becomes large, and the porosity tends to decrease. When the hyaluronic acid content is less than 0.1% by mass, the elastic modulus is lowered, the performance as cartilage is lowered, and the lubricity (low friction property) of the artificial cartilage surface is lowered. If the hyaluronic acid content exceeds 20% by mass, it will greatly exceed the proportion contained in living cartilage, and it will be a material with components different from living cartilage, so depending on the application site, the desired content of collagen and proteoglycan It becomes difficult to secure the ratio.

コラーゲンとしては特に限定されず、動物等から抽出したものを使用できる。また由来する動物の種、組織部位、年齢等も特に限定されない。一般的には哺乳動物(例えばウシ、ブタ、ウマ、ウサギ、ネズミ等)や鳥類(例えばニワトリ等)の皮膚、骨、軟骨、腱、臓器等から得られるコラーゲンが使用できる。また魚類(例えばタラ、ヒラメ、カレイ、サケ、マス、マグロ、サバ、タイ、イワシ、サメ等)の皮、骨、軟骨、ひれ、うろこ、臓器等から得られるコラーゲン様蛋白を使用してもよい。なおコラーゲンの抽出方法は特に限定されず、一般的な抽出方法を使用することができる。また動物組織からの抽出ではなく、合成コラーゲンや遺伝子組み替え技術によって得られたコラーゲンを使用してもよい。   It does not specifically limit as collagen, What was extracted from the animal etc. can be used. Also, the species, tissue site, age, etc. of the animal from which it is derived are not particularly limited. In general, collagen obtained from the skin, bone, cartilage, tendon, organ, etc. of mammals (eg, cows, pigs, horses, rabbits, mice, etc.) and birds (eg, chickens, etc.) can be used. Collagen-like proteins obtained from the skin, bones, cartilage, fins, scales, organs, etc. of fish (eg cod, flounder, flounder, salmon, trout, tuna, mackerel, Thai, sardine, shark etc.) may also be used. . In addition, the extraction method of collagen is not specifically limited, A general extraction method can be used. Further, instead of extraction from animal tissue, synthetic collagen or collagen obtained by gene recombination technology may be used.

グリコサミノグリカンとは、アミノ糖とウロン酸又はガラクトースが結合した2糖の繰り返し構造からなる酸性多糖類である。本発明において用いられるグリコサミノグリカンとしては、コンドロイチン硫酸、デルマタン硫酸、ヘパラン硫酸、ケラタン硫酸、ヘパリン、ヒアルロン酸いずれでも良いが、ヒアルロン酸を用いるのが好ましい。   Glycosaminoglycan is an acidic polysaccharide consisting of a repeating structure of disaccharides in which an amino sugar and uronic acid or galactose are bound. The glycosaminoglycan used in the present invention may be any of chondroitin sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, heparin, and hyaluronic acid, but it is preferable to use hyaluronic acid.

プロテオグリカンとは、一つの核となるタンパク質に、一本又は多数のグリコサミノグリカン鎖が結合したものである。プロテオグリカンとしては特に制限はなく、アグリカン、バーシカン、ニューロカン、ブレビカン、デコリン、ビグリカン、セルグリシン、パールカン、シンデカン、グリピカン、ルミカン、ケラトカン等が挙げられるが、アグリカンを用いるのが好ましい。   A proteoglycan is a protein in which one or many glycosaminoglycan chains are bound to one core protein. The proteoglycan is not particularly limited, and examples include aggrecan, versican, neurocan, brevican, decorin, biglycan, serglycine, perlecan, syndecan, glypican, lumican, keratocan, etc., but it is preferable to use aggrecan.

プロテオグリカンの由来に特に制限はなく、複合体の使用目的に応じて、ほ乳類(ヒト、ウシ、ブタ等)、鳥類(ニワトリ等)、魚類(サメ、鮭等)、甲殻類(カニ、エビ等)等の各種動物由来の中から適宜選択することができる。特に本発明の人工軟骨をヒトの軟骨欠損又は変性の治療用として用いるのであれば、ヒトにおける免疫原性の低い由来の中から選択するのが望ましい。   There are no particular restrictions on the origin of proteoglycans, depending on the intended use of the complex, mammals (human, cow, pig, etc.), birds (chicken, etc.), fish (sharks, sharks, etc.), crustaceans (crabs, shrimp, etc.) It can be appropriately selected from various animal origins such as In particular, if the artificial cartilage of the present invention is used for the treatment of human cartilage defect or degeneration, it is desirable to select from those having low immunogenicity in humans.

人工軟骨中のコラーゲンは、UV吸収の測定、HPLC等により定量できる。ヒアルロン酸は、カルバゾール硫酸法、ヒアルロン酸結合性タンパク質を利用した阻害法、HPLC等により定量できる。プロテオグリカンは、色素DMMBを用いた比色法、HPLC等により定量できる。   Collagen in the artificial cartilage can be quantified by measuring UV absorption, HPLC or the like. Hyaluronic acid can be quantified by a carbazole sulfate method, an inhibition method using a hyaluronic acid binding protein, HPLC, or the like. Proteoglycan can be quantified by a colorimetric method using the dye DMMB, HPLC or the like.

人工軟骨は、機械的強度を高めるとともに、体内に挿入された人工軟骨を長期間に渡って保持し得るようにするため、熱脱水架橋処理が施されている。また人工軟骨はガンマ線処理等の方法により滅菌処理されているのが好ましい。   Artificial cartilage is subjected to thermal dehydration crosslinking treatment in order to increase mechanical strength and to hold the artificial cartilage inserted into the body for a long period of time. The artificial cartilage is preferably sterilized by a method such as gamma ray treatment.

[2]製造方法
人工軟骨を製造する本発明の方法は、コラーゲン、プロテオグリカン及びヒアルロン酸からなる成形体を105〜110℃及び0 Pa〜大気圧で16〜23時間熱脱水架橋する工程を有する。コラーゲン、プロテオグリカン及びヒアルロン酸からなる成形体は、コラーゲン、プロテオグリカン及びヒアルロン酸の混合物を得る工程、及び前記混合物を凍結乾燥する工程からなるのが好ましい。なお、前記凍結乾燥物を粉砕し水に分散させた後、その分散物を再度凍結乾燥する工程を有しても良い。
[2] Manufacturing method The method of the present invention for manufacturing artificial cartilage includes a step of thermally dehydrating and crosslinking a molded body comprising collagen, proteoglycan and hyaluronic acid at 105 to 110 ° C. and 0 Pa to atmospheric pressure for 16 to 23 hours. The molded body composed of collagen, proteoglycan and hyaluronic acid preferably comprises a step of obtaining a mixture of collagen, proteoglycan and hyaluronic acid, and a step of freeze-drying the mixture. The lyophilized product may be pulverized and dispersed in water, and then the dispersion may be freeze-dried again.

(a)調液及び混合
コラーゲン、プロテオグリカン及びヒアルロン酸の混合物を得る工程は、ヒアルロン酸及びコラーゲンからなる第1の組成物を得る工程と、プロテオグリカン及びコラーゲンからなる第2の組成物を得る工程と、前記第1及び第2の組成物を混合する工程とからなるのが好ましい。
(a) Preparation and mixing The step of obtaining a mixture of collagen, proteoglycan and hyaluronic acid includes the steps of obtaining a first composition comprising hyaluronic acid and collagen, and obtaining a second composition comprising proteoglycan and collagen. And the step of mixing the first and second compositions.

前記第1の組成物を得る工程において、ヒアルロン酸及びコラーゲンの混合比は、10000:1〜1:10000(質量比)であるのが好ましく、5000:1〜1:5000(質量比)であるのがより好ましく、15:1〜1:15(質量比)であるのが最も好ましい。コラーゲンはあらかじめ希塩酸(5〜50 mM程度の濃度)に0.1〜20質量%の濃度で溶解したものを用いるのが好ましい。またヒアルロン酸は、あらかじめ無菌水(注射用水等)に0.1〜20質量%の濃度で溶解したものを用いるのが好ましい。ヒアルロン酸及びコラーゲンの水溶液の混合は3〜25℃で行うのが好ましい。   In the step of obtaining the first composition, the mixing ratio of hyaluronic acid and collagen is preferably 10000: 1 to 1: 10000 (mass ratio), and is 5000: 1 to 1: 5000 (mass ratio). More preferably, it is 15: 1 to 1:15 (mass ratio). It is preferable to use collagen previously dissolved in dilute hydrochloric acid (concentration of about 5 to 50 mM) at a concentration of 0.1 to 20% by mass. Hyaluronic acid is preferably dissolved in sterile water (water for injection, etc.) at a concentration of 0.1 to 20% by mass in advance. Mixing of the aqueous solution of hyaluronic acid and collagen is preferably performed at 3 to 25 ° C.

前記第2の組成物を得る工程において、プロテオグリカン及びコラーゲンの混合比は、10000:1〜1:10000(質量比)であるのが好ましく、5000:1〜1:5000(質量比)であるのがより好ましく、10:1〜1:10(質量比)であるのが最も好ましい。コラーゲンはあらかじめ希塩酸(5〜50 mM程度の濃度)に0.1〜20質量%の濃度で溶解したものを用いるのが好ましい。またプロテオグリカンは、あらかじめ無菌水(注射用水等)に0.1〜20質量%の濃度で溶解したものを用いるのが好ましい。プロテオグリカン及びコラーゲンの水溶液の混合は3〜25℃で行うのが好ましい。   In the step of obtaining the second composition, the mixing ratio of proteoglycan and collagen is preferably 10000: 1 to 1: 10000 (mass ratio), and is 5000: 1 to 1: 5000 (mass ratio). Is more preferable, and 10: 1 to 1:10 (mass ratio) is most preferable. It is preferable to use collagen previously dissolved in dilute hydrochloric acid (concentration of about 5 to 50 mM) at a concentration of 0.1 to 20% by mass. In addition, it is preferable to use proteoglycan previously dissolved in sterile water (water for injection etc.) at a concentration of 0.1 to 20% by mass. The mixing of the aqueous solution of proteoglycan and collagen is preferably performed at 3 to 25 ° C.

ヒアルロン酸及びコラーゲンの水溶液の混合(第1の組成物)及びプロテオグリカン及びコラーゲンの水溶液の混合(第2の組成物)は、特に高いせん断を必要とするものではないので通常用いられているスターラー、ミキサー等の器具を用いて行うことができる。混合は、ヒアルロン酸及びコラーゲン、又はプロテオグリカン及びコラーゲンが均一に混合されるように、3〜25℃で、1秒〜3分程度行う。   The mixing of the aqueous solution of hyaluronic acid and collagen (first composition) and the mixing of the aqueous solution of proteoglycan and collagen (second composition) does not require particularly high shear, so that a commonly used stirrer, It can be performed using an instrument such as a mixer. The mixing is performed at 3 to 25 ° C. for about 1 second to 3 minutes so that hyaluronic acid and collagen or proteoglycan and collagen are uniformly mixed.

第1及び第2の組成物の混合比は、混合後に15〜95質量%のコラーゲン、4.9〜70質量%のプロテオグリカン及び0.1〜20質量%のヒアルロン酸を含む組成となるように行う。第1及び第2の組成物の混合は、ホモジナイザー、ディゾルバー等の器具を用いて、せん断力を有する方法により行うのが好ましい。例えば、ホモジナイザーを使用する場合、1,000〜12,000 rpmの回転数で、30秒〜3分の攪拌を1〜5回繰り返して行うのが好ましい。混合時の試料は、3〜25℃程度に保温して行うのが好ましい。第1及び第2の組成物を別々に用意し、その後、混合することで、合成の進行をより促すことができる。   The mixing ratio of the first and second compositions is such that the composition contains 15 to 95 mass% collagen, 4.9 to 70 mass% proteoglycan and 0.1 to 20 mass% hyaluronic acid after mixing. The mixing of the first and second compositions is preferably performed by a method having shearing force using an instrument such as a homogenizer or a dissolver. For example, when using a homogenizer, it is preferable to repeat the stirring for 30 seconds to 3 minutes 1 to 5 times at a rotation speed of 1,000 to 12,000 rpm. The sample at the time of mixing is preferably kept at a temperature of about 3 to 25 ° C. The progress of the synthesis can be further promoted by preparing the first and second compositions separately and then mixing them.

なおコラーゲン、プロテオグリカン及びヒアルロン酸の混合物は、前述のように第1及び第2の組成物を調製しそれらを混合する方法ではなく、以下に記載するように、コラーゲン、プロテオグリカン及びヒアルロン酸を直接混合して作製しても良い。   In addition, the mixture of collagen, proteoglycan and hyaluronic acid is not a method of preparing the first and second compositions and mixing them as described above, but directly mixing collagen, proteoglycan and hyaluronic acid as described below. May be produced.

コラーゲン、プロテオグリカン及びヒアルロン酸の混合比は、混合後に15〜95質量%のコラーゲン、4.9〜70質量%のプロテオグリカン及び0.1〜20質量%のヒアルロン酸を含む組成となるように行う。コラーゲンはあらかじめ水又は希塩酸(5〜50 mM程度の濃度)に0.1〜20質量%の濃度で溶解したものを用いるのが好ましい。プロテオグリカンは、あらかじめ無菌水(注射用水等)に0.1〜20質量%の濃度で溶解したものを用いるのが好ましい。ヒアルロン酸は、あらかじめ無菌水(注射用水等)に0.1〜20質量%の濃度で溶解したものを用いるのが好ましい。   The mixing ratio of collagen, proteoglycan and hyaluronic acid is such that the composition contains 15 to 95% by mass of collagen, 4.9 to 70% by mass of proteoglycan and 0.1 to 20% by mass of hyaluronic acid after mixing. It is preferable to use collagen previously dissolved in water or dilute hydrochloric acid (concentration of about 5 to 50 mM) at a concentration of 0.1 to 20% by mass. It is preferable to use proteoglycan previously dissolved in sterile water (water for injection, etc.) at a concentration of 0.1 to 20% by mass. It is preferable to use hyaluronic acid previously dissolved in sterile water (water for injection, etc.) at a concentration of 0.1 to 20% by mass.

コラーゲン、プロテオグリカン及びヒアルロン酸の各溶液は、ホモジナイザー、ディゾルバー等の器具を用いて、せん断力をかけて混合するのが好ましい。例えば、ホモジナイザーを使用する場合、1,000〜12,000 rpmの回転数で、30秒〜3分の攪拌を1〜5回繰り返して行うのが好ましい。コラーゲン、プロテオグリカン及びヒアルロン酸の水溶液の調製及び混合は3〜25℃に保温して行うのが好ましい。   Each solution of collagen, proteoglycan and hyaluronic acid is preferably mixed by applying a shearing force using an instrument such as a homogenizer or a dissolver. For example, when using a homogenizer, it is preferable to repeat the stirring for 30 seconds to 3 minutes 1 to 5 times at a rotation speed of 1,000 to 12,000 rpm. Preparation and mixing of an aqueous solution of collagen, proteoglycan and hyaluronic acid is preferably carried out while keeping the temperature at 3 to 25 ° C.

(b)第1の凍結乾燥
得られた混合物は、熱伝導性のよい容器(金属のバット等)に入れ、-80〜-60℃で一晩以上凍結する。凍結した混合物は、棚温度-50〜-5℃程度(好ましくは-40〜-5℃)で混合物の水分(氷)がほぼなくなるまで10時間〜10日程度真空引きし(第1の乾燥)、真空引きしたまま棚温度を20〜40℃程度(好ましくは25〜40℃)に上げてさらに3〜24時間乾燥(第2の乾燥)する。このように、二段階に温度を変化させて凍結乾燥することにより、結合水までもが除去され、より乾燥されたものとなり、得られる凍結乾燥物は保存性に優れたものとなる。
(b) First freeze-drying The obtained mixture is put in a container (such as a metal vat) having good heat conductivity and frozen at -80 to -60 ° C for one night or more. The frozen mixture is evacuated for about 10 hours to 10 days at the shelf temperature of about -50 to -5 ° C (preferably -40 to -5 ° C) until the water (ice) of the mixture is almost gone (first drying). The shelf temperature is raised to about 20 to 40 ° C. (preferably 25 to 40 ° C.) while being evacuated, and further dried (second drying) for 3 to 24 hours. Thus, by freeze-drying by changing the temperature in two stages, even the bound water is removed and the product is further dried, and the resulting freeze-dried product has excellent storage stability.

得られた凍結乾燥物は後述の架橋及び滅菌を施し、そのまま人工軟骨としても良いが、さらに後述の粉砕、分散及び凍結乾燥を施してもよい。このように粉砕工程を経ることにより、高密度の人工軟骨が得られる。   The obtained freeze-dried product is subjected to crosslinking and sterilization described below, and may be used as an artificial cartilage as it is, but may be further subjected to grinding, dispersion, and freeze-drying described below. Thus, a high-density artificial cartilage is obtained by going through the grinding step.

(c)粉砕
得られた凍結乾燥物はミル等の固体粉砕器で粉砕する。粉砕の方法は特に限定されるものではないが、凍結乾燥物があまり高い温度にならないように行うのが好ましい。
(c) Grinding The obtained freeze-dried product is ground with a solid grinder such as a mill. The pulverization method is not particularly limited, but it is preferable to carry out the lyophilized product so as not to reach a very high temperature.

(d)分散
粉砕した凍結乾燥物は3〜20質量%の濃度となるように生理食塩水と混合し、ホモジナイザー等の器具を用いて、3〜25℃及び1,000〜15,000 rpmの条件で、30秒〜3分間×1〜5回分散する。
(d) Dispersion The pulverized lyophilized product is mixed with physiological saline so as to have a concentration of 3 to 20% by mass, and using a device such as a homogenizer, the conditions are 3 to 25 ° C. and 1,000 to 15,000 rpm. Disperse 1 to 5 times for seconds to 3 minutes.

(e)ゲル化
得られた分散物は、シャーレ等の容器に入れフタをし、30〜40℃で1〜5時間静置してゲル化させる。
(e) Gelation The obtained dispersion is put into a container such as a petri dish, capped, and allowed to stand at 30 to 40 ° C. for 1 to 5 hours for gelation.

(f)第2の凍結乾燥
ゲル化させた分散物は再度凍結乾燥し成形体とする。ゲル化させた分散物を2〜10℃で1〜20時間冷蔵し、さらに-20〜-60℃程度で一晩凍結する。凍結する際には、ステンレスバット内に置いた網皿の上に容器をのせて行うのが好ましい。凍結した分散物は、前述の第1の凍結乾燥の場合と同様にして乾燥する。
(f) Second lyophilization The gelled dispersion is lyophilized again to form a molded product. The gelled dispersion is refrigerated at 2 to 10 ° C. for 1 to 20 hours and further frozen at about −20 to −60 ° C. overnight. When freezing, it is preferable to place the container on a mesh pan placed in a stainless steel bat. The frozen dispersion is dried in the same manner as in the first lyophilization described above.

(g)架橋
凍結乾燥後の分散物は、機械的強度を高めるとともに、体内に挿入された人工軟骨を長期間に渡って保持し得るようにするため、熱脱水架橋処理を行いコラーゲン及び/又はプロテオグリカンを架橋する。熱脱水架橋は、凍結乾燥後の分散物を105〜110℃及び0 Pa〜大気圧の真空オーブン中に16〜23時間保持することにより行う。保持時間は、好ましくは16〜20時間である。
(g) Crosslinking The dispersion after freeze-drying is subjected to thermal dehydration cross-linking treatment to increase the mechanical strength and to hold the artificial cartilage inserted into the body for a long period of time. Cross-links proteoglycans. Thermal dehydration crosslinking is performed by holding the dispersion after freeze-drying in a vacuum oven at 105 to 110 ° C. and 0 Pa to atmospheric pressure for 16 to 23 hours. The holding time is preferably 16 to 20 hours.

110℃超の高い温度又は23時間超の長い時間の条件で熱脱水処理を行うと人工軟骨の着色が発生し、105℃未満の低い温度又は16時間未満の短い時間の条件では架橋が不十分であるため、含水により人工軟骨が収縮してしまう。なお人工軟骨の架橋度は、例えば含水後の弾性率が時間の経過によって低下する度合いによって評価することができる。弾性率の低下が少ないものほど架橋度が高いといえる。   Artificial cartilage coloring occurs when heat dehydration is performed at a high temperature of over 110 ° C or a long time of over 23 hours, and crosslinking is insufficient under conditions of a low temperature of less than 105 ° C or a short time of less than 16 hours Therefore, the artificial cartilage contracts due to water content. The degree of cross-linking of the artificial cartilage can be evaluated by, for example, the degree to which the elastic modulus after hydration decreases with time. It can be said that the lower the modulus of elasticity, the higher the degree of crosslinking.

(h)滅菌処理
人工軟骨は紫外線、γ線、電子線、乾燥加熱等により滅菌処理するのが好ましい。特に、25 kGy以下のガンマ線を照射することにより滅菌するのが好ましい。
(h) Sterilization treatment Artificial cartilage is preferably sterilized by ultraviolet rays, γ rays, electron beams, drying and heating, and the like. In particular, it is preferable to sterilize by irradiation with gamma rays of 25 kGy or less.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1
(1)原料溶液の調製
5m M塩酸にコラーゲンを溶解し、1質量%コラーゲン溶液を作製した。また注射用水にプロテオグリカンを溶解し、1質量%プロテオグリカン溶液を作製し、さらに、注射用水にヒアルロン酸を溶解し、0.2質量%ヒアルロン酸溶液を作製した。なおこれらの調製は全て4℃で行った。
Example 1
(1) Preparation of raw material solution
Collagen was dissolved in 5 mM hydrochloric acid to prepare a 1% by mass collagen solution. Further, proteoglycan was dissolved in water for injection to prepare a 1% by mass proteoglycan solution, and further hyaluronic acid was dissolved in water for injection to prepare a 0.2% by mass hyaluronic acid solution. All of these preparations were performed at 4 ° C.

(2)原料の混合
前記コラーゲン溶液及びプロテオグリカン溶液を、1:1(質量比)で混合し、ミキサーで攪拌し混合液Aを得た。同様に、前記コラーゲン溶液及びヒアルロン酸溶液を、2:1(質量比)で混合し、ミキサーで攪拌し混合液Bを得た。混合液A及びBを1.5:1(質量比)で混合し、ホモジナイザーで2,OOO rpmの回転数で1分間の攪拌を30秒のインターバルをおいて3回行った。なお攪拌は試料の温度を5℃に保温して行った。
(2) Mixing of raw materials The collagen solution and the proteoglycan solution were mixed at 1: 1 (mass ratio) and stirred with a mixer to obtain a mixed solution A. Similarly, the collagen solution and the hyaluronic acid solution were mixed at a ratio of 2: 1 (mass ratio), and stirred with a mixer to obtain a mixed solution B. Mixtures A and B were mixed at a ratio of 1.5: 1 (mass ratio), and stirred for 1 minute at a rotation speed of 2, OOOO rpm with a homogenizer three times at intervals of 30 seconds. The stirring was performed while keeping the temperature of the sample at 5 ° C.

(3)第1の凍結乾燥
得られた混合物をバットに流し込み-80℃で6日間凍結した後、棚温度-5℃で8日間真空引きし第1の乾燥を行った。この第1の乾燥で、混合物の水分(氷)はほぼなくなった。引き続き真空引きしたまま棚温度を25℃に上げてさらに4時間第2の乾燥を行い、凍結乾燥物を得た。
(3) First freeze-drying The obtained mixture was poured into a vat and frozen at −80 ° C. for 6 days, and then vacuum-evacuated at a shelf temperature of −5 ° C. for 8 days for first drying. With this first drying, there was almost no moisture (ice) in the mixture. Subsequently, the shelf temperature was raised to 25 ° C. while evacuating, and the second drying was further performed for 4 hours to obtain a freeze-dried product.

(4)粉砕及び分散
得られた凍結乾燥物をミルで粉砕した後、粉砕した凍結乾燥物を1O.7質量%となるように生理食塩水を混合し、ホモジナイザーで10,OOO rpmの条件で、1分間の分散を5回(インターバル:1分)行った。なお、ホモジナイザーによる分散は5℃に保温して行った。
(4) Grinding and dispersion After the obtained lyophilized product was pulverized with a mill, the pulverized lyophilized product was mixed with physiological saline so as to be 1O.7% by mass, and the homogenizer was used under conditions of 10, 00 rpm. Dispersion for 1 minute was performed 5 times (interval: 1 minute). In addition, the dispersion | distribution by a homogenizer was carried out keeping 5 degreeC.

(5)脱泡
得られた分散物を、自転・公転ミキサー(シンキー社製、あわとり練太郎ARE-250)で1分攪拌し、分散物中に含まれる気泡を取り除いた。
(5) Defoaming The obtained dispersion was stirred for 1 minute with a rotation / revolution mixer (manufactured by Shinky Co., Ltd., Awatori Nertaro ARE-250) to remove bubbles contained in the dispersion.

(6)ゲル化
得られた分散物をガラス製のシャーレに入れフタをし、37.5℃で3時間静置してゲル化した後、5℃で3時間冷蔵した。
(6) Gelation The obtained dispersion was put into a glass petri dish, capped, left to stand at 37.5 ° C for 3 hours to gel, and then refrigerated at 5 ° C for 3 hours.

(6)第2の凍結乾燥
ステンレスパット内に置いた網皿の上に前記冷蔵した材料をシャーレごと置き-60℃で3日間凍結した後、棚温度-40℃で7日間真空引きし第1の乾燥を行った。この第1の乾燥で、混合物の水分(氷)はほぼなくなった。引き続き真空引きしたまま棚温度を25℃に上げてさらに4時間第2の乾燥を行い、凍結乾燥物を得た。
(6) Second freeze-drying Place the refrigerated material together with the petri dish on a mesh pan placed in a stainless steel pad, freeze at -60 ° C for 3 days, and then vacuum for 7 days at a shelf temperature of -40 ° C. Was dried. With this first drying, there was almost no moisture (ice) in the mixture. Subsequently, the shelf temperature was raised to 25 ° C. while evacuating, and the second drying was further performed for 4 hours to obtain a freeze-dried product.

(7)架橋処理
得られた凍結乾燥物を、直径4.2 mm及び厚さ4 mmに成形し、真空オーブンで真空下(0 Pa)で105℃、110℃、115℃、及び表1に示す時間条件で熱脱水架橋処理し人工軟骨を得た。
(7) Crosslinking treatment The obtained lyophilized product was molded into a diameter of 4.2 mm and a thickness of 4 mm, and 105 ° C, 110 ° C, 115 ° C under vacuum (0 Pa) in a vacuum oven, and the times shown in Table 1. Artificial cartilage was obtained by thermal dehydration crosslinking under the conditions.

得られた人工軟骨の着色及び架橋度を下記の通り評価した。着色は、目視で判断し、着色がないものを○、やや着色したものを△、着色したものを×として評価した。また架橋度は、得られた人工軟骨の含水直後と4週間後の弾性率を粘弾性測定装置(wave cyber社製、ベスメーター, E-200DT)により測定し、4週間後の弾性率が含水直後の70%以上のものを○、50%以上70%未満のものを△、50%未満のものを×として評価した。着色及び架橋度の評価がともに○である場合に、人工軟骨として実用性を有する。結果を表1に示す。   The resulting artificial cartilage was evaluated for coloring and crosslinking degree as follows. The coloring was judged by visual observation, and evaluation was made with ○ indicating that there was no coloring, Δ indicating slightly coloring, and × indicating coloring. The degree of cross-linking was measured by measuring the elastic modulus of the obtained artificial cartilage immediately after hydration and after 4 weeks with a viscoelasticity measuring device (wave cyber, Vesmeter, E-200DT). Immediately after the evaluation, 70% or more was evaluated as ○, 50% or more and less than 70% as Δ, and less than 50% as ×. When the coloring and the degree of crosslinking are both evaluated as ◯, it has practicality as an artificial cartilage. The results are shown in Table 1.

Figure 0005767591
Figure 0005767591

表1から明らかなように、105〜110℃の間で、16時間以上24時間未満で熱脱水架橋処理したときに、着色せずに十分な架橋度を有する人工軟骨が得られた。   As is clear from Table 1, when the thermal dehydration crosslinking treatment was carried out at 105 to 110 ° C. for 16 hours or more and less than 24 hours, an artificial cartilage having a sufficient degree of crosslinking without being colored was obtained.

実施例2
実施例1と同様にして得られた凍結乾燥物を、直径4.2 mm及び厚さ4 mmに成形し、真空オーブンで大気圧下で105℃20時間で熱脱水架橋処理して人工軟骨を得た。得られた人工軟骨は、真空下で105℃20時間で熱脱水架橋処理した人工軟骨と同様の着色及び架橋度の評価であった。
Example 2
The freeze-dried product obtained in the same manner as in Example 1 was molded into a diameter of 4.2 mm and a thickness of 4 mm, and subjected to thermal dehydration crosslinking at 105 ° C. for 20 hours in a vacuum oven at atmospheric pressure to obtain an artificial cartilage. . The obtained artificial cartilage had the same coloration and evaluation of the degree of crosslinking as artificial cartilage subjected to thermal dehydration crosslinking treatment at 105 ° C. for 20 hours under vacuum.

Claims (4)

コラーゲン、プロテオグリカン及びヒアルロン酸からなる人工軟骨を製造する方法であって、コラーゲン、プロテオグリカン及びヒアルロン酸からなる成形体を105〜110℃及び0 Pa〜大気圧で16〜23時間熱脱水架橋する工程を有することを特徴とする人工軟骨の製造方法。   A method for producing an artificial cartilage comprising collagen, proteoglycan and hyaluronic acid, comprising a step of thermally dehydrating and crosslinking a molded article comprising collagen, proteoglycan and hyaluronic acid at 105 to 110 ° C. and 0 Pa to atmospheric pressure for 16 to 23 hours. A method for producing an artificial cartilage, comprising: 請求項1に記載の人工軟骨の製造方法において、前記成形体は、コラーゲン、プロテオグリカン及びヒアルロン酸からなる組成物を凍結乾燥して得ることを特徴とする方法。   The method for producing artificial cartilage according to claim 1, wherein the molded body is obtained by freeze-drying a composition comprising collagen, proteoglycan and hyaluronic acid. 請求項2に記載の人工軟骨の製造方法において、前記組成物が、15〜95質量%のコラーゲン、4.9〜70質量%のプロテオグリカン及び0.1〜20質量%のヒアルロン酸を含むことを特徴とする方法。   The method for producing an artificial cartilage according to claim 2, wherein the composition contains 15 to 95% by mass of collagen, 4.9 to 70% by mass of proteoglycan and 0.1 to 20% by mass of hyaluronic acid. . 請求項1〜3のいずれかに記載の人工軟骨の製造方法において、架橋後の人工軟骨にガンマ線照射処理することを特徴とする方法。   The method for producing an artificial cartilage according to any one of claims 1 to 3, wherein the crosslinked artificial cartilage is subjected to gamma ray irradiation treatment.
JP2012011821A 2012-01-24 2012-01-24 Method for producing artificial cartilage Active JP5767591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011821A JP5767591B2 (en) 2012-01-24 2012-01-24 Method for producing artificial cartilage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011821A JP5767591B2 (en) 2012-01-24 2012-01-24 Method for producing artificial cartilage

Publications (2)

Publication Number Publication Date
JP2013150648A JP2013150648A (en) 2013-08-08
JP5767591B2 true JP5767591B2 (en) 2015-08-19

Family

ID=49047586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011821A Active JP5767591B2 (en) 2012-01-24 2012-01-24 Method for producing artificial cartilage

Country Status (1)

Country Link
JP (1) JP5767591B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045451A1 (en) * 2017-08-29 2019-03-07 중앙대학교 산학협력단 Cartilage regeneration composition containing hapln1 as active ingredient
US11213572B2 (en) 2017-08-29 2022-01-04 Haplnscience inc. Cartilage regeneration composition containing HAPLN1 as active ingredient

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513683B2 (en) 2013-12-18 2019-12-24 Japan Science And Technology Agency Structure used for animal cells, method of separating animal cells, and method of adjusting elasticity of surface of structure used for animal cells
WO2018123814A1 (en) * 2016-12-28 2018-07-05 株式会社高研 High-strength collagen sponge

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19855890A1 (en) * 1998-12-03 2000-06-08 Nerlich Michael Porous composite matrix, its production and use
CA2412012C (en) * 2001-11-20 2011-08-02 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Resorbable extracellular matrix containing collagen i and collagen ii for reconstruction of cartilage
JP2004202126A (en) * 2002-12-26 2004-07-22 Next:Kk Method for forming artificial bone
EP1935438A4 (en) * 2005-09-16 2011-10-19 St Marianna University School Of Medicine Biomaterial for regenerative medicine
WO2010110067A1 (en) * 2009-03-27 2010-09-30 株式会社マルハニチロ食品 Crosslinked material comprising elastin and collagen, and use thereof
JP5483274B2 (en) * 2009-08-07 2014-05-07 利江 土屋 Cartilage graft material
JP5973873B2 (en) * 2011-11-08 2016-08-23 Hoya株式会社 Artificial cartilage and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045451A1 (en) * 2017-08-29 2019-03-07 중앙대학교 산학협력단 Cartilage regeneration composition containing hapln1 as active ingredient
US11213572B2 (en) 2017-08-29 2022-01-04 Haplnscience inc. Cartilage regeneration composition containing HAPLN1 as active ingredient

Also Published As

Publication number Publication date
JP2013150648A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
US11633518B2 (en) Graft scaffold for cartilage repair and process for making same
Li et al. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering
JP3643381B2 (en) Resorbable extracellular matrix for cartilage tissue reconstruction
CN107073170B (en) Biomaterial scaffold for regenerating oral mucosa
JPH02500723A (en) Novel biomaterials based on mixtures of collagen, chitosan, and glycosaminoglycans, their production methods, and their applications in human medicine.
JP2010273847A (en) High-density porous composite
JP5767591B2 (en) Method for producing artificial cartilage
JP5973873B2 (en) Artificial cartilage and method for producing the same
BR102018003726A2 (en) decellularized bone biomaterial enriched with decellularized bone extracellular matrix hydrogel
Jarrah et al. Alginate hydrogels: A potential tissue engineering intervention for intervertebral disc degeneration
EP3305340B1 (en) Cell-growing scaffold having structure memory property
US9737590B2 (en) Self-assembly of collagen fibers from dermis, fascia and tendon for tissue augmentation and coverage of wounds and burns
WO2013096650A2 (en) Continuous matrix with osteoconductive particles dispersed therein, method of forming thereof, and method of regenerating bone therewith
Sionkowska et al. Preparation and characterization of new materials based on silk fibroin, chitosan and nanohydroxyapatite
JP6018477B2 (en) Artificial bone-cartilage complex and method for producing the same
JP2008110207A (en) Infusion material to living body and cosmetic/medical bulk material
KR101628677B1 (en) Regenerative tissue mimicking complex comprising extracellular matrix protein and minerals and method for preparing the same
CN110755686A (en) Injectable inducible bone repair material and preparation method and application thereof
KR102210056B1 (en) Gellan gum hydrogel composition comprising demineralized bone powder of Ogolyge and use of the same
Tontowi et al. Effect of polyvinyl alcohol (PVA) blending and gamma irradiation on compressive strength of FHAp/FGel composite as candidate of scaffold
KR20180078625A (en) Collagen Membrane and Method for Fabricating the Same
Setiawati et al. Towards a sustainable chitosan-based composite scaffold derived from Scylla serrata crab chitosan for bone tissue engineering
Kesti Bioprinting technologies for auricular cartilage tissue engineering
JP2014200638A (en) Novel fish-derived collagen gel and method for manufacturing the same
PT104904A (en) MIXTURES BASED ON HYDROGES OF GELANA GELANA FOR REGENERATION OF ADIPOSO FABRIC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140718

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150619

R150 Certificate of patent or registration of utility model

Ref document number: 5767591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250