JP5767359B2 - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
JP5767359B2
JP5767359B2 JP2014080282A JP2014080282A JP5767359B2 JP 5767359 B2 JP5767359 B2 JP 5767359B2 JP 2014080282 A JP2014080282 A JP 2014080282A JP 2014080282 A JP2014080282 A JP 2014080282A JP 5767359 B2 JP5767359 B2 JP 5767359B2
Authority
JP
Japan
Prior art keywords
solar cell
dots
wafer
manufacturing
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014080282A
Other languages
Japanese (ja)
Other versions
JP2014168076A (en
Inventor
カズンズ,ピーター,ジョン
カジノヴィク,マイケル,ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunPower Corp
Original Assignee
SunPower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunPower Corp filed Critical SunPower Corp
Publication of JP2014168076A publication Critical patent/JP2014168076A/en
Application granted granted Critical
Publication of JP5767359B2 publication Critical patent/JP5767359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、概括的には太陽電池に関する。より詳細には太陽電池の製造プロセス及び構
造に関するが、それに限られない。
The present invention generally relates to solar cells. More specifically, it relates to the manufacturing process and structure of solar cells, but is not limited thereto.

太陽電池は、太陽照射を電気エネルギーに変換するための公知の装置である。太陽電池
は、半導体プロセス技術を利用して半導体ウェハ上に製造することができる。一般に、太
陽電池は、シリコン基板内にP型及びN型拡散領域を形成することによって製造すること
ができる。太陽電池に太陽照射光が当てられると、電子及び正孔が拡散領域に移動し、そ
れにより、拡散領域間の電圧差が生成する。背面接合型太陽電池(backside junction so
lar cell)では、拡散領域及びそれに結合する金属コンタクトフィンガー(接触部、cont
act fingers)の両方が、太陽電池の背面にある。コンタクトフィンガーによって、外部
電気回路が太陽電池に結合され且つ太陽電池によって給電される。
A solar cell is a known device for converting solar radiation into electrical energy. Solar cells can be manufactured on a semiconductor wafer using semiconductor process technology. In general, solar cells can be manufactured by forming P-type and N-type diffusion regions in a silicon substrate. When solar irradiation light is applied to the solar cell, electrons and holes move to the diffusion region, thereby generating a voltage difference between the diffusion regions. Backside junction so
In the lar cell, the diffusion region and the metal contact finger (contact part, cont)
Both act fingers are on the back of the solar cell. The contact fingers couple the external electrical circuit to the solar cell and are powered by the solar cell.

コストを理由として、金属コンタクトフィンガーの、対応する拡散領域との電気的な接
続形成を含むバックエンドプロセスで用いるためのインクジェット印刷ステップが開発さ
れている。より具体的には、それを通して金属コンタクトフィンガーを拡散領域に電気的
に接続することができるコンタクトホールを画定するコンタクトマスクを、インクジェッ
ト印刷によって形成することができる。しかし、このコンタクトマスクは、典型的には、
太陽電池ウェハの他の特徴的構造との臨界的な整合(厳密な整合、critical alignment)
を必要とする。このような整合は、バックエンドプロセスにおける他のステップのプロセ
スパラメータを制限してしまう。
Due to cost reasons, inkjet printing steps have been developed for use in back-end processes involving the formation of electrical connections between metal contact fingers and corresponding diffusion regions. More specifically, a contact mask that defines contact holes through which metal contact fingers can be electrically connected to the diffusion region can be formed by ink jet printing. However, this contact mask is typically
Critical alignment with other characteristic structures of the solar cell wafer (critical alignment)
Need. Such matching limits the process parameters of other steps in the backend process.

一態様では、太陽電池の製造で使用するためのコンタクトマスクが、インクジェット印
刷によって形成されたドットを含んでいてよい。このドットは、誘電層(例えばポリイミ
ド)間にある開口内に形成することができる。重ねられたドットの交差部によって(ドッ
トの重ね合わせによって)、コンタクト領域を画定するギャップを形成することができる
。ギャップの間隔は、ドットを供給するノズルの整列によって決定することができる。ド
ットをコンタクトマスクとして使用して、下層の誘電層をエッチングし、その下層の誘電
層を貫通するコンタクト領域を形成することができる。金属コンタクトフィンガーをウェ
ハ上に形成することができ、これにより、対応する拡散領域へのコンタクト領域を通して
の電気的な接続が形成される。
In one aspect, a contact mask for use in the manufacture of solar cells may include dots formed by ink jet printing. The dots can be formed in openings between dielectric layers (eg polyimide). A gap defining the contact area can be formed by the intersection of the superimposed dots (by overlapping the dots). The gap spacing can be determined by the alignment of the nozzles supplying the dots. Using the dots as a contact mask, the underlying dielectric layer can be etched to form a contact region that penetrates the underlying dielectric layer. Metal contact fingers can be formed on the wafer, thereby forming an electrical connection through the contact region to the corresponding diffusion region.

本発明の上述の及び他の特徴は、添付の図面及び特許請求の範囲を含む本開示内容全体
を読むことによって当業者に明らかとなろう。
These and other features of the present invention will become apparent to those of ordinary skill in the art upon reading the entirety of this disclosure, including the accompanying drawings and claims.

本発明の態様で使用することができる例示的なインクジェットプリンタを概略的に示す。1 schematically illustrates an exemplary inkjet printer that can be used in aspects of the present invention. インクジェット印刷によってウェハ上にコンタクトマスクを形成する一手段を概略的に示す。1 schematically illustrates one means of forming a contact mask on a wafer by ink jet printing. 図3A〜3Dからなる。本発明の態様における太陽電池製造プロセスを概略的に示す断面図である。Consists of FIGS. It is sectional drawing which shows schematically the solar cell manufacturing process in the aspect of this invention. 本発明の態様による、ギャップと隣接するドットとの間の位置関係を示す上面図である。FIG. 6 is a top view showing a positional relationship between a gap and an adjacent dot according to an aspect of the present invention. 本発明の態様による、複数の印刷パスによって形成されたコンタクトマスクを示す概略的な上面図である。FIG. 4 is a schematic top view illustrating a contact mask formed by multiple printing passes, in accordance with aspects of the present invention.

異なる図面で同じ参照表示を使用している場合、それは同一又は同様の構成要素を示す
Where the same reference designation is used in different drawings, it indicates the same or similar component.

本開示は、本発明の態様がよく理解されるように、多数の特定の詳細、例えば装置、構
造及び方法の例を示している。しかし、1つ以上の特定の詳細がなくても本発明が実施可
能であるということは当業者により認識されるであろう。他の例では、本発明の局面が不
明確になることを回避するために、周知の詳細は図示しないか又は説明していない。
This disclosure sets forth numerous specific details, such as examples of apparatus, structures and methods, so that aspects of the invention may be better understood. However, it will be recognized by one skilled in the art that the present invention may be practiced without one or more specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention.

図1に、本発明の態様で使用することができる例示的なインクジェットプリンタを概略
的に示す。図1の例では、インクジェットプリンタは、プリントヘッド110及び複数の
ノズル112を含む。ノズル112は、行と列の形態で配置され、アレイを形成していて
よい。半導体プロセスにおけるインクジェットプリンタの使用は、一般によく知られてい
る。簡単に説明すると、材料をノズル112を通してウェハ114へと流出させる。ウェ
ハ114上でプリントヘッド110を1回以上通過(パス)させることによって、ウェハ
114上に印刷されたパターンが得られる。以下の態様では、このパターンは、太陽電池
において金属コンタクト領域を形成するためのマスクとすることができる。
FIG. 1 schematically illustrates an exemplary inkjet printer that can be used in aspects of the present invention. In the example of FIG. 1, the ink jet printer includes a print head 110 and a plurality of nozzles 112. The nozzles 112 may be arranged in rows and columns to form an array. The use of ink jet printers in semiconductor processes is generally well known. Briefly, material flows out through the nozzle 112 to the wafer 114. By passing the print head 110 over the wafer 114 one or more times, a pattern printed on the wafer 114 is obtained. In the following aspects, this pattern can be a mask for forming a metal contact region in a solar cell.

図2に、インクジェット印刷によってウェハ114上にコンタクトマスク200を形成
する1つの手法を概略的に示す。図2の例では、コンタクトマスク200は、アパーチャ
210を画定する複数のドット201を有する。例示を簡単にするために、図2では、ド
ット201の全てには参照符号を付与していない。アパーチャ210は、それを貫通して
金属コンタクトが形成される領域を画定するものであり、ドット201がないことによっ
て形成される。つまり、アパーチャ210は、アパーチャ210のエリアにドットが設け
られないようにドット201を印刷することによって形成される。比較的高いドットパー
インチ(DPI)を有し、ドット直径が約100μm、連続するドット201の中心間の
距離202が約31.75μmとなるインクジェットプリンタを使用することによって、
アパーチャ210は、約30μmの直径を有するコンタクト領域を画定することができる
。このマスク200は、大抵の太陽電池の応用で満足いくものであるが、アパーチャ21
0の、ウェハ114の他の特徴的構造に対する整列を制限するウィンドウを加工すること
は比較的難しい。このことは、アパーチャ210がより小さく形成されている場合に特に
当てはまる。
FIG. 2 schematically shows one method of forming the contact mask 200 on the wafer 114 by ink jet printing. In the example of FIG. 2, the contact mask 200 has a plurality of dots 201 that define an aperture 210. In order to simplify the illustration, in FIG. 2, all the dots 201 are not given reference numerals. The aperture 210 defines a region through which the metal contact is formed, and is formed by the absence of the dot 201. That is, the aperture 210 is formed by printing the dots 201 so that no dots are provided in the area of the aperture 210. By using an inkjet printer having a relatively high dot per inch (DPI), a dot diameter of about 100 μm, and a distance 202 between the centers of successive dots 201 of about 31.75 μm,
Aperture 210 can define a contact region having a diameter of about 30 μm. This mask 200 is satisfactory for most solar cell applications, but with an aperture 21.
It is relatively difficult to fabricate a window that limits the alignment of zero to other feature structures of the wafer 114. This is especially true when the aperture 210 is made smaller.

図3は図3A〜3Dからなり、本発明の態様による太陽電池の製造プロセスを概略的に
図示する断面図を示す。図3のプロセスは、太陽電池金属コンタクトフィンガーを形成す
るためのコンタクトマスクの形成に関する。説明を簡単にするために、本発明を理解する
上で必要のないプロセスの詳細は省略した。
FIG. 3 comprises FIGS. 3A-3D and shows a cross-sectional view schematically illustrating a solar cell manufacturing process according to an embodiment of the present invention. The process of FIG. 3 relates to the formation of a contact mask for forming solar cell metal contact fingers. For the sake of simplicity, details of processes that are not necessary to understand the present invention have been omitted.

図3Aを参照すると、太陽電池は、ウェハ301並びに複数の拡散領域303及び30
2の形態の基板を有している。拡散領域303及び302は、ウェハ301又はその上に
重ねられた層に形成することができる。図3の例では、拡散領域303はP型拡散領域を
含み、拡散領域302はN型拡散領域を含む。本発明の態様による任意の所与の太陽電池
ウェハには、いくつかの拡散領域303及び302がある。図3Aの太陽電池は、拡散領
域303及び302が、前面304とは反対の側の背面にある背面接合型太陽電池である
。前面304は、通常の運転時には太陽の方を向く。
Referring to FIG. 3A, a solar cell includes a wafer 301 and a plurality of diffusion regions 303 and 30.
There are two types of substrates. The diffusion regions 303 and 302 can be formed in the wafer 301 or a layer overlaid thereon. In the example of FIG. 3, the diffusion region 303 includes a P-type diffusion region, and the diffusion region 302 includes an N-type diffusion region. There are several diffusion regions 303 and 302 in any given solar cell wafer according to aspects of the present invention. The solar cell of FIG. 3A is a back junction solar cell in which the diffusion regions 303 and 302 are on the back side opposite to the front side 304. The front surface 304 faces the sun during normal operation.

拡散領域の上には誘電層304が形成されている。一態様では、誘電層304は、大気
圧化学蒸着(APCVD)によって約1000〜6000Åの厚みに形成された二酸化シ
リコンを含む。層304は、拡散領域と、その上に重ねられた導電層、例えば続いて形成
される金属コンタクトフィンガーとの間の電気的絶縁をもたらす。
A dielectric layer 304 is formed on the diffusion region. In one aspect, the dielectric layer 304 includes silicon dioxide formed to a thickness of about 1000 to 6000 mm by atmospheric pressure chemical vapor deposition (APCVD). Layer 304 provides electrical isolation between the diffusion region and the overlying conductive layer, eg, subsequently formed metal contact fingers.

誘電層304上には誘電層305が形成されており、これにより、有利には、1つの極
性の金属コンタクトフィンガーが別の極性の拡散領域に対して電気的に短絡することが防
止される。図3の例では、層305は、N型拡散領域302(つまりN型金属コンタクト
フィンガー)に電気的に接続されている金属コンタクトフィンガーがP型拡散領域303
に対して電気的に短絡することを防止する。一態様では、誘電層305は、5ミクロンの
厚みにスクリーン印刷されたポリイミドを含む。誘電層305は、他の堆積技術を使用し
て形成することもできる。
A dielectric layer 305 is formed on the dielectric layer 304, which advantageously prevents one polarity metal contact finger from being electrically shorted to another polarity diffusion region. In the example of FIG. 3, the layer 305 has a metal contact finger electrically connected to the N-type diffusion region 302 (that is, the N-type metal contact finger).
Against electrical short circuit. In one aspect, dielectric layer 305 comprises polyimide screen printed to a thickness of 5 microns. Dielectric layer 305 can also be formed using other deposition techniques.

しかし、誘電層305は、好ましくは、費用を抑えるためにスクリーン印刷されている
。費用の低減は、太陽電池用途では特に重要である。一態様では、層305間の開口は約
200μmである。
However, the dielectric layer 305 is preferably screen printed to reduce cost. Cost reduction is particularly important in solar cell applications. In one aspect, the opening between layers 305 is about 200 μm.

図3Bでは、複数のドット306が、ウェハ301上にインクジェット印刷されている
。認識されるように、ドット306という名称は、ノズルを通る吐出材料によって形成さ
れていることを示すために付けられている。つまり、ドット306は必ずしも円形でなく
てよい。ドット306は、ギャップ321がドット306間に形成されるように、ウェハ
301上にインクジェット印刷することができる。以下の説明でより明確となるが、ギャ
ップ321はコンタクト領域を画定し、このコンタクト領域を通して、金属コンタクトフ
ィンガーを、対応する拡散領域に電気的に接続することができる。ドット306は、ウェ
ハ301上でのプリントヘッドの1回のパスで形成することができ、それにより、層30
5間の開口に形成されたギャップ321が得られる。図4のコンタクトマスク400を形
成するドット306は、ホットメルト樹脂を含んでいてよい。
In FIG. 3B, a plurality of dots 306 are inkjet printed on the wafer 301. As will be appreciated, the name dot 306 is given to indicate that it is formed by the discharge material passing through the nozzle. That is, the dots 306 are not necessarily circular. The dots 306 can be inkjet printed on the wafer 301 such that gaps 321 are formed between the dots 306. As will become clearer in the following description, the gap 321 defines a contact region through which the metal contact fingers can be electrically connected to the corresponding diffusion region. The dots 306 can be formed in a single pass of the print head on the wafer 301, thereby causing the layer 30.
A gap 321 formed in the opening between the five is obtained. The dots 306 forming the contact mask 400 of FIG. 4 may contain hot melt resin.

図4に、本発明の態様による、ギャップ321と隣接するドット306との位置関係を
図示する上面図を示す。図4の例では、コンタクトマスク400は、ギャップ321が形
成されるようにインクジェット印刷された複数の重ねられたドット306を含む。ギャッ
プ321は、ドット306が印刷されていないエリアである。図4に示すように、各ギャ
ップ321は、複数の(例えば4つの)重ねられたドット306の交差部によって形成さ
れていてよい。有利には、ギャップ321のサイズ及び位置は、ドット306を供給する
ノズルの物理的な整列によって規定し、決定することができる。例えば、ドット306の
中心間の寸法401は、インクジェットノズルのピッチによって規定することができる。
したがって、ギャップ間の間隔も、ドットを供給するノズルの物理的な整列によって決定
される。
FIG. 4 shows a top view illustrating the positional relationship between gap 321 and adjacent dots 306 in accordance with aspects of the present invention. In the example of FIG. 4, the contact mask 400 includes a plurality of superimposed dots 306 that are inkjet printed so that a gap 321 is formed. The gap 321 is an area where the dots 306 are not printed. As shown in FIG. 4, each gap 321 may be formed by an intersection of a plurality of (for example, four) overlapping dots 306. Advantageously, the size and position of the gap 321 can be defined and determined by the physical alignment of the nozzle supplying the dots 306. For example, the dimension 401 between the centers of the dots 306 can be defined by the pitch of the inkjet nozzles.
Thus, the gap spacing is also determined by the physical alignment of the nozzles supplying the dots.

コンタクトマスク400は、これまで実現されていなかったいくつかの利点を提供する
。ドット306間の間隔の精度が、ノズルの物理的な整列によって決定されるので、比較
的低いDPIのインクジェットプリンタを、複数のギャップ321を画定するために使用
することができる。例えば、+/−5μmで約100μmのドット直径である場合、ドッ
トの中心間の距離401は75μmの長さを有し、各ギャップ321は約6μmの直径を
有し得る。好ましくは、各ギャップのサイズは、ギャップが層305中のピンホールと整
列する範囲、ひいては確率ができるだけ小さくなるように形成される。同様の理由で、ギ
ャップ321は、好ましくは、層305間の開口内にのみ形成されている。
Contact mask 400 provides several advantages not previously realized. Since the accuracy of the spacing between dots 306 is determined by the physical alignment of the nozzles, a relatively low DPI inkjet printer can be used to define the plurality of gaps 321. For example, if the dot diameter is +/− 5 μm and about 100 μm, the distance 401 between the centers of the dots may have a length of 75 μm and each gap 321 may have a diameter of about 6 μm. Preferably, the size of each gap is such that the gap is aligned with the pinholes in layer 305 and thus the probability is as small as possible. For similar reasons, the gap 321 is preferably formed only in the opening between the layers 305.

コンタクトマスク400は、臨界的な整合なしでウェハ301上に印刷することができ
るという意味で、「整合不要(alignment free)」でもある。その理由は、ギャップ32
1が層305間の特定の位置で形成される必要がないからであり、つまり、ギャップ32
1が層305間に形成されてさえいればよい。また、コンタクトマスク400を印刷する
ために、インクジェットプリンタは、図2のコンタクトマスク200のように複雑なパタ
ーンを作る必要はなく、ウェハ301上を単に通過させるだけでよい。コンタクトマスク
400は、比較的真っ直ぐな経路に沿って1回又は複数回のパスで印刷することができる
。一態様では、コンタクトマスク400は、一方向で1回のパスでインクジェット印刷さ
れる。
Contact mask 400 is also “alignment free” in the sense that it can be printed on wafer 301 without critical alignment. The reason is the gap 32
1 does not have to be formed at a particular location between layers 305, i.e. gap 32
It is only necessary that 1 is formed between the layers 305. Further, in order to print the contact mask 400, the ink jet printer does not need to create a complicated pattern like the contact mask 200 of FIG. The contact mask 400 can be printed in one or more passes along a relatively straight path. In one aspect, the contact mask 400 is inkjet printed in one pass in one direction.

図3Cへと続き、層304の部分を除去してその層304を貫通するコンタクト領域3
11を形成するために、コンタクトマスク400が利用される。一態様では、コンタクト
領域311は、エッチングマスクとしてコンタクトマスク400を使用し且つ層305を
あまり顕著にエッチングをしないエッチャントによって層304をエッチングすることに
よって形成される。例えば、二酸化シリコンを含む層304及びポリイミドを含む層30
5の場合は、コンタクト領域311は、エッチャントとしてフッ化水素酸を使用する緩衝
酸化物エッチング(BOE)プロセスで、層304の露出した部分(つまりギャップ32
1の直下の部分)を湿式エッチングすることによって形成することができる。層305は
、そのようなエッチングプロセスにおいて、エッチ停止層として働く。図3Cに、BOE
プロセス及びそれに続くコンタクトマスク400の除去後の図3Bのサンプルを示す。ホ
ットメルト樹脂を含むコンタクトマスク400は、水酸化カリウム(KOH)を使用する
マスクストリッププロセスで除去することができる。
Continuing to FIG. 3C, a contact region 3 is removed through a portion of the layer 304 that is removed
In order to form 11, a contact mask 400 is used. In one aspect, contact region 311 is formed by etching layer 304 with an etchant that uses contact mask 400 as an etch mask and does not significantly etch layer 305. For example, layer 304 comprising silicon dioxide and layer 30 comprising polyimide.
5, the contact region 311 is exposed to an exposed portion of the layer 304 (ie, gap 32) by a buffered oxide etch (BOE) process using hydrofluoric acid as an etchant.
1 can be formed by wet etching. Layer 305 serves as an etch stop layer in such an etching process. Figure 3C shows the BOE
3B shows the sample of FIG. 3B after the process and subsequent removal of the contact mask 400. FIG. The contact mask 400 containing hot melt resin can be removed by a mask strip process using potassium hydroxide (KOH).

図3Cに示すように、コンタクトマスク400によって、層305間の開口において複
数のコンタクト領域311が得られた。コンタクト領域311は、コンタクト領域311
を画定するのに使用される対応ギャップ321のサイズが小さいため、比較的小さい。よ
って、対応する拡散領域との電気的な接続を金属コンタクトフィンガーが貫通して形成す
ることができる複数の比較的小さいコンタクト領域311が得られる。コンタクト領域3
11のサイズが比較的小さい(例えば、同じサイズのギャップ321に対し6μm)こと
によって、比較的小さな金属コンタクトフィンガーの利用が可能となり、そしてそれによ
り、有利には、より高い効率が得られる。
As shown in FIG. 3C, the contact mask 400 provided a plurality of contact regions 311 in the openings between the layers 305. The contact region 311 is a contact region 311
Since the size of the corresponding gap 321 used to define the is small, it is relatively small. Thus, a plurality of relatively small contact regions 311 can be obtained in which the metal contact fingers can form electrical connections with the corresponding diffusion regions. Contact area 3
The relatively small size of 11 (eg, 6 μm for the same size gap 321) allows the use of relatively small metal contact fingers, and thereby advantageously provides higher efficiency.

図3Dでは、金属コンタクトフィンガー312及び313が、コンタクト領域311を
貫通して形成されている。一態様では、金属コンタクトフィンガー312及び313は材
料の積層体を含む。その材料は、1000オングストロームの厚みのアルミニウム層を含
み、そのアルミニウム層は500オングストロームのチタン−タングステン層上に形成さ
れていて、そのチタン−タングステン層は300ミクロンの厚みの銅層上に形成され、そ
の銅層は6ミクロンの厚みのスズ層上に形成されている。本発明の利点を損なうことがな
ければ、別の金属及び金属構造も使用することができる。本発明の態様による任意の所与
の太陽電池ウェハでは、いくつかの金属コンタクトフィンガー312及び313が設けら
れている。図3Dの例では、金属コンタクトフィンガー312は、コンタクト領域311
を通ってP型拡散領域303に電気的に接続されており、P型の金属コンタクトフィンガ
ーである。同様に、金属コンタクトフィンガー313は、コンタクト領域311を通って
N型拡散領域302に電気的に接続されており、N型金属コンタクトフィンガーである。
外部電気回路を金属コンタクトフィンガーに接続させ、これにより、太陽電池から電力を
受け取ることができる。
In FIG. 3D, metal contact fingers 312 and 313 are formed through the contact region 311. In one aspect, the metal contact fingers 312 and 313 include a stack of materials. The material includes a 1000 Å thick aluminum layer, the aluminum layer being formed on a 500 Å titanium-tungsten layer, the titanium-tungsten layer being formed on a 300 micron thick copper layer; The copper layer is formed on a tin layer having a thickness of 6 microns. Other metals and metal structures can be used without compromising the advantages of the present invention. In any given solar cell wafer according to aspects of the present invention, several metal contact fingers 312 and 313 are provided. In the example of FIG. 3D, the metal contact fingers 312 are formed in contact areas 311.
It is electrically connected to the P-type diffusion region 303 through the P-type metal contact finger. Similarly, the metal contact finger 313 is electrically connected to the N-type diffusion region 302 through the contact region 311 and is an N-type metal contact finger.
An external electrical circuit can be connected to the metal contact fingers, thereby receiving power from the solar cell.

図4に示すドット306は、ウェハ上でのプリントヘッドの1回のパスで印刷すること
ができる。ウェハ上での2つ以上のパスを実施し、例えば特定のギャップ321を覆うこ
ともできる。図5の例では、プリントヘッドの第1のパスが、図4に示すようにコンタク
トマスク400を形成し、プリントヘッドの第2のパスが、ギャップ321が(ドット3
06Aの下で)覆われるようにドット306Aを形成する。
The dots 306 shown in FIG. 4 can be printed in a single pass of the printhead on the wafer. Two or more passes over the wafer may be performed, for example covering a particular gap 321. In the example of FIG. 5, the first pass of the print head forms a contact mask 400 as shown in FIG. 4, and the second pass of the print head has a gap 321 (dot 3
Dots 306A are formed to be covered (under 06A).

新規の太陽電池製造のための小さなコンタクトのアレイを開示する。特定の本発明の態
様を示したが、これらの態様が例示を目的としており、限定のためのものでないことを理
解されたい。本開示を読むことで、多数の追加的な態様が当業者に明らかとなろう。
An array of small contacts for novel solar cell manufacturing is disclosed. While particular embodiments of the present invention have been shown, it is to be understood that these embodiments are for purposes of illustration and are not intended to be limiting. Many additional aspects will become apparent to those of ordinary skill in the art upon reading this disclosure.

Claims (9)

太陽電池へと加工されるウェハ上に第1の誘電層を形成し、
前記第1の誘電層上に複数の第2の誘電層を形成し、
前記複数の第2の誘電層間の少なくとも複数の開口に、複数のドットをインクジェット印刷し、前記複数のドットの交差部によって形成された複数のギャップをプリントヘッドによる1方向の1回のパスで形成し、該ギャップのサイズが、少なくとも(i)前記複数のドットを供給する複数のインクジェットプリンタノズルの整列と、(ii)前記複数のドットのサイズと、(iii)いずれのノズルを使用したか、によって決定され、
前記複数のドットをマスクとして使用して、前記第1の誘電層を貫通する複数のコンタクト領域を形成する、太陽電池の製造方法。
Forming a first dielectric layer on a wafer to be processed into a solar cell;
Forming a plurality of second dielectric layers on the first dielectric layer;
A plurality of dots are inkjet printed in at least a plurality of openings between the plurality of second dielectric layers, and a plurality of gaps formed by intersections of the plurality of dots are formed in one pass in one direction by a print head. The gap size is at least (i) an alignment of a plurality of inkjet printer nozzles that supply the plurality of dots, (ii) a size of the plurality of dots, and (iii) which nozzle is used, It is determined by,
A method for manufacturing a solar cell , wherein a plurality of contact regions penetrating the first dielectric layer are formed using the plurality of dots as a mask .
前記複数の第2の誘電層が、前記ウェハ上にスクリーン印刷されたポリイミドを含む、請求項1に記載の太陽電池の製造方法。   The method of manufacturing a solar cell according to claim 1, wherein the plurality of second dielectric layers include polyimide screen-printed on the wafer. 前記ウェハから前記複数のドットを除去し、
前記第1の誘電層の上に複数の金属コンタクトフィンガーを形成し、前記複数のコンタクト領域を通して、前記第1の誘電層の下に設けられている複数の拡散領域との複数の電気的な接続を形成すること、をさらに含む、請求項1に記載の太陽電池の製造方法。
Removing the plurality of dots from the wafer;
A plurality of metal contact fingers are formed on the first dielectric layer, and a plurality of electrical connections are made with the plurality of diffusion regions provided below the first dielectric layer through the plurality of contact regions. The method for manufacturing a solar cell according to claim 1, further comprising: forming.
前記複数の金属コンタクトフィンガーの少なくともいくつかが、前記複数のコンタクト領域の少なくともいくつかを通って、対応する複数のN型拡散領域との複数の電気的な接続を生成するために形成された複数のN型金属コンタクトフィンガーと、前記複数のコンタクト領域の少なくともいくつかを通って、対応する複数のP型拡散領域との複数の電気的な接続を生成するために形成された複数のP型金属コンタクトフィンガーとを含み、
前記複数のP型拡散領域及び前記複数のN型拡散領域が、前記ウェハの、通常の運転時に太陽の方を向くウェハの前面とは反対側の背面に形成されている、請求項3に記載の太陽電池の製造方法。
A plurality of metal contact fingers formed to create a plurality of electrical connections with a plurality of corresponding N-type diffusion regions through at least some of the plurality of contact regions; A plurality of P-type metals formed to produce a plurality of electrical connections between a plurality of N-type metal contact fingers and a corresponding plurality of P-type diffusion regions through at least some of the plurality of contact regions Including contact fingers,
The plurality of P-type diffusion regions and the plurality of N-type diffusion regions are formed on a back surface of the wafer opposite to the front surface of the wafer facing the sun during normal operation. Solar cell manufacturing method.
前記複数の第2の誘電層上に、前記複数のN型金属コンタクトフィンガーが形成され、前記複数のP型金属コンタクトフィンガーが形成されていない、請求項4に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 4, wherein the plurality of N-type metal contact fingers are formed on the plurality of second dielectric layers, and the plurality of P-type metal contact fingers are not formed. 少なくとも別のパスで、前記ウェハ上でプリントヘッドを通過させ、前記複数のギャップのうち1つのギャップを覆う別のドットを印刷することをさらに含む、請求項1に記載の太陽電池の製造方法。   2. The method of manufacturing a solar cell according to claim 1, further comprising printing another dot that passes a print head over the wafer and covers one of the plurality of gaps in at least another pass. 互いに隣接する複数の拡散領域を有する太陽電池ウェハ上に第1の誘電層を形成し、
前記第1の誘電層上であって、一対の隣接する前記複数の拡散領域の境界の上に複数の第2の誘電層を形成し、
前記複数の第2の誘電層のうち少なくとも2つの誘電層の間の開口に、複数のドットを印刷し、前記複数のドットが、複数のギャップを形成するコンタクトマスクを形成し、前記複数のギャップのそれぞれが、プリントヘッドによる1方向の1回のパスで前記複数のドットにおいて重ねられた複数のドットの交差部によって画定され、
前記第1の誘電層の、前記複数のギャップを通って露出している複数の部分をエッチングし、複数のコンタクト領域を形成して、前記太陽電池の前記複数の拡散領域を露出させることを含む、太陽電池の製造方法。
Forming a first dielectric layer on a solar cell wafer having a plurality of diffusion regions adjacent to each other;
Forming a plurality of second dielectric layers on the first dielectric layer on the boundary between the pair of adjacent diffusion regions;
A plurality of dots are printed in openings between at least two dielectric layers of the plurality of second dielectric layers, and the plurality of dots forms a contact mask that forms a plurality of gaps, and the plurality of gaps Each of which is defined by an intersection of a plurality of dots superimposed on the plurality of dots in a single pass in one direction by the printhead;
Etching a plurality of portions of the first dielectric layer exposed through the plurality of gaps to form a plurality of contact regions to expose the plurality of diffusion regions of the solar cell; The manufacturing method of a solar cell.
前記複数のドットを前記ウェハから除去し、
前記複数のコンタクト領域内に複数の金属コンタクトフィンガーを形成し、複数の拡散領域のうち対応するものに電気的に接続することをさらに含む、請求項7に記載の太陽電池の製造方法。
Removing the plurality of dots from the wafer;
The method for manufacturing a solar cell according to claim 7, further comprising forming a plurality of metal contact fingers in the plurality of contact regions and electrically connecting to a corresponding one of the plurality of diffusion regions.
前記第1の誘電層が二酸化シリコンを含む、請求項7に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 7, wherein the first dielectric layer includes silicon dioxide.
JP2014080282A 2007-05-29 2014-04-09 Manufacturing method of solar cell Expired - Fee Related JP5767359B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/807,567 2007-05-29
US11/807,567 US7838062B2 (en) 2007-05-29 2007-05-29 Array of small contacts for solar cell fabrication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010510284A Division JP5791896B2 (en) 2007-05-29 2008-05-12 Array of small contacts for solar cell manufacturing

Publications (2)

Publication Number Publication Date
JP2014168076A JP2014168076A (en) 2014-09-11
JP5767359B2 true JP5767359B2 (en) 2015-08-19

Family

ID=40088567

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010510284A Expired - Fee Related JP5791896B2 (en) 2007-05-29 2008-05-12 Array of small contacts for solar cell manufacturing
JP2014080282A Expired - Fee Related JP5767359B2 (en) 2007-05-29 2014-04-09 Manufacturing method of solar cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010510284A Expired - Fee Related JP5791896B2 (en) 2007-05-29 2008-05-12 Array of small contacts for solar cell manufacturing

Country Status (7)

Country Link
US (2) US7838062B2 (en)
EP (1) EP2153466B1 (en)
JP (2) JP5791896B2 (en)
KR (1) KR101384498B1 (en)
CN (1) CN101681902B (en)
AU (1) AU2008260627B2 (en)
WO (1) WO2008150344A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103293A1 (en) 2007-02-16 2008-08-28 Nanogram Corporation Solar cell structures, photovoltaic modules and corresponding processes
US7838062B2 (en) * 2007-05-29 2010-11-23 Sunpower Corporation Array of small contacts for solar cell fabrication
US20100294349A1 (en) * 2009-05-20 2010-11-25 Uma Srinivasan Back contact solar cells with effective and efficient designs and corresponding patterning processes
US8211731B2 (en) 2010-06-07 2012-07-03 Sunpower Corporation Ablation of film stacks in solar cell fabrication processes
US8263899B2 (en) 2010-07-01 2012-09-11 Sunpower Corporation High throughput solar cell ablation system
US8912083B2 (en) 2011-01-31 2014-12-16 Nanogram Corporation Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes
US8586403B2 (en) * 2011-02-15 2013-11-19 Sunpower Corporation Process and structures for fabrication of solar cells with laser ablation steps to form contact holes
US8692111B2 (en) 2011-08-23 2014-04-08 Sunpower Corporation High throughput laser ablation processes and structures for forming contact holes in solar cells
US8822262B2 (en) 2011-12-22 2014-09-02 Sunpower Corporation Fabricating solar cells with silicon nanoparticles
US8513045B1 (en) 2012-01-31 2013-08-20 Sunpower Corporation Laser system with multiple laser pulses for fabrication of solar cells
FR2995451B1 (en) * 2012-09-11 2014-10-24 Commissariat Energie Atomique METHOD FOR METALLIZING A PHOTOVOLTAIC CELL AND PHOTOVOLTAIC CELL THUS OBTAINED
US9577134B2 (en) 2013-12-09 2017-02-21 Sunpower Corporation Solar cell emitter region fabrication using self-aligned implant and cap
US9337369B2 (en) * 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
US9911874B2 (en) * 2014-05-30 2018-03-06 Sunpower Corporation Alignment free solar cell metallization
US9559219B1 (en) * 2014-06-23 2017-01-31 Sandia Corporation Fast process flow, on-wafer interconnection and singulation for MEPV
US10840394B2 (en) * 2015-09-25 2020-11-17 Total Marketing Services Conductive strip based mask for metallization of semiconductor devices
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
JP6875252B2 (en) 2017-10-26 2021-05-19 信越化学工業株式会社 Method of drying polyimide paste and method of manufacturing high photoelectric conversion efficiency solar cell
DE102021106232A1 (en) * 2021-03-15 2022-09-15 Airbus Operations Gmbh Painting method with printed mask and printing device

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234352A (en) * 1978-07-26 1980-11-18 Electric Power Research Institute, Inc. Thermophotovoltaic converter and cell for use therein
DE3066247D1 (en) * 1979-05-08 1984-03-01 Saint Gobain Vitrage Method of manufacturing solar-cell panels and panels obtained by this method
US4429657A (en) * 1979-12-13 1984-02-07 Additive Technology Corporation Method, materials and apparatus for manufacturing printed circuits
US4387116A (en) * 1981-12-28 1983-06-07 Exxon Research And Engineering Co. Conditioner for adherence of nickel to a tin oxide surface
US4478879A (en) * 1983-02-10 1984-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Screen printed interdigitated back contact solar cell
US4838952A (en) * 1988-04-29 1989-06-13 Spectrolab, Inc. Controlled reflectance solar cell
US4927770A (en) * 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5164019A (en) * 1991-07-31 1992-11-17 Sunpower Corporation Monolithic series-connected solar cells having improved cell isolation and method of making same
US5185042A (en) * 1991-08-01 1993-02-09 Trw Inc. Generic solar cell array using a printed circuit substrate
US5360990A (en) * 1993-03-29 1994-11-01 Sunpower Corporation P/N junction device having porous emitter
US5369291A (en) * 1993-03-29 1994-11-29 Sunpower Corporation Voltage controlled thyristor
US5468652A (en) * 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
EP0645444A3 (en) * 1993-09-27 1995-05-24 Texaco Development Corp Lubricants with linear alkaryl overbased detergents.
EP0840381A3 (en) * 1996-10-31 1999-08-04 Sony Corporation Thin-film semiconductor device and its manufacturing method and apparatus and thin-film semiconductor solar cell module and its manufacturing method
JP3639703B2 (en) * 1997-11-14 2005-04-20 キヤノン株式会社 Inkjet recording apparatus and inkjet recording method
US5972732A (en) 1997-12-19 1999-10-26 Sandia Corporation Method of monolithic module assembly
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US6423568B1 (en) * 1999-12-30 2002-07-23 Sunpower Corporation Method of fabricating a silicon solar cell
US6387726B1 (en) * 1999-12-30 2002-05-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6337283B1 (en) * 1999-12-30 2002-01-08 Sunpower Corporation Method of fabricating a silicon solar cell
US6274402B1 (en) * 1999-12-30 2001-08-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6313395B1 (en) * 2000-04-24 2001-11-06 Sunpower Corporation Interconnect structure for solar cells and method of making same
JP3968554B2 (en) 2000-05-01 2007-08-29 セイコーエプソン株式会社 Bump forming method and semiconductor device manufacturing method
US6333457B1 (en) * 2000-08-29 2001-12-25 Sunpower Corporation Edge passivated silicon solar/photo cell and method of manufacture
GB2367788A (en) 2000-10-16 2002-04-17 Seiko Epson Corp Etching using an ink jet print head
JP4137415B2 (en) * 2000-11-21 2008-08-20 シャープ株式会社 How to replace solar cells
DE10139441C1 (en) * 2001-08-10 2002-10-10 Astrium Gmbh Method for repairing solar panels comprises placing protective sheet over intact arrays, replacement array then being glued over defective array and welded connections made to intact arrays
JP2003298078A (en) * 2002-03-29 2003-10-17 Ebara Corp Photoelectromotive element
US6872321B2 (en) * 2002-09-25 2005-03-29 Lsi Logic Corporation Direct positive image photo-resist transfer of substrate design
JP2004134499A (en) * 2002-10-09 2004-04-30 Sharp Corp Process and system for producing solar cell
JP2004209887A (en) * 2003-01-07 2004-07-29 Seiko Epson Corp Liquid discharge device, liquid discharge method, program and computer system
JPWO2004070823A1 (en) * 2003-02-05 2006-06-01 株式会社半導体エネルギー研究所 Method for manufacturing display device
US7388147B2 (en) * 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
JP4344270B2 (en) * 2003-05-30 2009-10-14 セイコーエプソン株式会社 Manufacturing method of liquid crystal display device
US6998288B1 (en) * 2003-10-03 2006-02-14 Sunpower Corporation Use of doped silicon dioxide in the fabrication of solar cells
JP2006073617A (en) * 2004-08-31 2006-03-16 Sharp Corp Solar cell and manufacturing method thereof
JP4605361B2 (en) * 2004-10-29 2011-01-05 独立行政法人科学技術振興機構 Foil and manufacturing method thereof
JP2006156542A (en) * 2004-11-26 2006-06-15 Seiko Epson Corp Method for forming resist pattern using ink jet system, method for manufacturing surface acoustic wave element piece, and surface acoustic wave device
JP5000119B2 (en) * 2005-02-17 2012-08-15 Jx日鉱日石エネルギー株式会社 Dye-sensitized solar cell element
US7554031B2 (en) * 2005-03-03 2009-06-30 Sunpower Corporation Preventing harmful polarization of solar cells
JP4656996B2 (en) * 2005-04-21 2011-03-23 シャープ株式会社 Solar cell
JP2007125855A (en) * 2005-11-07 2007-05-24 Sony Corp Image forming method
US20070295399A1 (en) * 2005-12-16 2007-12-27 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
US7838062B2 (en) * 2007-05-29 2010-11-23 Sunpower Corporation Array of small contacts for solar cell fabrication
US8274402B1 (en) 2008-01-24 2012-09-25 LDARtools, Inc. Data collection process for optical leak detection

Also Published As

Publication number Publication date
EP2153466A4 (en) 2014-04-09
AU2008260627B2 (en) 2013-08-15
US20110061731A1 (en) 2011-03-17
CN101681902B (en) 2012-07-04
JP2010528487A (en) 2010-08-19
KR20100017457A (en) 2010-02-16
EP2153466B1 (en) 2015-10-21
EP2153466A1 (en) 2010-02-17
WO2008150344A1 (en) 2008-12-11
JP2014168076A (en) 2014-09-11
US20080299297A1 (en) 2008-12-04
KR101384498B1 (en) 2014-04-14
US7838062B2 (en) 2010-11-23
CN101681902A (en) 2010-03-24
US8883247B2 (en) 2014-11-11
JP5791896B2 (en) 2015-10-07
AU2008260627A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5767359B2 (en) Manufacturing method of solar cell
JP6091587B2 (en) Fine line metallization of photovoltaic devices by partial lift-off of optical coatings
JP2010528487A5 (en)
JP4656996B2 (en) Solar cell
JP4944240B1 (en) Back electrode type solar cell, back electrode type solar cell with wiring sheet, solar cell module, method for manufacturing back electrode type solar cell with wiring sheet, and method for manufacturing solar cell module
CN102009527A (en) Process of producing liquid discharge head base material
JP5046819B2 (en) Through-hole forming method and inkjet head
US7784914B2 (en) Fluid ejection device
US8927425B1 (en) Self-aligned patterning technique for semiconductor device features
CN114103477A (en) Thermal head, method of manufacturing thermal head, and thermal printer
US9975338B2 (en) Method for manufacturing liquid ejection head substrate
US7204020B2 (en) Method for fabricating a charge plate for an inkjet printhead
US8104170B2 (en) Charge plate fabrication technique
US20170129241A1 (en) Liquid supply substrate, method of producing the same, and liquid ejecting head
JP2001347673A (en) Ink jet head structure, method for manufacturing ink jet head and imaging method
JP2001310474A (en) Electrostatic actuator, production method therefor, imaging head, and imaging device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150618

R150 Certificate of patent or registration of utility model

Ref document number: 5767359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees