JP5765207B2 - Manufacturing method of high-pressure tank - Google Patents

Manufacturing method of high-pressure tank Download PDF

Info

Publication number
JP5765207B2
JP5765207B2 JP2011267219A JP2011267219A JP5765207B2 JP 5765207 B2 JP5765207 B2 JP 5765207B2 JP 2011267219 A JP2011267219 A JP 2011267219A JP 2011267219 A JP2011267219 A JP 2011267219A JP 5765207 B2 JP5765207 B2 JP 5765207B2
Authority
JP
Japan
Prior art keywords
welding
liner
split
laser
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011267219A
Other languages
Japanese (ja)
Other versions
JP2013119888A (en
Inventor
健 八田
健 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011267219A priority Critical patent/JP5765207B2/en
Publication of JP2013119888A publication Critical patent/JP2013119888A/en
Application granted granted Critical
Publication of JP5765207B2 publication Critical patent/JP5765207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1244Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue
    • B29C66/12449Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue being asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12463Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered
    • B29C66/12464Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered being V-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12469Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

この発明は、高圧タンクに関するものである。   The present invention relates to a high pressure tank.

高圧タンクを形成する際に、ライナー構成部材の接合部分を予備加熱した後、レーザー溶着により接合する技術が知られている(特許文献1)。   When forming a high-pressure tank, a technique is known in which a joining portion of a liner component member is preheated and then joined by laser welding (Patent Document 1).

特開2006−283968号公報JP 2006-283968 A

しかし、従来のレーザー溶着方法では、溶着不足やバリの発生などの溶着不良を発生させないように溶着作業をすることが難しかった。   However, in the conventional laser welding method, it has been difficult to perform the welding operation so as not to cause welding defects such as insufficient welding and generation of burrs.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、溶着不良を低減させることを目的とする。   The present invention has been made to solve at least a part of the above-described problems, and an object thereof is to reduce poor welding.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。本発明の一形態によれば、レーザー溶着を用いて2つの分割ライナー構成部材を接合する工程を含む高圧タンクの製造方法が提供される。この高圧タンクの製造方法は、レーザー溶着を用いて2つの分割ライナー構成部材を接合する工程を含む高圧タンクの製造方法であって、一方の分割ライナー構成部材の開口部から前記2つの分割ライナー構成部材の中空部内であってレーザーで溶着する溶着部を含む断面位置の中心部にレーザー変位センサーを挿入する工程と、前記2つのライナー構成部材の外側から前記溶着部に前記レーザーを照射する工程と、前記レーザー変位センサーを用いて、前記レーザー変位センサーから前記2つの分割ライナー構成部材のうちの少なくとも一方の分割ライナー構成部材の内面までの距離と、前記分割ライナーの溶着面であって、前記レーザー変位センサーと対面する溶着面までの距離と、を測定することで、前記溶着部における2つの分割ライナー構成部材間の隙間、及びバリの発生量を含む溶着具合をモニタリングしながら前記溶着部をレーザー溶着する工程と、を含む。この形態によれば、2つのライナー構成部材の溶着部の溶着具合をモニタリングしながら2つのライナー構成部材を溶着できるので、溶着不足や、溶着過剰によるバリの発生等の溶着不良を低減させることが出来る。 SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples. According to one form of this invention, the manufacturing method of a high pressure tank including the process of joining two division | segmentation liner structural members using laser welding is provided. The method for manufacturing a high-pressure tank is a method for manufacturing a high-pressure tank including a step of joining two split liner constituent members using laser welding, and the two split liner configurations are formed from an opening of one split liner constituent member. A step of inserting a laser displacement sensor into a central portion of a cross-sectional position including a welded portion that is welded by a laser in a hollow portion of the member; and a step of irradiating the welded portion from the outside of the two liner constituting members; Using the laser displacement sensor, a distance from the laser displacement sensor to an inner surface of at least one of the two divided liner components, and a welding surface of the divided liner, the laser and the distance to the welding surface facing the displacement sensor, by measuring, the two in the weld portion divided La Including gaps between toner components, and a step of laser welding the welding portions while monitoring the welding condition including the occurrence of burrs, a. According to this embodiment, since the two liner constituent members can be welded while monitoring the welding state of the welded portions of the two liner constituent members, it is possible to reduce welding defects such as insufficient welding and occurrence of burrs due to excessive welding. I can do it.

[適用例1]
レーザー溶着を用いて2つの分割ライナー構成部材を接合する工程を含む高圧タンクの製造方法であって、一方の分割ライナー構成部材の開口部から前記2つの分割ライナー構成部材の中空部内であってレーザーで溶着する溶着部を含む断面位置の中心部にレーザー変位センサーを挿入する工程と、前記2つのライナー構成部材の外側から前記溶着部に前記レーザーを照射する工程と、前記レーザー変位センサーを用いて前記溶着部における2つの分割ライナー構成部材間の隙間、及びバリの発生量を含む溶着具合をモニタリングしながら前記溶着部をレーザー溶着する工程と、を含む、高圧タンクの製造方法。
この適用例によれば、2つのライナー構成部材の溶着部の溶着具合をモニタリングしながら2つのライナー構成部材を溶着できるので、溶着不足や、溶着過剰によるバリの発生等の溶着不良を低減させることが出来る。
[Application Example 1]
A method of manufacturing a high-pressure tank including a step of joining two divided liner constituent members using laser welding, wherein a laser is formed in the hollow portion of the two divided liner constituent members from an opening of one of the divided liner constituent members. A step of inserting a laser displacement sensor into a central portion of a cross-sectional position including a welded portion to be welded, a step of irradiating the welded portion from the outside of the two liner constituting members, and the laser displacement sensor. And a step of laser welding the welded portion while monitoring the gap between the two divided liner constituting members in the welded portion and the degree of welding including the generation amount of burrs.
According to this application example, since the two liner constituent members can be welded while monitoring the welding state of the welded portions of the two liner constituent members, it is possible to reduce welding defects such as insufficient welding and occurrence of burrs due to excessive welding. I can do it.

なお、本発明は、種々の形態で実現することが可能であり、例えば、高圧タンクの製造方法の他、レーザー溶着装置、レーザー溶着方法等の形態で実現することができる。   In addition, this invention can be implement | achieved with various forms, for example, can be implement | achieved with forms, such as a laser welding apparatus and a laser welding method other than the manufacturing method of a high pressure tank.

本発明の一実施例において作成されるタンクの外観を示す説明図である。It is explanatory drawing which shows the external appearance of the tank produced in one Example of this invention. タンクの断面を示す説明図である。It is explanatory drawing which shows the cross section of a tank. タンクの製造工程を説明する説明図である。It is explanatory drawing explaining the manufacturing process of a tank. 分割ライナー300aを形成するための射出成形装置の雌金型を示す説明図である。It is explanatory drawing which shows the female metal mold | die of the injection molding apparatus for forming the division | segmentation liner 300a. 分割ライナー300aを形成するための射出成形装置の雄金型を示す説明図である。It is explanatory drawing which shows the male metal mold | die of the injection molding apparatus for forming the division | segmentation liner 300a. 金型を閉じた状態を示す説明図である。It is explanatory drawing which shows the state which closed the metal mold | die. 図6の圧力センサー近傍(破線W1で示す部分)を拡大して示す説明図である。It is explanatory drawing which expands and shows the pressure sensor vicinity (part shown with the broken line W1) of FIG. 樹脂注入装置410から樹脂を注入し始めた状態を示す説明図である。It is explanatory drawing which shows the state which started injecting resin from the resin injection apparatus 410. FIG. 樹脂の先端部が圧力センサーの位置まで達した状態を示す説明図である。It is explanatory drawing which shows the state which the front-end | tip part of resin reached the position of the pressure sensor. 製造された分割ライナー300aを示す説明図である。It is explanatory drawing which shows the division | segmentation liner 300a manufactured. 分割ライナー300a、300bの溶着の説明図である。It is explanatory drawing of welding of the division | segmentation liner 300a, 300b. 溶着具合の判断の一例を示す説明図である。It is explanatory drawing which shows an example of judgment of the welding condition. 溶着具合に遷移を示す説明図である。It is explanatory drawing which shows a transition in welding condition. 溶着工程のフローチャートを示す説明図である。It is explanatory drawing which shows the flowchart of a welding process. 画像処理モニター840を用いて溶着具合を判断するときのフローチャートを示す説明図である。It is explanatory drawing which shows the flowchart when judging the welding condition using the image processing monitor 840. FIG. 図14に示すフローチャートの変形例である。It is a modification of the flowchart shown in FIG.

図1は、本発明の一実施例において作成されるタンクの外観を示す説明図である。図2は、タンクの断面を示す説明図である。タンク10は、口金100と、外筒200と、ライナー300とを備える。口金100は、タンク10へのガスの充填、あるいは、タンク10からのガスの放出のために用いられる。口金100の中心軸101方向の中央付近の口金100の外周には、ツバ110(フランジ)が形成されている。ツバ110は、中心軸101と垂直な面に沿って外周に突き出るように形成されている。また、ツバ110は、ツバの先端側が細くなるようなテーパ形状又は略台形形状を有している。   FIG. 1 is an explanatory diagram showing the appearance of a tank created in one embodiment of the present invention. FIG. 2 is an explanatory view showing a cross section of the tank. The tank 10 includes a base 100, an outer cylinder 200, and a liner 300. The base 100 is used for filling the tank 10 with gas or discharging the gas from the tank 10. A flange 110 (flange) is formed on the outer periphery of the base 100 near the center in the direction of the central axis 101 of the base 100. The collar 110 is formed to protrude to the outer periphery along a plane perpendicular to the central axis 101. Further, the flange 110 has a tapered shape or a substantially trapezoidal shape such that the tip end side of the flange is thin.

ライナー300は、タンク内部を密閉するための内殻である。ライナー300は、略円筒形をしている。ここで、ライナー300は、2つの分割ライナー300a、300bを備えている。ライナー300の上部及び下部には、口金100が取り付けられている。なお、一方の分割ライナー300aにのみに口金100を有し、他方の分割ライナー300bには口金100を有さないようにしてもよい。ライナー300は、例えば、ナイロン、エチレンビニルアルコール共重合体(EVOH)、ポリエチレン等の熱収縮性の材料で構成されている。なお、ライナー300の構成を、熱収縮性の材料で構成された外層と、エポキシやガラス、金属などの非熱収縮性の材料で構成された内層と、を含む複数層を備える構成としてもよい。   The liner 300 is an inner shell for sealing the inside of the tank. The liner 300 has a substantially cylindrical shape. Here, the liner 300 includes two divided liners 300a and 300b. A base 100 is attached to the upper and lower portions of the liner 300. Note that the base 100 may be provided only on one split liner 300a, and the base 100 may not be provided on the other split liner 300b. The liner 300 is made of a heat-shrinkable material such as nylon, ethylene vinyl alcohol copolymer (EVOH), or polyethylene. The configuration of the liner 300 may include a plurality of layers including an outer layer made of a heat-shrinkable material and an inner layer made of a non-heat-shrinkable material such as epoxy, glass, or metal. .

外筒200は、ライナー300の外側に形成され、タンク10の耐圧殻として働く。外筒200の材料として、繊維強化プラスチック(FRP)を用いることが可能である。ライナー300の端部と外筒200の端部は、口金100のツバ110を挟むように密着し、口金100とライナー300との接合部からのガスのリークを抑制している。なお、図1においては、外筒200によりライナー300が覆い隠されている。   The outer cylinder 200 is formed outside the liner 300 and functions as a pressure-resistant shell of the tank 10. As a material of the outer cylinder 200, fiber reinforced plastic (FRP) can be used. The end portion of the liner 300 and the end portion of the outer cylinder 200 are in close contact with each other so as to sandwich the flange 110 of the base 100, and gas leakage from the joint portion between the base 100 and the liner 300 is suppressed. In FIG. 1, the liner 300 is covered with the outer cylinder 200.

図3は、タンクの製造工程を説明する説明図である。先ず、図3(A)に示すように、口金100と分割ライナー300aを準備する。例えば、分割ライナー300aは、例えば、射出成形装置を用いて製造される。分割ライナー300aを製造する工程については後述する。分割ライナー300aは円筒形をしており、分割ライナー300aの一方の開口部305は窄まっている。この狭まった開口部305に口金100が接合される。   FIG. 3 is an explanatory diagram for explaining a manufacturing process of the tank. First, as shown in FIG. 3A, a base 100 and a split liner 300a are prepared. For example, the split liner 300a is manufactured using, for example, an injection molding apparatus. The process of manufacturing the split liner 300a will be described later. The split liner 300a has a cylindrical shape, and one opening 305 of the split liner 300a is narrowed. The base 100 is joined to the narrowed opening 305.

次に、図3(B)に示すように、分割ライナー300aの開口部305に口金100を圧入する。次に、図3(C)に示すように、分割ライナー300aを熱処理する。これにより、分割ライナー300aが熱収縮し、分割ライナー300aの端部と口金100のツバ110とが接合する。なお、分割ライナー300aが複数層を備える場合には、分割ライナー300aの外層の端部が、ツバ110よりも上方に位置するように分割ライナー300aが形成されていることが好ましい。こうすると、分割ライナー300aが熱収縮したときに、分割ライナー300aの外層がツバ110の上側に掛かる。その結果、ツバ110は、内層と外層とにより挟み込まれるので、ツバ110と分割ライナー300aとの接合が強化される。なお、同様に、口金100を有する分割ライナー300bを製造する。   Next, as shown in FIG. 3B, the base 100 is press-fitted into the opening 305 of the split liner 300a. Next, as shown in FIG. 3C, the split liner 300a is heat-treated. Thereby, the split liner 300a is thermally contracted, and the end portion of the split liner 300a and the flange 110 of the base 100 are joined. When the split liner 300a includes a plurality of layers, it is preferable that the split liner 300a is formed so that the end portion of the outer layer of the split liner 300a is positioned above the flange 110. If it carries out like this, when the division | segmentation liner 300a heat-shrinks, the outer layer of the division | segmentation liner 300a will be applied to the upper side of the collar 110. As a result, since the brim 110 is sandwiched between the inner layer and the outer layer, the bonding between the brim 110 and the split liner 300a is strengthened. Similarly, the split liner 300b having the base 100 is manufactured.

次に、図3(D)に示すように、口金100を取り付けた分割ライナー300a、300bを接合する。具体的には、分割ライナー300a、300bの口金100を取り付けた側の反対側どうしを合わせる。次に、例えばレーザートーチを用いてレーザー光を2つの分割ライナー300a、300bの接合部に照射する。これにより、2つの分割ライナー300a、300bの接合部の樹脂を加熱して、2つの分割ライナー300a、300bを溶着する。なお、本実施例の場合、一方の分割ライナー300aがレーザー光透過性の樹脂、他方の分割ライナー300bがレーザー光非透過性の樹脂により形成されている。したがって、レーザー光に対し分割ライナー300aは透明であり、分割ライナー300bは非透明である。レーザー光は分割ライナー300aを透過し、分割ライナー300bで吸収される。その結果、分割ライナー300bは、レーザー光のエネルギーにより温度が上がり溶ける。これにより、分割ライナー300aと分割ライナー300bの溶着が容易となる。さらに、この場合、分割ライナー300aと分割ライナー300bの樹脂材料を同じにして、一方の分割ライナー300bの樹脂材料に顔料を添加することにより、レーザー光吸収性を持たせることが好ましい。分割ライナー300aと分割ライナー300bの材料が同じであれば、分割ライナー300aと分割ライナー300bとの間に、強度の差が生じないからである。なお、本実施例では、樹脂として、ナイロンを用い、顔料として、カーボンブラックを用いている。なお、カーボンブラックの代わりに、酸化第一鉄(FeO)を用いても良い。   Next, as shown in FIG. 3D, the split liners 300a and 300b to which the cap 100 is attached are joined. Specifically, the opposite sides of the split liners 300a and 300b to which the cap 100 is attached are aligned. Next, for example, a laser torch is used to irradiate the joint between the two split liners 300a and 300b with a laser torch. As a result, the resin at the joint between the two split liners 300a and 300b is heated to weld the two split liners 300a and 300b. In the case of the present embodiment, one split liner 300a is formed of a laser light transmitting resin, and the other split liner 300b is formed of a laser light non-transmitting resin. Therefore, the split liner 300a is transparent and the split liner 300b is non-transparent to the laser light. The laser light passes through the split liner 300a and is absorbed by the split liner 300b. As a result, the temperature of the split liner 300b is increased due to the energy of the laser beam. Thereby, welding of the division | segmentation liner 300a and the division | segmentation liner 300b becomes easy. Further, in this case, it is preferable that the resin materials of the split liner 300a and the split liner 300b are the same, and a pigment is added to the resin material of one of the split liners 300b so as to provide laser light absorbability. This is because there is no difference in strength between the split liner 300a and the split liner 300b if the material of the split liner 300a and the split liner 300b is the same. In this embodiment, nylon is used as the resin and carbon black is used as the pigment. Note that ferrous oxide (FeO) may be used instead of carbon black.

次に、図3(E)に示すように、樹脂を含浸させた強化繊維をライナー300に巻き付ける。樹脂を強化する繊維として、ガラス繊維、炭素繊維、アラミド繊維(例えば、ポリパラフェニレンテレフタルアミド繊維(ケブラー繊維、ケブラーは登録商標)など)を用いることが可能である。また、繊維により強化される樹脂として、エポキシ樹脂、エポキシアクリレート樹脂、ポリエステル樹脂を用いることが可能である。なお、強化繊維の巻き付けのパターンにより外筒200の引っ張り強さなどの機械的性質を調整することが可能である。次に、図3(F)に示すように、ライナー300に巻き付けた、強化繊維を加熱硬化させる。これにより、樹脂を含浸させた強化繊維は、FRPとなり、外筒200を形成する。なお、本実施例では、樹脂を含浸させた強化繊維をライナー300に巻き付け、その後加熱硬化させて外筒200を得る工程を、フィラメント・ワインディング工程と呼んでいる。   Next, as shown in FIG. 3E, the reinforcing fiber impregnated with the resin is wound around the liner 300. As fibers for reinforcing the resin, glass fibers, carbon fibers, and aramid fibers (for example, polyparaphenylene terephthalamide fibers (Kevlar fiber, Kevlar is a registered trademark)) can be used. In addition, as a resin reinforced with fibers, an epoxy resin, an epoxy acrylate resin, or a polyester resin can be used. In addition, it is possible to adjust mechanical properties, such as tensile strength of the outer cylinder 200, with the pattern of the reinforcing fiber winding. Next, as shown in FIG. 3F, the reinforcing fibers wound around the liner 300 are heat-cured. Thereby, the reinforced fiber impregnated with the resin becomes FRP and forms the outer cylinder 200. In this embodiment, the step of winding the reinforcing fiber impregnated with resin around the liner 300 and then heat-curing it to obtain the outer cylinder 200 is called a filament winding step.

図4は、分割ライナー300aを形成するための射出成形装置の雌金型を示す説明図である。雌金型400は、分割ライナー300aを製造する場合に固定金型として用いられる。図4(A)は、雌金型400の断面を示す説明図である。雌金型400は、凹部401と、ランナー405と、樹脂注入装置410と、溝445を備える。凹部401は、対になる雄金型の凸部を受け入れる。ランナー405は、樹脂の流路である。樹脂注入装置410は、ランナー405を介して、凹部401の底に接続されている。溝445は、雌金型400の底に設けられている。溝445は、凹部401の側面と、金型400の外部とを接続している。   FIG. 4 is an explanatory view showing a female die of an injection molding apparatus for forming the split liner 300a. The female mold 400 is used as a fixed mold when the split liner 300a is manufactured. FIG. 4A is an explanatory view showing a cross section of the female mold 400. The female mold 400 includes a recess 401, a runner 405, a resin injection device 410, and a groove 445. The concave portion 401 receives the convex portion of the male mold to be paired. The runner 405 is a resin flow path. The resin injection device 410 is connected to the bottom of the recess 401 via a runner 405. The groove 445 is provided at the bottom of the female mold 400. The groove 445 connects the side surface of the recess 401 and the outside of the mold 400.

図4(B)は、図4(A)に示す雌金型400を上から見たときの説明図である。図4(B)では、ランナー405と溝445を透して示している。本実施例では、ランナー405は、8方向に分岐している。なお、この分岐数は様々な値を採用することが可能である。また、本実施例では、溝445を4つ備えているが、この数についても、様々な値を採用することが可能である。   FIG. 4B is an explanatory diagram when the female mold 400 shown in FIG. 4A is viewed from above. In FIG. 4B, the runner 405 and the groove 445 are shown through. In the present embodiment, the runner 405 branches in 8 directions. It should be noted that various values can be adopted for the number of branches. In the present embodiment, four grooves 445 are provided, but various values can be adopted for this number.

図5は、分割ライナー300aを形成するための射出成形装置の雄金型を示す説明図である。雄金型500は、移動金型として用いられる。円柱形状を有する凸部501と圧力センサー510とを備える。圧力センサー510は、凸部501の根元に配置されている。なお、雌金型、雄金型のいずれを固定金型、移動金型とするかは自由に選択することが可能である。また、本実施例では、樹脂注入装置410、ランナー405、溝445を雌金型400に備えているが、雄金型500に備えていてもよい。あるいは、樹脂注入装置410、ランナー405を雌金型400に備え、溝445を雄金型500に備えるように、分散して備えていてもよい。   FIG. 5 is an explanatory view showing a male mold of an injection molding apparatus for forming the split liner 300a. The male mold 500 is used as a moving mold. A convex portion 501 having a cylindrical shape and a pressure sensor 510 are provided. The pressure sensor 510 is disposed at the base of the convex portion 501. Note that it is possible to freely select which of the female mold and the male mold is the fixed mold and the movable mold. In the present embodiment, the resin injection device 410, the runner 405, and the groove 445 are provided in the female mold 400, but may be provided in the male mold 500. Alternatively, the resin injection device 410 and the runner 405 may be provided in the female die 400 and the groove 445 may be provided in the male die 500 in a dispersed manner.

図6は、金型を閉じた状態を示す説明図である。凹部401(図4参照)と凸部501(図5参照)との間には、キャビティ310が形成されている。キャビティ310は、4つのキャビティ部分311〜314を備える。第1のキャビティ部分311は、中心部側にあり、中空円筒形状を有している。第2のキャビティ部分312は、第1のキャビティ部分311の端部に一端が繋がっている。第2のキャビティ部分312は、円錐面に沿ったリング形状を有している。この第2のキャビティ部分312のリング形状は、リング形状における法線312aがキャビティ310の外側で交差するように、傾斜している。なお、この傾斜は、口金100のツバ110のテーパ形状又は略台形形状の傾斜と一致していることが好ましい。これにより、キャビティ310に形成されるライナー300と、ツバ110との接合を強くすることが可能となる。第3のキャビティ部分313の一端は、第2のキャビティ部分312の他端に接続されている。第3のキャビティ部分313は、外側が凸の曲面で形成されるリング形状を有している。第4のキャビティ部分314は、第3のキャビティ部分313の他端に接続されている。第4のキャビティ部分314は、キャビティ310の最外周にあり、中空円筒形状を有している。第2のキャビティ部分312と第3のキャビティ部分313との接続位置にランナー405が繋がっている。ここからキャビティ310内に樹脂が射出注入される。ランナー405とキャビティ310との境目を「主ゲート407」と呼ぶ。また、雌金型400と雄金型500とが接する境界を「パーティングライン450」と呼ぶ。   FIG. 6 is an explanatory view showing a state in which the mold is closed. A cavity 310 is formed between the concave portion 401 (see FIG. 4) and the convex portion 501 (see FIG. 5). The cavity 310 includes four cavity portions 311 to 314. The first cavity portion 311 is on the center side and has a hollow cylindrical shape. One end of the second cavity portion 312 is connected to the end of the first cavity portion 311. The second cavity portion 312 has a ring shape along the conical surface. The ring shape of the second cavity portion 312 is inclined so that the normal line 312 a in the ring shape intersects outside the cavity 310. Note that this inclination preferably coincides with the inclination of the tapered shape or the substantially trapezoidal shape of the flange 110 of the base 100. This makes it possible to strengthen the bonding between the liner 300 formed in the cavity 310 and the flange 110. One end of the third cavity portion 313 is connected to the other end of the second cavity portion 312. The third cavity portion 313 has a ring shape formed with a convex curved surface on the outside. The fourth cavity portion 314 is connected to the other end of the third cavity portion 313. The fourth cavity portion 314 is on the outermost periphery of the cavity 310 and has a hollow cylindrical shape. A runner 405 is connected to a connection position between the second cavity portion 312 and the third cavity portion 313. From here, resin is injected into the cavity 310. The boundary between the runner 405 and the cavity 310 is called a “main gate 407”. Further, a boundary where the female mold 400 and the male mold 500 are in contact is referred to as a “parting line 450”.

図7は、図6の圧力センサー近傍(破線W1で示す部分)を拡大して示す説明図である。第4のキャビティ部分314の、第3のキャビティ部分313と接続されない他端を「接続端部部分315」と呼ぶ。この接続端部部分315は、分割ライナー300b(図4参照)との接合に用いられる。溝445は、接続端部部分315に接続されている。溝445は、キャビティ310に樹脂を注入する時、キャビティから空気を排気する排気路として用いられる。圧力センサー510は、接続端部部分315に配置されている。なお、溝445と接続端部部分315の境を「バルブゲート447」と呼ぶ。   FIG. 7 is an explanatory diagram showing an enlarged view of the vicinity of the pressure sensor in FIG. 6 (portion indicated by a broken line W1). The other end of the fourth cavity portion 314 that is not connected to the third cavity portion 313 is referred to as a “connection end portion 315”. The connection end portion 315 is used for joining with the split liner 300b (see FIG. 4). The groove 445 is connected to the connection end portion 315. The groove 445 is used as an exhaust path for exhausting air from the cavity when resin is injected into the cavity 310. The pressure sensor 510 is disposed at the connection end portion 315. The boundary between the groove 445 and the connection end portion 315 is referred to as a “valve gate 447”.

図8は、樹脂注入装置410から樹脂を注入し始めた状態を示す説明図である。図8(A)は金型の全体図を示す説明図であり、図8(B)は樹脂700の先端部近傍(破線X1で囲った部分)を拡大して示す説明図である。樹脂注入装置410は、ランナー405から主ゲート407(図6参照)を経る経路でキャビティ310に樹脂700を注入する。   FIG. 8 is an explanatory view showing a state in which resin is started to be injected from the resin injection device 410. FIG. 8A is an explanatory diagram showing an overall view of the mold, and FIG. 8B is an explanatory diagram showing an enlarged vicinity of the tip of the resin 700 (portion surrounded by a broken line X1). The resin injection device 410 injects the resin 700 into the cavity 310 through a path passing from the runner 405 through the main gate 407 (see FIG. 6).

図9は、樹脂の先端部が圧力センサーの位置まで達した状態を示す説明図である。図9(A)は金型の全体図を示す説明図であり、図9(B)は樹脂700の先端部近傍(破線Y1で囲った部分)を拡大して示す説明図である。図9(B)に示す状態では、樹脂700の先端部705は、圧力センサー510に接触している。このため、圧力センサー510は、樹脂700からの圧力を検知することが可能である。この圧力を検知すると、樹脂注入装置410は、樹脂の注入を停止する。   FIG. 9 is an explanatory diagram showing a state where the tip of the resin has reached the position of the pressure sensor. FIG. 9A is an explanatory view showing an overall view of the mold, and FIG. 9B is an explanatory view showing the vicinity of the tip portion of the resin 700 (the portion surrounded by the broken line Y1) in an enlarged manner. In the state shown in FIG. 9B, the tip portion 705 of the resin 700 is in contact with the pressure sensor 510. For this reason, the pressure sensor 510 can detect the pressure from the resin 700. When this pressure is detected, the resin injection device 410 stops the resin injection.

図10は、製造された分割ライナー300aを示す説明図である。なお、分割ライナー300aは、溝445にあたる位置にバリが形成される場合があるが、まだ、分割ライナー300bと溶着する前であるので、容易にバリを取り去ることができる。分割ライナー300bについても、同様の手順で製造することができる。なお、分割ライナー300bを製造するための雌金型、雄金型の形状は、分割ライナー300bの形状に合わせられている。また、キャビティ310に注入される樹脂は、顔料を含んでおりレーザー光非透過性樹脂である点が異なっている。含まれる顔料として、例えば、カーボンブラックや酸化第一鉄(FeO)を用いることが可能である。   FIG. 10 is an explanatory view showing the manufactured divided liner 300a. The split liner 300a may be formed with a burr at a position corresponding to the groove 445. However, since the burr is not yet welded to the split liner 300b, the burr can be easily removed. The split liner 300b can be manufactured in the same procedure. In addition, the shape of the female metal mold | die and male mold | die for manufacturing the division | segmentation liner 300b is united with the shape of the division | segmentation liner 300b. Further, the resin injected into the cavity 310 is different in that it contains a pigment and is a laser light non-transparent resin. For example, carbon black or ferrous oxide (FeO) can be used as the pigment contained.

図11は、分割ライナー300a、300bの溶着の説明図である。分割ライナー300a、300bの溶着部の放射方向外部にレーザー照射器800が配置される。また、分割ライナー300a、300bの内部にレーザー変位センサー810が配置される、レーザー変位センサー810の配置位置は、分割ライナー300a、300bの溶着部の断面830の中心部である。レーザー変位センサー810は、口金100から挿入された支持棒820に取り付けられている。なお、レーザー変位センサー810は、支持棒820に沿って移動させることが可能である。分割ライナー300a、300bの溶着部の外側には、画像処理モニター840が配置されている。また、分割ライナー300aの右側には、分割ライナー300a、300bを回転させるためのステッピングモーター850が配置される。分割ライナー300a、300bは、分割ライナー支持部855により保持され、ステッピングモーター850に接続されている。分割ライナー支持部855は、レーザー光を透過するように、透明な部材で形成されていても良い。レーザー照射器800、ステッピングモーター850は、レーザー変位センサー810あるいは、画像処理モニター840からの信号に基づいて、制御部860により動作が制御される。   FIG. 11 is an explanatory diagram of welding of the split liners 300a and 300b. The laser irradiator 800 is disposed outside the radial direction of the welded portions of the split liners 300a and 300b. Further, the laser displacement sensor 810 is disposed inside the split liners 300a and 300b. The laser displacement sensor 810 is located at the center of the cross section 830 of the welded portion of the split liners 300a and 300b. The laser displacement sensor 810 is attached to a support bar 820 inserted from the base 100. Note that the laser displacement sensor 810 can be moved along the support rod 820. An image processing monitor 840 is disposed outside the welded portions of the split liners 300a and 300b. A stepping motor 850 for rotating the split liners 300a and 300b is disposed on the right side of the split liner 300a. The split liners 300a and 300b are held by a split liner support portion 855 and connected to a stepping motor 850. The split liner support portion 855 may be formed of a transparent member so as to transmit laser light. The operations of the laser irradiator 800 and the stepping motor 850 are controlled by the control unit 860 based on a signal from the laser displacement sensor 810 or the image processing monitor 840.

図12は、溶着具合の判断の一例を示す説明図である。レーザー変位センサー810は、溶着範囲をスキャンし、レーザー変位センサー810から分割ライナー300bの溶着面301bまたは、分割ライナー300aの溶着面301aまでの距離を測定する。分割ライナー300bの溶着面301bと分割ライナー300aの溶着面301aの間に隙間が存在すると、レーザー変位センサー810のスキャン位置が、分割ライナー300bの溶着面301bから、分割ライナー300aの溶着面301aに切り替わる位置で、測定距離が急変するので、信号にピークが生じる。したがって、このピークが出ている間は、溶着不足と判断することができる。このピークを「溶着不足ピーク信号S1」と呼ぶ。分割ライナー300aと分割ライナー300bとが溶着されてくると溶着面301aと溶着面301bとの間隔Wは段々とゼロに近づくので、溶着不足ピーク信号S1はほぼゼロとなる。すなわち、この溶着不足ピーク信号S1をモニターすることにより、分割ライナー300aと分割ライナー300bとの溶着具合を判断することができる。   FIG. 12 is an explanatory diagram illustrating an example of determination of the degree of welding. The laser displacement sensor 810 scans the welding range and measures the distance from the laser displacement sensor 810 to the welding surface 301b of the split liner 300b or the welding surface 301a of the split liner 300a. When a gap exists between the welding surface 301b of the split liner 300b and the welding surface 301a of the split liner 300a, the scanning position of the laser displacement sensor 810 is switched from the welding surface 301b of the split liner 300b to the welding surface 301a of the split liner 300a. Since the measurement distance changes suddenly at the position, a peak occurs in the signal. Therefore, it can be determined that welding is insufficient while this peak is present. This peak is referred to as “welding insufficient peak signal S1”. When the divided liner 300a and the divided liner 300b are welded, the interval W between the welded surface 301a and the welded surface 301b gradually approaches zero, so that the welding shortage peak signal S1 becomes almost zero. That is, it is possible to determine the degree of welding between the divided liner 300a and the divided liner 300b by monitoring the welding shortage peak signal S1.

なお、溶着過剰により、バリが生じた場合には、溶着部に凹凸が生じて分割ライナー300bとレーザー変位センサー810との距離が短くなる。このとき、溶着不足ピーク信号S1とは反対向きの溶着過剰ピーク信号S2が生じる。したがって、この着過剰ピーク信号S2をモニターすることにより溶着過剰になったか否かを容易に判断することができる。   In addition, when a burr | flash generate | occur | produces by excessive welding, an unevenness | corrugation will arise in a welding part and the distance of the division | segmentation liner 300b and the laser displacement sensor 810 will become short. At this time, an excessive welding peak signal S2 is generated in the opposite direction to the insufficient welding peak signal S1. Therefore, it is possible to easily determine whether or not the excessive deposition peak signal S2 has been detected by monitoring the excessive deposition peak signal S2.

画像処理モニター840は、溶着部を外部から撮影し、分割ライナー300a、300bの溶着がされたときに生じる黒点710の数または面積をモニターする。分割ライナー300a、300bの溶着が進むと、黒点710の数が増え、黒点710の総面積が大きくなる。したがって、この黒点710の数または面積をモニターすることにより、分割ライナー300aと分割ライナー300bとの溶着具合を判断することができる。なお、溶着部において、外側に位置する分割ライナー300aは透明であるため、黒点710の数や面積を容易にモニターすることが出来る。   The image processing monitor 840 photographs the welded portion from the outside and monitors the number or area of the black spots 710 generated when the divided liners 300a and 300b are welded. As welding of the divided liners 300a and 300b proceeds, the number of black spots 710 increases and the total area of the black spots 710 increases. Therefore, by monitoring the number or area of the black spots 710, it is possible to determine the degree of welding between the divided liner 300a and the divided liner 300b. In addition, since the division | segmentation liner 300a located outside in a welding part is transparent, the number and area of the black spot 710 can be monitored easily.

図13は、溶着具合に遷移を示す説明図である。図13(A)は溶着不足の状態である。この状態では、溶着面301aと溶着面301bとの間隔Wはゼロではないため、溶着不足ピーク信号S1が生じている。また、黒点710の数が少なく、面積も小さい。図13(B)は、良好な溶着状態を示す。この状態では、溶着面301aと溶着面301bとの間隔Wはほぼゼロになるため、溶着不足ピーク信号S1はほぼゼロとなる。また、黒点710の数が少なく、面積も大きくなる。図13(C)に、溶着過剰の状態を参考に示す。この状態では、分割ライナー300aと分割ライナー300bとの溶着の内側にバリが出来、黒点710は、溶着部のほぼ全域に生じている。実際には、溶着不足ピーク信号をモニターし、あるいは、黒点710の数または黒点710の総面積をモニターすることにより、溶着具合を判断し、図13(C)に示す溶着過剰の状態にならないように制御する。   FIG. 13 is an explanatory diagram showing a transition in the welding condition. FIG. 13A shows a state of insufficient welding. In this state, since the interval W between the welding surface 301a and the welding surface 301b is not zero, an insufficient welding peak signal S1 is generated. Further, the number of black spots 710 is small and the area is small. FIG. 13B shows a good welded state. In this state, since the interval W between the welding surface 301a and the welding surface 301b is substantially zero, the welding insufficient peak signal S1 is substantially zero. Also, the number of black spots 710 is small and the area is large. FIG. 13C shows the state of excessive welding as a reference. In this state, burrs are formed on the inner side of the weld between the split liner 300a and the split liner 300b, and the black spots 710 are generated in almost the entire area of the weld. Actually, by monitoring the insufficient welding peak signal, or by monitoring the number of black spots 710 or the total area of the black spots 710, the degree of welding is judged, so that the excessive welding state shown in FIG. To control.

図14は、溶着工程のフローチャートを示す説明図である。ステップS100では、制御部860は、レーザー照射器800を用いてレーザー光による照射を開始する。分割ライナー300bは不透明であるので、レーザー光のエネルギーを受けると樹脂が溶け、分割ライナー300aと溶着する。ステップS110では、制御部860は、レーザー変位センサー810からの溶着不足ピーク信号S1を用いて、溶着具合を判断する。溶着不足ピーク信号S1があらかじめ定められた閾値以下となった場合には、制御部860は溶着が良好になったと判断して、処理をステップS130に移行する。溶着不足ピーク信号S1があらかじめ定められた閾値よりも大きく、溶着不足と判断された場合には、制御部860は処理をステップS120に移行してレーザー光照射を継続させ、その後再び処理をステップS110に移行して溶着具合を判断する。   FIG. 14 is an explanatory diagram showing a flowchart of the welding process. In step S <b> 100, the control unit 860 starts irradiation with laser light using the laser irradiator 800. Since the split liner 300b is opaque, when the laser beam energy is received, the resin melts and is welded to the split liner 300a. In step S110, the control unit 860 determines the degree of welding using the welding deficiency peak signal S1 from the laser displacement sensor 810. When the welding shortage peak signal S1 is equal to or less than a predetermined threshold value, the control unit 860 determines that the welding is good, and the process proceeds to step S130. If the welding deficiency peak signal S1 is larger than a predetermined threshold value and it is determined that welding is insufficient, the control unit 860 proceeds to step S120 to continue the laser beam irradiation, and then performs the processing again in step S110. Shift to step and judge the welding condition.

ステップS130では、制御部860は、ステッピングモーター850を用いて、分割ライナー300a、300bを回転させる。ステップS140では、制御部860は、新たなレーザー照射ポイントにおいてすでに溶着済か否かを判断する。この判断は、ステップS110における判断と同様である。あらたなレーザー照射ポイントにおいてすでに溶着済の場合には、分割ライナー300a、300bの全周にわたってレーザー光による溶着が終了していると判断できる。したがって制御部860は、処理をステップS150に移行して、レーザー光の照射を終了させる。一方、新たなレーザー照射ポイントにおいて溶着されていない場合には、制御部860は、処理をステップS120に移行する。なお、ステップS110の判断において、分割ライナー300bとレーザー変位センサー810との距離に基づいて、バリの有無を判断し、溶着具合を判断してもよい。   In step S130, the control unit 860 uses the stepping motor 850 to rotate the divided liners 300a and 300b. In step S140, control unit 860 determines whether or not a new laser irradiation point has already been welded. This determination is the same as the determination in step S110. If welding has already been performed at a new laser irradiation point, it can be determined that the welding by the laser beam has been completed over the entire circumference of the split liners 300a and 300b. Therefore, the control unit 860 shifts the process to step S150 and ends the laser light irradiation. On the other hand, in the case where welding is not performed at a new laser irradiation point, the control unit 860 proceeds to step S120. In the determination in step S110, the presence or absence of burrs may be determined based on the distance between the divided liner 300b and the laser displacement sensor 810, and the degree of welding may be determined.

以上、本実施例によれば、レーザー変位センサー810を用いて、レーザー光による溶着具合を判断して、分割ライナー300aと300bを溶着するので、溶着不足や、溶着過剰を抑制し、溶着不良を低減することができる。   As described above, according to this embodiment, the laser displacement sensor 810 is used to determine the degree of welding by the laser beam, and the divided liners 300a and 300b are welded. Therefore, insufficient welding and excessive welding are suppressed, resulting in poor welding. Can be reduced.

図15は、画像処理モニター840を用いて溶着具合を判断するときのフローチャートを示す説明図である。ステップS200では、制御部860は、レーザー照射器800を用いてレーザー光による照射を開始する。ステップS200は、図14で説明したステップS100と同様である。ステップS210では、制御部860は、画像処理モニター840のモニター画像を用い、黒点710の数をカウントし、あるいは、黒点710の総面積を算出する。これらの値があらかじめ定められた閾値以上となった場合、制御部860は溶着が良好になったと判断して、処理をステップS230に移行する。制御部860は、黒点710の数、あるいは、黒点710の総面積の値があらかじめ定められた閾値に達していない場合には、溶着不足と判断し、処理をステップS220に移行してレーザー光照射を継続させ、その後再び処理をステップS210に移行して溶着具合を判断する。   FIG. 15 is an explanatory diagram showing a flowchart for determining the degree of welding using the image processing monitor 840. In step S <b> 200, the control unit 860 starts irradiation with laser light using the laser irradiator 800. Step S200 is the same as step S100 described in FIG. In step S210, the control unit 860 uses the monitor image of the image processing monitor 840 to count the number of black spots 710 or calculate the total area of the black spots 710. When these values are equal to or greater than a predetermined threshold value, the control unit 860 determines that the welding is good, and the process proceeds to step S230. If the number of black spots 710 or the total area of the black spots 710 has not reached a predetermined threshold value, the control unit 860 determines that welding is insufficient, moves the process to step S220, and performs laser beam irradiation. Then, the process proceeds to step S210 again to determine the welding condition.

ステップS230では、制御部860は、ステッピングモーター850を用いて、分割ライナー300a、300bを回転させる。ステップS240では、制御部860は、新たなレーザー照射ポイントにおいてすでに溶着済か否かを判断する。この判断は、ステップS210における判断と同様である。これ以降のフローについては、図14で説明したのと同様であるので、説明を省略する。   In step S230, the control unit 860 rotates the split liners 300a and 300b using the stepping motor 850. In step S240, control unit 860 determines whether or not a new laser irradiation point has already been welded. This determination is the same as the determination in step S210. The subsequent flow is the same as that described with reference to FIG.

以上、本実施例によれば、画像処理モニター840を用いて、レーザー光による溶着具合を判断して、分割ライナー300aと300bを溶着するので、溶着不足や、溶着過剰を抑制し、溶着不良を低減することができる。なお、レーザー変位センサー810と、画像処理モニター840とは、両方を併用してもよく、いずれか一方のみを用いるのであってもよい。   As described above, according to the present embodiment, the image processing monitor 840 is used to determine the degree of welding by the laser beam, and the divided liners 300a and 300b are welded. Therefore, insufficient welding and excessive welding are suppressed, and defective welding is prevented. Can be reduced. Note that both the laser displacement sensor 810 and the image processing monitor 840 may be used in combination, or only one of them may be used.

図16は、図14に示すフローチャートの変形例である。このフローチャートでは、図14に示すフローチャートのステップS110とS120との間にステップS115を実行し、ステップS110とステップS130の間にステップS125を有する。ステップS115は、レーザー光による溶着具合が溶着不足の場合に、レーザー光の強度をあげる。それにより、溶着を促進する。またステップS125は、レーザー光による溶着具合良好となった場合に、溶着が過度にならないようにレーザー光の強度を下げる。このようにレーザー光の強度を変えれば、短時間に分割ライナー300aと300bとを溶着することができる。なお、図15に示すフローチャートにおいても同様に、レーザー光の強度を変えることが可能である。   FIG. 16 is a modification of the flowchart shown in FIG. In this flowchart, step S115 is executed between steps S110 and S120 in the flowchart shown in FIG. 14, and step S125 is provided between steps S110 and S130. Step S115 increases the intensity of the laser beam when the welding condition by the laser beam is insufficient. Thereby, welding is promoted. Step S125 lowers the intensity of the laser beam so that the welding does not become excessive when the welding condition by the laser beam becomes good. Thus, if the intensity | strength of a laser beam is changed, the division | segmentation liner 300a and 300b can be welded in a short time. Similarly, in the flowchart shown in FIG. 15, it is possible to change the intensity of the laser beam.

以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。     The embodiments of the present invention have been described above based on some examples. However, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and limit the present invention. It is not a thing. The present invention can be changed and improved without departing from the spirit and scope of the claims, and it is needless to say that the present invention includes equivalents thereof.

10…タンク
100…口金
101…中心軸
110…ツバ
200…外筒
300…ライナー
300a、300b…分割ライナー
301a、301b…溶着面
305…開口部
310…キャビティ
311〜314…第1〜第4のキャビティ部分
312a…法線
315…接続端部部分
400…雌金型
401…凹部
405…ランナー
407…主ゲート
410…樹脂注入装置
445…溝
447…バルブゲート
450…パーティングライン
500…雄金型
501…凸部
510…圧力センサー
700…樹脂
705…先端部
710…黒点
800…レーザー照射器
810…レーザー変位センサー
820…支持棒
830…断面
840…画像処理モニター
850…ステッピングモーター
855…分割ライナー支持部
860…制御部
W…間隔
W1…破線
X1…破線
Y1…破線
S1…溶着不足ピーク信号
S2…溶着過剰ピーク信号
DESCRIPTION OF SYMBOLS 10 ... Tank 100 ... Base 101 ... Center axis 110 ... Collar 200 ... Outer cylinder 300 ... Liner 300a, 300b ... Split liner 301a, 301b ... Welding surface 305 ... Opening part 310 ... Cavity 311-314 ... 1st-4th cavity Part 312a ... Normal 315 ... Connection end part 400 ... Female mold 401 ... Recess 405 ... Runner 407 ... Main gate 410 ... Resin injection device 445 ... Groove 447 ... Valve gate 450 ... Parting line 500 ... Male mold 501 ... Convex part 510 ... Pressure sensor 700 ... Resin 705 ... Tip part 710 ... Black spot 800 ... Laser irradiator 810 ... Laser displacement sensor 820 ... Support rod 830 ... Cross section 840 ... Image processing monitor 850 ... Stepping motor 855 ... Split liner support part 860 ... Control unit W ... interval W1 Dashed X1 ... dashed Y1 ... dashed S1 ... welding lack peak signal S2 ... welding excessive peak signal

Claims (1)

レーザー溶着を用いて2つの分割ライナー構成部材を接合する工程を含む高圧タンクの製造方法であって、
一方の分割ライナー構成部材の開口部から前記2つの分割ライナー構成部材の中空部内であってレーザーで溶着する溶着部を含む断面位置の中心部にレーザー変位センサーを挿入する工程と、
前記2つのライナー構成部材の外側から前記溶着部に前記レーザーを照射する工程と、
前記レーザー変位センサーを用いて、前記レーザー変位センサーから前記2つの分割ライナー構成部材のうちの少なくとも一方の分割ライナー構成部材の内面までの距離と、前記分割ライナーの溶着面であって、前記レーザー変位センサーと対面する溶着面までの距離と、を測定することで、前記溶着部における2つの分割ライナー構成部材間の隙間、及びバリの発生量を含む溶着具合をモニタリングしながら前記溶着部をレーザー溶着する工程と、
を含む、高圧タンクの製造方法。
A method for manufacturing a high-pressure tank including a step of joining two split liner components using laser welding,
Inserting a laser displacement sensor into the center of the cross-sectional position including the welded portion that is welded by laser in the hollow portion of the two divided liner constituting members from the opening of one divided liner constituting member;
Irradiating the laser to the welded portion from the outside of the two liner constituting members;
Using the laser displacement sensor, a distance from the laser displacement sensor to an inner surface of at least one of the two divided liner components, and a welding surface of the divided liner, the laser displacement and the distance to the welding surface facing the sensor, by measuring the gap between the two split liner constituting member in the weld portion, and laser welding the welding portions while monitoring the welding condition including the occurrence of burrs And a process of
A method for manufacturing a high-pressure tank.
JP2011267219A 2011-12-06 2011-12-06 Manufacturing method of high-pressure tank Active JP5765207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267219A JP5765207B2 (en) 2011-12-06 2011-12-06 Manufacturing method of high-pressure tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267219A JP5765207B2 (en) 2011-12-06 2011-12-06 Manufacturing method of high-pressure tank

Publications (2)

Publication Number Publication Date
JP2013119888A JP2013119888A (en) 2013-06-17
JP5765207B2 true JP5765207B2 (en) 2015-08-19

Family

ID=48772627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267219A Active JP5765207B2 (en) 2011-12-06 2011-12-06 Manufacturing method of high-pressure tank

Country Status (1)

Country Link
JP (1) JP5765207B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10158095B4 (en) * 2001-05-05 2012-03-22 Lpkf Laser & Electronics Ag Device for controlling a weld in a workpiece made of weldable plastic
JP4311158B2 (en) * 2003-10-14 2009-08-12 株式会社デンソー Resin molded product and manufacturing method thereof
JP4466559B2 (en) * 2005-03-07 2010-05-26 トヨタ自動車株式会社 Gas container manufacturing method
JP4577103B2 (en) * 2005-06-10 2010-11-10 株式会社デンソー Laser welding quality determination method and apparatus
JP4833608B2 (en) * 2005-08-05 2011-12-07 麒麟麦酒株式会社 Sealed container
JP4841992B2 (en) * 2006-03-29 2011-12-21 麒麟麦酒株式会社 Sealed container manufacturing apparatus and sealed container manufacturing method
JP4833713B2 (en) * 2006-03-29 2011-12-07 麒麟麦酒株式会社 Manufacturing method of sealed container
US7343218B2 (en) * 2006-05-09 2008-03-11 Branson Ultrasonics Corporation Automatic part feedback compensation for laser plastics welding
US8506872B2 (en) * 2009-05-29 2013-08-13 Stanley Electric Co., Ltd. Method for manufacturing resin mold assembly

Also Published As

Publication number Publication date
JP2013119888A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
US7726542B2 (en) Friction-welded assembly with interlocking feature and method for forming the assembly
US7025842B2 (en) Ultrasound welding of plastics components
US7943884B2 (en) Gas container and method of producing the same
JP4466408B2 (en) Gas container and manufacturing method thereof
JP2013119924A (en) Method for manufacturing high-pressure tank
JP5083176B2 (en) Liner manufacturing method and split liner
JP4113752B2 (en) Joining device
JP5765207B2 (en) Manufacturing method of high-pressure tank
JP2020045916A (en) Linear component member, high-pressure tank, and method of manufacturing the same
JP2007113590A (en) Pressure container liner and its manufacturing method
JP5262954B2 (en) Injection molding apparatus, method for manufacturing molded body, and molded body
JP2013176975A (en) Resin molded product and method of producing the same
JP2007010004A (en) Gas cylinder and its manufacturing method
JP2004324781A (en) Liner for chemical cylinder and method of manufacturing the same
JP2013104435A (en) Method for manufacturing resin linear
JP4257111B2 (en) Gas cylinder liner and method of manufacturing the same
KR20170122513A (en) Pressure container having the liner welding and the manufacture method for the same
JP5505079B2 (en) High pressure tank liner manufacturing apparatus, high pressure tank liner manufacturing method, and high pressure tank manufacturing method
JP2008119839A (en) Laser welding method for resin material and resin component
JP5195307B2 (en) Injection molding apparatus and injection molding method
JP5309872B2 (en) Tank and tank manufacturing method
JP2004084915A (en) Fiber reinforced pressure vessel and method of manufacture
JP2005238462A (en) Thermoplastic resin member and its manufacturing method
JP4164678B2 (en) Composite product manufacturing method and manufacturing apparatus
JP2017164939A (en) Method of manufacturing liner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R151 Written notification of patent or utility model registration

Ref document number: 5765207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151