JP5764207B2 - Method for producing electrolytic manganese dioxide for mercury-free alkaline manganese batteries - Google Patents

Method for producing electrolytic manganese dioxide for mercury-free alkaline manganese batteries Download PDF

Info

Publication number
JP5764207B2
JP5764207B2 JP2013518940A JP2013518940A JP5764207B2 JP 5764207 B2 JP5764207 B2 JP 5764207B2 JP 2013518940 A JP2013518940 A JP 2013518940A JP 2013518940 A JP2013518940 A JP 2013518940A JP 5764207 B2 JP5764207 B2 JP 5764207B2
Authority
JP
Japan
Prior art keywords
manganese
manganese dioxide
electrolytic
stage
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013518940A
Other languages
Japanese (ja)
Other versions
JP2013538936A5 (en
JP2013538936A (en
Inventor
奇志 陳
奇志 陳
Original Assignee
広西有色金属集団▲ふい▼元▲めん▼業有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 広西有色金属集団▲ふい▼元▲めん▼業有限公司 filed Critical 広西有色金属集団▲ふい▼元▲めん▼業有限公司
Publication of JP2013538936A publication Critical patent/JP2013538936A/en
Publication of JP2013538936A5 publication Critical patent/JP2013538936A5/ja
Application granted granted Critical
Publication of JP5764207B2 publication Critical patent/JP5764207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0081Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本願は、2010年7月15日に出願された中国出願第201010227988.7号、発明名称「無水銀アルカリマンガン型電解二酸化マンガンの製造法」の利益を主張するものである。   This application claims the benefit of Chinese application 201010227988.7, filed on July 15, 2010, the title of the invention “Method for producing anhydrous silver alkali manganese electrolytic manganese dioxide”.

本願発明は、無水銀アルカリマンガン電池用電解二酸化マンガンの製造法に関するものであり、具体的には、著しくグレードの低い酸化マンガン鉱石から「二鉱石法」による浸出工程を経て、無水銀アルカリマンガン電池用電解二酸化マンガンを製造する方法に関する。 The present invention relates to a method for producing electrolytic manganese dioxide for an anhydrous silver alkaline manganese battery , specifically, a leaching process by a “two-ore method” from a manganese oxide ore having a significantly low grade, and then an anhydrous mercury alkaline manganese battery. The present invention relates to a method for producing electrolytic manganese dioxide for industrial use .

電池業界において、高出力で対価格性能比に最も優れた電池として、アルカリマンガン電池は、安定した供給電圧のもとで長期にわたって大電流を流し続けることができるという優れた性能に加えて、最長3〜5年の長期貯蔵が可能で、低温でも優れた性能を発揮し、液漏れもしない等の特徴を有し、国内外を問わず高い評価を得ている。   In the battery industry, as the battery with the highest output and price / performance ratio, alkaline manganese batteries have the longest performance in addition to the ability to keep a large current flowing for a long time under a stable supply voltage. Long-term storage of 3 to 5 years is possible, it exhibits excellent performance even at low temperatures, and does not leak, and has been highly evaluated both domestically and internationally.

このアルカリマンガン電池の主原料である無水銀アルカリマンガン電池用電解二酸化マンガンは、年間30万トン以上が消費され、その量は、毎年10%以上の勢いで伸びつつあり、その市場の将来の見通しは明るい。 More than 300,000 tons of electrolytic manganese dioxide for mercury-free alkaline manganese batteries, the main raw material for alkaline manganese batteries, is consumed at a rate of more than 10% annually. Is bright.

ところで、従来の電解二酸化マンガンの製法においては、原料として主に炭酸マンガン鉱石または酸化マンガン鉱石が用いられている。ところが、国内で産出された炭酸マンガン鉱石を精錬する場合、その鉱石の炭酸マンガン含有量が低いため(30%未満)、大量のマンガン鉱石を消費せねばならず、最終製品が高価格となる原因となっていた。   By the way, in the conventional manufacturing method of electrolytic manganese dioxide, manganese carbonate ore or manganese oxide ore is mainly used as a raw material. However, when refining domestically produced manganese carbonate ore, the manganese carbonate content of the ore is low (less than 30%), so a large amount of manganese ore must be consumed, and the final product is expensive. It was.

一方、酸化マンガンを原料とする場合、酸化マンガン鉱石を焙焼により還元した後に溶液を浸出する方法と、「二鉱石法」により電解二酸化マンガンを製造する方法とが、近年主流となっている。しかし、酸化マンガン鉱石を焙焼により還元した後に溶液を浸出する手法は、その工程が長くなり、製造コストがかさみ、また、その生産工場周辺の環境が汚染されやすい等の欠点があった。   On the other hand, when manganese oxide is used as a raw material, a method of leaching a solution after reducing manganese oxide ore by roasting and a method of producing electrolytic manganese dioxide by the “two-ore method” have become mainstream in recent years. However, the method of leaching the solution after reducing the manganese oxide ore by roasting has disadvantages such as a long process, a high manufacturing cost, and an environment around the production factory being easily contaminated.

また、主として、グレードの高い二酸化マンガンが原料として用いられる「二鉱石法」による二酸化マンガンの製造法、すなわち、二酸化マンガン鉱石と還元剤として黄鉄鉱石とを含む溶液を浸出する方法、をグレートの低いマンガン鉱石、すなわち、含有量が25%未満のグレードのものを用いて行った場合、浸出効率が低下し、装置における反応物質の処理時間が長くなり、製造設備の数が増えるほか、近年、国内のマンガン精錬業界で行われている非連続式の浸出工程、すなわち、マンガン鉱石を単一の浸出タンク内に蓄えられた溶液に直接溶解する工程では、作業効率が劣るという欠点を有していた。   In addition, the manufacturing method of manganese dioxide by the “two ore method”, in which high-grade manganese dioxide is used as a raw material, that is, a method of leaching a solution containing manganese dioxide ore and pyrite ore as a reducing agent is low in great Manganese ore, that is, when the content is less than 25%, the leaching efficiency is lowered, the processing time of the reactants in the equipment is increased, the number of production facilities is increased, and in recent years In the discontinuous leaching process performed in the manganese refining industry, that is, the process in which manganese ore is directly dissolved in the solution stored in a single leaching tank, the work efficiency is inferior. .

グレードの高いマンガン鉱石資源がますます減少してきているなか、将来にわたって現在の手法を維持していくのは困難となることが予想される。また、広西チワン族自治区のマンガン鉱石資源は、その量こそ豊富であるものの、その大部分はグレードの低いマンガン鉱石で、特にマンガン成分の含有量が低く不純物の含有量が高いため、長く有効利用されないままであった。   It is expected that it will be difficult to maintain current methods in the future as high-grade manganese ore resources are decreasing. In addition, although the amount of manganese ore resources in the Guangxi Zhuang Autonomous Region is abundant, most of them are low-grade manganese ores, especially because they contain a low content of manganese and a high content of impurities. It was not done.

前記諸問題を解決するため、本発明は、著しくグレードの低い酸化マンガン鉱石を原料とした、「二鉱石法」による無水銀アルカリマンガン電池用電解二酸化マンガンの製造法を提供することを課題とする。 In order to solve the above problems, an object of the present invention is to provide a method for producing electrolytic manganese dioxide for anhydrous mercury alkaline manganese batteries by a “two-ore method” using a manganese oxide ore of a remarkably low grade as a raw material. .

前記技術的諸問題を解決するための本発明の技術的概要は、以下の、連続する(1)〜(3)の工程からなる、無水銀アルカリマンガン電池用電解二酸化マンガンの製造法を提供することである。
(1)酸化マンガン鉱石と黄鉄鉱石を混合し、当該混合物と硫酸とを1〜7槽の攪拌浸出槽からなる連続浸出槽中に連続的に供給し、反応温度を90〜95℃に制御し、3〜4時間かけて1段または多段連続浸出を行って、カリウムイオンを除去し、次いで中和鉄分離法により鉄分を除去し、当該鉄成分除去処理の後段で石灰粉を添加して、90〜95℃で3〜4時間かけて溶液のpH値を6〜6.5に調整することにより、硫酸マンガン溶液を得る工程。
(2)2段階の連続精製処理により前記硫酸マンガン溶液から不純物を除去する精製を行うため、前記連続精製処理の第1段階として、温度を60℃に制御した前記硫酸マンガン溶液にポリ硫化カルシウムを添加し、前記精製処理の第2段階として、精製した前記溶液をを通して通流することで、カルシウムとマグネシウムを除去し、その後、精製した前記硫酸マンガン溶液を貯蔵タンクへ移送して、そのまま前記貯蔵タンク内で32時間静置させた後、静置した前記硫酸マンガン溶液からカルシウムおよびマグネシウムの不純物を沈殿物として除去する工程。
(3)(2)で得られた溶液を限外濾過した後、精製された硫酸マンガン溶液をプレート熱変換器を用いて90〜100℃に加熱し、これに乳化剤および発泡剤を同時に添加して得られた生成物を配管を通じて電解層に供給し、電解温度100〜103℃、アノード電流密度80〜85A/m、電解電圧2.2〜3.5V、電解期間12〜20日の条件で電気分解を行うことにより、無水銀アルカリマンガン電池用電解二酸化マンガンを得る工程。
The technical outline of the present invention for solving the above technical problems provides a method for producing electrolytic manganese dioxide for anhydrous silver alkaline manganese batteries , comprising the following steps (1) to (3). That is.
(1) Manganese oxide ore and pyrite ore are mixed, the mixture and sulfuric acid are continuously fed into a continuous leaching tank consisting of 1 to 7 stirred leaching tanks, and the reaction temperature is controlled to 90 to 95 ° C. , One-stage or multi-stage continuous leaching over 3 to 4 hours to remove potassium ions, then remove iron by neutralized iron separation method, add lime powder at the latter stage of the iron component removal treatment, A step of obtaining a manganese sulfate solution by adjusting the pH value of the solution to 6 to 6.5 at 90 to 95 ° C. over 3 to 4 hours.
(2) In order to carry out purification to remove impurities from the manganese sulfate solution by two-stage continuous purification treatment, as the first stage of the continuous purification treatment, calcium sulfide is added to the manganese sulfate solution whose temperature is controlled at 60 ° C. As a second step of the purification treatment, calcium and magnesium are removed by passing the purified solution through a trough , and then the purified manganese sulfate solution is transferred to a storage tank and directly after allowed to stand 32 hours in the storage tank, standing the step of removing the calcium from manganese sulfate solution and magnesium impurities as a precipitate.
(3) After ultrafiltration of the solution obtained in (2), the purified manganese sulfate solution is heated to 90-100 ° C. using a plate heat converter, and an emulsifier and a foaming agent are simultaneously added thereto. The product obtained in this way is supplied to the electrolytic layer through a pipe, conditions of electrolysis temperature 100 to 103 ° C., anode current density 80 to 85 A / m 2 , electrolysis voltage 2.2 to 3.5 V, electrolysis period 12 to 20 days The step of obtaining electrolytic manganese dioxide for anhydrous silver alkaline manganese batteries by performing electrolysis in

本発明は、以下の、既存の技術に比して優位な効果を有する。すなわち、本発明の無水銀アルカリマンガン電池用電解二酸化マンガンの製造法によれば、用いる酸化マンガンのグレードを含有量16%にまで落とすことができ、著しくグレードの低い酸化マンガン鉱石を主原料として使用することができる。また、「二鉱石法」により、著しくグレードの低い酸化マンガン鉱石をから直接、浸出によりマンガン成分を取り出すことができ、得られた硫酸マンガン溶液から、十分な精製により不純物を除去し、その後電解法により無水銀アルカリマンガン電池用電解二酸化マンガンを生成することができる。 The present invention has the following advantages over the existing technologies. That is, according to the method for producing electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries of the present invention, the manganese oxide grade used can be reduced to a content of 16%, and a manganese oxide ore having a significantly lower grade is used as a main raw material. can do. In addition, with the “two-ore method”, manganese components can be extracted directly from leached manganese oxide ores of extremely low grade by leaching, and impurities are removed from the resulting manganese sulfate solution by sufficient purification, followed by electrolysis. Can produce electrolytic manganese dioxide for anhydrous silver alkaline manganese batteries .

本発明に用いられる工程は、取り扱いが複雑なグレードの低い酸化マンガン鉱石のみならず、グレードの高い酸化マンガン鉱石をも使用することができる。そのため、様々な酸化マンガン鉱石を用いることができ、処理工程が短く、製造コストも抑えることができる等の効果がある。   The process used in the present invention can use not only low-grade manganese oxide ore, which is complicated to handle, but also high-grade manganese oxide ore. Therefore, various manganese oxide ores can be used, and there are effects such as a short processing step and reduction in manufacturing cost.

また、本発明により無水銀アルカリマンガン電池用電解二酸化マンガンを生産することで、広西チワン族自治区に大量に存在するグレードの低いマンガン鉱石の十全な活用を図ることができ、マンガン鉱石資源の合理的な利用、製造コストの削減と併せて、非常に大きな経済的社会的利益をもたらすことができる。 In addition, by producing electrolytic manganese dioxide for mercury-free alkaline manganese batteries according to the present invention, it is possible to make full use of low-grade manganese ores that exist in large quantities in the Guangxi Zhuang Autonomous Region. Combined with efficient use and reduced manufacturing costs, it can bring tremendous economic and social benefits.

本発明の実施例に係る処理工程のフローチャートである。It is a flowchart of the process process which concerns on the Example of this invention.

以下、参照する図面および実施例により、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples.

前述の無水銀アルカリマンガン電池用電解二酸化マンガンの製造法において、前記工程(1)では、酸化マンガン鉱石と黄鉄鉱石とを1:0.24の比率で直接、連続浸出槽に供給し、同時に、硫酸および電解廃棄物質と混合してもよい。このとき、鉱石と酸の質量比率は1:0.47としてもよい。 In the above-described method for producing electrolytic manganese dioxide for anhydrous silver alkaline manganese batteries, in the step (1), manganese oxide ore and pyrite ore are directly supplied to the continuous leaching tank at a ratio of 1: 0.24, It may be mixed with sulfuric acid and electrolytic waste material. At this time, the mass ratio of the ore and the acid may be 1: 0.47.

ここにおいて、前述の無水銀アルカリマンガン電池用電解二酸化マンガンの製造法における、電解廃棄物質は、前記工程(3)の電気分解中に発生した残渣物由来の硫酸としてもよい。 Here, the electrolytic waste material in the above-described method for producing electrolytic manganese dioxide for a mercury-free alkaline manganese battery may be sulfuric acid derived from a residue generated during the electrolysis in the step (3).

また、前述の無水銀アルカリマンガン電池用電解二酸化マンガンの製造法において、前記工程(3)では、未精製の電解二酸化マンガン生成物を破砕し、得られた粒状物を洗浄タンクに投入して3段階の洗滌処理を行っても良い。ここにおいて、前洗滌処理は、水洗、苛性洗滌、水洗の3段階からなるものとしてもよい。 In the method for producing electrolytic manganese dioxide for an anhydrous silver alkaline manganese battery described above, in the step (3), the unpurified electrolytic manganese dioxide product is crushed, and the obtained granular material is put into a washing tank. A stage washing process may be performed. Here, pre SL washing treatment, water washing, caustic washing, may consist of three stages of water washing.

このとき、第1段階の水の温度、および第2段階の苛性洗滌におけるアルカリ溶液の温度は、いずれも60〜70℃としてもよい。最終段階における水の温度は80〜90℃としてもよい。そして、洗滌時間は40時間としてもよい。洗滌液は、蒸気により直接加熱してもよい。その後、粉砕工程により、電解二酸化マンガンの粒径を必要とされる大きさにしてもよい。 At this time, the temperature of the first stage water and the temperature of the alkaline solution in the second stage caustic washing may both be 60-70 ° C. The temperature of water in the final stage may be 80 to 90 ° C. The washing time may be 40 hours. The washing liquid may be directly heated with steam. Then, you may make the particle size of electrolytic manganese dioxide into the required magnitude | size by a grinding | pulverization process.

更に、前述の無水銀アルカリマンガン電池用電解二酸化マンガンの製造法においては、前記粉砕された電解二酸化マンガンを、緻密相輸送法により重力型混合器に移送した後、当該混合器にて均一化してもよい。このときの混合時間は、約16時間としてもよい。 Furthermore, in the above-described method for producing electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries , the pulverized electrolytic manganese dioxide is transferred to a gravity mixer by a dense phase transport method, and then homogenized by the mixer. Also good. The mixing time at this time may be about 16 hours.

以上、本発明をその望ましい実施態様にて説明したが、これら実施態様は本発明の技術的範囲を制限するものではない。また、本願発明の保護範囲は特許請求の範囲に規定された発明の主題に基づき定まるものであり、当該技術分野における当業者であれば可能な変更のなされた前記実施態様のいくつかも、本発明の技術的範囲に含まれるものである。   As mentioned above, although this invention was demonstrated in the preferable embodiment, these embodiments do not restrict | limit the technical scope of this invention. The protection scope of the present invention is determined based on the subject matter of the invention defined in the claims, and some of the above-described embodiments that can be changed by those skilled in the art are also included in the present invention. It is included in the technical scope of

<実施例1>
マンガン含有率14.32%の酸化マンガン鉱石粉と硫黄含有率44.54%の黄鉄鉱粉とを乾燥重量比1:0.24で混合し、また、98%濃度の硫酸に水を加えて濃度100g/Lの希硫酸を調製する。次いで、酸化マンガンと黄鉄鉱粉との混合物と、調製した硫酸とを1:0.47の質量比率で連続浸出槽に連続供給すると同時に連続的に攪拌する。ここにおいて、前記連続浸出槽は、1段連続浸出用の1槽の浸出槽からなり、当該浸出槽の実効容積は、1mである。また、当該浸出槽の温度は95℃である。
<Example 1>
A manganese oxide ore powder having a manganese content of 14.32% and a pyrite powder having a sulfur content of 44.54% are mixed at a dry weight ratio of 1: 0.24, and water is added to 98% sulfuric acid to obtain a concentration. Prepare 100 g / L of dilute sulfuric acid. Next, the mixture of manganese oxide and pyrite powder and the prepared sulfuric acid are continuously fed to the continuous leaching tank at a mass ratio of 1: 0.47 and simultaneously stirred. Here, the continuous leaching tank is composed of one leaching tank for one-stage continuous leaching, and the effective volume of the leaching tank is 1 m 3 . Moreover, the temperature of the said leaching tank is 95 degreeC.

前記混合物が前記浸出槽に供給されてから、前記浸出槽外に排出されるまでの、浸出処理に係る反応は、当該反応の完了したことを示す、そのpH値が3〜3.5となるまで行い、その反応時間は3時間である。さらに、当該反応中は、常時攪拌が続けられる。   The reaction relating to the leaching process from the time when the mixture is supplied to the leaching tank until the mixture is discharged outside the leaching tank indicates that the reaction has been completed, and the pH value is 3 to 3.5. The reaction time is 3 hours. Furthermore, stirring is always continued during the reaction.

前記浸出槽から流出する液状物質は、連続した実効容積1.5mの中和槽に入る。これに、連続的に石灰粉を添加して中和反応を行わせ、3時間かけてそのpH値を6.0に調整する。中和後、前記液状物質を濾過し、濾過残渣を貯留地に移送する。 The liquid substance flowing out of the leaching tank enters a continuous neutralizing tank having an effective volume of 1.5 m 3 . To this, lime powder is continuously added to carry out a neutralization reaction, and the pH value is adjusted to 6.0 over 3 hours. After neutralization, the liquid substance is filtered and the filtration residue is transferred to a storage area.

以上のようにして、未精製の硫酸マンガン溶液が得られる。当該溶液には、銅、コバルト、ニッケル、鉛等の重金属、およびカルシウム、マグネシウム等の不純物が含まれている。   As described above, an unpurified manganese sulfate solution is obtained. The solution contains heavy metals such as copper, cobalt, nickel and lead, and impurities such as calcium and magnesium.

次いで、2段階連続精製法により、未精製の前記硫酸マンガン溶液の連続精製処理を行う。すなわち、前記連続精製処理の第1段階として、前記硫酸マンガン溶液の温度を60℃に制御して、これにポリ硫化カルシウムを添加し、濾過残渣を貯留地に移送する。次いで、前記精製処理の第2段階として、前記硫酸マンガン溶液をを通して通流し、液の流動過程でカルシウムとマグネシウムを除去する。 Subsequently, the unpurified manganese sulfate solution is continuously purified by a two-stage continuous purification method. That is, as the first stage of the continuous purification treatment, the temperature of the manganese sulfate solution is controlled at 60 ° C., calcium polysulfide is added thereto, and the filtration residue is transferred to a storage site. Then, the second step of the purification process, the flows through the manganese sulfate solution through the trough, removing calcium and magnesium in a fluidized process liquid.

次いで、前記硫酸マンガン溶液を貯蔵タンクへ移送し、そのまま前記貯蔵タンク内で、32時間静置させることにより、カルシウム、マグネシウム等の不純物を沈殿物として除去し、精製硫酸マンガン溶液を得る。その後、濾過残渣は貯留地に搬送され、濾液は、電解層に移送される。   Next, the manganese sulfate solution is transferred to a storage tank, and left as it is in the storage tank for 32 hours, thereby removing impurities such as calcium and magnesium as precipitates to obtain a purified manganese sulfate solution. Thereafter, the filtration residue is transported to the storage site, and the filtrate is transferred to the electrolytic layer.

前記濾液として、十分に精製された硫酸マンガン溶液を限外濾過し、プレート熱変換器を用いて90℃に加熱した後、高架タンクに移送して懸濁電解を行う。すなわち、調製した乳化剤および発泡剤を同時に添加し、電解温度100℃、アノード電流密度81A/m、電解槽電圧2.4V、電解期間12日の条件で電気分解を行う。 As the filtrate, a sufficiently purified manganese sulfate solution is ultrafiltered, heated to 90 ° C. using a plate heat converter, and then transferred to an elevated tank for suspension electrolysis. That is, the prepared emulsifier and foaming agent are added simultaneously, and electrolysis is performed under the conditions of an electrolysis temperature of 100 ° C., an anode current density of 81 A / m 2 , an electrolytic cell voltage of 2.4 V, and an electrolysis period of 12 days.

その後、電解槽のアノードから未精製の二酸化マンガン生成物を剥ぎ取り、破砕機により粒径6〜8mmの粒状物に破砕した後、実効容積1mの洗滌タンクに移送する。前記洗滌タンク内では、水洗、苛性洗滌、水洗からなる3段階の洗滌処理を行う。ここで、第1段階の水の温度、および第2段階の苛性洗滌におけるアルカリ溶液の温度は、いずれも60℃、最終段階における水の温度は80℃、そして、洗滌時間は40時間である。なお、洗滌液は、蒸気により直接加熱する。 Thereafter, the unpurified manganese dioxide product is peeled off from the anode of the electrolytic cell, and is crushed into granules having a particle diameter of 6 to 8 mm by a crusher, and then transferred to a washing tank having an effective volume of 1 m 3 . In the washing tank, a three-stage washing process including washing with water, caustic washing, and washing with water is performed. Here, the temperature of the first stage water and the temperature of the alkaline solution in the second stage caustic washing are both 60 ° C., the temperature of the water in the final stage is 80 ° C., and the washing time is 40 hours. The washing liquid is directly heated with steam.

前記洗滌した、電解二酸化マンガンを振子式粉砕機にて粉砕し、得られた粉体生成物(325メッシュの篩を通過した粒径サイズを有するもの)を捕集する。その後、品質の差をなくし生成物の均一性を確保するため、前記粉砕された電解二酸化マンガンを、緻密相輸送法により重力型混合器に移送した後、当該混合器にて16時間均一混合を行い、高品質の無水銀アルカリマンガン電池用電解二酸化マンガンを得る。
<実施例2>
The washed electrolytic manganese dioxide is pulverized with a pendulum pulverizer, and the obtained powder product (having a particle size of a particle size that has passed through a 325 mesh sieve) is collected. Thereafter, in order to eliminate the difference in quality and ensure the uniformity of the product, the pulverized electrolytic manganese dioxide is transferred to a gravitational mixer by a dense phase transport method, and then mixed uniformly for 16 hours in the mixer. To obtain high quality electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries .
<Example 2>

マンガン含有率15.56%の酸化マンガン鉱石粉と硫黄含有率40.54%の黄鉄鉱粉とを乾燥重量比1:0.24で混合し、また、98%濃度の硫酸に水を加えて濃度100g/Lの希硫酸を調製する。次いで、酸化マンガンと黄鉄鉱粉との混合物と、調製した硫酸とを1:0.47の質量比率で連続浸出槽に連続供給すると同時に連続的に攪拌する。ここにおいて、前記連続浸出槽は、3段連続浸出用の3槽の浸出槽からなり、処理される液体は2番目の浸出槽を出た後に3番目の浸出槽へ入る。当該浸出槽の実効容積は、各々1mである。また、当該浸出槽の温度は各々93℃である。 A manganese oxide ore powder having a manganese content of 15.56% and a pyrite powder having a sulfur content of 40.54% are mixed at a dry weight ratio of 1: 0.24, and water is added to 98% sulfuric acid to obtain a concentration. Prepare 100 g / L of dilute sulfuric acid. Next, the mixture of manganese oxide and pyrite powder and the prepared sulfuric acid are continuously fed to the continuous leaching tank at a mass ratio of 1: 0.47 and simultaneously stirred. Here, the continuous leaching tank is composed of three leaching tanks for three-stage continuous leaching, and the liquid to be treated enters the third leaching tank after leaving the second leaching tank. The effective volumes of the leaching tanks are 1 m 3 each. Moreover, the temperature of the said leaching tank is 93 degreeC respectively.

前記混合物が前記浸漬槽に供給されてから、前記3番目の浸出槽外に排出されるまでの、浸出処理に係る反応時間は3.5時間である。また、当該反応中は、常時攪拌が続けられる。   The reaction time relating to the leaching process from when the mixture is supplied to the immersing tank to when the mixture is discharged out of the third leaching tank is 3.5 hours. During the reaction, stirring is always continued.

前記3番目の浸出槽から流出する液状物質は、連続した実効容積1.5mの中和槽に入る。これに、連続的に石灰粉を添加して中和反応を行わせ、3.5時間かけてそのpH値を6.3に調整する。中和後、前記液状物質を濾過し、濾過残渣を貯留地に移送する。 The liquid material flowing out of the third leaching tank enters a neutralization tank having a continuous effective volume of 1.5 m 3 . To this, lime powder is continuously added to carry out a neutralization reaction, and the pH value is adjusted to 6.3 over 3.5 hours. After neutralization, the liquid substance is filtered and the filtration residue is transferred to a storage area.

以上のようにして、未精製の硫酸マンガン溶液が得られる。当該溶液には、銅、コバルト、ニッケル、鉛等の重金属、およびカルシウム、マグネシウム等の不純物が含まれている。   As described above, an unpurified manganese sulfate solution is obtained. The solution contains heavy metals such as copper, cobalt, nickel and lead, and impurities such as calcium and magnesium.

次いで、2段階連続精製法により、未精製の前記硫酸マンガン溶液の連続精製処理を行う。すなわち、前記連続精製処理の第1段階として、前記硫酸マンガン溶液の温度を60℃に制御して、これにポリ硫化カルシウムを添加し、濾過残渣を貯留地に移送する。次いで、前記精製処理の第2段階として、前記硫酸マンガン溶液をを通して通流し、液の流動過程でカルシウムとマグネシウムを除去する。 Subsequently, the unpurified manganese sulfate solution is continuously purified by a two-stage continuous purification method. That is, as the first stage of the continuous purification treatment, the temperature of the manganese sulfate solution is controlled at 60 ° C., calcium polysulfide is added thereto, and the filtration residue is transferred to a storage site. Then, the second step of the purification process, the flows through the manganese sulfate solution through the trough, removing calcium and magnesium in a fluidized process liquid.

次いで、前記硫酸マンガン溶液を貯蔵タンクへ移送し、そのまま前記貯蔵タンク内で、32時間静置させることにより、カルシウム、マグネシウム等の不純物を沈殿物として除去し、精製硫酸マンガン溶液を得る。その後、濾過残渣は貯留地に搬送され、濾液は、電解層に移送される。   Next, the manganese sulfate solution is transferred to a storage tank, and left as it is in the storage tank for 32 hours, thereby removing impurities such as calcium and magnesium as precipitates to obtain a purified manganese sulfate solution. Thereafter, the filtration residue is transported to the storage site, and the filtrate is transferred to the electrolytic layer.

前記濾液として、十分に精製された硫酸マンガン溶液を限外濾過し、プレート熱変換器を用いて95℃に加熱した後、高架タンクに移送して懸濁電解を行う。すなわち、調製した乳化剤および発泡剤を同時に添加し、電解温度102℃、アノード電流密度83A/m、電解槽電圧2.9V、電解期間15日の条件で電気分解を行う。 As the filtrate, a sufficiently purified manganese sulfate solution is ultrafiltered, heated to 95 ° C. using a plate heat converter, and then transferred to an elevated tank for suspension electrolysis. That is, the prepared emulsifier and foaming agent are added simultaneously, and electrolysis is performed under the conditions of an electrolysis temperature of 102 ° C., an anode current density of 83 A / m 2 , an electrolytic cell voltage of 2.9 V, and an electrolysis period of 15 days.

その後、電解槽のアノードから未精製の二酸化マンガン生成物を剥ぎ取り、破砕機により粒径6〜8mmの粒状物に破砕した後、実効容積1mの洗滌タンクに移送する。前記洗滌タンク内では、水洗、苛性洗滌、水洗からなる3段階の洗滌処理を行う。ここで、第1段階の水の温度、および第2段階の苛性洗滌におけるアルカリ溶液の温度は、いずれも65℃、最終段階における水の温度は85℃、そして、洗滌時間は40時間である。なお、洗滌液は、蒸気により直接加熱する。 Thereafter, the unpurified manganese dioxide product is peeled off from the anode of the electrolytic cell, and is crushed into granules having a particle diameter of 6 to 8 mm by a crusher, and then transferred to a washing tank having an effective volume of 1 m 3 . In the washing tank, a three-stage washing process including washing with water, caustic washing, and washing with water is performed. Here, the temperature of the first stage water and the temperature of the alkaline solution in the second stage of caustic washing are both 65 ° C., the temperature of water in the final stage is 85 ° C., and the washing time is 40 hours. The washing liquid is directly heated with steam.

前記洗滌した、電解二酸化マンガンを振子式粉砕機にて粉砕し、得られた粉体生成物(325メッシュの篩を通過した粒径サイズを有するもの)を捕集する。その後、品質の差をなくし生成物の均一性を確保するため、前記粉砕された電解二酸化マンガンを、緻密相輸送法により重力型混合器に移送した後、当該混合器にて16時間均一混合を行い、高品質の無水銀アルカリマンガン電池用電解二酸化マンガンを得る。
<実施例3>
The washed electrolytic manganese dioxide is pulverized with a pendulum pulverizer, and the obtained powder product (having a particle size of a particle size that has passed through a 325 mesh sieve) is collected. Thereafter, in order to eliminate the difference in quality and ensure the uniformity of the product, the pulverized electrolytic manganese dioxide is transferred to a gravitational mixer by a dense phase transport method, and then mixed uniformly for 16 hours in the mixer. To obtain high quality electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries .
<Example 3>

マンガン含有率13.58%の酸化マンガン鉱石粉と硫黄含有率47.44%の黄鉄鉱粉とを乾燥重量比1:0.24で混合し、また、98%濃度の硫酸に水を加えて濃度100g/Lの希硫酸を調製する。次いで、酸化マンガンと黄鉄鉱粉との混合物と、調製した硫酸とを1:0.47の質量比率で連続浸出槽に連続供給すると同時に連続的に攪拌する。ここにおいて、前記連続浸出槽は、7段連続浸出用の7槽の浸出槽からなり、処理される液体は2番目の浸出槽を出た後に3番目から7番目の浸出槽へ入る。当該浸出槽の実効容積は、各々1mである。また、当該浸出槽の温度は各々95℃である。 Manganese oxide ore powder having a manganese content of 13.58% and pyrite ore powder having a sulfur content of 47.44% are mixed at a dry weight ratio of 1: 0.24, and water is added to 98% sulfuric acid to obtain a concentration. Prepare 100 g / L of dilute sulfuric acid. Next, the mixture of manganese oxide and pyrite powder and the prepared sulfuric acid are continuously fed to the continuous leaching tank at a mass ratio of 1: 0.47 and simultaneously stirred. Here, the continuous leaching tank comprises seven leaching tanks for seven-stage continuous leaching, and the liquid to be treated enters the third to seventh leaching tanks after leaving the second leaching tank. The effective volumes of the leaching tanks are 1 m 3 each. Moreover, the temperature of the said leaching tank is 95 degreeC, respectively.

前記混合物が前記浸漬槽に供給されてから、前記7番目の浸出槽外に排出されるまでの、浸出処理に係る反応時間は4時間である。また、当該反応中は、常時攪拌が続けられる。   The reaction time for the leaching process from when the mixture is supplied to the immersing tank until the mixture is discharged out of the seventh leaching tank is 4 hours. During the reaction, stirring is always continued.

前記7番目の浸出槽から流出する液状物質は、連続した実効容積1.5mの中和槽に入る。これに、連続的に石灰粉を添加して中和反応を行わせ、そのpH値を6.5に調整する。中和後、前記液状物質を濾過し、濾過残渣を貯留地に移送する。 The liquid substance flowing out from the seventh leaching tank enters a neutralization tank having a continuous effective volume of 1.5 m 3 . To this, lime powder is continuously added to cause a neutralization reaction, and the pH value is adjusted to 6.5. After neutralization, the liquid substance is filtered and the filtration residue is transferred to a storage area.

以上のようにして、未精製の硫酸マンガン溶液が得られる。当該溶液には、銅、コバルト、ニッケル、鉛等の重金属、およびカルシウム、マグネシウム等の不純物が含まれている。   As described above, an unpurified manganese sulfate solution is obtained. The solution contains heavy metals such as copper, cobalt, nickel and lead, and impurities such as calcium and magnesium.

次いで、2段階連続精製法により、前記未精製の硫酸マンガン溶液の連続精製処理を行う。すなわち、前記連続精製処理の第1段階として、前記硫酸マンガン溶液の温度を60℃に制御して、これにポリ硫化カルシウムを添加し、濾過残渣を貯留地に移送する。次いで、前記精製処理の第2段階として、前記硫酸マンガン溶液をを通して通流し、液の流動過程でカルシウムとマグネシウムを除去する。 Subsequently, the unpurified manganese sulfate solution is continuously purified by a two-stage continuous purification method. That is, as the first stage of the continuous purification treatment, the temperature of the manganese sulfate solution is controlled at 60 ° C., calcium polysulfide is added thereto, and the filtration residue is transferred to a storage site. Then, the second step of the purification process, the flows through the manganese sulfate solution through the trough, removing calcium and magnesium in a fluidized process liquid.

次いで、前記硫酸マンガン溶液を貯蔵タンクへ移送し、そのまま前記貯蔵タンク内で、32時間静置させることにより、カルシウム、マグネシウム等の不純物を沈殿物として除去し、精製硫酸マンガン溶液を得る。その後、濾過残渣は貯留地に搬送され、濾液は、電解層に移送される。   Next, the manganese sulfate solution is transferred to a storage tank, and left as it is in the storage tank for 32 hours, thereby removing impurities such as calcium and magnesium as precipitates to obtain a purified manganese sulfate solution. Thereafter, the filtration residue is transported to the storage site, and the filtrate is transferred to the electrolytic layer.

前記濾液として、十分に精製された硫酸マンガン溶液を限外濾過し、プレート熱変換器を用いて100℃に加熱した後、高架タンクに移送して懸濁電解を行う。すなわち、調製した乳化剤および発泡剤を同時に添加し、電解温度103℃、アノード電流密度85A/m、電解槽電圧3.5V、電解期間20日の条件で電気分解を行う。 As the filtrate, a sufficiently purified manganese sulfate solution is ultrafiltered, heated to 100 ° C. using a plate heat converter, and then transferred to an elevated tank for suspension electrolysis. That is, the prepared emulsifier and foaming agent are added simultaneously, and electrolysis is performed under the conditions of an electrolysis temperature of 103 ° C., an anode current density of 85 A / m 2 , an electrolytic cell voltage of 3.5 V, and an electrolysis period of 20 days.

その後、電解槽のアノードから未精製の二酸化マンガン生成物を剥ぎ取り、破砕機により粒径6〜8mmの粒状物に破砕した後、実効容積1mの洗滌タンクに移送する。前記洗滌タンク内では、水洗、苛性洗滌、水洗からなる3段階の洗滌処理を行う。ここで、第1段階の水の温度、および第2段階の苛性洗滌におけるアルカリ溶液の温度は、いずれも70℃、最終段階における水の温度は85℃、そして、洗滌時間は40時間である。なお、洗滌液は、蒸気により直接加熱する。 Thereafter, the unpurified manganese dioxide product is peeled off from the anode of the electrolytic cell, and is crushed into granules having a particle diameter of 6 to 8 mm by a crusher, and then transferred to a washing tank having an effective volume of 1 m 3 . In the washing tank, a three-stage washing process including washing with water, caustic washing, and washing with water is performed. Here, the temperature of the first stage water and the temperature of the alkaline solution in the second stage of caustic washing are both 70 ° C., the temperature of water in the final stage is 85 ° C., and the washing time is 40 hours. The washing liquid is directly heated with steam.

前記洗滌した、電解二酸化マンガンを振子式粉砕機にて粉砕し、得られた粉体生成物(325メッシュの篩を通過した粒径サイズを有するもの)を捕集する。その後、品質の差をなくし生成物の均一性を確保するため、前記粉砕された電解二酸化マンガンを、緻密相輸送法により重力型混合器に移送した後、当該混合器にて16時間均一混合を行い、高品質の無水銀アルカリマンガン電池用電解二酸化マンガンを得る。 The washed electrolytic manganese dioxide is pulverized with a pendulum pulverizer, and the obtained powder product (having a particle size of a particle size that has passed through a 325 mesh sieve) is collected. Thereafter, in order to eliminate the difference in quality and ensure the uniformity of the product, the pulverized electrolytic manganese dioxide is transferred to a gravitational mixer by a dense phase transport method, and then mixed uniformly for 16 hours in the mixer. To obtain high quality electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries .

上記3実施例で得られた二酸化マンガンにおける主成分含有率は、MnO≧91.0%、Fe≦60ppm、Cu≦5ppm、Pb≦5ppm、Ni≦5ppm、Co≦5ppm、Mo≦0.5ppm、As≦0.5ppm、Sb≦0.5ppm、K≦200ppmである。 The main component content in the manganese dioxide obtained in the above three examples is MnO 2 ≧ 91.0%, Fe ≦ 60 ppm, Cu ≦ 5 ppm, Pb ≦ 5 ppm, Ni ≦ 5 ppm, Co ≦ 5 ppm, Mo ≦ 0.5 ppm. As ≦ 0.5 ppm, Sb ≦ 0.5 ppm, K ≦ 200 ppm.

Claims (5)

無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法であって、連続する3つの工程、すなわち、
酸化マンガン鉱石と黄鉄鉱石を混合し、当該混合物と硫酸とを1〜7槽の攪拌浸出槽からなる連続浸出槽中に連続的に供給し、反応温度を90〜95℃に制御し、3〜4時間かけて1段または多段連続浸出を行って、カリウムイオンを除去し、次いで中和による鉄分分離手段により鉄分を除去し、当該鉄分除去処理の後段で石灰粉を添加して、90〜95℃で3〜4時間かけて溶液のpH値を6〜6.5に調整することにより、硫酸マンガン溶液を得る工程(1)と、
2段階連続精製処理により前記硫酸マンガン溶液から不純物を除去する精製を行うため、前記硫酸マンガン溶液の連続精製処理の第1段階として、温度を60℃に制御した前記硫酸マンガン溶液にポリ硫化カルシウムを添加し、前記精製処理の第2段階として、前記第1段階で処理した前記硫酸マンガン溶液をを通して通流することで、カルシウムとマグネシウムを液の流動過程で除去し、その後、精製した前記硫酸マンガン溶液を貯蔵タンクへ移送して、そのまま前記貯蔵タンク内で32時間静置させた後、静置した前記硫酸マンガン溶液からカルシウムおよびマグネシウムの不純物を沈殿物として除去する工程(2)と、
前記工程(2)で得られた精製した硫酸マンガン溶液を限外濾過した後、得られた硫酸マンガン溶液をプレート熱変換器を用いて90〜100℃に加熱し、これに乳化剤および発泡剤を同時に添加して得られた生成物を配管を通じて電解槽に供給し、電解温度100〜103℃、アノード電流密度80〜85A/m、電解電圧2.2〜3.5V、電解期間12〜20日の条件で電気分解を行うことにより、無水銀アルカリマンガン電池用電解二酸化マンガンを得る工程(3)と、
からなることを特徴とする、無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法。
A method for producing electrolytic manganese dioxide for mercury-free alkaline manganese batteries, comprising three consecutive steps:
Manganese oxide ore and pyrite ore are mixed, the mixture and sulfuric acid are continuously fed into a continuous leaching tank consisting of 1 to 7 stirred leaching tanks, the reaction temperature is controlled to 90 to 95 ° C., One-step or multi-stage continuous leaching is carried out over 4 hours to remove potassium ions, then iron is removed by means of iron separation by neutralization, lime powder is added at the latter stage of the iron removal treatment, and 90 to 95 A step (1) of obtaining a manganese sulfate solution by adjusting the pH value of the solution to 6 to 6.5 at 3 ° C. over 3 to 4 hours;
In order to carry out purification to remove impurities from the manganese sulfate solution by a two-stage continuous purification process, as a first stage of the continuous purification process of the manganese sulfate solution, calcium sulfide is added to the manganese sulfate solution whose temperature is controlled at 60 ° C. was added, the second stage of the refining process, the first step wherein the manganese sulfate solution treated with that flowing through the trough and to remove calcium and magnesium in a fluidized process liquid, then purified the sulfate by transferring the solution of manganese to the storage tank, after it is 32 hours standing at the storage tank, and the step (2) to remove the standing said calcium and magnesium impurities from manganese sulfate solution as a precipitate,
After ultrafiltered purified manganese sulfate solution obtained in the step (2), the resulting manganese sulfate solution was heated to 90 to 100 ° C. with a plate heat converter, to which emulsifying agents and blowing The product obtained by adding the agent at the same time is supplied to the electrolytic cell through the pipe, electrolysis temperature 100 to 103 ° C., anode current density 80 to 85 A / m 2 , electrolysis voltage 2.2 to 3.5 V, electrolysis period 12 Step (3) of obtaining electrolytic manganese dioxide for anhydrous mercury-alkaline manganese battery by electrolysis under the condition of -20 days;
The manufacturing method of the electrolytic manganese dioxide for anhydrous silver alkaline manganese batteries characterized by comprising.
請求項1の無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法であって、前記工程(1)において、酸化マンガン鉱石と黄鉄鉱石とを1:0.24の比率で直接、連続浸出槽に供給すると同時に、硫酸および電解廃棄物質と、鉱石の酸に対する質量比率が1:0.47となるように混合することを特徴とする、無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法。 It is a manufacturing method of the electrolytic manganese dioxide for anhydrous mercury alkaline manganese batteries of Claim 1, Comprising: In the said process (1), a manganese oxide ore and a pyrite ore are directly supplied to a continuous leaching tank by the ratio of 1: 0.24. At the same time, a method for producing electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries , comprising mixing sulfuric acid and electrolytic waste material with a mass ratio of ore to acid of 1: 0.47. 請求項2の無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法であって、前記電解廃棄物が、前記工程(3)の電気分解中に発生した硫酸であることを特徴とする、無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries according to claim 2, wherein the electrolytic waste is sulfuric acid generated during the electrolysis in the step (3). A method for producing electrolytic manganese dioxide for a manganese battery . 請求項1の無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法であって、前記工程(3)において、電解を通じてアノードにおいて得られる未精製の電解二酸化マンガン生成物を粒径6〜8mmの粒状物に破砕し、得られた粒状物を洗浄タンクに移送して、水洗、苛性洗滌、水洗からなる3段階の洗滌処理を、第1段階の水の温度、および第2段階の洗滌におけるアルカリ溶液の温度がいずれも60〜70℃、最終段階における水の温度が80〜90℃、洗滌時間40時間で、かつ、これら洗滌液が蒸気により直接加熱されるとの条件下で行い、その後、粉砕工程により電解二酸化マンガンの粒径を必要とされる大きさにすることを特徴とする、無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide for anhydrous mercury-alkaline manganese batteries according to claim 1, wherein the unpurified electrolytic manganese dioxide product obtained at the anode through electrolysis in the step (3) is a granular material having a particle size of 6 to 8 mm. The granular material thus obtained is transferred to a washing tank and subjected to a three-stage washing treatment comprising water washing, caustic washing, and water washing, the temperature of the first stage water , and the alkali solution in the second stage washing. The temperature is 60 to 70 ° C., the temperature of the water in the final stage is 80 to 90 ° C., the washing time is 40 hours, and the washing liquid is directly heated by steam. A method for producing electrolytic manganese dioxide for anhydrous silver alkaline manganese batteries , characterized in that the particle size of electrolytic manganese dioxide is set to a required size. 請求項4の無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法であって、前記粉砕された電解二酸化マンガンを、濃厚相搬送法により重力型混合器に移送した後、当該混合器により16時間均一化混合を行うことを特徴とする、無水銀アルカリマンガン電池用電解二酸化マンガンの製造方法。 A method of manufacturing a mercury-free alkaline manganese battery for electrolytic manganese dioxide according to claim 4, after the ground electrolytic manganese dioxide was transferred to a gravity mixer by dense phase conveying method, by any such mixer 1 A method for producing electrolytic manganese dioxide for anhydrous silver alkaline manganese batteries , characterized by performing homogenization mixing for 6 hours.
JP2013518940A 2010-07-15 2011-07-09 Method for producing electrolytic manganese dioxide for mercury-free alkaline manganese batteries Active JP5764207B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010102279887A CN101892384B (en) 2010-07-15 2010-07-15 Method for producing mercury-free alkaline manganese electrolytic manganese dioxide
CN201010227988.7 2010-07-15
PCT/CN2011/077011 WO2012006935A1 (en) 2010-07-15 2011-07-09 Method for producing mercury-free alkaline-manganese type electrolyzed manganese dioxide

Publications (3)

Publication Number Publication Date
JP2013538936A JP2013538936A (en) 2013-10-17
JP2013538936A5 JP2013538936A5 (en) 2015-06-18
JP5764207B2 true JP5764207B2 (en) 2015-08-12

Family

ID=43101728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013518940A Active JP5764207B2 (en) 2010-07-15 2011-07-09 Method for producing electrolytic manganese dioxide for mercury-free alkaline manganese batteries

Country Status (4)

Country Link
US (1) US20130037416A1 (en)
JP (1) JP5764207B2 (en)
CN (1) CN101892384B (en)
WO (1) WO2012006935A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
CN101892384B (en) * 2010-07-15 2011-09-21 广西有色金属集团汇元锰业有限公司 Method for producing mercury-free alkaline manganese electrolytic manganese dioxide
CN102560526B (en) * 2011-12-23 2015-03-25 苏州大学 Preparation method of high-power electrolytic manganese dioxide
CN103074490B (en) * 2013-01-09 2014-03-12 广西有色金属集团汇元锰业有限公司 Purification method in electrolytic metal manganese production process by multi-mine method
CN103205772B (en) * 2013-04-15 2015-07-08 广西有色金属集团汇元锰业有限公司 Method for producing electrolytic manganese dioxide
CN103560240B (en) * 2013-11-07 2015-11-25 广西桂柳化工有限责任公司 Preparation method of special electrolytic manganese dioxide for mercury-free alkaline battery
CN103643252B (en) * 2013-12-05 2016-05-18 中信大锰矿业有限责任公司大新锰矿分公司 A kind of manganese dioxide electrolysis suspending agent
CN103710541B (en) * 2013-12-24 2015-12-30 柳州豪祥特科技有限公司 The method of wet production electrolytic manganese dioxide
KR101528507B1 (en) 2015-01-13 2015-06-12 한국지질자원연구원 Co-recovery method of cobalt and manganese from litium cells
CN104928709B (en) * 2015-06-24 2017-04-12 广西有色金属集团汇元锰业有限公司 Electrolytic system of manganese dioxide and production method of manganese dioxide
CN106480471B (en) * 2016-11-04 2018-05-22 柳州高新区欧亚自动化设备有限责任公司 EMD Continuous leaching process chemical combination slot pH value control devices and its control method
CN110143615A (en) * 2019-06-19 2019-08-20 贵州红星发展大龙锰业有限责任公司 The method that electrolytic manganese dioxide and electrolytic manganese dioxide depth remove potassium
CN110127766A (en) * 2019-07-02 2019-08-16 贵州中伟资源循环产业发展有限公司 A kind of preparation process of LITHIUM BATTERY manganese sulfate solution
CN110747329B (en) * 2019-11-26 2022-02-22 广西汇元锰业有限责任公司 Electrolytic manganese dioxide production method based on bagasse papermaking white mud
CN111620355A (en) * 2020-06-03 2020-09-04 四川兴晟锂业有限责任公司 Method for removing potassium ions in potassium hydroxide solution
CN112708753B (en) * 2020-12-29 2023-05-12 武钢资源集团大冶铁矿有限公司 Deep desulfurization treatment method and system for iron ore concentrate
CN113215387A (en) * 2021-02-25 2021-08-06 宁夏天元锰材料研究院(有限公司) Method and system for decomposing and activating manganese carbonate at low temperature
CN114477521B (en) * 2021-12-31 2024-05-28 广西大新汇元新能源科技有限责任公司 Electrolytic manganese dioxide wastewater treatment and manganese recycling method
CN114481165B (en) * 2021-12-31 2023-11-28 广西大新汇元新能源科技有限责任公司 Method for producing electrolytic manganese dioxide based on manganese dioxide ore half oxide
CN114715945A (en) * 2022-05-31 2022-07-08 广西下田锰矿有限责任公司 Method for purifying manganese sulfate solution with high efficiency
CN115074753A (en) * 2022-07-14 2022-09-20 广西桂柳新材料股份有限公司 Post-treatment impurity removal method for electrolytic manganese dioxide for alkaline manganese battery
CN115094441A (en) * 2022-07-14 2022-09-23 广西桂柳新材料股份有限公司 Production method of electrolytic manganese dioxide for lithium battery
CN115724470B (en) * 2022-09-26 2024-05-07 广西科技师范学院 Purification method of manganese sulfate solution

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1874827A (en) * 1931-05-12 1932-08-30 Burgess Battery Co Production of manganese dioxide
US2424958A (en) * 1943-08-31 1947-08-05 Dorr Co Process of electrodepositing a manganese dioxide compound
US3348912A (en) * 1963-09-23 1967-10-24 Utah Construction & Mining Co Method of preparing manganese sulfate from pyrite reduced manganese dioxide ores
JPS5121959B1 (en) * 1969-06-16 1976-07-06
JPS49197A (en) * 1972-04-21 1974-01-05
JPS5216880B2 (en) * 1973-09-20 1977-05-12
DE2949791A1 (en) * 1979-12-11 1981-06-19 Krupp Polysius Ag, 4720 Beckum STORAGE AND MIXING SILO FOR SCHUETTGUT
JPS5988324A (en) * 1982-11-12 1984-05-22 Japan Metals & Chem Co Ltd Method for purifying manganese sulfate solution for electrolytic manganese dioxide
JPS60103192A (en) * 1983-11-09 1985-06-07 Japan Metals & Chem Co Ltd Treatment of material accumulated in electrolytic cell
JPS60236458A (en) * 1984-05-10 1985-11-25 Toshiba Battery Co Ltd Battery containing no mercury
US4549943A (en) * 1984-11-01 1985-10-29 Union Carbide Corporation Suspension bath and process for production of electrolytic manganese dioxide
JPS6244586A (en) * 1985-08-20 1987-02-26 Toshiba Battery Co Ltd Production of electrolyzed manganese dioxide for battery
CN87102046A (en) * 1987-06-23 1987-12-09 桂阳县电解锰厂 Method with producing manganous sulphate solution from manganese dioxide ore
CN1027294C (en) * 1991-06-04 1995-01-04 上海钢铁研究所 Ti-alloy anode for electrolysis of MO2
JP3493835B2 (en) * 1995-10-16 2004-02-03 松下電器産業株式会社 Method for producing manganese dioxide and alkaline dry battery using the same
US6589693B1 (en) * 1999-08-05 2003-07-08 Eveready Battery Company, Inc. High discharge electrolytic manganese dioxide and an electrode and alkaline cell incorporating the same
JP4730488B2 (en) * 2000-04-04 2011-07-20 東ソー株式会社 Method for producing manganese ore processed product
US6630065B2 (en) * 2000-09-01 2003-10-07 Tosoh Corporation Powder of electrolytic manganese dioxide and process for producing the same
JP3553541B2 (en) * 2001-11-26 2004-08-11 三井金属鉱業株式会社 Method for producing positive electrode active material for battery and electrolytic manganese dioxide, and battery
US6896817B2 (en) * 2002-04-15 2005-05-24 Gregory S. Bowers Essentially insoluble heavy metal sulfide slurry for wastewater treatment
CN1861815A (en) * 2005-05-14 2006-11-15 广西汇元锰业有限公司 Process of continuously leaching manganese oxide ore
CN1907866A (en) * 2005-08-01 2007-02-07 李忠红 Method of preparing manganomanganic oxide directly by manganese ore
CN101456594A (en) * 2007-12-14 2009-06-17 杜祖德 Method for preparing manganese sulfate by using low grade manganese mud
KR20100136989A (en) * 2008-03-28 2010-12-29 지멘스 워터 테크놀로지스 코포레이션 Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
CN101684562A (en) * 2008-09-28 2010-03-31 熊一言 Liquid making technique for manganese oxide ore
CN101550556A (en) * 2009-04-01 2009-10-07 广西靖西县一洲锰业有限公司 Preparation method of electrolytic manganese dioxide for alkaline zinc-manganese battery
CN101892384B (en) * 2010-07-15 2011-09-21 广西有色金属集团汇元锰业有限公司 Method for producing mercury-free alkaline manganese electrolytic manganese dioxide

Also Published As

Publication number Publication date
CN101892384B (en) 2011-09-21
WO2012006935A1 (en) 2012-01-19
CN101892384A (en) 2010-11-24
US20130037416A1 (en) 2013-02-14
JP2013538936A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5764207B2 (en) Method for producing electrolytic manganese dioxide for mercury-free alkaline manganese batteries
JP2013538936A5 (en)
US20160308261A1 (en) Zero lead pollution process for recycling used lead acid batteries
CN104868187B (en) A kind of method that lead-acid battery cathode lead oxide is directly reclaimed in the cream from scrap lead
CN101736151B (en) Method for removing iron by oxidation and neutralization in cobalt wet smelting process
CN107190143A (en) The technique that a kind of Whote-wet method reclaims valuable element in complicated low-grade sulphide ore
CN109055757B (en) Method for recovering manganese dioxide and lead in anode slag of electrolytic manganese or electrolytic zinc
CA2808627C (en) Processing of manganous sulphate/dithionate liquors
JP2013001916A (en) Leaching method of nickel
CN102534223A (en) Method for recovering valuable metals from spent lithium-ion batteries
CN104762474B (en) Method for preparing ammonium molybdate through molybdenite
WO2018072499A1 (en) Method for recovering basic copper chloride from copper-containing waste liquid in sulfuric acid system
CN103572313A (en) Production method for mercury-free alkaline-manganese type electrolytic manganese dioxide
CN102994746B (en) Method for producing nickel sulfide ore concentrate by use of industrial waste acid
CN101338365B (en) Synthesizing method for molybdenum-nickel ore
CN103834805A (en) Method of leaching divalent cobalt from cobalt copper bidery metal
CN103911514A (en) Waste hard alloy grinding material recovery treatment method
CN106229577A (en) The method that the mixing of a kind of waste nickel hydrogen battery both positive and negative polarity material is leached
CN101603125B (en) Method for purification and impurity removal of nickel liquid
CN101709373A (en) Method and system for treating lead-zinc sulfide ores
CN103205772B (en) Method for producing electrolytic manganese dioxide
CN108199106B (en) Recovery process of waste materials in production process of nickel-cobalt-manganese ternary precursor
CN108330276A (en) Method for preparing high-purity iron powder using iron vitriol slag and products thereof and application
CN102634819A (en) Method for preparing electrolytic manganese/electrolytic manganese dioxide through leaching manganese oxide by sulfur dioxide
CN105018726B (en) A kind of lead zinc mineral intergrowth processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150227

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150612

R150 Certificate of patent or registration of utility model

Ref document number: 5764207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250