JP5763013B2 - Air conditioning and hot water supply complex system - Google Patents

Air conditioning and hot water supply complex system Download PDF

Info

Publication number
JP5763013B2
JP5763013B2 JP2012137580A JP2012137580A JP5763013B2 JP 5763013 B2 JP5763013 B2 JP 5763013B2 JP 2012137580 A JP2012137580 A JP 2012137580A JP 2012137580 A JP2012137580 A JP 2012137580A JP 5763013 B2 JP5763013 B2 JP 5763013B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
water supply
heat exchanger
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012137580A
Other languages
Japanese (ja)
Other versions
JP2014001893A (en
Inventor
智也 三澤
智也 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012137580A priority Critical patent/JP5763013B2/en
Publication of JP2014001893A publication Critical patent/JP2014001893A/en
Application granted granted Critical
Publication of JP5763013B2 publication Critical patent/JP5763013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、空調サイクルと給湯サイクルとを備える空調給湯複合システムに関する。   The present invention relates to an air conditioning and hot water supply combined system including an air conditioning cycle and a hot water supply cycle.

従来の空調給湯複合システムの例が、特許文献1に記載されている。この公報に記載の空調給湯複合システムでは、空調と給湯を同時に安定的に提供するために、空調用冷凍サイクルと給湯用冷凍サイクルを備えている。そして、空調用冷凍サイクルは、熱源機と、室内機と、冷媒−冷媒熱交換器および給湯熱源用手段を有する給湯熱源用回路と、室内機と給湯熱源用回路へ流通する冷媒を分配する分岐ユニットを備えている。さらに、室内機と給湯熱源用回路を並列に接続し、分岐ユニットを介して熱源機と少なくとも2本の接続配管で接続している。   An example of a conventional combined air conditioning and hot water supply system is described in Patent Document 1. The combined air conditioning and hot water supply system described in this publication includes an air conditioning refrigeration cycle and a hot water refrigeration cycle in order to stably provide air conditioning and hot water simultaneously. The air-conditioning refrigeration cycle distributes the refrigerant flowing through the heat source unit, the indoor unit, the hot water supply source having the refrigerant-refrigerant heat exchanger and the hot water supply source, and the indoor unit and the hot water supply source circuit. It has a unit. Furthermore, the indoor unit and the hot water supply heat source circuit are connected in parallel, and are connected to the heat source device via at least two connection pipes via the branch unit.

一方、給湯用冷凍サイクルでは、給湯用圧縮機と、熱媒体−冷媒熱交換器と、給湯用絞り手段及び冷媒−冷媒熱交換器とを直列に接続している。空調用冷凍サイクルと給湯用冷凍サイクルとは、冷媒−冷媒熱交換器で、空調用冷媒と給湯用冷媒との間で熱交換している。   On the other hand, in the hot water supply refrigeration cycle, a hot water supply compressor, a heat medium-refrigerant heat exchanger, a hot water supply throttle means, and a refrigerant-refrigerant heat exchanger are connected in series. The air-conditioning refrigeration cycle and the hot water supply refrigeration cycle are refrigerant-refrigerant heat exchangers that exchange heat between the air-conditioning refrigerant and the hot water supply refrigerant.

特開2010−236817号公報JP 2010-236817 A

上記特許文献1に記載の空調給湯複合システムは、空調用冷凍サイクルと給湯用冷凍サイクルを冷媒−冷媒熱交換器で接続することにより、従来大気に放出していた空調用冷凍サイクルの排熱を給湯用冷凍サイクルに取り込んで利用している。しかしながら、この特許文献1に記載の空調給湯複合システムでは、空調用冷凍サイクルと給湯用冷凍サイクルを同時に運転している場合にしか排熱を利用できない。そのため例えば、給湯需要が少ない場合には、給湯用冷凍サイクルが停止してしまい排熱を利用できない。   The combined air conditioning and hot water supply system described in Patent Document 1 connects the refrigeration cycle for air conditioning and the refrigeration cycle for hot water supply with a refrigerant-refrigerant heat exchanger, thereby removing waste heat of the air conditioning refrigeration cycle that has been conventionally released to the atmosphere. It is used by incorporating it into a refrigeration cycle for hot water supply. However, in the air conditioning and hot water supply combined system described in Patent Document 1, exhaust heat can be used only when the air conditioning refrigeration cycle and the hot water supply refrigeration cycle are simultaneously operated. Therefore, for example, when the demand for hot water supply is small, the hot water supply refrigeration cycle stops and the exhaust heat cannot be used.

また、空調用冷凍サイクルと給湯用冷凍サイクルを同時に運転している場合においても、空調用冷凍サイクルの排熱量が給湯用冷凍サイクルの吸熱量に対して極端に小さい場合には、空調用冷凍サイクルの排熱が不十分となり、サイクル効率が低下する。その逆に、給湯用冷凍サイクルの吸熱量が空調用冷凍サイクルの排熱量に対して極端に小さい場合には、給湯用冷凍サイクルの吸熱が不十分となり、この場合もサイクル効率が低下する。   In addition, even when the air conditioning refrigeration cycle and the hot water supply refrigeration cycle are operated simultaneously, if the exhaust heat amount of the air conditioning refrigeration cycle is extremely small relative to the heat absorption amount of the hot water supply refrigeration cycle, the air conditioning refrigeration cycle The exhaust heat is insufficient, and the cycle efficiency decreases. On the contrary, when the heat absorption amount of the hot water supply refrigeration cycle is extremely small with respect to the exhaust heat amount of the air conditioning refrigeration cycle, the heat absorption of the hot water supply refrigeration cycle becomes insufficient, and also in this case, the cycle efficiency is lowered.

本発明は、上記従来の技術の不具合に鑑みなされたものであり、その目的は、空調給湯複合システムにおいて、給湯サイクルの運転状態に関わらず空調サイクルの排熱を回収し給湯に利用できるようにし、更に、空調サイクルと給湯サイクルの間で熱交換する場合に、空調サイクルと給湯サイクルの状態に関わらずサイクル効率の低下を防止することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to make it possible to recover exhaust heat from an air conditioning cycle and use it for hot water supply in an air conditioning and hot water supply complex system regardless of the operating state of the hot water supply cycle. Furthermore, when heat exchange is performed between the air conditioning cycle and the hot water supply cycle, it is to prevent a decrease in cycle efficiency regardless of the state of the air conditioning cycle and the hot water supply cycle.

上記目的を達成する本発明の特徴は、空調給湯複合システムが、空調サイクルと、給湯サイクルと、前記空調サイクル内を流通する冷媒と熱交換する第1水−冷媒熱交換器と、前記第1水−冷媒熱交換器で熱交換して温度上昇した水を貯湯する第1貯湯槽と、前記給湯サイクル内を流通する冷媒と熱交換する第2水−冷媒熱交換器と、前記第2水−冷媒熱交換器で熱交換して温度上昇した水を貯湯する第2貯湯槽と、前記空調サイクル内の冷媒と前記給湯サイクル内の冷媒とが熱交換する冷媒−冷媒熱交換器と、前記第1貯湯槽の底部に配管接続した第1給水口と、前記第2貯湯槽の底部に配管接続した第2給水口と、前記第1貯湯槽の上部と前記第2貯湯槽の上部を第1の三方弁を介して選択的に連通し、前記第1貯湯槽の水と前記第2貯湯槽の水を混合して給湯する第1の接続路と、前記第1貯湯槽の上部と前記第2の貯湯槽の下部を第2の三方弁を介して選択的に連通し、前記第1貯湯槽の上部の水を前記第2貯湯槽の下部に供給する第2の接続路と、を備えたことにある。 Feature of the present invention to achieve the above object, an air conditioning hot-water supply complex system, and the air conditioning cycle, a hot water supply cycle, the first water exchanges heat with the refrigerant circulating in the air conditioning cycle - the refrigerant heat exchanger, the first water - a first hot water storage tank for hot water storage heat exchanger to a temperature elevated water refrigerant heat exchanger, the second coolant exchanges heat with the refrigerant circulating in the hot water supply cycle - and the refrigerant heat exchanger, the second water - a second hot water tank to the hot water storage heat exchanger to a temperature elevated water refrigerant heat exchanger, the refrigerant and the refrigerant heat exchanger in the refrigerant and the hot water supply cycle in the air conditioning cycle - the refrigerant heat exchanger, wherein A first water supply port connected to the bottom of the first hot water tank, a second water supply port connected to the bottom of the second hot water tank, an upper part of the first hot water tank, and an upper part of the second hot water tank 1 through the three-way valve, and the water in the first hot water tank and the second storage. The first connection path for mixing and supplying hot water in the tank, the upper part of the first hot water tank, and the lower part of the second hot water tank are selectively communicated via a second three-way valve, and the first And a second connection path for supplying water in the upper part of the hot water tank to the lower part of the second hot water tank .

本発明によれば、空調サイクルと給湯サイクル間で熱交換可能な空調給湯複合システムにおいて、空調サイクルに排熱回収用水−冷媒熱交換器を付設するとともに、空調サイクルと給湯サイクルに別個に貯湯槽を配設し、これら個別の貯湯槽の上部同士および空調用貯湯槽の上部と給湯用貯湯槽の底部とを選択的に連通したので、給湯サイクルの運転状態に関わらず、空調サイクルの排熱を回収し給湯に利用できる。更に、空調サイクルと給湯サイクル間の熱交換時おいて、空調サイクルと給湯サイクルの状態に関わらず、サイクル効率の低下を防止できる。   According to the present invention, in a combined air conditioning and hot water supply system capable of exchanging heat between an air conditioning cycle and a hot water supply cycle, an exhaust heat recovery water-refrigerant heat exchanger is attached to the air conditioning cycle, and hot water storage tanks are separately provided for the air conditioning cycle and the hot water supply cycle. The upper part of these individual hot water tanks and the upper part of the air conditioning hot water tank and the bottom part of the hot water hot water tank are selectively communicated with each other. Can be recovered and used for hot water supply. Furthermore, at the time of heat exchange between the air conditioning cycle and the hot water supply cycle, a decrease in cycle efficiency can be prevented regardless of the state of the air conditioning cycle and the hot water supply cycle.

本発明に係る空調給湯複合システムの一実施例のシステム図である。1 is a system diagram of an embodiment of an air conditioning and hot water supply complex system according to the present invention. 図1に示した空調給湯複合システムにおける冷房運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the cooling operation mode in the air-conditioning / hot-water supply combined system shown in FIG. 図1に示した空調給湯複合システムにおける冷房運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the cooling operation mode in the air-conditioning / hot-water supply combined system shown in FIG. 図1に示した空調給湯複合システムにおける暖房運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the heating operation mode in the air-conditioning / hot-water supply combined system shown in FIG. 図1に示した空調給湯複合システムにおける暖房運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the heating operation mode in the air-conditioning / hot-water supply combined system shown in FIG. 図1に示した空調給湯複合システムにおける貯湯運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the hot water storage operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける貯湯運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the hot water storage operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける貯湯運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the hot water storage operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける貯湯運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the hot water storage operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける貯湯運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the hot water storage operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける貯湯運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the hot water storage operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける貯湯運転モ−ドの冷媒と水の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant and water of the hot water storage operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける給湯運転モ−ドの水の流れを説明する図である。It is a figure explaining the flow of the water of the hot-water supply operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける給湯運転モ−ドの水の流れを説明する図である。It is a figure explaining the flow of the water of the hot-water supply operation mode in the air-conditioning hot-water supply complex system shown in FIG. 図1に示した空調給湯複合システムにおける給湯運転モ−ドの水の流れを説明する図である。It is a figure explaining the flow of the water of the hot-water supply operation mode in the air-conditioning hot-water supply complex system shown in FIG.

以下、本発明に係る空調給湯複合システム100の一実施例を、図面を用いて説明する。なお、以下の説明において、特に弁の開閉を図面に明記する場合には、黒塗りを開としている。三方弁等で一部黒塗りがある場合には白い部分は閉を示し、特に明細書中の記載がない場合の白い部分は、開閉いずれの場合もありうる。   Hereinafter, an embodiment of a combined air conditioning and hot water supply system 100 according to the present invention will be described with reference to the drawings. In addition, in the following description, when the opening / closing of the valve is clearly shown in the drawings, black painting is opened. When a three-way valve or the like is partially blackened, a white portion indicates a closed state, and a white portion without a description in the specification can be either opened or closed.

初めに、図1ないし図5を用いて、本システムの概要と冷暖房運転について、説明する。なお、本実施例に示す空調給湯複合システム100は、ヒートポンプ式の空調サイクル1とヒートポンプ式の給湯サイクル2とを組み合わせたシステムで、給湯サイクル2の運転状態に関わらず空調サイクル1の排熱を回収して、給湯に利用できるシステムである。   First, the outline of the present system and the air conditioning operation will be described with reference to FIGS. 1 to 5. The combined air conditioning and hot water supply system 100 shown in the present embodiment is a system in which a heat pump type air conditioning cycle 1 and a heat pump type hot water supply cycle 2 are combined, and the exhaust heat of the air conditioning cycle 1 is discharged regardless of the operating state of the hot water supply cycle 2. It is a system that can be collected and used for hot water supply.

(システムの概要)
図1は、空調給湯複合システム100のシステム図である。空調給湯複合システム100は、それぞれ独立に運転可能な空調サイクル1および給湯サイクル2と、空調排熱回収用水循環経路3と、給湯用水循環経路4と、第1、第2貯湯槽5、6と、第1水−冷媒熱交換器7と、冷媒−冷媒熱交換器8とを、主たる構成機器としている。第1貯湯槽5と第2貯湯槽6は、2つの水経路9、10により接続されている。
(System overview)
FIG. 1 is a system diagram of an air conditioning and hot water supply complex system 100. The air-conditioning and hot water supply combined system 100 includes an air-conditioning cycle 1 and a hot-water supply cycle 2 that can be operated independently, an air-conditioning exhaust heat recovery water circulation path 3, a hot-water supply water circulation path 4, and first and second hot water storage tanks 5 and 6, respectively. The first water-refrigerant heat exchanger 7 and the refrigerant-refrigerant heat exchanger 8 are the main components. The first hot water tank 5 and the second hot water tank 6 are connected by two water paths 9 and 10.

空調サイクル1は、R410A冷媒が循環するヒートポンプサイクルであり、圧縮機11および四方弁12、三方弁13、14、膨張弁15、16、室内熱交換器17、室外熱交換器18を備えている。四方弁12を切替えれば、冷房運転と暖房運転とが切替わる。冷房運転時には、圧縮機11の吐出側に設けた四方弁12を三方弁13への接続側に切替える。一方、暖房運転時には、四方弁12を三方弁14への接続側に切替える。   The air conditioning cycle 1 is a heat pump cycle in which the R410A refrigerant circulates, and includes a compressor 11, a four-way valve 12, three-way valves 13, 14, expansion valves 15, 16, an indoor heat exchanger 17, and an outdoor heat exchanger 18. . If the four-way valve 12 is switched, the cooling operation and the heating operation are switched. During the cooling operation, the four-way valve 12 provided on the discharge side of the compressor 11 is switched to the connection side to the three-way valve 13. On the other hand, during the heating operation, the four-way valve 12 is switched to the connection side to the three-way valve 14.

四方弁12に配管接続された三方弁13には、第1水−冷媒熱交換器7に接続する経路と室外熱交換器18に接続する経路が接続されている。第1水−冷媒熱交換器7の一端側には三方弁17が、他端側には冷媒−冷媒熱交換器8が配管接続され、冷媒−冷媒熱交換器8の他端側には膨張弁16が配管接続されている。室外熱交換器18の一端側は三方弁13に、他端側は膨張弁15に配管接続されている。2つの膨張弁15、16の他端側はまとめられ、室内熱交換器17に配管接続される。室内熱交換器17は、四方弁12に配管接続された三方弁14に配管接続されている。三方弁14の残りのポ−トは、第1水−冷媒熱交換器7に配管接続されている。   A path connected to the first water-refrigerant heat exchanger 7 and a path connected to the outdoor heat exchanger 18 are connected to the three-way valve 13 piped to the four-way valve 12. A three-way valve 17 is connected to one end of the first water-refrigerant heat exchanger 7, a refrigerant-refrigerant heat exchanger 8 is piped to the other end, and the other end of the refrigerant-refrigerant heat exchanger 8 is expanded. The valve 16 is connected by piping. One end of the outdoor heat exchanger 18 is connected to the three-way valve 13 and the other end is connected to the expansion valve 15 by piping. The other end sides of the two expansion valves 15 and 16 are combined and connected to the indoor heat exchanger 17 by piping. The indoor heat exchanger 17 is piped to a three-way valve 14 piped to the four-way valve 12. The remaining port of the three-way valve 14 is connected to the first water-refrigerant heat exchanger 7 by piping.

なお、本実施例では空調サイクル1内を循環する冷媒として非共沸冷媒であるR410Aを用いた場合について説明するが、冷媒はR410Aに限らず、R407C、R404A、R507A、R134a等、空調サイクル1に利用できるものであればよい。また、空調サイクル1の構成は図1に示したものに限らず、ヒートポンプサイクルを用いた空調機能を有するものであって、第1水−冷媒熱交換器7に排熱を放出し、冷媒−冷媒熱交換器8を介して給湯サイクルと熱交換できるものであればよい。   In this embodiment, the case where R410A which is a non-azeotropic refrigerant is used as the refrigerant circulating in the air conditioning cycle 1 will be described. Anything can be used. The configuration of the air-conditioning cycle 1 is not limited to that shown in FIG. 1 and has an air-conditioning function using a heat pump cycle, which discharges exhaust heat to the first water-refrigerant heat exchanger 7 to generate a refrigerant- Any material that can exchange heat with the hot water supply cycle via the refrigerant heat exchanger 8 may be used.

給湯サイクル2は、CO冷媒が循環するヒートポンプサイクルであり、圧縮機19および膨張弁20、室外熱交換器21を主構成機器として備えている。圧縮機19の吐出側は第2水−冷媒熱交換器22に配管接続されており、膨張弁20、三方弁23の順に配管接続されている。膨張弁20に配管接続された三方弁23には、室外熱交換器21に接続する経路と冷媒−冷媒熱交換器8に接続する経路が接続されている。室外熱交換器21と冷媒−冷媒熱交換器8の他端側はまとめられ、圧縮機19の吸込側に配管接続されている。 The hot water supply cycle 2 is a heat pump cycle in which a CO 2 refrigerant circulates, and includes a compressor 19, an expansion valve 20, and an outdoor heat exchanger 21 as main components. The discharge side of the compressor 19 is connected to the second water-refrigerant heat exchanger 22 by piping, and the expansion valve 20 and the three-way valve 23 are connected in this order. A path connecting to the outdoor heat exchanger 21 and a path connecting to the refrigerant-refrigerant heat exchanger 8 are connected to the three-way valve 23 connected to the expansion valve 20 by piping. The other end sides of the outdoor heat exchanger 21 and the refrigerant-refrigerant heat exchanger 8 are combined and connected to the suction side of the compressor 19 by piping.

なお、給湯サイクル2を循環する冷媒はCOに限らず、R410A、R407C、R404A、R507A、R134a等の給湯サイクルに利用できるものであればよい。ただし、高温を発生するためにはCO冷媒が好ましい。また給湯サイクル2の構成は、図1に示したものに限らず、第2水−冷媒熱交換器8に流入した水を加熱し、冷媒−冷媒熱交換器8を介して空調サイクル1と熱交換できるものであればよい。 In addition, the refrigerant | coolant which circulates through the hot water supply cycle 2 is not limited to CO 2, and any refrigerant that can be used for the hot water supply cycle such as R410A, R407C, R404A, R507A, and R134a may be used. However, a CO 2 refrigerant is preferable for generating a high temperature. The configuration of the hot water supply cycle 2 is not limited to that shown in FIG. 1, and the water flowing into the second water-refrigerant heat exchanger 8 is heated, and the air conditioning cycle 1 and the heat are supplied via the refrigerant-refrigerant heat exchanger 8. Anything that can be exchanged is acceptable.

空調排熱回収用水循環経路3は、水循環ポンプ24を備えている。空調排熱回収用水循環経路3では、水循環ポンプ24の吐出側および第1水−冷媒熱交換器7、第1貯湯槽5の上部、三方弁25が順に配管接続されている。水循環ポンプ24の吸込み側と第1貯湯槽5の底部とが、配管接続されている。   The water circulation path 3 for air conditioning exhaust heat recovery includes a water circulation pump 24. In the water circulation path 3 for air-conditioning exhaust heat recovery, the discharge side of the water circulation pump 24, the first water-refrigerant heat exchanger 7, the upper part of the first hot water tank 5, and the three-way valve 25 are connected by piping. The suction side of the water circulation pump 24 and the bottom of the first hot water tank 5 are connected by piping.

給湯用水循環経路4は、水循環ポンプ26を備えており、水循環ポンプ26の吐出側および第2水−冷媒熱交換器22、第2貯湯槽6の上部、三方弁25が順に配管接続されている。水循環ポンプ26の吸込側には、第2貯湯槽6の底部と三方弁27とを配管接続する第2の水経路9が接続されている。水経路9では、第1貯湯槽5の上部と三方弁27とが配管接続される。   The hot water supply water circulation path 4 includes a water circulation pump 26, and the discharge side of the water circulation pump 26, the second water-refrigerant heat exchanger 22, the upper part of the second hot water storage tank 6, and the three-way valve 25 are connected by piping. . Connected to the suction side of the water circulation pump 26 is a second water path 9 that pipe-connects the bottom of the second hot water storage tank 6 and the three-way valve 27. In the water path 9, the upper part of the first hot water tank 5 and the three-way valve 27 are connected by piping.

第1貯湯槽5の上部と第2貯湯槽6の上部は、三方弁25に配管接続されており、三方弁25の残る一方のポートは下流側に配置した三方弁28に配管接続されている。三方弁28は、三方弁25に配管接続される他に、給水口と給湯口に配管接続されている。給水口および給湯口には、図示しないが、開閉弁が取り付けられている。   The upper part of the first hot water tank 5 and the upper part of the second hot water tank 6 are connected to a three-way valve 25, and the remaining one port of the three-way valve 25 is connected to a three-way valve 28 arranged on the downstream side. . In addition to being piped to the three-way valve 25, the three-way valve 28 is piped to a water supply port and a hot water supply port. Although not shown in the drawing, an opening / closing valve is attached to the water supply port and the hot water supply port.

本実施例に示した空調給湯複合システム100では、空調サイクル1と給湯サイクル2を制御するため、および水と冷媒の循環・流通を制御するために、各部に温度センサが取り付けられている。また、室外熱交換器18には、室外熱交換器18の周辺の外気温を計測する温度センサ30が設けられている。第1貯湯槽5の底部と上部には、温度センサ29、31がそれぞれ取り付けられており、第1貯湯槽5の底部と上部の水温を計測する。第2貯湯槽6の底部と上部には、温度センサ33、32がそれぞれ取り付けられており、第2貯湯槽6の底部と上部の水温を計測する。   In the combined air conditioning and hot water supply system 100 shown in the present embodiment, a temperature sensor is attached to each part in order to control the air conditioning cycle 1 and the hot water supply cycle 2 and to control circulation and circulation of water and refrigerant. In addition, the outdoor heat exchanger 18 is provided with a temperature sensor 30 that measures the outside air temperature around the outdoor heat exchanger 18. Temperature sensors 29 and 31 are respectively attached to the bottom and top of the first hot water tank 5 and measure the water temperature at the bottom and top of the first hot water tank 5. Temperature sensors 33 and 32 are respectively attached to the bottom and top of the second hot water tank 6, and measure the water temperature at the bottom and top of the second hot water tank 6.

なお図1に示した例では、第1貯湯槽5と第2貯湯槽6を独立した別々の容器として示しているが、一つの容器の中に仕切りを設け、一方を第1貯湯槽5、他方を第2貯湯槽6としてもよい。   In addition, in the example shown in FIG. 1, although the 1st hot water tank 5 and the 2nd hot water tank 6 are shown as an independent separate container, a partition is provided in one container and one side is the 1st hot water tank 5, The other may be the second hot water tank 6.

このように構成した空調給湯複合システム100における、各運転モードでの動作を、以下に運転モードごとに説明する。   The operation in each operation mode in the air conditioning and hot water supply combined system 100 configured as described above will be described below for each operation mode.

(冷房運転モ−ド)
図1に示した空調給湯複合システム100を、冷房運転した時の冷媒と水の流れを図2、図3に示す。圧縮機11が起動され、図2、図3中の矢印で示した方向に冷媒が流れるように、三方弁13、14および四方弁12が設定される。
(Cooling operation mode)
The flow of the refrigerant and water when the air conditioning and hot water supply combined system 100 shown in FIG. 1 is cooled is shown in FIGS. The compressor 11 is started, and the three-way valves 13 and 14 and the four-way valve 12 are set so that the refrigerant flows in the direction indicated by the arrows in FIGS.

図2は、パターンAの場合の水及び冷媒流れを示す図である。パターンAは、第1貯湯槽5の底部に設けた温度センサ29が計測した水温T29が予め定めた温度T以下のときに、圧縮機11で圧縮された冷媒を第1水−冷媒熱交換器7に分配するパターンである。 FIG. 2 is a diagram showing water and refrigerant flows in the case of Pattern A. In the pattern A, when the water temperature T 29 measured by the temperature sensor 29 provided at the bottom of the first hot water tank 5 is equal to or lower than the predetermined temperature T 1, the refrigerant compressed by the compressor 11 is changed to the first water-refrigerant heat. This pattern is distributed to the exchanger 7.

図3は、パターンBの場合の水及び冷媒流れを示す図である。パターンBは、温度センサ29が計測した水温T29が予め定めた温度T以上の場合に、圧縮機11で圧縮された冷媒を室外熱交換器18に導くパターンである。 FIG. 3 is a diagram showing water and refrigerant flows in the case of Pattern B. The pattern B is a pattern for guiding the refrigerant compressed by the compressor 11 to the outdoor heat exchanger 18 when the water temperature T 29 measured by the temperature sensor 29 is equal to or higher than a predetermined temperature T 1 .

ここで予め定めた温度Tとしては、例えば、第1水−冷媒熱交換器7に冷媒を分配したパターンAに示す状態の空調サイクル1の効率と、室外熱交換器18に冷媒を導いたパターンBに示す状態の空調サイクル1の効率が一致する温度を用いる。温度Tを算出するには、例えば、各水温T29におけるパターンAに示す空調サイクル1のサイクル効率COP1と、外気温T30ごとにパターンBに示す空調サイクル1のサイクル効率COP2を、それぞれシミュレ−ション等で予め求めてテ−ブル化しておく。そして、外気温T30とサイクル効率COP2のテ−ブルから、室外熱交換器18の近傍に設けた温度センサ30が検出した温度T30に基づいてパターンBに示した空調サイクル1のサイクル効率COP2を算出する。算出されたサイクル効率COP2と一致するサイクル効率COP1になるパターンAに示した空調サイクル1の水温T31を求め、これをTとする。 Here, as the predetermined temperature T 1 , for example, the efficiency of the air conditioning cycle 1 in the state shown in the pattern A in which the refrigerant is distributed to the first water-refrigerant heat exchanger 7 and the refrigerant is led to the outdoor heat exchanger 18. A temperature at which the efficiency of the air-conditioning cycle 1 in the state shown in the pattern B matches is used. To calculate the temperature T 1 of, for example, the cycle efficiency COP1 of the air conditioning cycle 1 shown in pattern A in each temperature T 29, the cycle efficiency COP2 of the air conditioning cycle 1 shown in pattern B for each outside air temperature T 30, respectively Simulation -Obtained in advance by a method or the like and converted into a table. Then, the outside air temperature T 30 and the cycle efficiency COP2 Te - from table, the outdoor heat exchanger 18 cycle efficiency COP2 of the air conditioning cycle 1 temperature sensor 30 is shown in pattern B, based on the temperature T 30 was detected provided in the vicinity of Is calculated. The temperature T 31 of the air conditioning cycle 1 shown in pattern A comprising a cycle efficiency COP1 matching the calculated cycle efficiency COP2 determined, which is referred to as T 1.

パターンAに示した空調サイクル1では、三方弁13から分配された高温高圧の冷媒は第1水−冷媒熱交換器7に流入し、この第1水−冷媒熱交換器7内を流通する水に熱を放出して凝縮する。凝縮した冷媒は、冷媒−冷媒熱交換器8を通過し膨張弁16により断熱膨張され低温低圧となって室内熱交換器17に流入する。そして、空調空間内の熱を吸収して蒸発する。蒸発した冷媒は、四方弁12を経て圧縮機11の吸込側に流入する。   In the air conditioning cycle 1 shown in the pattern A, the high-temperature and high-pressure refrigerant distributed from the three-way valve 13 flows into the first water-refrigerant heat exchanger 7 and the water flowing through the first water-refrigerant heat exchanger 7. Heat is condensed and condensed. The condensed refrigerant passes through the refrigerant-refrigerant heat exchanger 8, is adiabatically expanded by the expansion valve 16, becomes low temperature and low pressure, and flows into the indoor heat exchanger 17. And it absorbs the heat in the air-conditioned space and evaporates. The evaporated refrigerant flows into the suction side of the compressor 11 through the four-way valve 12.

パターンBに示す空調サイクル1では、三方弁13を経た高温高圧の冷媒は室外熱交換器18に流入し、外気に熱を放出して凝縮する。凝縮した冷媒は膨張弁15で断熱膨張し低温低圧となって室内熱交換器17に流入し、空調空間内の熱を吸収して蒸発する。蒸発した冷媒は、四方弁12を経て圧縮機11の吸込側に流入する。   In the air conditioning cycle 1 shown in pattern B, the high-temperature and high-pressure refrigerant that has passed through the three-way valve 13 flows into the outdoor heat exchanger 18 and releases heat to the outside air to condense. The condensed refrigerant is adiabatically expanded by the expansion valve 15, becomes low temperature and low pressure, flows into the indoor heat exchanger 17, absorbs heat in the air-conditioned space, and evaporates. The evaporated refrigerant flows into the suction side of the compressor 11 through the four-way valve 12.

三方弁13から第1水−冷媒熱交換器7に冷媒が分配されている場合には、水循環ポンプ24を起動する。第1貯湯槽5の底部の水が水循環ポンプ24に吸い込まれ、第1水−冷媒熱交換器7に流入して空調サイクル1から放出された熱を吸収する。空調サイクル1の熱を吸収した水は、第1貯湯槽5の上部に還流し貯留される。   When the refrigerant is distributed from the three-way valve 13 to the first water-refrigerant heat exchanger 7, the water circulation pump 24 is activated. Water at the bottom of the first hot water tank 5 is sucked into the water circulation pump 24 and flows into the first water-refrigerant heat exchanger 7 to absorb the heat released from the air conditioning cycle 1. The water that has absorbed the heat of the air conditioning cycle 1 is refluxed and stored in the upper part of the first hot water tank 5.

(暖房運転モ−ド)
暖房運転モ−ドにおける冷媒と水の流れを、図4、図5に示す。圧縮機11が起動され、三方弁13、14、四方弁12は図に示す矢印の方向に冷媒が流れるように設定される。
(Heating operation mode)
The flow of the refrigerant and water in the heating operation mode is shown in FIGS. The compressor 11 is started, and the three-way valves 13, 14 and the four-way valve 12 are set so that the refrigerant flows in the direction of the arrow shown in the figure.

図4は、パターンAの場合の水及び冷媒流れを示す図である。ここで、パターンAは、室内空調制御において、室内熱交換器17から室内へ熱を供給するように節制されたときに、圧縮機11で圧縮された冷媒を室内熱交換器17及び第1水−冷媒熱交換器7に分配するパターンである。   FIG. 4 is a diagram illustrating water and refrigerant flows in the case of Pattern A. Here, in the pattern A, in the indoor air conditioning control, when the air is controlled to supply heat from the indoor heat exchanger 17 to the room, the refrigerant compressed by the compressor 11 is converted into the indoor heat exchanger 17 and the first water. A pattern for distributing to the refrigerant heat exchanger 7.

図5は、パターンBの場合の水及び冷媒流れを示す図である。パターンBは、室内への熱供給を停止するように設定された場合に、圧縮機11で圧縮された冷媒を第1水−冷媒熱交換器7に導くパターンである。   FIG. 5 is a diagram illustrating water and refrigerant flows in the case of Pattern B. The pattern B is a pattern for guiding the refrigerant compressed by the compressor 11 to the first water-refrigerant heat exchanger 7 when the heat supply to the room is set to be stopped.

パターンAに示した空調サイクル1では、圧縮機11から吐出された高温高圧の冷媒は、四方弁12を経て三方弁14に流入する。三方弁14は、室内熱交換器17と第1水−冷媒熱交換器7に冷媒を分配する。三方弁14における冷媒の分配比率は、例えば、圧縮機11の回転数に応じて決定する。   In the air conditioning cycle 1 shown in pattern A, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the three-way valve 14 via the four-way valve 12. The three-way valve 14 distributes the refrigerant to the indoor heat exchanger 17 and the first water-refrigerant heat exchanger 7. The refrigerant distribution ratio in the three-way valve 14 is determined in accordance with, for example, the rotational speed of the compressor 11.

ここで三方弁14における冷媒の分配比率の決定例を、以下に説明する。一般に圧縮機の効率は回転数に依存し、効率が最適な回転数が存在する。そこで、圧縮機の効率を極力低下させないように、三方弁14における冷媒の分配比率を決定する。具体的には、暖房負荷が小さく、圧縮機11の回転数が最適回転数より低く設定される場合、三方弁14から第1水−冷媒熱交換器7への冷媒分配量を増やして、圧縮機11の回転数を最適回転数に設定する。一方、暖房負荷が大きく圧縮機11の回転数が最適回転数より高く設定される場合は、三方弁14から第1水−冷媒熱交換器7への冷媒分配量をゼロにする。   Here, an example of determining the distribution ratio of the refrigerant in the three-way valve 14 will be described below. Generally, the efficiency of a compressor depends on the rotational speed, and there is a rotational speed at which the efficiency is optimum. Accordingly, the refrigerant distribution ratio in the three-way valve 14 is determined so as not to reduce the efficiency of the compressor as much as possible. Specifically, when the heating load is small and the rotation speed of the compressor 11 is set lower than the optimal rotation speed, the refrigerant distribution amount from the three-way valve 14 to the first water-refrigerant heat exchanger 7 is increased and compression is performed. The rotation speed of the machine 11 is set to the optimum rotation speed. On the other hand, when the heating load is large and the rotation speed of the compressor 11 is set higher than the optimum rotation speed, the refrigerant distribution amount from the three-way valve 14 to the first water-refrigerant heat exchanger 7 is set to zero.

三方弁14から室内熱交換器17に分配された高温高圧の冷媒は、空調空間内に熱を放出して凝縮する。凝縮した冷媒は、膨張弁15で断熱膨張し低温低圧となって室外熱交換器18に流入し、室外の熱を吸収して蒸発する。蒸発した冷媒は、三方弁13、次いで四方弁12を経て圧縮機11の吸込側に流入する。   The high-temperature and high-pressure refrigerant distributed from the three-way valve 14 to the indoor heat exchanger 17 releases heat into the air-conditioned space and condenses. The condensed refrigerant is adiabatically expanded by the expansion valve 15, becomes low temperature and low pressure, flows into the outdoor heat exchanger 18, absorbs outdoor heat, and evaporates. The evaporated refrigerant flows into the suction side of the compressor 11 through the three-way valve 13 and then the four-way valve 12.

三方弁14から第1水−冷媒熱交換器7に分配された高温高圧の冷媒は、第1水−冷媒熱交換器7内を流通する水に熱を放出して凝縮する。凝縮した冷媒は、冷媒−冷媒熱交換器8、膨張弁16を通過して、室内熱交換器17から流出した冷媒と合流する。ここで、膨張弁16は全開に設定されている。   The high-temperature and high-pressure refrigerant distributed from the three-way valve 14 to the first water-refrigerant heat exchanger 7 releases heat into water flowing through the first water-refrigerant heat exchanger 7 and condenses. The condensed refrigerant passes through the refrigerant-refrigerant heat exchanger 8 and the expansion valve 16 and merges with the refrigerant that has flowed out of the indoor heat exchanger 17. Here, the expansion valve 16 is set to be fully open.

パターンBに示す空調サイクル1では、三方弁14を経た高温高圧の冷媒は、第1水−冷媒熱交換器7内を流通する水に熱を放出して凝縮する。凝縮した冷媒は、冷媒−冷媒熱交換器8、膨張弁16を通過して膨張弁15に流入する。ここで、膨張弁16は全開に設定されている。凝縮した冷媒は、膨張弁15で断熱膨張し低温低圧となって室外熱交換器18に流入し、室外の熱を吸収して蒸発する。蒸発した冷媒は、三方弁13、次いで四方弁12を経て圧縮機11の吸込側に流入する。   In the air conditioning cycle 1 shown in the pattern B, the high-temperature and high-pressure refrigerant that has passed through the three-way valve 14 releases heat to the water flowing through the first water-refrigerant heat exchanger 7 and condenses. The condensed refrigerant passes through the refrigerant-refrigerant heat exchanger 8 and the expansion valve 16 and flows into the expansion valve 15. Here, the expansion valve 16 is set to be fully open. The condensed refrigerant is adiabatically expanded by the expansion valve 15, becomes low temperature and low pressure, flows into the outdoor heat exchanger 18, absorbs outdoor heat, and evaporates. The evaporated refrigerant flows into the suction side of the compressor 11 through the three-way valve 13 and then the four-way valve 12.

ここで、パターンA、パターンBそれぞれの場合において、三方弁14から第1水−冷媒熱交換器7に冷媒が分配されているときは、水循環ポンプ24を起動する。第1貯湯槽5の底部の水は水循環ポンプ24に吸い込まれ、第1水−冷媒熱交換器7に流入して空調サイクル1から放出された熱を吸収する。空調サイクル1から熱を吸収した水は、第1貯湯槽5の上部に還流し貯留される。   Here, in each of the patterns A and B, when the refrigerant is distributed from the three-way valve 14 to the first water-refrigerant heat exchanger 7, the water circulation pump 24 is activated. The water at the bottom of the first hot water tank 5 is sucked into the water circulation pump 24 and flows into the first water-refrigerant heat exchanger 7 to absorb the heat released from the air conditioning cycle 1. The water that has absorbed heat from the air conditioning cycle 1 returns to the upper part of the first hot water tank 5 and is stored.

(貯湯運転モード)
貯湯運転モードにおける冷媒と水の流れを、図6〜図12に示す。圧縮機19と水循環ポンプ26が起動され、三方弁23は図に示す矢印の方向に冷媒が流れるように設定される。
(Hot water storage operation mode)
Flows of the refrigerant and water in the hot water storage operation mode are shown in FIGS. The compressor 19 and the water circulation pump 26 are activated, and the three-way valve 23 is set so that the refrigerant flows in the direction of the arrow shown in the figure.

ここで、空調サイクル1が停止しているときには、膨張弁20で膨張された冷媒を全て室外熱交換器21に導くパターンAとする。空調サイクル1が起動し冷房運転している場合は、膨張弁20で膨張された冷媒を冷媒−冷媒熱交換器8に分配し冷房排熱を吸熱するパターンBとする。空調サイクル1が起動し暖房運転している場合は、膨張弁20で膨張された冷媒を冷媒−冷媒熱交換器8に分配し空調サイクル1で生成された熱を吸熱するパターンCとする。パターンB、Cは、本発明の特徴的な運転パターンである。   Here, when the air-conditioning cycle 1 is stopped, a pattern A that guides all the refrigerant expanded by the expansion valve 20 to the outdoor heat exchanger 21 is used. When the air-conditioning cycle 1 is activated and the cooling operation is performed, the refrigerant is expanded to the pattern B in which the refrigerant expanded by the expansion valve 20 is distributed to the refrigerant-refrigerant heat exchanger 8 to absorb the exhaust heat. When the air conditioning cycle 1 is activated and heating operation is performed, the refrigerant expanded by the expansion valve 20 is distributed to the refrigerant-refrigerant heat exchanger 8, and the pattern C absorbs the heat generated in the air conditioning cycle 1. Patterns B and C are characteristic operation patterns of the present invention.

図6は、パターンAの場合の水及び冷媒流れを示す図である。このパターンAに示した給湯サイクル2では、圧縮機19から吐出された高温高圧の冷媒は第2水−冷媒熱交換器22に流入し、第2水−冷媒熱交換器22を流通する水に熱を放出して凝縮する。凝縮した冷媒は、膨張弁20で断熱膨張し低温低圧となって三方弁23に流入する。三方弁23に流入した冷媒は室外熱交換器21に導かれ、室外の熱を吸収して蒸発する。蒸発した冷媒は、圧縮機19の吸込側に還流する。   FIG. 6 is a diagram showing water and refrigerant flows in the case of Pattern A. In the hot water supply cycle 2 shown in this pattern A, the high-temperature and high-pressure refrigerant discharged from the compressor 19 flows into the second water-refrigerant heat exchanger 22 and turns into water flowing through the second water-refrigerant heat exchanger 22. It releases heat and condenses. The condensed refrigerant is adiabatically expanded by the expansion valve 20, becomes a low temperature and a low pressure, and flows into the three-way valve 23. The refrigerant that has flowed into the three-way valve 23 is led to the outdoor heat exchanger 21, where it absorbs heat from the outdoor and evaporates. The evaporated refrigerant returns to the suction side of the compressor 19.

一方、第2貯湯槽6の底部の水が水循環ポンプ26に吸い込まれ、第2水−冷媒熱交換器8に流入して給湯サイクル2から放出された熱を吸収する。給湯サイクル2の熱を吸収した水は、第2貯湯槽6の上部に還流し貯留される。   On the other hand, water at the bottom of the second hot water storage tank 6 is sucked into the water circulation pump 26 and flows into the second water-refrigerant heat exchanger 8 to absorb heat released from the hot water supply cycle 2. The water that has absorbed the heat of the hot water supply cycle 2 is refluxed and stored in the upper part of the second hot water storage tank 6.

パターンBにおいては、給湯サイクル2の吸熱量と冷房排熱量に基づいて、更に3つのパターンに分けられる。   The pattern B is further divided into three patterns based on the heat absorption amount and cooling exhaust heat amount of the hot water supply cycle 2.

図7は、パターンB1の場合の水及び冷媒流れを示す図である。パターンB1は、給湯サイクル2の吸熱量と冷房排熱量が同程度である場合、給湯サイクル2、空調サイクル1共に冷媒−冷媒熱交換器8のみで吸排熱するパターンである。   FIG. 7 is a diagram illustrating water and refrigerant flows in the case of pattern B1. Pattern B1 is a pattern in which when the heat absorption amount of the hot water supply cycle 2 and the cooling exhaust heat amount are approximately the same, both the hot water supply cycle 2 and the air conditioning cycle 1 absorb and exhaust heat only with the refrigerant-refrigerant heat exchanger 8.

図8は、パターンB2の場合の水及び冷媒流れを示す図である。パターンB2は、給湯サイクル2の吸熱量が冷房排熱量より少なく、冷房排熱が不十分になって空調サイクル1の効率が悪化したら、パターンB1の設定に加えて水循環ポンプ24を起動し、第1水−冷媒熱交換器7から冷房排熱を補助的に吸熱するパターンである。   FIG. 8 is a diagram illustrating water and refrigerant flows in the case of pattern B2. In Pattern B2, when the heat absorption amount of the hot water supply cycle 2 is less than the cooling exhaust heat amount and the cooling exhaust heat becomes insufficient and the efficiency of the air conditioning cycle 1 deteriorates, the water circulation pump 24 is activated in addition to the setting of the pattern B1, 1 It is a pattern that absorbs cooling exhaust heat from the water-refrigerant heat exchanger 7 in an auxiliary manner.

図9は、パターンB3の場合の水及び冷媒流れを示す図である。パターンB3は、給湯サイクルの吸熱量が冷房排熱量より多く、給湯サイクル2の吸熱が不十分になって給湯サイクル2の効率が悪化したら、パターンB1の設定に加えて三方弁23を室外熱交換器21にも冷媒を分配できるようにして、室外熱交換器21から外気の熱を補助的に吸熱するパターンである。   FIG. 9 is a diagram showing water and refrigerant flows in the case of Pattern B3. In Pattern B3, when the heat absorption amount of the hot water supply cycle is larger than the cooling exhaust heat amount, the heat absorption of the hot water supply cycle 2 becomes insufficient and the efficiency of the hot water supply cycle 2 deteriorates, and in addition to the setting of the pattern B1, the three-way valve 23 is exchanged outdoors. This is a pattern in which the refrigerant can be distributed also to the vessel 21 to absorb the heat of the outside air from the outdoor heat exchanger 21 as an auxiliary.

パターンB1に示した給湯サイクル2では、圧縮機19から吐出された高温高圧の冷媒は第2水−冷媒熱交換器22に流入し、第2水−冷媒熱交換器22を流通する水に熱を放出して凝縮する。凝縮した冷媒は、膨張弁20で断熱膨張し、低温低圧となって三方弁23に流入する。三方弁23に流入した冷媒は、冷媒−冷媒熱交換器8に導かれ、空調サイクル1から排出された熱を吸収して蒸発する。蒸発した冷媒は、圧縮機19の吸込側に還流する。   In the hot water supply cycle 2 shown in the pattern B1, the high-temperature and high-pressure refrigerant discharged from the compressor 19 flows into the second water-refrigerant heat exchanger 22 and heats the water flowing through the second water-refrigerant heat exchanger 22. To condense. The condensed refrigerant is adiabatically expanded by the expansion valve 20, becomes a low temperature and a low pressure, and flows into the three-way valve 23. The refrigerant that has flowed into the three-way valve 23 is led to the refrigerant-refrigerant heat exchanger 8 and absorbs the heat discharged from the air conditioning cycle 1 to evaporate. The evaporated refrigerant returns to the suction side of the compressor 19.

一方、空調サイクル1では、三方弁13、14と四方弁12の設定、及び冷媒の流れる経路は、図2に示す冷房運転パターンAと同じである。圧縮機11から吐出された高温高圧の冷媒は、第1水−冷媒熱交換器7を通過し、冷媒−冷媒熱交換器8に流入する。冷媒−冷媒熱交換器8に流入した冷媒は、冷媒−冷媒熱交換器8内を流通する給湯サイクル2の冷媒に熱を放出して凝縮する。凝縮した冷媒は、膨張弁16により断熱膨張され低温低圧となって室内熱交換器17に流入する。そして、空調空間内の熱を吸収して蒸発する。蒸発した冷媒は、四方弁12を経て圧縮機11の吸込側に流入する。   On the other hand, in the air conditioning cycle 1, the settings of the three-way valves 13 and 14 and the four-way valve 12 and the flow path of the refrigerant are the same as those in the cooling operation pattern A shown in FIG. The high-temperature and high-pressure refrigerant discharged from the compressor 11 passes through the first water-refrigerant heat exchanger 7 and flows into the refrigerant-refrigerant heat exchanger 8. The refrigerant that has flowed into the refrigerant-refrigerant heat exchanger 8 releases heat to the refrigerant in the hot water supply cycle 2 that flows through the refrigerant-refrigerant heat exchanger 8 and condenses. The condensed refrigerant is adiabatically expanded by the expansion valve 16, becomes a low temperature and a low pressure, and flows into the indoor heat exchanger 17. And it absorbs the heat in the air-conditioned space and evaporates. The evaporated refrigerant flows into the suction side of the compressor 11 through the four-way valve 12.

パターンB2では、空調サイクル1と給湯サイクル2中の各弁の設定、及び冷媒の流れはパターンB1と同じである。ただし、水循環ポンプ24を起動することが、パターンB1と相違する。第1貯湯槽5の底部の水が水循環ポンプ24に吸い込まれ、第1水−冷媒熱交換器7に流入して空調サイクル1から熱を吸収し、第1貯湯槽5の上部に還流し貯留される。空調サイクル1では、冷媒−冷媒熱交換器8と第1水−冷媒熱交換器7において熱を放出する。   In the pattern B2, the setting of each valve in the air conditioning cycle 1 and the hot water supply cycle 2 and the flow of the refrigerant are the same as those in the pattern B1. However, starting the water circulation pump 24 is different from the pattern B1. Water at the bottom of the first hot water tank 5 is sucked into the water circulation pump 24, flows into the first water-refrigerant heat exchanger 7, absorbs heat from the air conditioning cycle 1, and returns to the upper part of the first hot water tank 5 to be stored. Is done. In the air conditioning cycle 1, heat is released in the refrigerant-refrigerant heat exchanger 8 and the first water-refrigerant heat exchanger 7.

パターンB3では、空調サイクル1中の各弁の設定、及び冷媒の流れはパターンB1と同じである。パターンB1と異なるのは、膨張弁20で断熱膨張された低温低圧の冷媒が、給湯サイクル2中の三方弁23から、冷媒−冷媒熱交換器8に加えて室外熱交換器21にも分配されることである。室外熱交換器21に分配された冷媒は、室外の熱を吸収して蒸発し、冷媒−冷媒熱交換器8を出た冷媒と合流して圧縮機19の吸込側に還流する。   In pattern B3, the setting of each valve in the air-conditioning cycle 1 and the refrigerant flow are the same as in pattern B1. The difference from the pattern B1 is that the low-temperature and low-pressure refrigerant adiabatically expanded by the expansion valve 20 is distributed from the three-way valve 23 in the hot water supply cycle 2 to the outdoor heat exchanger 21 in addition to the refrigerant-refrigerant heat exchanger 8. Is Rukoto. The refrigerant distributed to the outdoor heat exchanger 21 absorbs outdoor heat and evaporates, merges with the refrigerant exiting the refrigerant-refrigerant heat exchanger 8, and returns to the suction side of the compressor 19.

パターンCは、給湯サイクル2の吸熱量と、空調サイクル1の三方弁14から第1水−冷媒熱交換器7の経路へ分配された冷媒の放熱量(以下、暖房放熱量と呼ぶ)とに基づいて、更に3つのパターンに分けられる。   Pattern C includes the heat absorption amount of the hot water supply cycle 2 and the heat release amount of the refrigerant distributed to the path of the first water-refrigerant heat exchanger 7 from the three-way valve 14 of the air conditioning cycle 1 (hereinafter referred to as heating heat release amount). Based on this, it is further divided into three patterns.

図10は、パターンC1の場合の水及び冷媒流れを示す図である。パターンC1は、給湯サイクル2の吸熱量と暖房放熱量が同程度のときに、給湯サイクル2および空調サイクル1の双方において、冷媒−冷媒熱交換器8のみで吸放熱するパターンである。   FIG. 10 is a diagram illustrating water and refrigerant flows in the case of the pattern C1. The pattern C1 is a pattern that absorbs and dissipates heat only by the refrigerant-refrigerant heat exchanger 8 in both the hot water supply cycle 2 and the air conditioning cycle 1 when the heat absorption amount of the hot water supply cycle 2 and the heating heat dissipation amount are approximately the same.

図11は、パターンC2の場合の水及び冷媒流れを示す図である。パターンC2は、給湯サイクル2の吸熱量が暖房放熱量より少なく、暖房放熱が不十分になって空調サイクル1の効率が悪化するときに、パターンC1の設定に加えて水循環ポンプ24を起動し、第1水−冷媒熱交換器7から暖房放熱を補助的に吸熱するパターンである。   FIG. 11 is a diagram showing water and refrigerant flows in the case of pattern C2. The pattern C2 activates the water circulation pump 24 in addition to the setting of the pattern C1 when the heat absorption amount of the hot water supply cycle 2 is less than the heating heat dissipation amount, and the efficiency of the air conditioning cycle 1 deteriorates due to insufficient heating heat dissipation, It is a pattern that absorbs heating heat radiation from the first water-refrigerant heat exchanger 7 in an auxiliary manner.

図12は、パターンC3の場合の水及び冷媒流れを示す図である。パターンC3は、給湯サイクル2の吸熱量が暖房放熱量より多く、給湯サイクル2の吸熱が不十分になって給湯サイクル1の効率が悪化するときに、パターンC1の設定に加えて三方弁23を切換えるパターンである。三方弁23を、室外熱交換器21にも冷媒を分配できるように切換え、室外熱交換器21から外気の熱を補助的に吸熱する。   FIG. 12 is a diagram showing water and refrigerant flows in the case of pattern C3. In the pattern C3, when the heat absorption amount of the hot water supply cycle 2 is larger than the heat radiation amount of the heating, and the heat absorption of the hot water supply cycle 2 becomes insufficient and the efficiency of the hot water supply cycle 1 deteriorates, the three-way valve 23 is set in addition to the setting of the pattern C1. It is a pattern to switch. The three-way valve 23 is switched so that the refrigerant can be distributed also to the outdoor heat exchanger 21, and the heat of the outside air is supplementarily absorbed from the outdoor heat exchanger 21.

パターンC1では、給湯サイクル2中の各弁の設定、及び冷媒の流れはパターンB1と同じである。一方、空調サイクル1中の三方弁13、14と四方弁12の設定、及び冷媒の流れる経路を、図4に示す暖房運転パターンAと同じにする。圧縮機11から吐出された高温高圧の冷媒は、第1水−冷媒熱交換器7を通過し、冷媒−冷媒熱交換器8に流入する。冷媒−冷媒熱交換器8に流入した冷媒は、冷媒−冷媒熱交換器8内を流通する給湯サイクル2の冷媒に熱を放出して凝縮する。凝縮した冷媒は、全開状態に設定された膨張弁16を通過して室内熱交換器17を出た冷媒と合流し、膨張弁15により断熱膨張され低温低圧となって圧縮機11の吸込側に流入する。   In the pattern C1, the setting of each valve and the refrigerant flow in the hot water supply cycle 2 are the same as those in the pattern B1. On the other hand, the settings of the three-way valves 13 and 14 and the four-way valve 12 in the air conditioning cycle 1 and the route through which the refrigerant flows are the same as those in the heating operation pattern A shown in FIG. The high-temperature and high-pressure refrigerant discharged from the compressor 11 passes through the first water-refrigerant heat exchanger 7 and flows into the refrigerant-refrigerant heat exchanger 8. The refrigerant that has flowed into the refrigerant-refrigerant heat exchanger 8 releases heat to the refrigerant in the hot water supply cycle 2 that flows through the refrigerant-refrigerant heat exchanger 8 and condenses. The condensed refrigerant merges with the refrigerant that has passed through the expansion valve 16 set to the fully open state and exited the indoor heat exchanger 17, and is adiabatically expanded by the expansion valve 15 to become a low temperature and low pressure to the suction side of the compressor 11. Inflow.

パターンC2では、空調サイクル1と給湯サイクル2中の各弁の設定、及び冷媒の流れはパターンC1と同じである。パターンC1と異なるのは、水循環ポンプ24を起動することである。第1貯湯槽5の底部の水が水循環ポンプ24に吸い込まれ、第1水−冷媒熱交換器7に流入して空調サイクル1から熱を吸収し、第1貯湯槽5の上部に還流し貯留される。空調サイクル1では、冷媒−冷媒熱交換器8と第1水−冷媒熱交換器7が熱を放出する。   In the pattern C2, the setting of each valve in the air conditioning cycle 1 and the hot water supply cycle 2 and the flow of the refrigerant are the same as those in the pattern C1. The difference from the pattern C1 is that the water circulation pump 24 is activated. Water at the bottom of the first hot water tank 5 is sucked into the water circulation pump 24, flows into the first water-refrigerant heat exchanger 7, absorbs heat from the air conditioning cycle 1, and returns to the upper part of the first hot water tank 5 to be stored. Is done. In the air conditioning cycle 1, the refrigerant-refrigerant heat exchanger 8 and the first water-refrigerant heat exchanger 7 release heat.

パターンC3では、空調サイクル1中の各弁の設定、及び冷媒の流れはパターンC1と同じである。パターンC1と異なるのは、膨張弁20で断熱膨張された低温低圧の冷媒が、給湯サイクル2中の三方弁23から、冷媒−冷媒熱交換器8に加えて室外熱交換器21にも分配されることである。室外熱交換器21に分配された冷媒は、室外の熱を吸収して蒸発し、冷媒−冷媒熱交換器8を出た冷媒と合流して圧縮機19の吸込側に還流する。   In the pattern C3, the setting of each valve in the air-conditioning cycle 1 and the refrigerant flow are the same as in the pattern C1. The difference from the pattern C1 is that the low-temperature and low-pressure refrigerant adiabatically expanded by the expansion valve 20 is distributed from the three-way valve 23 in the hot water supply cycle 2 to the outdoor heat exchanger 21 in addition to the refrigerant-refrigerant heat exchanger 8. Is Rukoto. The refrigerant distributed to the outdoor heat exchanger 21 absorbs outdoor heat and evaporates, merges with the refrigerant exiting the refrigerant-refrigerant heat exchanger 8, and returns to the suction side of the compressor 19.

(給湯運転モ−ド)
給湯運転モ−ドにおける水の流れを、図13〜図15に示す。水の流れは、温度センサ31が計測した第1貯湯槽5の上部温度T31、温度センサ32が計測した第2貯湯槽6の上部温度T32、温度センサ33が計測した第2貯湯槽6の下部温度T33、温度センサ34が計測した給水温度T34に基づいて、大きく3つのパターンに分けられる。
(Hot water operation mode)
The flow of water in the hot water supply operation mode is shown in FIGS. The flow of water includes the upper temperature T 31 of the first hot water tank 5 measured by the temperature sensor 31 , the upper temperature T 32 of the second hot water tank 6 measured by the temperature sensor 32 , and the second hot water tank 6 measured by the temperature sensor 33. The lower temperature T 33 and the feed water temperature T 34 measured by the temperature sensor 34 are roughly divided into three patterns.

図13は、パターンDの場合の水の流れを示す図である。第1貯湯槽5の上部温度T31が給湯需要の要求温度Treqより高く、かつ、第2貯湯槽6の上部温度T32が給湯需要の要求温度Treqより高い場合である。三方弁25は、第2貯湯槽6の上部に接続されたポ−トを閉じる。第1貯湯槽5の底部の給水口から給水し、給水された水と同量の水が、第1貯湯槽5の上部から水経路10、三方弁25を介して三方弁28へ流入する。三方弁28は、第1貯湯槽5から流出した水と、給水口から給水された水を混合し、要求温度Treqと一致するように混合比率を調整する。混合された水は給湯口へ流出する。 FIG. 13 is a diagram illustrating the flow of water in the case of pattern D. FIG. This is a case where the upper temperature T 31 of the first hot water tank 5 is higher than the required temperature T req for hot water supply and the upper temperature T 32 of the second hot water tank 6 is higher than the required temperature T req for hot water supply. The three-way valve 25 closes a port connected to the upper part of the second hot water tank 6. Water is supplied from the water supply port at the bottom of the first hot water tank 5, and the same amount of water as the supplied water flows from the upper part of the first hot water tank 5 into the three-way valve 28 through the water path 10 and the three-way valve 25. The three-way valve 28 mixes the water flowing out from the first hot water tank 5 and the water supplied from the water supply port, and adjusts the mixing ratio so as to coincide with the required temperature T req . The mixed water flows out to the hot water outlet.

図14は、パターンEの場合の水の流れを示す図である。第1貯湯槽5の上部温度T31と第2貯湯槽6の上部温度T32の何れか一方が給湯需要の要求温度Treqより高く、他方が給湯需要の要求温度Treqより低く、且つ、第1貯湯槽5の上部温度T31が第2貯湯槽6の下部温度T33より低い場合である。三方弁28は、給水口に接続されたポートを閉じる。三方弁27は、第1貯湯槽5の上部に接続されたポートと第2貯湯槽6の底部に接続されたポートを接続する。第1貯湯槽5の底部の給水口から給水し、給水された水と同量の水が第1貯湯槽5の上部から水経路9および水経路10へ流出する。 FIG. 14 is a diagram illustrating the flow of water in the case of the pattern E. One of the upper temperature T 31 of the first hot water tank 5 and the upper temperature T 32 of the second hot water tank 6 is higher than the required temperature T req for hot water supply demand, the other is lower than the required temperature T req for hot water demand, and This is a case where the upper temperature T 31 of the first hot water tank 5 is lower than the lower temperature T 33 of the second hot water tank 6. The three-way valve 28 closes the port connected to the water supply port. The three-way valve 27 connects a port connected to the top of the first hot water tank 5 and a port connected to the bottom of the second hot water tank 6. Water is supplied from the water supply port at the bottom of the first hot water tank 5, and the same amount of water as the supplied water flows out from the upper part of the first hot water tank 5 to the water path 9 and the water path 10.

水経路9へ流出した水は、三方弁27を経て第2貯湯槽6の底部に流入する。流入した水と同量の水が第2貯湯槽6の上部から流出し、三方弁25へ流入する。一方、水経路10へ流出した水は、三方弁25へ流入する。三方弁25は、第1貯湯槽5から流出した水と、第2貯湯槽6から流出した水を混合し、要求温度Treqと一致するように混合比率を調整する。混合された水は,三方弁28を経て給湯口へ流出する。 The water that has flowed out into the water path 9 flows into the bottom of the second hot water tank 6 through the three-way valve 27. The same amount of water as the inflowed water flows out from the upper part of the second hot water tank 6 and flows into the three-way valve 25. On the other hand, water that has flowed out into the water path 10 flows into the three-way valve 25. The three-way valve 25 mixes the water flowing out from the first hot water tank 5 and the water flowing out from the second hot water tank 6, and adjusts the mixing ratio so as to match the required temperature T req . The mixed water flows out to the hot water supply port through the three-way valve 28.

図15は、パターンFの場合の水の流れを示す図である。パターンFは、第1貯湯槽5の上部温度T31と第2貯湯槽6の上部温度T32の何れか一方が給湯需要の要求温度Treqより高く、他方が給湯需要の要求温度Treqより低く、且つ、第1貯湯槽5の上部温度T31が第2貯湯槽6の下部温度T33より高い場合である。三方弁28は、給水口に接続されたポ−トを閉じる。第1貯湯槽5の底部の給水口から給水し、給水された水と同量の水が第1貯湯槽5の上部から水経路10へ流出する。一方、第2貯湯槽6底部の給水口からも給水し、給水された水と同量の水が第2貯湯槽6の上部から三方弁25へ流出する。 FIG. 15 is a diagram illustrating the flow of water in the case of pattern F. FIG. Pattern F is higher one of the upper temperature T 32 and the upper temperature T 31 of the first hot water tank 5 second hot water tank 6 is higher than the required temperature T req of hot water demand, than the required temperature T req for the other hot-water demand This is a case where the temperature is lower and the upper temperature T 31 of the first hot water tank 5 is higher than the lower temperature T 33 of the second hot water tank 6. The three-way valve 28 closes the port connected to the water supply port. Water is supplied from the water supply port at the bottom of the first hot water tank 5, and the same amount of water as the supplied water flows out from the upper part of the first hot water tank 5 to the water path 10. On the other hand, water is supplied also from the water supply port at the bottom of the second hot water tank 6, and the same amount of water as the supplied water flows out from the upper part of the second hot water tank 6 to the three-way valve 25.

水経路9へ流出した水と第2貯湯槽6の上部から流出した水は、三方弁25で混合され、要求温度Treqと一致するように混合比率を調整される。混合された水は,三方弁28を経て給湯口へ流出する。 The water flowing out to the water path 9 and the water flowing out from the upper part of the second hot water tank 6 are mixed by the three-way valve 25 and the mixing ratio is adjusted so as to coincide with the required temperature T req . The mixed water flows out to the hot water supply port through the three-way valve 28.

以上説明した本実施例によれば、給湯サイクル2の運転状態に関わらず、空調サイクル1の排熱を第1貯湯槽5に蓄熱し、給湯に利用することができる。更に、空調サイクル1と給湯サイクル2との間での熱交換時において、空調サイクル1と給湯サイクル2の状態に関わらずサイクル効率を維持することができる。   According to the present embodiment described above, the exhaust heat of the air conditioning cycle 1 can be stored in the first hot water tank 5 and used for hot water supply regardless of the operating state of the hot water supply cycle 2. Furthermore, the cycle efficiency can be maintained regardless of the state of the air conditioning cycle 1 and the hot water supply cycle 2 at the time of heat exchange between the air conditioning cycle 1 and the hot water supply cycle 2.

なお本実施例では、第1貯湯槽5および第2貯湯槽6内には、水または湯が充満されているように運転される。したがって、第1、第2貯湯槽5、6の上部および底部に取り付けた各温度センサは、貯湯槽各部の水または湯の温度を正確に検出できる。また、上記図13〜図15に示した給湯運転モ−ドでは、三方弁28により給湯温度を制御しているが、制御装置を別個に設けて三方弁の開度や給水量を制御するようにしてもよいことは言うまでもない。   In the present embodiment, the first hot water tank 5 and the second hot water tank 6 are operated so as to be filled with water or hot water. Therefore, each temperature sensor attached to the top and bottom of the first and second hot water tanks 5 and 6 can accurately detect the temperature of water or hot water in each part of the hot water tank. Further, in the hot water supply operation mode shown in FIGS. 13 to 15, the hot water supply temperature is controlled by the three-way valve 28. However, a controller is provided separately to control the opening degree and the water supply amount of the three-way valve. Needless to say, you can.

さらに、上記実施例では第1、第2貯湯槽5、6の2個の貯湯槽を備えている。この理由は、第1貯湯槽5は主として空調サイクル1で発生する排熱を回収するためであり、第2貯湯槽6は主として給湯サイクル2で発生する排熱を回収するためである。   Furthermore, in the said Example, the two hot water storage tanks of the 1st, 2nd hot water storage tanks 5 and 6 are provided. This is because the first hot water storage tank 5 mainly recovers the exhaust heat generated in the air conditioning cycle 1, and the second hot water storage tank 6 mainly recovers the exhaust heat generated in the hot water supply cycle 2.

空調サイクル1は、給湯サイクル2に比べて季節により回収できる排熱量が変動するとともに、排熱回収用の水−冷媒熱交換器に流入する冷媒の温度レベルが通常低い。そのため第1貯湯槽5には、第2貯湯槽6よりも比較的低温の湯が貯湯される。これは、空調サイクル1が非共沸冷媒を使用し、給湯サイクル2がCO冷媒を使用することが主因である。ただし、空調サイクル1では給湯サイクル2よりも湯量を豊富に確保できるので、第1貯湯槽5を第2貯湯槽6よりも大容量にするのが好ましい。 In the air conditioning cycle 1, the amount of exhaust heat that can be recovered varies depending on the season as compared with the hot water supply cycle 2, and the temperature level of the refrigerant flowing into the water-refrigerant heat exchanger for exhaust heat recovery is usually low. Therefore, hot water having a relatively lower temperature than that of the second hot water tank 6 is stored in the first hot water tank 5. This is mainly because the air conditioning cycle 1 uses a non-azeotropic refrigerant and the hot water supply cycle 2 uses a CO 2 refrigerant. However, since the amount of hot water can be secured more abundantly in the air conditioning cycle 1 than in the hot water supply cycle 2, it is preferable that the first hot water tank 5 has a larger capacity than the second hot water tank 6.

なお、家庭用の空調給湯システム等に使用する場合には、設置面積の要求から第1貯湯槽5の容量を大きくできない場合が多い。そこで、第1貯湯槽5の湯を第2貯湯槽6の湯よりも優先的に使用して、排熱回収効率を向上させる。すなわち、上記各運転パターンでは、できるだけ第1貯湯槽5の湯を使用して、給湯サイクル6の運転を低減している。   In addition, when using it for a domestic air-conditioning hot-water supply system etc., the capacity | capacitance of the 1st hot water storage tank 5 cannot often be enlarged from the request | requirement of an installation area. Accordingly, the hot water in the first hot water tank 5 is used preferentially over the hot water in the second hot water tank 6 to improve the exhaust heat recovery efficiency. In other words, in each of the above operation patterns, hot water in the first hot water tank 5 is used as much as possible to reduce the operation of the hot water supply cycle 6.

本発明によれば、貯湯サイクルが備える室外熱交換器の他に、空調サイクルと貯湯サイクルが熱交換する冷媒-冷媒熱交換器を備えている。したがって、室外熱交換器の周囲空気温度よりも空調サイクルの冷媒−冷媒熱交換の冷媒温度の方が高い場合に、空調サイクルを流通する冷媒から給湯サイクルの冷媒がより高温で吸熱でき、給湯サイクルのCOPを向上させることが可能になる。つまり、空調サイクルで生じた熱を効果的に給湯サイクルに移すことができる。さらに、冷媒−冷媒間の熱交換なので、外気温が低くても除霜運転が不要である。   According to the present invention, in addition to the outdoor heat exchanger provided in the hot water storage cycle, the refrigerant-refrigerant heat exchanger that exchanges heat between the air conditioning cycle and the hot water storage cycle is provided. Therefore, when the refrigerant temperature of the refrigerant-refrigerant heat exchange of the air conditioning cycle is higher than the ambient air temperature of the outdoor heat exchanger, the refrigerant of the hot water supply cycle can absorb heat at a higher temperature from the refrigerant flowing through the air conditioning cycle, and the hot water supply cycle It is possible to improve the COP. That is, the heat generated in the air conditioning cycle can be effectively transferred to the hot water supply cycle. Furthermore, since it is heat exchange between the refrigerant and the refrigerant, the defrosting operation is unnecessary even if the outside air temperature is low.

また、空調サイクル及び貯湯サイクルともヒートポンプサイクルであるから、COPを大きくすることが可能である。さらに、三方弁で吸水と混合する系統を備えているので、需要元の要求温度にきめ細かく対応できる。   Further, since both the air conditioning cycle and the hot water storage cycle are heat pump cycles, it is possible to increase the COP. Furthermore, since the system which mixes with water absorption with a three-way valve is provided, it can respond precisely to the demand source's required temperature.

以上、本発明の実施の形態について説明したが、本発明は上記実施の形態や実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples, and various design changes can be made without departing from the present invention described in the claims. Can be done.

1…空調サイクル、2…給湯サイクル、3…空調排熱回収用水循環経路、4…給湯用水循環経路、5…第1貯湯槽、6…第2貯湯槽、7…第1水−冷媒熱交換器、8…冷媒−冷媒熱交換器、11…圧縮機、18…(第1)室外熱交換器、19…圧縮機、21…(第2)室外熱交換器、22…第2水−冷媒熱交換器、25…三方弁、27、28…三方弁、29〜34…温度センサ、100…空調給湯複合システム。 DESCRIPTION OF SYMBOLS 1 ... Air-conditioning cycle, 2 ... Hot water supply cycle, 3 ... Water circulation path for air-conditioning exhaust heat recovery, 4 ... Water circulation path for hot water supply, 5 ... 1st hot water storage tank, 6 ... 2nd hot water storage tank, 7 ... 1st water-refrigerant heat exchange 8 ... refrigerant-refrigerant heat exchanger, 11 ... compressor, 18 ... (first) outdoor heat exchanger, 19 ... compressor, 21 ... (second) outdoor heat exchanger, 22 ... second water-refrigerant Heat exchanger, 25 ... three-way valve, 27, 28 ... three-way valve, 29-34 ... temperature sensor, 100 ... air-conditioning hot water supply combined system.

Claims (6)

空調サイクルと、
給湯サイクルと、
前記空調サイクル内を流通する冷媒と熱交換する第1水−冷媒熱交換器と、
前記第1水−冷媒熱交換器で熱交換して温度上昇した水を貯湯する第1貯湯槽と、
前記給湯サイクル内を流通する冷媒と熱交換する第2水−冷媒熱交換器と、
前記第2水−冷媒熱交換器で熱交換して温度上昇した水を貯湯する第2貯湯槽と、
前記空調サイクル内の冷媒と前記給湯サイクル内の冷媒とが熱交換する冷媒−冷媒熱交換器と
前記第1貯湯槽の底部に配管接続した第1給水口と、
前記第2貯湯槽の底部に配管接続した第2給水口と、
前記第1貯湯槽の上部と前記第2貯湯槽の上部を第1の三方弁を介して選択的に連通し、前記第1貯湯槽の水と前記第2貯湯槽の水を混合して給湯する第1の接続路と、
前記第1貯湯槽の上部と前記第2の貯湯槽の下部を第2の三方弁を介して選択的に連通し、前記第1貯湯槽の上部の水を前記第2貯湯槽の下部に供給する第2の接続路と、
を備えた空調給湯複合システム。
Air conditioning cycle,
Hot water cycle,
A first water-refrigerant heat exchanger for exchanging heat with the refrigerant circulating in the air conditioning cycle;
A first hot water tank for storing hot water whose temperature has been increased by heat exchange with the first water- refrigerant heat exchanger;
A second water-refrigerant heat exchanger for exchanging heat with the refrigerant circulating in the hot water supply cycle;
A second hot water storage tank for storing hot water whose temperature has been increased by heat exchange with the second water-refrigerant heat exchanger;
A refrigerant-refrigerant heat exchanger that exchanges heat between the refrigerant in the air conditioning cycle and the refrigerant in the hot water supply cycle ;
A first water supply port piped to the bottom of the first hot water storage tank;
A second water supply port connected by piping to the bottom of the second hot water tank;
The upper part of the first hot water tank and the upper part of the second hot water tank are selectively communicated via a first three-way valve, and the water in the first hot water tank and the water in the second hot water tank are mixed to supply hot water. A first connecting path to
The upper part of the first hot water tank and the lower part of the second hot water tank are selectively communicated via a second three-way valve, and the water in the upper part of the first hot water tank is supplied to the lower part of the second hot water tank. A second connection path to
Air-conditioning and hot water supply complex system equipped with.
前記空調サイクルは第1の圧縮機および第1の室外熱交換器、四方弁を有するヒートポンプサイクルであり、
前記給湯サイクルは、第2の圧縮機および第2の室外熱交換器を有するヒートポンプサイクルであり、
前記冷媒−冷媒熱交換器は、前記空調サイクルで発生する排熱を前記給湯サイクルで吸熱し、
前記第1水−冷媒熱交換器は、前記空調サイクルで発生する排熱を回収する
ことを特徴とする請求項1に記載の空調給湯複合システム。
The air conditioning cycle is a heat pump cycle having a first compressor and a first outdoor heat exchanger, a four-way valve,
The hot water supply cycle is a heat pump cycle having a second compressor and a second outdoor heat exchanger,
The refrigerant-refrigerant heat exchanger absorbs exhaust heat generated in the air conditioning cycle in the hot water supply cycle,
2. The combined air conditioning and hot water supply system according to claim 1, wherein the first water-refrigerant heat exchanger recovers exhaust heat generated in the air conditioning cycle.
記冷媒−冷媒熱交換器と前記第1水−冷媒熱交換器を配管接続し、
前記冷媒−冷媒熱交換器と前記第2室外熱交換器とを配管接続したことを特徴とする請求項2に記載の空調給湯複合システム。
Before SL refrigerant - the refrigerant heat exchanger first water - refrigerant heat exchanger connected by piping,
The combined air-conditioning and hot-water supply system according to claim 2, wherein the refrigerant-refrigerant heat exchanger and the second outdoor heat exchanger are connected by piping.
記第1の接続路に介在させた前記第1の三方弁の給湯口側のポートに第3給水口に配管接続可能な第3の三方弁を設け、
前記第1貯湯槽の上部に第1の温度センサを、前記第2貯湯槽の上部に第2の温度センサをそれぞれ設け、
前記第1および第2の温度センサが検出した温度の双方が予め定めた給湯温度より高いときには、前記第1貯湯槽に貯湯した湯だけを前記第3の三方弁を介して給湯口から給湯し、
前記第3の三方弁は予め定めた給湯温度になるよう前記第3給水口からこの第3の三方弁に供給される水を混合する
ことを特徴とする請求項に記載の空調給湯複合システム。
Before Symbol the third three-way valve capable piping connections provided to the first port of the hot water supply port of the first three-way valve interposed in the connection passage to the third water supply port,
A first temperature sensor is provided at the top of the first hot water tank, and a second temperature sensor is provided at the top of the second hot water tank,
When both the temperatures detected by the first and second temperature sensors are higher than a predetermined hot water supply temperature, only hot water stored in the first hot water storage tank is supplied from the hot water supply port via the third three-way valve. ,
2. The combined air-conditioning and hot-water supply system according to claim 1 , wherein the third three-way valve mixes water supplied from the third water supply port to the third three-way valve so as to have a predetermined hot water supply temperature. .
記第1貯湯槽の上部に第1の温度センサを、前記第2貯湯槽の上部に第2の温度センサを、前記第2貯湯槽の下部に第3の温度センサをそれぞれ設け、
前記第1および第2の温度センサが検出した温度のいずれかが予め定めた給湯温度より高く他方の温度が予め定めた給湯温度より低く、且つ、前記第1の温度センサが検出した温度が前記第3の温度センサが検出した温度より低いときは、前記第1の三方弁を切換えて前記第貯湯槽の上部と前記第2貯湯槽の上部とを連通するとともに前記第2の三方弁を切換えて前記第1貯湯槽の上部と前記第2貯湯槽の下部とを連通し、前記第1貯湯槽および第2貯湯槽の双方の水を前記第1の三方弁で混合して予め定めた給湯温度にすることを特徴とする請求項に記載の空調給湯複合システム。
A first temperature sensor at the top of the front Symbol first hot water tank, a second temperature sensor at the top of the second hot-water tank, provided the third temperature sensor each at the bottom of the second hot-water tank,
One of the temperatures detected by the first and second temperature sensors is higher than a predetermined hot water supply temperature, the other temperature is lower than a predetermined hot water supply temperature, and the temperature detected by the first temperature sensor is It is lower than the third temperature detected by the temperature sensor of, communicated with the upper portion of the second hot-water tank and the top of the first hot water tank by switching the first three-way valve, the second three-way valve The upper part of the first hot water tank and the lower part of the second hot water tank are connected to each other, and the water in both the first hot water tank and the second hot water tank is mixed by the first three-way valve to be predetermined. 2. The air conditioning and hot water supply combined system according to claim 1 , wherein the hot water supply temperature is set.
記第1貯湯槽の上部に第1の温度センサを、前記第2貯湯槽の上部に第2の温度センサを、前記第2貯湯槽の下部に第3の温度センサをそれぞれ設け、
前記第1および第2の温度センサが検出した温度の一方が予め定めた給湯温度より高く他方が予め定めた給湯温度より低く、且つ、前記第1の温度センサが検出した温度が前記第3の温度センサが検出した温度より高いときは、第1の三方弁を切換えて前記第1貯湯槽の上部と前記第2貯湯槽の上部とを連通し、前記第1貯湯槽および第2貯湯槽の双方の水を前記第1の三方弁で混合して予め定めた給湯温度にすることを特徴とする請求項に記載の空調給湯複合システム。
A first temperature sensor at the top of the front Symbol first hot water tank, a second temperature sensor at the top of the second hot-water tank, provided the third temperature sensor each at the bottom of the second hot-water tank,
One of the temperatures detected by the first and second temperature sensors is higher than a predetermined hot water supply temperature, and the other is lower than a predetermined hot water supply temperature, and the temperature detected by the first temperature sensor is the third temperature. When the temperature is higher than the temperature detected by the temperature sensor, the first three-way valve is switched to communicate the upper part of the first hot water tank with the upper part of the second hot water tank, and the first hot water tank and the second hot water tank 2. The air conditioning and hot water supply combined system according to claim 1 , wherein both waters are mixed by the first three-way valve to obtain a predetermined hot water supply temperature.
JP2012137580A 2012-06-19 2012-06-19 Air conditioning and hot water supply complex system Expired - Fee Related JP5763013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137580A JP5763013B2 (en) 2012-06-19 2012-06-19 Air conditioning and hot water supply complex system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137580A JP5763013B2 (en) 2012-06-19 2012-06-19 Air conditioning and hot water supply complex system

Publications (2)

Publication Number Publication Date
JP2014001893A JP2014001893A (en) 2014-01-09
JP5763013B2 true JP5763013B2 (en) 2015-08-12

Family

ID=50035235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137580A Expired - Fee Related JP5763013B2 (en) 2012-06-19 2012-06-19 Air conditioning and hot water supply complex system

Country Status (1)

Country Link
JP (1) JP5763013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525180A (en) * 2017-09-26 2017-12-29 中国建筑股份有限公司 Across season cold-storage and thermal storage system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767424B1 (en) 2014-01-08 2015-08-19 オリンパス株式会社 Endoscope cleaning disinfection device
CN105588352A (en) * 2014-11-20 2016-05-18 海信(山东)空调有限公司 Air-conditioning system and method for preparing water with different temperatures
CN114738963B (en) * 2022-05-05 2023-09-22 广东开利暖通空调股份有限公司 Mode control system and control method of heat recovery multi-split air conditioner
CN115031319B (en) * 2022-07-29 2024-02-02 郑州轻工业大学 Control method of water supply air conditioning system utilizing natural energy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649897B2 (en) * 2004-07-09 2011-03-16 ダイキン工業株式会社 Heat transfer system
JP2010043759A (en) * 2008-08-08 2010-02-25 Mitsubishi Electric Corp Storage type water heater
JP5335131B2 (en) * 2010-02-26 2013-11-06 株式会社日立製作所 Air conditioning and hot water supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525180A (en) * 2017-09-26 2017-12-29 中国建筑股份有限公司 Across season cold-storage and thermal storage system
WO2019061689A1 (en) * 2017-09-26 2019-04-04 中国建筑股份有限公司 Cross-season cold and heat storage system
CN107525180B (en) * 2017-09-26 2019-05-28 中国建筑股份有限公司 Across season cold-storage and thermal storage system

Also Published As

Publication number Publication date
JP2014001893A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
EP2131122B1 (en) Heat pump device
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP5951109B2 (en) Air conditioner with additional unit for heating capacity enhancement
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
KR101147268B1 (en) Heat pump system for heating/cooling and providing hot water and Control method thereof
JP5187184B2 (en) Hot water storage water heater
JP5763013B2 (en) Air conditioning and hot water supply complex system
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
KR101201131B1 (en) a indoor cooling and heating system
US20150338139A1 (en) Heat pump with water heating
CN102326038A (en) Heat pump system
JP4058696B2 (en) Heat pump hot water supply system
JP2007303806A (en) Refrigerating cycle device and its operation method
KR101117032B1 (en) Heat pump system having cascade heat exchange
JP2013108690A (en) Air conditioning and hot water supply combined system
KR101175374B1 (en) Air conditioner using of the subterranean heat
JP2015215117A (en) Heat pump type air cooling device
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP2005180836A (en) Heat pump water heater
JP2015124910A (en) Hot water supply air conditioning system
JP2015124909A (en) Hot water supply air-conditioning system
JP4468888B2 (en) Air conditioner
JP2019020089A (en) Freezing unit
JP5747838B2 (en) Heating hot water system
JP5441949B2 (en) Heat pump equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5763013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees