JP5755722B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5755722B2
JP5755722B2 JP2013273197A JP2013273197A JP5755722B2 JP 5755722 B2 JP5755722 B2 JP 5755722B2 JP 2013273197 A JP2013273197 A JP 2013273197A JP 2013273197 A JP2013273197 A JP 2013273197A JP 5755722 B2 JP5755722 B2 JP 5755722B2
Authority
JP
Japan
Prior art keywords
semiconductor region
type semiconductor
region
drift layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013273197A
Other languages
Japanese (ja)
Other versions
JP2014060460A (en
Inventor
典史 亀代
典史 亀代
横山 夏樹
夏樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013273197A priority Critical patent/JP5755722B2/en
Publication of JP2014060460A publication Critical patent/JP2014060460A/en
Application granted granted Critical
Publication of JP5755722B2 publication Critical patent/JP5755722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Description

本発明は、半導体装置に関するものであり、特に炭化珪素を用いた接合障壁ショットキーダイオードに適用して有効な技術に関するものである。   The present invention relates to a semiconductor device, and more particularly to a technique effective when applied to a junction barrier Schottky diode using silicon carbide.

炭化珪素半導体(SiC)は、シリコン半導体と比べてバンドギャップが大きく、絶縁破壊電界は1桁程度大きいという特徴を持つため、パワーデバイスとして有望視されている。特に多数キャリアのみで動作するユニポーラ型整流素子のショットキーダイオードは、デバイスの構成上スイッチング動作時の逆方向電流(リカバリ電流)が流れないため、パワーモジュールの損失低減技術として有効である。   Silicon carbide semiconductors (SiC) are promising as power devices because they have the characteristics that the band gap is larger than that of silicon semiconductors and the dielectric breakdown electric field is about one digit larger. In particular, a Schottky diode, which is a unipolar rectifier element that operates only by majority carriers, is effective as a power module loss reduction technique because a reverse current (recovery current) does not flow during switching operation due to the device configuration.

ショットキーダイオードの整流作用は、金属の仕事関数と半導体の電子親和力の差によって生じるショットキー障壁によってなされている。ショットキー障壁高さの高い金属材料を用いることで逆方向漏れ電流を小さくすることができるが、同時に順方向立ち上がり電圧は高くなる。また、ショットキー障壁高さの低い金属材料を用いることで順方向立ち上がり電圧を低くすることができるが、同時に逆方向漏れ電流は大きくなる。   The rectifying action of the Schottky diode is made by a Schottky barrier generated by the difference between the work function of the metal and the electron affinity of the semiconductor. By using a metal material having a high Schottky barrier height, the reverse leakage current can be reduced, but at the same time, the forward rise voltage is increased. In addition, by using a metal material having a low Schottky barrier height, the forward rise voltage can be lowered, but at the same time, the reverse leakage current is increased.

一方、逆方向電圧印加時に金属/半導体界面(以下、ショットキー界面と呼ぶ)にかかる電界を緩和することで逆方向漏れ電流を抑制する構造として、ショットキー界面部に複数の接合障壁を設ける接合障壁(Junction Barrier)ショットキーダイオード(以下、JBSダイオードと呼ぶ)と呼ばれる構造が提案されている。逆方向電圧印加時に接合障壁部から空乏層が伸び、ショットキー界面の電界を緩和することができる。この構造を図19に例示する。図19において、1は炭化珪素n+基板を、2はnドリフト層を、3はp+領域を、5はアノード電極を、6はカソード電極を示している。JBSダイオードは逆方向漏れ電流を低減できる一方で、順方向動作時に低電圧で動作するショットキーダイオード領域の面積が小さくなるため、順方向動作時の抵抗が高くなってしまう。JBSダイオードにおける順方向動作時の抵抗増加を抑制する構造として、接合障壁に囲まれた領域の不純物濃度を高くする構造が開示されている(特許文献1)。この構造を図20に例示する。図19との違いは、nドリフト層よりも高い不純物濃度を有するn型半導体領域4が設けられている点である。この構造によって接合障壁形成領域の抵抗を下げることができる。 On the other hand, as a structure that suppresses reverse leakage current by relaxing an electric field applied to a metal / semiconductor interface (hereinafter referred to as a Schottky interface) when a reverse voltage is applied, a junction in which a plurality of junction barriers are provided at the Schottky interface. A structure called a barrier (Schottky diode) (hereinafter referred to as a JBS diode) has been proposed. When a reverse voltage is applied, a depletion layer extends from the junction barrier, and the electric field at the Schottky interface can be relaxed. This structure is illustrated in FIG. In FIG. 19, 1 indicates a silicon carbide n + substrate, 2 indicates an n drift layer, 3 indicates a p + region, 5 indicates an anode electrode, and 6 indicates a cathode electrode. While the JBS diode can reduce the reverse leakage current, the area of the Schottky diode region that operates at a low voltage during forward operation is reduced, and thus the resistance during forward operation is increased. As a structure for suppressing an increase in resistance during forward operation in a JBS diode, a structure in which the impurity concentration in a region surrounded by a junction barrier is increased is disclosed (Patent Document 1). This structure is illustrated in FIG. A difference from FIG. 19 is that an n-type semiconductor region 4 having an impurity concentration higher than that of the n drift layer is provided. With this structure, the resistance of the junction barrier forming region can be lowered.

特許第3987957号Japanese Patent No. 3998795

しかし、これらの検討はあくまでも理想的なショットキー界面を形成することができた場合に有効な方法である。ショットキーダイオードの逆方向特性はショットキー界面状態に非常に敏感であり、界面付近に異物や欠陥などが存在すると逆方向漏れ電流は急激に大きくなってしまい、所望の整流作用は得られなくなる。一般的にショットキーダイオードはPNダイオードと比べて良品率は低くなる。エピタキシャル成長やイオン注入によってドリフト層の内部に接合障壁を形成するPNダイオードと比べ、ドリフト層の表面に金属膜を形成するショットキーダイオードは、異物や製造工程中のプロセス欠陥の影響を受けやすいためである。異物や欠陥の分布をランダムと仮定すると、良品率Y(ここでは、逆方向特性に異常なくチップを作製できる確率を示す)はポアソン分布で考えられ、下記の数式で示される。
(数式)
Y=exp(−DA)
D:逆方向特性に異常をきたす異物や欠陥の密度
A:ショットキー界面の面積
図21に、数式1で示した良品率Yとショットキー界面の面積Aの関係を、欠陥密度Dに対してプロットしたものを示す。例えば、ショットキー界面の面積Aが0.1cmのとき、D=1個/cmの場合良品率Yは90%程度となるが、D=10個/cmの場合Yは40%以下と大幅に減少することが分かる。この値に、JBS構造やチップ周辺に形成される電界集中緩和構造に用いられている接合障壁領域の総面積に対応する良品率を掛け合わせた値が、JBSダイオードの良品率と考えることができる。
However, these studies are effective methods only when an ideal Schottky interface can be formed. The reverse characteristics of the Schottky diode are very sensitive to the state of the Schottky interface, and if there is a foreign object or a defect near the interface, the reverse leakage current increases rapidly and the desired rectifying action cannot be obtained. In general, a non-defective product rate is low for a Schottky diode compared to a PN diode. Compared to PN diodes that form a junction barrier inside the drift layer by epitaxial growth or ion implantation, Schottky diodes that form a metal film on the surface of the drift layer are more susceptible to foreign matter and process defects during the manufacturing process. is there. Assuming that the distribution of foreign matters and defects is random, the non-defective product ratio Y (in this case, the probability that a chip can be produced without abnormality in the reverse direction characteristic) can be considered as a Poisson distribution and is expressed by the following equation.
(Formula)
Y = exp (-DA)
D: Density of foreign matters and defects that cause abnormal reverse characteristics A: Area of Schottky interface FIG. 21 shows the relationship between the non-defective product ratio Y and the area A of the Schottky interface shown in Equation 1 with respect to the defect density D. The plot is shown. For example, when the area A of the Schottky interface is 0.1 cm 2, D = 1 piece / case yield rate Y of cm 2 is of the order of 90% in the case of D = 10 pieces / cm 2 Y 40% below It can be seen that it decreases significantly. A value obtained by multiplying this value by the non-defective rate corresponding to the total area of the junction barrier region used in the JBS structure and the electric field concentration relaxation structure formed around the chip can be considered as the non-defective rate of the JBS diode. .

上述のように、ショットキーダイオードはショットキー界面特性に敏感なため、大面積の耐圧良品チップを作製するのは非常に困難である。そこで良品率を向上するには、JBS構造における接合障壁領域を大きくしてショットキー界面領域を極力小さくすることが有効であると考えられる。しかしこの場合、順方向動作時に接合障壁領域下部に十分に電流が広がらず、オン電圧が上昇してしまうという問題がある。   As described above, since the Schottky diode is sensitive to the Schottky interface characteristics, it is very difficult to manufacture a large-area voltage-resistant chip. Thus, in order to improve the yield rate, it is considered effective to increase the junction barrier region in the JBS structure and reduce the Schottky interface region as much as possible. However, in this case, there is a problem in that the current does not spread sufficiently under the junction barrier region during forward operation, and the on-voltage increases.

解決しようとする問題点は、JBSダイオードの順方向動作時において接合障壁領域下部に十分に電流が広がらないため、オン電圧が上昇してしまう点である。   The problem to be solved is that the on-voltage increases because the current does not spread sufficiently under the junction barrier region during the forward operation of the JBS diode.

本発明は、JBS構造ダイオードのオン抵抗の上昇を抑えるため、接合障壁領域下部にn型ドリフト層濃度よりも相対的に高濃度なn領域を有する構造とする。代表的な本願発明を以下に列記する。 In the present invention, in order to suppress an increase in on-resistance of the JBS structure diode, a structure having an n region having a relatively higher concentration than the n -type drift layer concentration is provided below the junction barrier region. Representative inventions of the present invention are listed below.

本発明は、第1導電型の炭化珪素基板と、炭化珪素基板上に形成され、第1不純物濃度を有する第1導電型のドリフト層と、ドリフト層内の表面に所定の間隔で形成された、第1導電型と反対の第2導電型を有する複数の第1半導体領域と、ドリフト層とショットキー接続するショットキー電極と、炭化珪素基板の裏面とオーミック接続するオーミック電極と、第1半導体領域と炭化珪素基板との間の領域に、第1不純物濃度より高い第2不純物濃度を有する、第1導電型の第2半導体領域と、を備える半導体装置である。   The present invention includes a first conductivity type silicon carbide substrate, a first conductivity type drift layer formed on the silicon carbide substrate and having a first impurity concentration, and formed on a surface in the drift layer at predetermined intervals. A plurality of first semiconductor regions having a second conductivity type opposite to the first conductivity type, a Schottky electrode that is Schottky connected to the drift layer, an ohmic electrode that is ohmically connected to the back surface of the silicon carbide substrate, and a first semiconductor A semiconductor device comprising: a second semiconductor region of a first conductivity type having a second impurity concentration higher than the first impurity concentration in a region between the region and the silicon carbide substrate.

また、別の本発明は、第1導電型の炭化珪素基板と、炭化珪素基板上に形成され、第1不純物濃度を有する第1導電型の第1半導体層と、第1半導体層上に形成された、第1不純物濃度よりも高い第2不純物濃度を有する第1導電型の第2半導体層と、第2半導体層内の表面に所定の間隔で形成された、第1導電型と反対の第2導電型を有する複数の第1半導体領域と、第2半導体層とショットキー接続するショットキー電極と、炭化珪素基板の裏面とオーミック接続するオーミック電極と、を備える半導体装置である。   Another embodiment of the present invention is a first conductivity type silicon carbide substrate, a first conductivity type first semiconductor layer formed on the silicon carbide substrate and having a first impurity concentration, and formed on the first semiconductor layer. A first conductivity type second semiconductor layer having a second impurity concentration higher than the first impurity concentration and opposite to the first conductivity type formed at a predetermined interval on the surface in the second semiconductor layer. A semiconductor device comprising a plurality of first semiconductor regions having a second conductivity type, a Schottky electrode that is in Schottky connection with the second semiconductor layer, and an ohmic electrode that is in ohmic connection with the back surface of the silicon carbide substrate.

また、別の本発明は、第1導電型の炭化珪素基板と、炭化珪素基板上に形成され、第1不純物濃度を有する第1導電型の第1半導体層と、第1半導体層上に形成された、第1不純物濃度よりも高い第2不純物濃度を有する第1導電型の第2半導体層と、第2半導体層内の表面に所定の間隔で形成された、第1導電型と反対の第2導電型を有する複数の第1半導体領域と、第2半導体層内に形成され、上面から見て複数の前記第1半導体領域を取り囲みように配置された第2導電型を有する第2半導体領域と、第2半導体層とショットキー接続するショットキー電極と、炭化珪素基板の裏面とオーミック接続するオーミック電極と、を備える半導体装置である。   Another embodiment of the present invention is a first conductivity type silicon carbide substrate, a first conductivity type first semiconductor layer formed on the silicon carbide substrate and having a first impurity concentration, and formed on the first semiconductor layer. A first conductivity type second semiconductor layer having a second impurity concentration higher than the first impurity concentration and opposite to the first conductivity type formed at a predetermined interval on the surface in the second semiconductor layer. A plurality of first semiconductor regions having a second conductivity type and a second semiconductor having a second conductivity type formed in the second semiconductor layer and disposed so as to surround the plurality of first semiconductor regions when viewed from above. The semiconductor device includes a region, a Schottky electrode that is Schottky-connected to the second semiconductor layer, and an ohmic electrode that is ohmic-connected to the back surface of the silicon carbide substrate.

本発明の半導体装置は、接合障壁領域下部にn型ドリフト層よりも相対的に低抵抗なn領域を有しているため、接合障壁領域下部まで電流が広がることでJBSダイオードのオン電圧の上昇を抑えられる。 Since the semiconductor device of the present invention has an n region having a resistance lower than that of the n type drift layer at the lower part of the junction barrier region, the current spreads to the lower part of the junction barrier region, so that the on-voltage of the JBS diode is reduced. The rise can be suppressed.

本発明の実施の形態1における半導体装置の断面構造を示す説明図であり、図22のA−A’切断面における断面図である。FIG. 23 is an explanatory diagram showing a cross-sectional structure of the semiconductor device according to the first embodiment of the present invention, and is a cross-sectional view taken along the line A-A ′ of FIG. 22. 本発明の実施の形態1における半導体装置の製造工程の一例を示す、製造工程中の断面構造説明図である。It is sectional structure explanatory drawing in a manufacturing process which shows an example of the manufacturing process of the semiconductor device in Embodiment 1 of this invention. 図2に続く半導体装置の製造工程中の断面構造説明図である。FIG. 3 is an explanatory diagram of a cross-sectional structure in the manufacturing process of the semiconductor device, following FIG. 2; ドリフト層抵抗の上昇率とショットキー界面の割合の関係を示す説明図である。It is explanatory drawing which shows the relationship between the raise rate of drift layer resistance, and the ratio of a Schottky interface. ドリフト層抵抗の上昇率と接合障壁領域幅の関係を示す説明図である。It is explanatory drawing which shows the relationship between the raise rate of drift layer resistance, and junction barrier area | region width. 本発明の実施の形態1の効果を示す説明図である。It is explanatory drawing which shows the effect of Embodiment 1 of this invention. 本発明の実施の形態1の効果を示す説明図である。It is explanatory drawing which shows the effect of Embodiment 1 of this invention. 本発明の実施の形態2における半導体装置の断面構造を示す説明図であり、図22のB−B’切断面における断面図であり、(a)はショットキー電極が絶縁膜10に乗り上げない場合、(b)はショットキー電極が絶縁膜10に乗り上げる場合の断面図である。It is explanatory drawing which shows the cross-section of the semiconductor device in Embodiment 2 of this invention, and is sectional drawing in the BB 'cut surface of FIG. 22, (a) is a case where a Schottky electrode does not run over the insulating film 10 (B), It is sectional drawing in case a Schottky electrode runs on the insulating film 10. FIG. 本発明の実施の形態3における半導体装置の断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of the semiconductor device in Embodiment 3 of this invention. 本発明の実施の形態3における他の半導体装置の断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of the other semiconductor device in Embodiment 3 of this invention. 本発明の実施の形態3における半導体装置の製造工程の一例を示す、製造工程中の断面構造説明図である。It is sectional structure explanatory drawing in a manufacturing process which shows an example of the manufacturing process of the semiconductor device in Embodiment 3 of this invention. 図11に続く半導体装置の製造工程中の断面構造説明図である。FIG. 12 is an explanatory diagram of a cross-sectional structure during the manufacturing process of the semiconductor device following FIG. 11; 本発明の実施の形態4における半導体装置の断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of the semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態4における半導体装置の製造工程の一例を示す、製造工程中の断面構造説明図である。It is sectional structure explanatory drawing in a manufacturing process which shows an example of the manufacturing process of the semiconductor device in Embodiment 4 of this invention. 図14に続く半導体装置の製造工程中の断面構造説明図である。FIG. 15 is an explanatory diagram of a cross-sectional structure in the manufacturing process of the semiconductor device, following FIG. 14; 本発明の実施の形態5における半導体装置の断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of the semiconductor device in Embodiment 5 of this invention. 本発明の実施の形態5における半導体装置の製造工程の一例を示す、製造工程中の断面構造説明図である。It is sectional structure explanatory drawing in a manufacturing process which shows an example of the manufacturing process of the semiconductor device in Embodiment 5 of this invention. 図16に続く半導体装置の製造工程中の断面構造説明図である。FIG. 17 is an explanatory diagram of a cross-sectional structure during the manufacturing process of the semiconductor device following FIG. 16; 従来の半導体装置の断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of the conventional semiconductor device. 従来の半導体装置の断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of the conventional semiconductor device. 良品率とショットキー界面の面積の関係を示す説明図である。It is explanatory drawing which shows the relationship between a non-defective rate and the area of a Schottky interface. 本発明の実施の形態1における半導体装置の上面構造を示す説明図である。It is explanatory drawing which shows the upper surface structure of the semiconductor device in Embodiment 1 of this invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部材には原則として同一の符号を付し、その繰り返しの説明は省略する。特に異なる実施の形態間で機能が対応するものについては、形状、不純物濃度や結晶性等で違いがあっても同じ符号を付すこととする。又、断面図ではダイオードの主要部分のみを示しており、通常チップ周辺に形成されている電界集中緩和構造などを含めた周辺部分は省略されている。又、説明の便宜上、n型半導体基板を用いた例のみ説明するが、p型半導体基板を用いた場合であっても、本発明に含まれる。この場合には、n型をp型と、p型をn型と読み替えればよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. In particular, for functions corresponding to different embodiments, the same reference numerals are given even if there are differences in shape, impurity concentration, crystallinity, and the like. Further, in the cross-sectional view, only the main part of the diode is shown, and the peripheral part including the electric field concentration mitigation structure normally formed around the chip is omitted. For convenience of explanation, only an example using an n-type semiconductor substrate will be described, but even a case using a p-type semiconductor substrate is included in the present invention. In this case, n-type may be read as p-type, and p-type may be read as n-type.

(実施の形態1)
図1は本発明の実施の形態1における半導体装置の断面構造を示す説明図である。本実施の形態1による半導体装置は、第1導電型(n型)の高不純物濃度(n型)SiC基板1上に形成される第1導電型の低不純物濃度(n型)SiCドリフト層2と、第2導電型(p型)のp型半導体領域3と、nドリフト層2表面に設けられたショットキー電極5と、nSiC基板1裏面に設けられたオーミック電極6とを備えているJBSダイオードである。さらに、このダイオードは、p型半導体領域3の下側かつSiC基板との間の領域に、相対的にnドリフト層2(nSiC半導体層8)より高い不純物濃度のn型半導体領域4を備えている。このため、順方向動作時においてp型半導体領域3の下部に十分に電流が広がることが可能で、オン電圧の上昇を抑えることができる。本実施の形態1では、p型半導体領域3の下側のn型半導体領域4は、p型半導体領域3と接触して配置され、また、n型半導体領域4はnドリフト層2の表面全体に形成されているため、p型半導体領域3の間の領域にも存在する。なお、Wはドリフト層の厚さを示し、Sは複数配置されたp型半導体領域3同士の間隔を示し、Pはp型半導体領域3の幅を示す。
(Embodiment 1)
FIG. 1 is an explanatory view showing a cross-sectional structure of a semiconductor device according to the first embodiment of the present invention. The semiconductor device according to the first embodiment includes a first conductivity type low impurity concentration (n type) SiC drift formed on a first conductivity type (n type) high impurity concentration (n + type) SiC substrate 1. Layer 2, second conductivity type (p-type) p-type semiconductor region 3, Schottky electrode 5 provided on the surface of n drift layer 2, ohmic electrode 6 provided on the back surface of n + SiC substrate 1, It is a JBS diode provided with. Further, the diode has an n-type semiconductor region 4 having an impurity concentration higher than that of the n drift layer 2 (n SiC semiconductor layer 8) in a region below the p type semiconductor region 3 and between the SiC substrate. It has. For this reason, the current can sufficiently spread under the p-type semiconductor region 3 during the forward operation, and an increase in on-voltage can be suppressed. In the first embodiment, the n-type semiconductor region 4 below the p-type semiconductor region 3 is arranged in contact with the p-type semiconductor region 3, and the n-type semiconductor region 4 is the surface of the n drift layer 2. Since it is formed as a whole, it also exists in the region between the p-type semiconductor regions 3. Note that W represents the thickness of the drift layer, S represents the interval between a plurality of p-type semiconductor regions 3 arranged, and P represents the width of the p-type semiconductor region 3.

図2から図3は本実施の形態1の製造工程の一例を示す、製造工程中の断面構造説明図である。   2 to 3 are cross-sectional structure explanatory views during the manufacturing process showing an example of the manufacturing process of the first embodiment.

まず、図2に示すようにnSiC基板1上に低不純物濃度のnSiC層8を、nSiC層8上に相対的にnSiC層8よりも高い不純物濃度のn半導体領域4をエピタキシャル成長で形成したSiC基板を準備する。ここでは、nSiC層8とn半導体領域4の積層膜をnドリフト層2と定義する。 First, n of low impurity concentration on the n + SiC substrate 1 as shown in FIG. 2 - the SiC layer 8, n - n semiconductor region of higher impurity concentration than SiC layer 8 - relatively n on the SiC layer 8 A SiC substrate formed by epitaxial growth of 4 is prepared. Here, the laminated film of the n SiC layer 8 and the n semiconductor region 4 is defined as the n drift layer 2.

SiC基板1の不純物濃度は、1×1018〜1×1019cm−3程度の範囲が用いられる。SiC基板の主面は(0001)面、(000−1)面、(11−20)面などがよく用いられるが、本願発明は、SiC基板のこれらの主面の選択によらず、その効果を奏することが出来る。 The impurity concentration of the n + SiC substrate 1 is in the range of about 1 × 10 18 to 1 × 10 19 cm −3 . The (0001) plane, the (000-1) plane, the (11-20) plane, etc. are often used as the main surface of the SiC substrate, but the present invention is effective regardless of the selection of these main surfaces of the SiC substrate. Can be played.

SiC基板1上のnSiC層8の仕様としては、設定している耐圧仕様によって異なってくるが、不純物濃度は基板と同一の導電型で1×1015〜4×1016cm−3程度の範囲で、厚さは3〜80μm程度の範囲で用いられる。 The specifications of the n SiC layer 8 on the n + SiC substrate 1 vary depending on the set withstand voltage specification, but the impurity concentration is 1 × 10 15 to 4 × 10 16 cm with the same conductivity type as the substrate. In the range of about 3 , the thickness is used in the range of about 3 to 80 μm.

次に、図3に示すように、通例のリソグラフィとドライエッチングにより、マスク材料7にパターンを形成する。ここではマスク材料7は、CVD(Chemical Vapor Deposition)法で形成したSiOを用いている。また、通常マスク材料7は、縞状パターン、島状パターン、多角形状パターン、格子状パターンなどに加工されるが、本願発明は、一定の幅と間隔でパターニングされるのであれば、どのような形状でもその効果を奏することが出来る。マスク材料7にパターン形成した後、イオン12の注入により、n-ドリフト層2の表面にp型半導体領域3を形成する。p型半導体領域3の不純物濃度は、1018〜1020cm−3程度で、接合深さは0.3〜2.0μm程度の範囲で用いられる。p型のドーパントとしては、通常Al(アルミ)やB(ホウ素)が用いられる。ここでは、ドーパントとしてAlを用い、総ドーズ量1.8×1014cm−2を35〜145keVの加速エネルギーで多段注入を行い、表面付近の不純物濃度が9×1018cm−3程度、接合深さが0.55〜0.7μm程度となるようにp型半導体領域3を形成した。 Next, as shown in FIG. 3, a pattern is formed on the mask material 7 by usual lithography and dry etching. Here, the mask material 7 uses SiO 2 formed by a CVD (Chemical Vapor Deposition) method. Further, the mask material 7 is usually processed into a striped pattern, island pattern, polygonal pattern, lattice pattern, etc., but the present invention is not limited as long as it is patterned with a certain width and interval. The effect can be achieved even in the shape. After pattern formation on the mask material 7, a p-type semiconductor region 3 is formed on the surface of the n − drift layer 2 by implantation of ions 12. The impurity concentration of the p-type semiconductor region 3 is about 10 18 to 10 20 cm −3 and the junction depth is used in the range of about 0.3 to 2.0 μm. Usually, Al (aluminum) or B (boron) is used as the p-type dopant. Here, Al is used as a dopant, multi-stage implantation is performed with an acceleration energy of 35 to 145 keV with a total dose of 1.8 × 10 14 cm −2, and an impurity concentration in the vicinity of the surface is about 9 × 10 18 cm −3 . The p-type semiconductor region 3 was formed to have a depth of about 0.55 to 0.7 μm.

こうして、p型半導体領域3を形成した後は、p型半導体領域3の形成と同様の手順で、チップの外周部にp型不純物によるガードリング9を形成した(図22参照)。さらに、通常行われる注入不純物の活性化アニールを行い、nSiC基板の裏面のオーミック電極6およびnドリフト層2表面のショットキー電極5を形成し、ショットキー電極5を所望のサイズにパターニング加工することで、図1に示した本願発明の半導体装置の主要部分が完成する。 After the p-type semiconductor region 3 was thus formed, a guard ring 9 made of p-type impurities was formed on the outer periphery of the chip in the same procedure as the formation of the p-type semiconductor region 3 (see FIG. 22). Furthermore, the normal activation annealing of the implanted impurities is performed, the ohmic electrode 6 on the back surface of the n + SiC substrate and the Schottky electrode 5 on the surface of the n drift layer 2 are formed, and the Schottky electrode 5 is patterned to a desired size. By processing, the main part of the semiconductor device of the present invention shown in FIG. 1 is completed.

なお、表面保護や電極端からの放電を防止する目的で、表面にSiOなどの絶縁膜10を形成し、電極端子用に電極上部の一部の領域をパターニング加工して開口部11を形成することで、半導体装置が完成する(図22参照)。図22は本実施の形態1の上面構造を示す説明図である。なお、この上面図は当該半導体装置の主要部分の配置関係を示すものであり、全層の位置や寸法を正確に示すものではない。また、配置関係を見やすくするため、電極など一部の層は記載していない。ここでは、JBS構造として、p型半導体領域3がライン状に一定の間隔で並んだ縞状パターンを示しているが、上述のように、一般的にJBS構造として用いられる、島状パターン、多角形状パターン、格子状パターンなどであっても良い。p型の半導体領域9は、複数のp型半導体領域3を取り囲むように形成されている。図1は、図22のA−A’切断面における断面図である。 ここでは、ダイオードの主要部分のみを説明したが、通常チップ周辺に形成されている、FLR(Field Limiting Ring)やJTE(Junction Termination Extension)などの電界集中緩和構造や、チャネルストッパは、図3に示したp型半導体領域3形成の前、または後に、通例のリソグラフィとドライエッチング、およびイオン注入を用いて形成される。 For the purpose of protecting the surface and preventing discharge from the electrode end, an insulating film 10 such as SiO 2 is formed on the surface, and an opening 11 is formed by patterning a part of the upper portion of the electrode for the electrode terminal. Thus, the semiconductor device is completed (see FIG. 22). FIG. 22 is an explanatory view showing the top structure of the first embodiment. This top view shows the arrangement relationship of the main parts of the semiconductor device, and does not accurately show the positions and dimensions of all layers. Further, some layers such as electrodes are not shown in order to make the arrangement relationship easy to see. Here, a striped pattern in which the p-type semiconductor regions 3 are arranged in a line at regular intervals is shown as the JBS structure. However, as described above, island-shaped patterns and polygons generally used as the JBS structure are shown. It may be a shape pattern, a lattice pattern, or the like. The p-type semiconductor region 9 is formed so as to surround the plurality of p-type semiconductor regions 3. 1 is a cross-sectional view taken along the line AA ′ of FIG. Although only the main part of the diode has been described here, an electric field concentration mitigation structure such as FLR (Field Limiting Ring) and JTE (Junction Termination Extension) and a channel stopper, which are usually formed around the chip, are shown in FIG. Before or after the formation of the p-type semiconductor region 3 shown, it is formed using conventional lithography, dry etching, and ion implantation.

本実施の形態1では、n半導体領域4をエピタキシャル成長で形成したSiC基板を用いたが、nドリフト層2にn型不純物の多段イオン注入を行って、n半導体領域4を形成しても良い。n型不純物としては、N(窒素)やP(リン)が一般的に用いられるが、n型のドーパントとして寄与するものであれば、他の元素でも適用できる。この場合、n型不純物をイオン注入する領域はSiC基板全面にしても良く、またショットキー電極を形成する領域に限定しても良い。また、n型不純物のイオン注入は、注入不純物の活性化アニール工程の前に実施すれば良く、図3のp型半導体領域3の形成工程を行った後にn半導体領域4を形成しても良い。 In the first embodiment, the SiC substrate in which the n semiconductor region 4 is formed by epitaxial growth is used. However, the n semiconductor region 4 may be formed by performing multistage ion implantation of n-type impurities into the n drift layer 2. . As the n-type impurity, N (nitrogen) or P (phosphorus) is generally used, but any other element can be used as long as it contributes as an n-type dopant. In this case, the region where the n-type impurity is ion-implanted may be the entire surface of the SiC substrate, or may be limited to the region where the Schottky electrode is formed. The ion implantation of the n-type impurity may be performed before the implantation impurity activation annealing step, and the n semiconductor region 4 may be formed after the step of forming the p-type semiconductor region 3 of FIG. .

また、本実施の形態1では、マスク材料にSiOを適用したが、例えば窒化シリコン膜やレジスト材料でもよく、イオン注入時のマスクとなる材料であれば、その他の材料でも適用できる。 In the first embodiment, SiO 2 is applied to the mask material. However, for example, a silicon nitride film or a resist material may be used, and any other material can be used as long as it is a material used as a mask during ion implantation.

また、本実施の形態1では、注入不純物の活性化アニールを実施した後、すぐに裏面および表面の電極形成を行ったが、注入不純物の活性化アニールを実施した後に酸化処理を行い、nドリフト層2の表面に入ったダメージ層を除去する犠牲酸化工程を行ってもよい。 In the first embodiment, the back surface and front surface electrodes are formed immediately after the implantation impurity activation annealing. However, after the implantation impurity activation annealing is performed, an oxidation treatment is performed to form n −. You may perform the sacrificial oxidation process which removes the damage layer which entered the surface of the drift layer 2. FIG.

また、本実施の形態1では、注入不純物の活性化アニールを実施した後、すぐに裏面および表面の電極形成を行ったが、nドリフト層2の表面にCVD法でSiOなどの表面保護膜を形成し、nドリフト層2の表面を保護しても良い。この場合、表面保護膜を形成した後、ショットキー電極を形成する領域のみ開口するように加工する。また、前述の犠牲酸化工程を行った後に表面保護膜を形成しても良い。次に、本発明の効果の一例を図4から図7のシミュレーション結果を用いて説明する。ここで、JBS構造を有するダイオードのnドリフト層抵抗をR、ショットキーダイオードのnドリフト層抵抗をRSBD、JBS構造におけるp型半導体領域3の幅をP、間隔をS、n−ドリフト層2の厚さをWと定義している。 In the first embodiment, the back and front electrodes are formed immediately after the implantation impurity activation annealing, but the surface of the n drift layer 2 is protected by a CVD method such as SiO 2. A film may be formed to protect the surface of the n drift layer 2. In this case, after the surface protective film is formed, processing is performed so that only the region where the Schottky electrode is formed is opened. Further, the surface protective film may be formed after performing the above-described sacrificial oxidation step. Next, an example of the effect of the present invention will be described with reference to the simulation results of FIGS. Here, n diode having a JBS structure - drift layer resistance R, Schottky diodes the n - drift layer resistance R SBD, the width of the p-type semiconductor region 3 in the JBS structure P, and spacing S, n-drift The thickness of layer 2 is defined as W.

また、nドリフト層2は耐圧の異なる2種類の仕様を示している。1つは耐圧600Vを想定した不純物濃度が1×1016cm−3、厚さが5μmのn-ドリフト層であり、もう1つは耐圧3.3kVを想定した不純物濃度が3×1015cm−3、厚さが30μmのn-ドリフト層である。 The n drift layer 2 shows two types of specifications with different breakdown voltages. One is an n-drift layer having an impurity concentration of 1 × 10 16 cm −3 and a thickness of 5 μm assuming a breakdown voltage of 600 V, and the other is an impurity concentration of 3 × 10 15 cm assuming a breakdown voltage of 3.3 kV. -3 , an n-drift layer having a thickness of 30 μm.

図4は、従来のJBSダイオードの抵抗上昇率R/RSBDと、ショットキー界面割合S/(S+P)の関係を示している。p接合領域の間隔Sは、逆方向電圧印加時のショットキー電極界面電界を十分に緩和し、逆方向漏れ電流を低減する観点から決定される。ここでは、耐圧600Vを想定したnドリフト層2の仕様ではS=2μm、耐圧3.3kVを想定したn-ドリフト層2の仕様では3μmを標準寸法として設定した。また、ドリフト層の抵抗変化の比較のために、耐圧600Vのnドリフト層2の仕様でS=6μmの寸法についても計算したが、このSの仕様はショットキー界面電界の緩和効果を考慮した値ではない。図4から、JBS構造とすることで、n-ドリフト層2表面の電流経路は制限されるため、ショットキー界面の割合が減るほどに抵抗上昇率R/RSBDが増加しているのが分かる。しかし、nドリフト層2の仕様や間隔Sの寸法によって、ショットキー界面の割合に対するドリフト層抵抗の上昇率の感度は異なっている。つまり、電流がp型半導体領域下部まで十分に広がらなくなり、抵抗上昇率R/RSBDが急激に増加するポイントは、p型半導体領域の幅Pと間隔Sの割合だけでは決まらないことを示している。 FIG. 4 shows the relationship between the resistance increase rate R / R SBD of the conventional JBS diode and the Schottky interface ratio S / (S + P). The interval S between the p + junction regions is determined from the viewpoint of sufficiently relaxing the Schottky electrode interface electric field when the reverse voltage is applied and reducing the reverse leakage current. Here, in the specification of the n drift layer 2 assuming a withstand voltage of 600V, S = 2 μm, and in the specification of the n drift layer 2 assuming a withstand voltage of 3.3 kV, 3 μm is set as a standard dimension. In addition, for comparison of resistance change of the drift layer, the size of S = 6 μm was also calculated in the specification of the n drift layer 2 with a withstand voltage of 600 V, but this specification of S considered the relaxation effect of the Schottky interface electric field. Not a value. As can be seen from FIG. 4, since the current path on the surface of the n − drift layer 2 is restricted by adopting the JBS structure, the resistance increase rate R / R SBD increases as the ratio of the Schottky interface decreases. . However, depending on the specifications of the n drift layer 2 and the size of the interval S, the sensitivity of the rate of increase of the drift layer resistance with respect to the ratio of the Schottky interface varies. That is, the current does not sufficiently spread to the lower part of the p-type semiconductor region, and the point at which the rate of increase in resistance R / R SBD rapidly increases is not determined only by the ratio of the width P and the interval S of the p-type semiconductor region. Yes.

図5は、従来のJBSダイオードの抵抗上昇率R/RSBDと、接合領域幅のドリフト層厚さに対する割合W/Pの関係を示している。図5では、W/Pの値が大きいときは、緩やかにほぼ一定の割合で抵抗上昇率R/RSBDは増加しているが、W/P≦4の領域になると抵抗上昇率R/RSBDが急激に増加しているのが分かる。これは、JBS構造の抵抗増加を決める因子はp型半導体領域の幅Pとドリフト層の厚さWで決まっており、P≧W/4の関係では、電流がp型半導体領域3の下部まで十分に広がらなくなることを示している。 FIG. 5 shows the relationship between the resistance increase rate R / R SBD of the conventional JBS diode and the ratio W / P of the junction region width to the drift layer thickness. In FIG. 5, when the value of W / P is large, the resistance increase rate R / R SBD gradually increases at a substantially constant rate. However, when the value of W / P ≦ 4, the resistance increase rate R / R It can be seen that the SBD increases rapidly. This is because the factor that determines the increase in resistance of the JBS structure is determined by the width P of the p-type semiconductor region and the thickness W of the drift layer. In the relationship of P ≧ W / 4, the current reaches the lower portion of the p-type semiconductor region 3. It indicates that it will not spread sufficiently.

図6は、本実施の形態1の構造を適用した場合の効果の一例を示している。図6では簡便のため、n型半導体領域4を電流分散層と表示しているが、同じ層を示している。すなわち、電流分散層と表記されているものは、本発明に係るn型半導体領域4を設けた場合のデータであり、表記のないものは、従来のSBDである。耐圧600Vを想定したnドリフト層2の仕様は、nSiC層8が不純物濃度1×1016cm−3の厚さ5μm、n型半導体領域4が3×1016cm−3の2μmの積層膜となっている。また、耐圧3.3kVを想定したnドリフト層2の仕様は、nSiC層8が3×1015cm−3の30μm、n型半導体領域4が1.5×1016cm−3の2μmの積層膜となっている。n型半導体領域4を追加したnドリフト層2の抵抗上昇率は、n型半導体領域4がない場合のn-ドリフト層2のショットキーダイオードの抵抗RSBDで規格化している。このため、積層膜の不純物濃度や厚さの関係で、W/Pが大きい場合の抵抗上昇率R/RSBDはnドリフト層2の仕様によって違いが見られる。しかし、どちらのnドリフト層2の仕様においても、抵抗上昇率の急増するポイントW/P=4よりも小さい場合において、従来構造と比べて抵抗の上昇が抑制されていることが分かる。すなわち、本発明に係るn型半導体領域4を設けた場合には、特にPがWの1/4倍よりも広い設計において抵抗の上昇を抑制する効果が顕著になることが分かる。PとWの関係に寄らずn型半導体領域4を設けることで一定の効果が得られるが、PをWの1/4倍よりも広くすることでより顕著な効果が得られ、PをWの1/4倍より広くすることが望ましい。 FIG. 6 shows an example of the effect when the structure of the first embodiment is applied. In FIG. 6, for simplicity, the n-type semiconductor region 4 is indicated as a current spreading layer, but the same layer is shown. That is, what is indicated as a current spreading layer is data when the n-type semiconductor region 4 according to the present invention is provided, and what is not indicated is a conventional SBD. The specification of the n drift layer 2 assuming a withstand voltage of 600 V is that the n SiC layer 8 is 5 μm thick with an impurity concentration of 1 × 10 16 cm −3 , and the n-type semiconductor region 4 is 2 μm with 3 × 10 16 cm −3 . It is a laminated film. The specifications of the n drift layer 2 assuming a breakdown voltage of 3.3 kV are as follows : the n SiC layer 8 is 30 × m of 3 × 10 15 cm −3 , and the n-type semiconductor region 4 is 1.5 × 10 16 cm −3 . The laminated film is 2 μm. The rate of increase in resistance of the n drift layer 2 to which the n-type semiconductor region 4 is added is normalized by the resistance R SBD of the Schottky diode of the n drift layer 2 when the n-type semiconductor region 4 is not present. For this reason, the resistance increase rate R / R SBD when W / P is large varies depending on the specifications of the n drift layer 2 due to the impurity concentration and thickness of the stacked film. However, in any of the specifications of the n drift layer 2, it can be seen that the increase in resistance is suppressed as compared with the conventional structure when the resistance increase rate is smaller than the point W / P = 4. That is, it can be seen that when the n-type semiconductor region 4 according to the present invention is provided, the effect of suppressing an increase in resistance becomes remarkable particularly in a design where P is wider than 1/4 of W. Although a certain effect can be obtained by providing the n-type semiconductor region 4 regardless of the relationship between P and W, a more remarkable effect can be obtained by making P wider than 1/4 of W. It is desirable to make it wider than 1/4 times.

図7は、本実施の形態1の構造を適用した場合の効果の一例を示しており、n型半導体領域4を追加したnドリフト層2の抵抗上昇率を、同一のnドリフト層2の構造を持つショットキーダイオードの抵抗RSBDで規格化した場合を示している。各nドリフト層2の仕様について、W/P=3程度まで、抵抗上昇率R/RSBDはほぼ一定の割合で緩やかに増加していることが分かる。これは、n型半導体領域4を追加した本願発明の構造により、p型半導体領域3の幅Pを大きくしても、p型半導体領域3下部まで十分に電流が広がっているためである。また、従来構造と比べると、上昇率の急増するポイントW/P=3よりも小さい場合においても抵抗の増加は緩やかであり、W/P=1の場合でも抵抗上昇率は1.5程度であり、実用可能な範囲に抑えられている。すなわち、本発明に係るn型半導体領域4を設けることによって、従来W/P=4程度であった抵抗の上昇率の急増ポイントをW/P=3程度まで下げることができる。また、従来のW/P=1では抵抗の上昇率が高く実用的でなかった設計値をn型半導体領域4を設けることによって、実用的な範囲の設計値に抑えることができる。よって、上昇率が急増する前の領域を用いる場合には、PをWの1/4倍より大きく1/3倍より小さくすることが望ましく、また、上昇率が急増した後の領域である1/3倍より大きい場合であっても、この上昇率を低く抑えることができる。 FIG. 7 shows an example of the effect when the structure of the first embodiment is applied. The resistance increase rate of the n drift layer 2 to which the n-type semiconductor region 4 is added is equal to that of the same n drift layer 2. The case is shown in which the Schottky diode resistance R SBD of the structure is normalized. Regarding the specifications of each n drift layer 2, it can be seen that the resistance increase rate R / R SBD gradually increases at a substantially constant rate up to about W / P = 3. This is because the current is sufficiently spread to the bottom of the p-type semiconductor region 3 even if the width P of the p-type semiconductor region 3 is increased by the structure of the present invention in which the n-type semiconductor region 4 is added. Compared with the conventional structure, the increase in resistance is moderate even when the increase rate is smaller than the point W / P = 3 where the increase rate increases rapidly, and the increase rate of resistance is about 1.5 even when W / P = 1. Yes, it is limited to a practical range. That is, by providing the n-type semiconductor region 4 according to the present invention, the point of rapid increase in resistance, which was conventionally about W / P = 4, can be lowered to about W / P = 3. In addition, by providing the n-type semiconductor region 4 with a design value that is not practical due to the high rate of increase in resistance when the conventional W / P = 1, it is possible to keep the design value within a practical range. Therefore, when using the area before the rate of increase increases rapidly, it is desirable to set P to be larger than 1/4 times W and smaller than 1/3 times. Even if it is larger than / 3 times, this rate of increase can be kept low.

本実施の形態1では、n型半導体領域4の膜厚が2μmの場合を用いて説明したが、n型半導体領域4の濃度および膜厚は、任意の値に設定できる。つまりは、nSiC層8よりも高濃度であり、また逆方向特性が所望の耐圧を示すことができる範囲で設定する。同様に、膜厚を薄く、もしくは厚くしてもよい。 In the first embodiment, the case where the film thickness of the n-type semiconductor region 4 is 2 μm has been described, but the concentration and film thickness of the n-type semiconductor region 4 can be set to arbitrary values. That is, the concentration is set in a range where the concentration is higher than that of the n - SiC layer 8 and the reverse characteristics can exhibit a desired breakdown voltage. Similarly, the film thickness may be thin or thick.

また、本実施の形態1では、JBS構造におけるp型半導体領域3の間隔Sを、耐圧600Vを想定したnドリフト層2の仕様ではS=2μm、耐圧3.3kVを想定したnドリフト層2の仕様ではS=3μmとして設定したが、順方向動作時においてオン電圧が極端に上昇しない範囲であれば、間隔Sを狭く設定しても良い。本実施の形態1では、nドリフト層2の表面に相対的に高い不純物濃度のn型半導体領域4を有するため、通常の間隔Sよりも大幅に狭く設定することが可能である。 In the first embodiment, the spacing S of the p-type semiconductor region 3 in the JBS structure, n assuming a breakdown voltage 600V - drift layer - n assuming the S = 2 [mu] m, the breakdown voltage 3.3kV in the specification of the drift layer 2 In the second specification, S is set to 3 μm. However, the interval S may be set to be narrow as long as the ON voltage does not increase excessively during forward operation. In the first embodiment, since the n-type semiconductor region 4 having a relatively high impurity concentration is provided on the surface of the n drift layer 2, it can be set much narrower than the normal interval S.

(実施の形態2)
実施の形態2では、実施の形態1についてショットキー電極5端近辺の構造について、さらにn型半導体領域4を設けた構造である。図8は、図22のB−B’切断面における断面図であり、JBSダイオードのショットキー電極5端近辺の断面構造を示している。図8に示しているように、ショットキー電極5端の構造としては、(a)n型SiCドリフト層2上にショットキー電極5を形成し、p型半導体領域(ガードリング)9上で端部が形成されるように電極を加工する構造と、(b)n型SiCドリフト層2上に形成した絶縁膜10を通例のリソグラフィとドライエッチングもしくはウェットエッチングにより加工し、ショットキー電極5を形成し、p型半導体領域(ガードリング)9の上部であり絶縁膜10上で端部が形成されるように電極を加工する構造が一般的に用いられる。ここでp型半導体領域(ガードリング)9は、ショットキー電極5端部、もしくは電極と絶縁膜10の境界部分に電界が集中しないように設けられている。いずれの場合でも、ショットキー電極の端部若しくはショットキー電極と絶縁膜10の境界部分(ショットキー電極の端部)は、このp型半導体領域上に配置されている。ここでは、p型半導体領域(ガードリング)9を、p型半導体領域3とは別工程で形成された領域として示しているが、p型半導体領域3と同一工程で形成しても良い。いずれの場合においても、p型半導体領域(ガードリング)9をn型半導体領域4内に形成することで、順方向動作時においてp型半導体領域(ガードリング)9の下部に十分に電流が広がることが可能であり、実施の形態1の効果と同様にショットキー電極5端近辺のオン電圧の上昇を抑えることができる。
(Embodiment 2)
In the second embodiment, the structure in the vicinity of the Schottky electrode 5 end in the first embodiment is further provided with an n-type semiconductor region 4. FIG. 8 is a cross-sectional view taken along the line BB ′ of FIG. 22 and shows a cross-sectional structure in the vicinity of the Schottky electrode 5 end of the JBS diode. As shown in FIG. 8, the structure of the end of the Schottky electrode 5 is as follows: (a) the Schottky electrode 5 is formed on the n -type SiC drift layer 2, and on the p-type semiconductor region (guard ring) 9. A structure in which the electrode is processed so that the end portion is formed, and (b) the insulating film 10 formed on the n -type SiC drift layer 2 is processed by usual lithography and dry etching or wet etching, and the Schottky electrode 5 In general, a structure is used in which an electrode is processed so that an end is formed on the insulating film 10 above the p-type semiconductor region (guard ring) 9. Here, the p-type semiconductor region (guard ring) 9 is provided so that the electric field does not concentrate at the end of the Schottky electrode 5 or at the boundary between the electrode and the insulating film 10. In any case, the end portion of the Schottky electrode or the boundary portion between the Schottky electrode and the insulating film 10 (end portion of the Schottky electrode) is disposed on the p-type semiconductor region. Here, the p-type semiconductor region (guard ring) 9 is shown as a region formed in a separate process from the p-type semiconductor region 3, but may be formed in the same step as the p-type semiconductor region 3. In any case, by forming the p-type semiconductor region (guard ring) 9 in the n-type semiconductor region 4, the current sufficiently spreads under the p-type semiconductor region (guard ring) 9 during forward operation. As in the effect of the first embodiment, an increase in on-voltage in the vicinity of the end of the Schottky electrode 5 can be suppressed.

なお、本実施の形態1では、絶縁膜10にSiOを適用したが、一般的な絶縁性を有した材料であれば良く、例えば窒化シリコン膜やポリイミド、またこれらの異なる絶縁膜からなる積層膜でもよい。 In the first embodiment, SiO 2 is applied to the insulating film 10, but any material having general insulating properties may be used. For example, a silicon nitride film, a polyimide, or a laminate made of these different insulating films is used. It may be a membrane.

(実施の形態3)
図9は本発明の実施の形態3における半導体装置の断面構造を示す説明図である。また、図10に本実施の形態3における他の半導体装置の断面構造の説明図を示す。図9との違いは、n型半導体領域4がp型半導体領域3の幅と同じという点である。この違いは、製造工程における若干の変更によって実現することができる。本実施の形態3の実施の形態1との違いは、n型半導体領域4がp型半導体領域3の下部領域のみに形成されている点であり、製造工程が異なる。しかし、その効果は、程度の違いはあるが本質的に実施の形態1で示したものと同様である。
(Embodiment 3)
FIG. 9 is an explanatory diagram showing a cross-sectional structure of the semiconductor device according to the third embodiment of the present invention. FIG. 10 is an explanatory diagram of a cross-sectional structure of another semiconductor device according to the third embodiment. The difference from FIG. 9 is that the n-type semiconductor region 4 has the same width as the p-type semiconductor region 3. This difference can be realized by a slight change in the manufacturing process. The difference between the third embodiment and the first embodiment is that the n-type semiconductor region 4 is formed only in the lower region of the p-type semiconductor region 3, and the manufacturing process is different. However, the effect is essentially the same as that shown in the first embodiment although the degree is different.

図11から図12は本実施の形態3の製造工程の一例を示す、製造工程中の断面構造説明図である。   FIG. 11 to FIG. 12 are cross-sectional structure explanatory views in the manufacturing process showing an example of the manufacturing process of the third embodiment.

実施の形態1と同様の手順で、nSiC基板1上に低不純物濃度のnドリフト層2をエピタキシャル成長で形成したSiC基板を準備する。nSiC基板1やnドリフト層2は、実施の形態1と同様の不純物濃度や厚さの範囲の仕様を用いる。 A SiC substrate in which a low impurity concentration n drift layer 2 is formed by epitaxial growth on n + SiC substrate 1 is prepared in the same procedure as in the first embodiment. The n + SiC substrate 1 and the n drift layer 2 use the same impurity concentration and thickness specifications as those in the first embodiment.

次に、図11に示すように、通例のリソグラフィとドライエッチングにより、マスク材料7にパターンを形成する。マスク材料7やその加工パターンは、実施の形態1と同様のものを用いる。マスク材料7にパターン形成した後、イオン12の注入により、nドリフト層2の表面にp型半導体領域3を形成する。また、イオン注入時の加速エネルギーや総ドーズ量は、実施の形態1と同様のものを用いる。 Next, as shown in FIG. 11, a pattern is formed on the mask material 7 by usual lithography and dry etching. The mask material 7 and its processing pattern are the same as those in the first embodiment. After pattern formation on the mask material 7, the p-type semiconductor region 3 is formed on the surface of the n drift layer 2 by implantation of ions 12. The acceleration energy and the total dose amount at the time of ion implantation are the same as those in the first embodiment.

次に、p型半導体領域3形成時のマスク材料7を加工・縮小してn型不純物のイオン注入を行い、n半導体領域4を形成する。ここではマスク材料7は、CVD法で形成したSiOを用いているため、加工には希釈したフッ酸を用いている。マスク材料7のエッチング量には特に規定はなく、n型半導体領域4の幅がp型半導体領域3の幅より広くなれば良い。n型半導体領域4の不純物濃度は、相対的にn−ドリフト層2の不純物濃度より高濃度であれば良く、ピーク不純物濃度がp型半導体領域3下部のPN接合位置近辺となるように設定する。n型のドーパントとしては、通常N(窒素)やP(リン)が用いられる。ここでは、ドーパントとしてNを用い、総ドーズ量1.8×1012cm−2を360〜480keVの加速エネルギーで多段注入を行い、ピーク不純物濃度が7×1016cm−3程度となるようにn型半導体領域4を形成した。また、電流分散層となるn型半導体領域4の幅を広くするため、より高い加速エネルギー、例えば700keV程度までで多段注入を行っても良いが、n型不純物のイオン注入条件は、設定耐圧の逆方向電圧印加時のPN接合リークの大きさで決める必要がある。 Next, the mask material 7 at the time of forming the p-type semiconductor region 3 is processed and reduced, and n-type impurity ions are implanted to form the n semiconductor region 4. Here, since the mask material 7 uses SiO 2 formed by the CVD method, diluted hydrofluoric acid is used for processing. The etching amount of the mask material 7 is not particularly limited, and it is sufficient that the width of the n-type semiconductor region 4 is wider than the width of the p-type semiconductor region 3. The impurity concentration of the n-type semiconductor region 4 only needs to be relatively higher than the impurity concentration of the n − drift layer 2, and is set so that the peak impurity concentration is near the PN junction position below the p-type semiconductor region 3. . Usually, N (nitrogen) or P (phosphorus) is used as the n-type dopant. Here, N is used as a dopant, and a multi-dose implantation is performed with an acceleration energy of 360 to 480 keV with a total dose of 1.8 × 10 12 cm −2 so that the peak impurity concentration is about 7 × 10 16 cm −3. An n-type semiconductor region 4 was formed. Further, in order to increase the width of the n-type semiconductor region 4 serving as the current spreading layer, multi-stage implantation may be performed with higher acceleration energy, for example, up to about 700 keV. It is necessary to determine the size of the PN junction leak when applying the reverse voltage.

こうして、n型半導体領域4を形成した後は、通常行われる注入不純物の活性化アニールを行い、nSiC基板の裏面のオーミック電極6およびnドリフト層2表面のショットキー電極5を形成し、ショットキー電極5を所望のサイズにパターニング加工することで、図9に示した本願発明の半導体装置が完成する。 After the n-type semiconductor region 4 is formed in this way, a normal activation impurity implantation annealing is performed to form the ohmic electrode 6 on the back surface of the n + SiC substrate and the Schottky electrode 5 on the surface of the n drift layer 2. Then, the semiconductor device of the present invention shown in FIG. 9 is completed by patterning the Schottky electrode 5 to a desired size.

ここでは、ダイオードの主要部分のみを説明したが、通常チップ周辺に形成されている電界集中緩和構造は、図11から図12に示した製造工程の前、間、または後に、通例のリソグラフィとドライエッチング、およびイオン注入を用いて形成される。   Although only the main part of the diode has been described here, the electric field concentration relaxation structure usually formed around the chip is not limited to the conventional lithography and dry process before, during or after the manufacturing process shown in FIGS. It is formed using etching and ion implantation.

本実施の形態3では、p型半導体領域3を形成した後n型半導体領域4を形成したが、その形成順序は逆でも良い。その場合、n型半導体領域4を形成した後、マスク材料7を追加で堆積し、通例のドライエッチングによるエッチバック処理を行うことで、n型半導体領域4よりも幅の狭いp型半導体領域3形成用のマスク材料7が形成される。   In the third embodiment, the n-type semiconductor region 4 is formed after the p-type semiconductor region 3 is formed, but the formation order may be reversed. In that case, after the n-type semiconductor region 4 is formed, a mask material 7 is additionally deposited, and an etch-back process by a usual dry etching is performed, so that the p-type semiconductor region 3 having a narrower width than the n-type semiconductor region 4 is formed. A forming mask material 7 is formed.

また、本実施の形態3では、n型半導体領域4の幅をp型半導体領域3の幅よりも広く形成したが、同一マスクパターンで形成しても良い。この場合、マスク材料7を再加工する工程を省略することができるので、工程を簡略化することができる。図10に断面構造を例示する。   In the third embodiment, the width of the n-type semiconductor region 4 is formed wider than the width of the p-type semiconductor region 3, but may be formed with the same mask pattern. In this case, since the process of reworking the mask material 7 can be omitted, the process can be simplified. FIG. 10 illustrates a cross-sectional structure.

また、本実施の形態3では、注入不純物の活性化アニールを実施した後、すぐに裏面および表面の電極形成を行ったが、注入不純物の活性化アニールを実施した後に酸化処理を行い、nドリフト層2の表面に入ったダメージ層を除去する犠牲酸化工程を行ってもよい。 In the third embodiment, the back surface and front surface electrodes are formed immediately after the implantation impurity activation annealing. However, after the implantation impurity activation annealing is performed, the oxidation treatment is performed, and n You may perform the sacrificial oxidation process which removes the damage layer which entered the surface of the drift layer 2. FIG.

また、本実施の形態3では、注入不純物の活性化アニールを実施した後、すぐに裏面および表面の電極形成を行ったが、nドリフト層2の表面にCVD法でSiOなどの表面保護膜を形成し、nドリフト層2の表面を保護しても良い。この場合、表面保護膜を形成した後、ショットキー電極を形成する領域のみ開口するように加工する。また、前述の犠牲酸化工程を行った後に表面保護膜を形成しても良い。 In the third embodiment, the back and front electrodes are formed immediately after the implantation impurity activation annealing, but the surface of the n drift layer 2 is protected by a CVD method such as SiO 2. A film may be formed to protect the surface of the n drift layer 2. In this case, after the surface protective film is formed, processing is performed so that only the region where the Schottky electrode is formed is opened. Further, the surface protective film may be formed after performing the above-described sacrificial oxidation step.

(実施の形態4)
図13は本発明の実施の形態4における半導体装置の断面構造を示す説明図である。実施の形態3で示した図9との違いは、n型半導体領域4がp型半導体領域3の側面にも配置され、nドリフト層2の表面まで形成されてショットキー接続している点である。なお、隣接するn型半導体領域と所定の間隔が設けられて配置されている。しかし、その効果は、程度の違いはあるが本質的に実施の形態1で示したものと同様である。
(Embodiment 4)
FIG. 13 is an explanatory diagram showing a cross-sectional structure of the semiconductor device according to the fourth embodiment of the present invention. The difference from FIG. 9 shown in the third embodiment is that the n-type semiconductor region 4 is also arranged on the side surface of the p-type semiconductor region 3 and is formed up to the surface of the n drift layer 2 to be Schottky connected. It is. It is arranged with a predetermined distance from adjacent n-type semiconductor regions. However, the effect is essentially the same as that shown in the first embodiment although the degree is different.

図14から図15は本実施の形態4の製造工程の一例を示す、製造工程中の断面構造説明図である。   14 to 15 are explanatory views of a cross-sectional structure during the manufacturing process, showing an example of the manufacturing process of the fourth embodiment.

実施の形態3との違いは、図15のn型半導体領域4形成時のイオン注入条件である。低加速エネルギーから多段注入を行うことで、n型半導体領域4をnドリフト層2の表面まで形成している。 The difference from the third embodiment is the ion implantation conditions when forming the n-type semiconductor region 4 in FIG. By performing multistage implantation from low acceleration energy, the n-type semiconductor region 4 is formed up to the surface of the n drift layer 2.

また、本実施の形態4の別の製造方法として、nドリフト層2を通例のドライエッチングによりトレンチ形状に加工した後、n型半導体領域4となるSiC層、p型半導体領域3となるSiC層をエピタキシャル成長し、CMP(Chemical Mechanical Polishing)法により、nドリフト層2の表面まで平坦化研磨を実施する方法がある。この場合、n型半導体領域4およびp型半導体領域3を、イオン注入を用いずに形成することができるので、不純物濃度の制御やその幅を正確に制御することが出来る。 As another manufacturing method of the fourth embodiment, the n drift layer 2 is processed into a trench shape by usual dry etching, and then the SiC layer that becomes the n-type semiconductor region 4 and the SiC that becomes the p-type semiconductor region 3 are obtained. There is a method in which a layer is epitaxially grown and planarization polishing is performed up to the surface of the n drift layer 2 by CMP (Chemical Mechanical Polishing). In this case, since the n-type semiconductor region 4 and the p-type semiconductor region 3 can be formed without using ion implantation, the impurity concentration and the width thereof can be accurately controlled.

(実施の形態5)
図16は本発明の実施の形態5における半導体装置の断面構造を示す説明図である。実施の形態3で示した図9との違いは、n型半導体領域4がそれぞれ分断されずに、1つの層として形成されている点である。すなわち、p型半導体領域3の間であって、ショットキー電極5とSiC基板1の間にも配置されている。さらに、ショットキー電極5と所定の距離離れて配置されている。しかし、その効果は、程度の違いはあるが本質的に実施の形態1で示したものと同様である。
(Embodiment 5)
FIG. 16 is an explanatory diagram showing a cross-sectional structure of the semiconductor device according to the fifth embodiment of the present invention. The difference from FIG. 9 shown in the third embodiment is that the n-type semiconductor regions 4 are formed as one layer without being divided. That is, it is disposed between the p-type semiconductor region 3 and also between the Schottky electrode 5 and the SiC substrate 1. Further, it is arranged at a predetermined distance from the Schottky electrode 5. However, the effect is essentially the same as that shown in the first embodiment although the degree is different.

図17から図18は本実施の形態5の製造工程の一例を示す、製造工程中の断面構造説明図である。   FIG. 17 to FIG. 18 are cross-sectional structure explanatory views in the manufacturing process showing an example of the manufacturing process of the fifth embodiment.

実施の形態3との違いは、図18のn型半導体領域4形成時の注入領域である。本実施の形態5では、JBS構造を形成する領域全面にn型不純物をイオン注入することで、n型半導体領域4を形成している。   The difference from the third embodiment is the implantation region when forming the n-type semiconductor region 4 of FIG. In the fifth embodiment, the n-type semiconductor region 4 is formed by ion-implanting n-type impurities over the entire region where the JBS structure is to be formed.

また、本実施の形態5の別の製造方法として、nドリフト層2の表面に、n型半導体領域4、nドリフト層2と同一の不純物濃度のnSiC層をエピタキシャル成長した後、p型半導体領域3をイオン注入により形成する方法がある。この場合、n型半導体領域4の不純物濃度と厚みを制御よく形成することが出来る。 As another manufacturing method of the fifth embodiment, n - the surface of the drift layer 2, n-type semiconductor region 4, n - n impurity concentration of the same and the drift layer 2 - After the SiC layer was epitaxially grown, p There is a method of forming the type semiconductor region 3 by ion implantation. In this case, the impurity concentration and thickness of the n-type semiconductor region 4 can be formed with good control.

以上、本発明について実施の形態1〜5を用いて説明した。実施の形態2では、実施の形態1を用いて説明したが、実施の形態2は実施の形態3〜5の形態についても適用でき、その場合には、図8のp型半導体領域3とp型半導体領域9との間のn型半導体領域4の配置を夫々の実施の形態3〜5のn型半導体領域4の配置に置き換えればよい。   The present invention has been described using the first to fifth embodiments. Although the second embodiment has been described using the first embodiment, the second embodiment can also be applied to the third to fifth embodiments. In this case, the p-type semiconductor regions 3 and p of FIG. The arrangement of the n-type semiconductor region 4 between the n-type semiconductor region 9 and the n-type semiconductor region 9 may be replaced with the arrangement of the n-type semiconductor region 4 of each of the third to fifth embodiments.

1 n型SiC基板
2 n型SiCドリフト層
3 p型半導体領域
4 n型半導体領域
5 ショットキー電極
6 オーミック電極
7 マスク材料
8 n−型SiC層
9 ガードリング
10 絶縁膜
11 開口部
12 イオン
1 n + type SiC substrate 2 n type SiC drift layer 3 p type semiconductor region 4 n type semiconductor region 5 Schottky electrode 6 ohmic electrode 7 mask material 8 n − type SiC layer 9 guard ring 10 insulating film 11 opening 12 ion

Claims (7)

第1導電型の炭化珪素基板と、
前記炭化珪素基板上に形成され、第1不純物濃度を有する前記第1導電型のドリフト層と、
前記ドリフト層内の表面に所定の間隔で形成された、前記第1導電型と反対の第2導電型を有する複数の第1半導体領域と、
前記ドリフト層とショットキー接続するショットキー電極と、
前記炭化珪素基板の裏面とオーミック接続するオーミック電極と、
前記第1半導体領域と前記炭化珪素基板との間の領域に、前記第1不純物濃度より高い第2不純物濃度を有する、前記第1導電型の第2半導体領域と、
前記ドリフト層内で隣り合う前記第1半導体領域の間の領域に、前記第1不純物濃度より高くかつ前記第2不純物濃度より低い第3不純物濃度を有する前記第1電導型の第3半導体領域と、
を有することを特徴とする半導体装置。
A first conductivity type silicon carbide substrate;
A drift layer of the first conductivity type formed on the silicon carbide substrate and having a first impurity concentration;
A plurality of first semiconductor regions having a second conductivity type opposite to the first conductivity type, formed at a predetermined interval on a surface in the drift layer;
A Schottky electrode for Schottky connection with the drift layer;
An ohmic electrode in ohmic contact with the back surface of the silicon carbide substrate;
A second semiconductor region of the first conductivity type having a second impurity concentration higher than the first impurity concentration in a region between the first semiconductor region and the silicon carbide substrate;
A third conductive region of the first conductivity type having a third impurity concentration higher than the first impurity concentration and lower than the second impurity concentration in a region between the adjacent first semiconductor regions in the drift layer; ,
A semiconductor device comprising:
請求項1記載の半導体装置において、
前記第3半導体領域は、前記ショットキー電極とショットキー接続していることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the third semiconductor region is Schottky connected to the Schottky electrode.
請求項1記載の半導体装置において、
前記ショットキー電極は、前記第1半導体領域の表面にも設けられていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the Schottky electrode is also provided on a surface of the first semiconductor region.
請求項1記載の半導体装置において、
前記第2半導体領域は、前記第1半導体領域と接触して配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the second semiconductor region is disposed in contact with the first semiconductor region.
請求項1記載の半導体装置において、
前記第2半導体領域は、前記第1半導体領域の幅よりも広い幅を有することを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the second semiconductor region has a width wider than that of the first semiconductor region.
請求項1記載の半導体装置において、
前記第1半導体領域の幅は、前記ドリフト層の厚さの1/4倍よりも広いことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The width of the first semiconductor region is wider than 1/4 of the thickness of the drift layer.
請求項1記載の半導体装置において、The semiconductor device according to claim 1,
前記第3半導体領域は、隣り合う前記第1半導体領域の両方に接していることを特徴とする半導体装置。The third semiconductor region is in contact with both of the adjacent first semiconductor regions.
JP2013273197A 2013-12-27 2013-12-27 Semiconductor device Active JP5755722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273197A JP5755722B2 (en) 2013-12-27 2013-12-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273197A JP5755722B2 (en) 2013-12-27 2013-12-27 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012518178A Division JP5452718B2 (en) 2010-06-02 2010-06-02 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2014060460A JP2014060460A (en) 2014-04-03
JP5755722B2 true JP5755722B2 (en) 2015-07-29

Family

ID=50616592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273197A Active JP5755722B2 (en) 2013-12-27 2013-12-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5755722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508854B2 (en) 2020-05-29 2022-11-22 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3038162B1 (en) 2014-12-24 2019-09-04 ABB Schweiz AG Junction barrier Schottky rectifier
DE112015006098T5 (en) * 2015-05-15 2017-11-30 Hitachi, Ltd. Power semiconductor element and power semiconductor module using this
JP6758987B2 (en) * 2016-08-04 2020-09-23 株式会社日立製作所 Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199442B2 (en) * 2004-07-15 2007-04-03 Fairchild Semiconductor Corporation Schottky diode structure to reduce capacitance and switching losses and method of making same
US8124981B2 (en) * 2008-06-10 2012-02-28 Fairchild Semiconductor Corporation Rugged semiconductor device architecture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508854B2 (en) 2020-05-29 2022-11-22 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP2014060460A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5452718B2 (en) Semiconductor device
JP5642191B2 (en) Semiconductor device
US8766279B1 (en) SiC-based trench-type schottky device
JP6063629B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6065154B2 (en) Silicon carbide semiconductor device
KR101745437B1 (en) Bipolar non-punch-through power semiconductor device
JP5665912B2 (en) Semiconductor device and manufacturing method thereof
JP2016208030A (en) Semiconductor element and manufacturing method for the same
JP6214680B2 (en) Silicon carbide semiconductor device
US8890278B2 (en) Semiconductor device
JP5646044B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
KR101416361B1 (en) Shottky barrier diode and method for manufacturing the same
KR101698357B1 (en) Silicon carbide semiconductor device
JP6745458B2 (en) Semiconductor element
JP6653461B2 (en) Semiconductor device
JP5755722B2 (en) Semiconductor device
JP6125748B2 (en) Semiconductor device
JP2024019464A (en) semiconductor equipment
JP5547022B2 (en) Semiconductor device
JP6275353B2 (en) Silicon carbide semiconductor device
KR20150078454A (en) Schottky barrier diode and method for manufacturing the same
WO2023119485A1 (en) Silicon carbide semiconductor device and method for producing silicon carbide semiconductor device
US20240021737A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US20240105858A1 (en) Silicon carbide semiconductor device
JP2021114507A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350