JP5755537B2 - Non-dangerous nitrate production method - Google Patents

Non-dangerous nitrate production method Download PDF

Info

Publication number
JP5755537B2
JP5755537B2 JP2011197875A JP2011197875A JP5755537B2 JP 5755537 B2 JP5755537 B2 JP 5755537B2 JP 2011197875 A JP2011197875 A JP 2011197875A JP 2011197875 A JP2011197875 A JP 2011197875A JP 5755537 B2 JP5755537 B2 JP 5755537B2
Authority
JP
Japan
Prior art keywords
nitrate
dangerous
barium nitrate
silica
hazardous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011197875A
Other languages
Japanese (ja)
Other versions
JP2013060310A (en
Inventor
恭司 植田
恭司 植田
拓史 小原
拓史 小原
平野 卓
卓 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chori Co Ltd
Original Assignee
Chori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chori Co Ltd filed Critical Chori Co Ltd
Priority to JP2011197875A priority Critical patent/JP5755537B2/en
Publication of JP2013060310A publication Critical patent/JP2013060310A/en
Application granted granted Critical
Publication of JP5755537B2 publication Critical patent/JP5755537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

この発明は、非危険物化した硝酸塩の生産方法に関する。   The present invention relates to a method for producing a non-hazardous nitrate.

硝酸バリウムは、加熱時に酸素を発生させる性質を有することから、主に酸化剤として光学ガラス、花火、火薬等の製造用途に利用される粉粒状の物質である。そして、その性質ゆえそのままの状態では、消防法(昭和二十三年法律第百八十六号)、危険物の規制に関する政令(昭和三十四年政令第三百六号)及び危険物の試験及び性状に関する省令(平成元年二月十七日自治省令第一号)で定められた危険物判定試験により、消防法上の危険物第一類(酸化性固体)と判定され、輸送及び保管に大幅な法的制約を受ける。   Since barium nitrate has the property of generating oxygen when heated, it is a granular material mainly used for manufacturing optical glass, fireworks, explosives and the like as an oxidizing agent. And because of its nature, the Fire Services Act (Act No. 186 of 1947), the Decree on the Regulation of Dangerous Goods (Act No. 306 of 1944) and the dangerous goods According to the dangerous goods judgment test specified in the ministerial ordinance on testing and properties (Ministry of Autonomous Ordinance No. 1 of February 17, 1989) There are significant legal restrictions on storage.

しかし、硝酸バリウムに対し、危険物判定試験によって危険物第一類と認定されないレベルにまで改質を施した場合、その改質後の硝酸バリウムについては上記の法的制約を受けずに済み、硝酸バリウムの製造及び使用効率の向上、輸送及び管理コストの低減化等を図ることができる。   However, when barium nitrate is reformed to a level that is not recognized as a dangerous goods class 1 by the dangerous goods judgment test, the barium nitrate after the modification is not subject to the above legal restrictions, Production and use efficiency of barium nitrate can be improved, transportation and management costs can be reduced.

ここで、硝酸バリウムは粉粒状の物品(目開きが2mmの網ふるいを回転させながら毎分160回の打振を与えてふるった場合に、当該網ふるいを30分間で通過するものが10%以上のもの)であり、危険物判定試験としては燃焼試験及び落球式打撃感度試験が行われる。燃焼試験では、試験物品と木粉との混合物を燃焼させた場合の燃焼時間を測定し、この時間が、標準物質(過塩素酸カリウム)と木粉との混合物を燃焼させた場合の燃焼時間(以下、基準燃焼時間という)と等しいかこれより短いと、酸化力の潜在的な危険性に係る政令で定める性状を有すると判断される。落球式打撃感度試験では、標準物質(硝酸カリウム)と赤りんとの混合物に鋼球を落下させた場合に50%の確率で爆発する高さから鋼球を試験物品と赤りんとの混合物に落下させた場合に当該混合物が爆発する確率を求め、この爆発確率が50%以上であると、衝撃に対する敏感性に係る政令で定める性状を有すると判断される。   Here, barium nitrate is a powdered article (10% of which passes through the mesh sieve for 30 minutes when it is sieved by applying 160 vibrations per minute while rotating the mesh sieve having a mesh opening of 2 mm). As described above, a combustion test and a falling ball hitting sensitivity test are performed as the dangerous goods determination test. In the combustion test, the burning time when a mixture of the test article and wood powder is burned is measured, and this time is the burning time when the mixture of standard material (potassium perchlorate) and wood powder is burned. If it is equal to or shorter than (hereinafter referred to as the reference combustion time), it is judged to have the property specified by the Cabinet Order concerning the potential danger of oxidizing power. In the falling ball hitting sensitivity test, the steel ball was dropped into the mixture of the test article and red phosphorus from the height that exploded with a probability of 50% when the steel ball was dropped into the mixture of standard substance (potassium nitrate) and red phosphorus. In this case, the probability of the mixture exploding is obtained, and if the explosion probability is 50% or more, it is determined that the mixture has the property specified by the government ordinance relating to the sensitivity to impact.

そして、燃焼試験において、改質後の硝酸バリウムの前記燃焼時間が基準燃焼時間よりも長く、かつ、落球式打撃感度試験において、改質後の硝酸バリウムの爆発確率が50%未満であれば、その改質後の硝酸バリウムは危険物第一類ではない(非危険物)と認定されることになる。斯かる両試験により非危険物と認定されるようにするための具体的な硝酸バリウムの改質方法としては、例えば、硝酸バリウムに対する不活性な無機物質の添加が挙げられる。   And, in the combustion test, if the combustion time of the barium nitrate after reforming is longer than the reference combustion time, and the explosion probability of the barium nitrate after reforming is less than 50% in the falling ball hitting sensitivity test, The reformed barium nitrate will be recognized as not a hazardous material first class (non-dangerous material). As a specific method for reforming barium nitrate to be recognized as a non-hazardous material by both of these tests, for example, addition of an inert inorganic substance to barium nitrate can be mentioned.

しかし、非危険物であるとの認定を確実に得るために、硝酸バリウムに対して不活性な無機物質を大量に添加し、硝酸バリウムの周りをその物質で取り囲むようにすると、硝酸バリウムに期待される酸化剤としての機能が発揮され難くなり、商品価値が損なわれてしまう。逆に、商品価値を保つために無機物質の添加を少量に抑えると、硝酸バリウムと可燃物との接触面積が大となり、上記危険物判定試験により危険物第一類と認定されてしまう。   However, in order to ensure that it is certified as a non-hazardous material, adding a large amount of an inorganic substance that is inert to barium nitrate and surrounding the barium nitrate with that substance is expected for barium nitrate. As a result, the function as an oxidant is hardly exhibited, and the commercial value is impaired. On the other hand, if the addition of an inorganic substance is suppressed to a small amount in order to maintain the commercial value, the contact area between barium nitrate and combustible material becomes large, and it is recognized as a dangerous material first class by the dangerous material judgment test.

斯かる問題は、硝酸バリウム以外の危険物第一類に分類される硝酸塩についても同様に生じ得る。   Such a problem may occur in the same manner for nitrates classified as the first class of dangerous goods other than barium nitrate.

本発明は上述の事柄に留意してなされたもので、その目的は、安価かつ簡便な手法で、硝酸塩の商品価値を保ちつつ非危険物化を達成することができる非危険物化した硝酸塩の
生産方法を提供することにある。
The present invention has been made in consideration of the above-mentioned matters, and its purpose is to produce a non-hazardous nitrate which can be made non-hazardous while maintaining the commercial value of nitrate by an inexpensive and simple method. Is to provide.

上記目的を達成するために、本発明に係る非危険物化した硝酸塩の生産方法は、硝酸塩の外側に、該硝酸塩の表面に形成した酸素封止剤のコーティング層を介してシリカを付着させる(請求項1)。   In order to achieve the above object, the non-hazardous nitrate production method according to the present invention deposits silica on the outside of the nitrate via a coating layer of an oxygen sealant formed on the surface of the nitrate (claim). Item 1).

上記方法において、前記コーティング層は、前記硝酸塩に対して前記酸素封止剤を0.01質量%以上添加して形成したものであることが好ましい(請求項2)。   In the said method, it is preferable that the said coating layer is formed by adding the said oxygen sealing agent 0.01 mass% or more with respect to the said nitrate (Claim 2).

また、上記方法において、前記シリカは、前記硝酸塩に対して0.3質量%以上添加して付着させたものであるのが好ましい(請求項3)。
また、上記方法において、前記酸素封止剤は界面活性剤であってもよい(請求項4)。
Moreover, in the said method, it is preferable that the said silica is 0.3 mass% or more added and made to adhere with respect to the said nitrate (Claim 3).
In the above method, the oxygen sealing agent may be a surfactant.

請求項1〜に係る発明では、安価かつ簡便な手法で、硝酸塩の商品価値を保ちつつ非危険物化を達成することができる非危険物化した硝酸塩の生産方法が得られる。 In the inventions according to claims 1 to 4 , a non-hazardous nitrate production method capable of achieving non-hazardous material while maintaining the commercial value of nitrate is obtained by an inexpensive and simple method.

すなわち、各請求項に係る発明の非危険物化した硝酸塩の生産方法では、硝酸塩の純分を充分に確保しつつ、危険物判定試験により非危険物と認定される性状を有するように硝酸塩を改質することができ、そのために高価な材料や極めて複雑な手法を用いる必要もない。   That is, in the method for producing a non-hazardous nitrate according to the claimed invention, the nitrate is modified so as to have a property that is recognized as a non-hazardous substance by a dangerous substance judgment test while ensuring a sufficient amount of nitrate. Without the need for expensive materials or extremely complex techniques.

しかも、硝酸塩に対する酸素封止剤の添加量が0.01質量%未満であると、硝酸塩全体がコーティングされずその表面が露出し、上記危険物判定試験で危険物と判定されてしまう可能性もあるが、請求項2に係る発明の非危険物化した硝酸塩の生産方法では、硝酸塩に対する酸素封止剤の添加量を0.01質量%以上とするので、そのような恐れはない。   In addition, if the amount of the oxygen sealing agent added to the nitrate is less than 0.01% by mass, the entire nitrate is not coated and the surface is exposed, and may be determined as a dangerous substance in the dangerous substance determination test. However, in the non-hazardous nitrate production method according to the second aspect of the present invention, since the amount of the oxygen sealing agent added to the nitrate is 0.01% by mass or more, there is no such fear.

また、硝酸塩に対するシリカの添加量が0.3質量%未満であると、酸素封止剤のコーティング層の大半はシリカによって覆われない状態となり、それだけコーティング層は衝撃を受けた際等に剥がれ易くなる上、このコーティング層が有機物質からなる場合、硝酸塩と共に反応し得るため、上記危険物判定試験で危険物と判定されてしまう可能性もある。しかし、請求項3に係る発明の非危険物化した硝酸塩の生産方法では、硝酸塩に対するシリカの添加量を0.3質量%以上とするので、そのような恐れはない。   If the amount of silica added to the nitrate is less than 0.3% by mass, most of the coating layer of the oxygen sealing agent is not covered with silica, and the coating layer is easily peeled off when impacted. In addition, when this coating layer is made of an organic substance, it can react with nitrate, so that it may be determined as a dangerous substance in the dangerous substance determination test. However, in the non-hazardous nitrate production method according to the third aspect of the present invention, since the amount of silica added to the nitrate is 0.3 mass% or more, there is no such fear.

本発明の実施の形態について図面を参照しながら以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施の形態に係る非危険物化した硝酸塩の生産方法は、硝酸バリウム(硝酸塩の一例)の結晶の外側に、ドデシルベンゼンスルフォン酸(酸素封止剤の一例)のコーティング層を介してホワイトカーボン(シリカの一例)を付着させるものである。   The production method of non-hazardous nitrate according to the present embodiment includes white carbon (on the outside of a crystal of barium nitrate (an example of nitrate) via a coating layer of dodecylbenzenesulfonic acid (an example of an oxygen sealing agent). An example of silica is attached.

まず、硝酸バリウムの結晶は、例えば、硝酸バリウム溶液(硝酸塩溶液の一例)を適宜の手段により結晶化し、脱水(固液分離)して得られる結晶(精製物)である。そして、本実施例では、上記脱水時あるいは脱水後に、ドデシルベンゼンスルフォン酸を添加することにより、硝酸バリウム結晶の外側にドデシルベンゼンスルフォン酸のコーティング層を形成(表面コーティング)する。その後、必要に応じてコーティング済の硝酸バリウム結晶を適宜乾燥した(若干の湿り気は残した)上で、例えばV字混合機にて所定の比率でコーティング済の硝酸バリウムと微粉末状のホワイトカーボンとを混合し、硝酸バリウムの外側にコーティング層を介してホワイトカーボンを付着させる。   First, the barium nitrate crystal is, for example, a crystal (purified product) obtained by crystallizing and dehydrating (solid-liquid separation) a barium nitrate solution (an example of a nitrate solution) by an appropriate means. In this example, a dodecylbenzenesulfonic acid coating layer is formed (surface coating) on the outside of the barium nitrate crystal by adding dodecylbenzenesulfonic acid during or after the dehydration. Thereafter, if necessary, the coated barium nitrate crystals are appropriately dried (with some moisture left), and then coated with barium nitrate and fine powdery white carbon in a predetermined ratio using, for example, a V-shaped mixer. And white carbon is adhered to the outside of the barium nitrate through the coating layer.

ここで、ドデシルベンゼンスルフォン酸(酸素封止剤)の添加量は、硝酸バリウム(硝酸塩)に対して0.01質量%以上0.10質量%以下が好ましい。添加量が0.01質量%未満であると、各結晶全体がコーティングされず、硝酸バリウム(硝酸塩)の結晶面が露出し、上記危険物判定試験で危険物と判定されてしまう可能性もある。また、添加量が0.10質量%超であると、硝酸バリウム純分が少なく、商品価値が損なわれる恐れがある。   Here, the addition amount of dodecylbenzenesulfonic acid (oxygen sealing agent) is preferably 0.01% by mass or more and 0.10% by mass or less with respect to barium nitrate (nitrate). If the amount added is less than 0.01% by mass, the entire crystal is not coated, the crystal plane of barium nitrate (nitrate) is exposed, and may be determined as a dangerous substance in the dangerous substance determination test. . On the other hand, if the amount added exceeds 0.10% by mass, the pure barium nitrate content is small and the commercial value may be impaired.

一方、ホワイトカーボン(シリカ)の添加量は、硝酸バリウムに対して0.3質量%以上1.5質量%以下が好ましい。添加量が0.3質量%未満であると、ドデシルベンゼンスルフォン酸のコーティング層の大半はホワイトカーボンによって覆われない状態となり、それだけコーティング層は衝撃を受けた際等に剥がれ易くなる上、このコーティング層は有機物質からなり硝酸バリウムと共に反応し得るため、上記危険物判定試験で危険物と判定されてしまう可能性もある。また、添加量が0.10質量%超であると、硝酸バリウム純分が少なく、商品価値が損なわれる恐れがある。   On the other hand, the amount of white carbon (silica) added is preferably 0.3% by mass or more and 1.5% by mass or less with respect to barium nitrate. When the amount added is less than 0.3% by mass, most of the coating layer of dodecylbenzene sulfonic acid is not covered with white carbon, and the coating layer is easily peeled off when subjected to an impact. Since the layer is made of an organic substance and can react with barium nitrate, it may be determined as a dangerous substance in the dangerous substance determination test. On the other hand, if the amount added exceeds 0.10% by mass, the pure barium nitrate content is small and the commercial value may be impaired.

加えて、微粉末状のホワイトカーボン(シリカ)のメジアン径(D50)は5μm以下が好ましい。5μm超であると、ドデシルベンゼンスルフォン酸のコーティング層に対するホワイトカーボンの付着に大きなムラが生じるのに伴い、前記コーティング層においてホワイトカーボンで覆われない部分が形成され易く、この場合も、コーティング層の剥がれやドデシルベンゼンスルフォン酸の反応性等に起因して、上記危険物判定試験で危険物と判定されてしまう可能性もある。   In addition, the median diameter (D50) of the finely powdered white carbon (silica) is preferably 5 μm or less. When the thickness exceeds 5 μm, a large unevenness of adhesion of white carbon to the coating layer of dodecylbenzenesulfonic acid occurs, and a portion that is not covered with white carbon tends to be formed in the coating layer. Due to peeling, reactivity of dodecylbenzene sulfonic acid, and the like, there is a possibility that the dangerous substance determination test determines that it is a dangerous substance.

本実施形態の方法により改質した硝酸バリウム(組成物)を上述のように製造した場合、この硝酸バリウムに含まれるドデシルベンゼンスルフォン酸は加熱による除去が可能であり、また、ホワイトカーボン(シリカ)は液晶ガラスに多く含まれるものであるので、得られた上記硝酸バリウムは特に液晶ガラスの製造(添加剤)に用いて好適なものである。   When barium nitrate (composition) modified by the method of this embodiment is produced as described above, dodecylbenzenesulfonic acid contained in this barium nitrate can be removed by heating, and white carbon (silica). Is abundant in liquid crystal glass, and thus the obtained barium nitrate is particularly suitable for use in the production (additive) of liquid crystal glass.

本発明方法の有効性を確認するため、上記実施形態に則って改質した硝酸バリウムのサンプル(No.1〜No.5)を作成し、各サンプルについて上記危険物判定試験を行った。その結果を表1に示す。尚、No.1〜No.5のサンプルは、上記実施形態の規定範囲内で、ドデシルベンゼンスルフォン酸の添加量、ホワイトカーボン(シリカ)のメジアン径及び添加量をそれぞれ異ならせたものである。   In order to confirm the effectiveness of the method of the present invention, samples of barium nitrate (No. 1 to No. 5) modified in accordance with the above-described embodiment were prepared, and the above dangerous substance determination test was performed on each sample. The results are shown in Table 1. No. 1-No. Sample No. 5 is obtained by varying the amount of dodecylbenzenesulfonic acid added, the median diameter of white carbon (silica), and the amount added within the specified range of the above embodiment.

Figure 0005755537
Figure 0005755537

ここで、燃焼試験では、上記燃焼時間が短いものほど酸化力が強いと判定され、二種の標準物質(過塩素酸カリウム、臭素酸カリウム)との比較でランクが決められる。具体的には、その燃焼時間が、過塩素酸カリウムの燃焼時間よりも長ければランク3、臭素酸カリウムの燃焼時間以下であればランク1、その間であればランク2となる。   Here, in the combustion test, it is determined that the shorter the burning time, the stronger the oxidizing power, and the rank is determined by comparison with two kinds of standard substances (potassium perchlorate and potassium bromate). Specifically, if the combustion time is longer than the combustion time of potassium perchlorate, it is rank 3, if it is less than the combustion time of potassium bromate, it is rank 1, and if it is between, it is rank 2.

また、落球式打撃感度試験では、上記爆発確率が高いものほど衝撃に対する敏感性が高いと判定され、二種の標準物質(塩素酸カリウム、硝酸カリウム)との比較でランクが決められる。具体的には、その爆発確率が、硝酸カリウムの爆発確率よりも低ければランク3、塩素酸カリウムの爆発確率以上であればランク1、その間であればランク2となる。   Also, in the falling ball hitting sensitivity test, it is determined that the higher the explosion probability, the higher the sensitivity to impact, and the rank is determined by comparison with two kinds of standard substances (potassium chlorate and potassium nitrate). Specifically, if the explosion probability is lower than the explosion probability of potassium nitrate, it is rank 3, if the explosion probability is higher than the explosion probability of potassium chlorate, it is rank 1, and if it is between, it is rank 2.

そして、燃焼試験及び落球式打撃感度試験において、ともにランク3と判定された場合に限り非危険物(危険物第一類には該当しない)と認定され、それ以外の場合は危険物第一類と認定される。   And it is recognized as a non-hazardous material (does not fall under the first category of dangerous goods) only when it is determined to be rank 3 in both the combustion test and the falling ball hitting sensitivity test. Certified.

表1から、上記実施形態に則って作成したサンプル(No.1〜No.5)はいずれも非危険物と認定されたことが把握される。すなわち、本発明方法の有効性は明らかである。   From Table 1, it can be understood that all the samples (No. 1 to No. 5) created in accordance with the above-described embodiment are recognized as non-dangerous goods. That is, the effectiveness of the method of the present invention is clear.

なお、本発明は、上記の実施の形態に何ら限定されず、本発明の要旨を逸脱しない範囲において種々に変形して実施し得ることは勿論である。例えば、以下のような変形例を挙げることができる。   In addition, this invention is not limited to said embodiment at all, Of course, it can change and implement variously in the range which does not deviate from the summary of this invention. For example, the following modifications can be given.

上記実施の形態では、硝酸塩として硝酸バリウムを対象とする例を示したが、硝酸ストロンチウム、硝酸ナトリウム、硝酸マグネシウム、硝酸カリウム等の他の硝酸塩を対象としてもよい。   In the above embodiment, an example has been shown in which barium nitrate is targeted as the nitrate, but other nitrates such as strontium nitrate, sodium nitrate, magnesium nitrate, and potassium nitrate may be targeted.

酸素封止剤は酸素封止機能とシリカ接着機能とを有するものであればよいのであり、ドデシルベンゼンスルフォン酸以外に、例えば、シラン系、チタネート系、アルミニウム系、ジルコアルミニウム系、カルボン酸系、リン酸系等のカップリング剤や、脂肪酸系、油脂系、ワックス系、界面活性剤系等の表面処理剤を酸素封止剤として用いることが考えられる。   The oxygen sealing agent only needs to have an oxygen sealing function and a silica adhesion function. In addition to dodecylbenzenesulfonic acid, for example, silane-based, titanate-based, aluminum-based, zircoaluminum-based, carboxylic acid-based, It is conceivable to use a coupling agent such as a phosphoric acid type or a surface treatment agent such as a fatty acid type, a fat type, a wax type, or a surfactant type as the oxygen sealing agent.

上記実施の形態ではシリカとしてホワイトカーボン(非晶質シリカ)を用いているが、定形シリカ(結晶質α石英)、無定形シリカ(非晶質二酸化ケイ素)の何れを用いてもよい。   In the above embodiment, white carbon (amorphous silica) is used as the silica, but either regular silica (crystalline α quartz) or amorphous silica (amorphous silicon dioxide) may be used.

上記実施の形態では、コーティング済の硝酸塩(硝酸バリウム)とシリカ(ホワイトカーボン)との混合にV字混合機を用いているが、このような容器回転型の混合機に限らず、他の混合機を用いてもよい。   In the above embodiment, the V-shaped mixer is used for mixing the coated nitrate (barium nitrate) and silica (white carbon). A machine may be used.

なお、上記変形例どうしを適宜組み合わせてもよいことはいうまでもない。
Needless to say, the above modifications may be combined as appropriate.

Claims (2)

硝酸塩の外側に、該硝酸塩の表面に形成した酸素封止剤のコーティング層を介して、メジアン径(D 50 )が5μm以下であるシリカを付着させる非危険物化した硝酸塩の生産方法であって、
前記コーティング層は、前記硝酸塩に対して前記酸素封止剤を0.01質量%以上添加して形成したものであり、
前記シリカは、前記硝酸塩に対して0.3質量%以上添加して付着させたものである、非危険物化した硝酸塩の生産方法。
A non-hazardous nitrate production method in which silica having a median diameter (D 50 ) of 5 μm or less is attached to the outside of a nitrate through an oxygen sealing agent coating layer formed on the surface of the nitrate ,
The coating layer is formed by adding 0.01 mass% or more of the oxygen sealing agent to the nitrate,
The method for producing a non-hazardous nitrate, wherein the silica is added by 0.3% by mass or more based on the nitrate.
前記酸素封止剤は界面活性剤である請求項1に記載の非危険物化した硝酸塩の生産方法。 The non-hazardous nitrate production method according to claim 1 , wherein the oxygen sealing agent is a surfactant.
JP2011197875A 2011-09-12 2011-09-12 Non-dangerous nitrate production method Active JP5755537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197875A JP5755537B2 (en) 2011-09-12 2011-09-12 Non-dangerous nitrate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197875A JP5755537B2 (en) 2011-09-12 2011-09-12 Non-dangerous nitrate production method

Publications (2)

Publication Number Publication Date
JP2013060310A JP2013060310A (en) 2013-04-04
JP5755537B2 true JP5755537B2 (en) 2015-07-29

Family

ID=48185350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197875A Active JP5755537B2 (en) 2011-09-12 2011-09-12 Non-dangerous nitrate production method

Country Status (1)

Country Link
JP (1) JP5755537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249884B2 (en) 2014-05-30 2017-12-20 日本化学工業株式会社 Powdered composition containing barium compound

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL126665A0 (en) * 1996-05-03 1999-08-17 Eastman Chem Co Explosive formulations
JPH11292678A (en) * 1998-04-15 1999-10-26 Daicel Chem Ind Ltd Gas generating agent composition for air bag
JP4682543B2 (en) * 2004-06-17 2011-05-11 日油株式会社 Ignition agent for gas generator
JP5481723B2 (en) * 2009-11-27 2014-04-23 国立大学法人 東京大学 Gas generant composition

Also Published As

Publication number Publication date
JP2013060310A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
Wang et al. Investigation of rye straw ash sintering characteristics and the effect of additives
Wang et al. Investigation of additives for preventing ash fouling and sintering during barley straw combustion
Sabatini et al. High‐nitrogen‐based pyrotechnics: longer‐and brighter‐burning, perchlorate‐free, red‐light illuminants for military and civilian applications
CN102432406B (en) Energy-containing material
CN102424516A (en) Desensitizing agent for reducing mechanical sensitivity of pyrotechnic mixture
WO2011123437A3 (en) Non-toxic, heavy-metal free sensitized explosive percussion primers and methods of preparing the same
RU2722781C2 (en) Composition of explosive and method of delivery to well
JP5755537B2 (en) Non-dangerous nitrate production method
JP5692831B2 (en) Glass manufacturing method
CN100348554C (en) Composite oxidant used for fireworks
WO2008094490A1 (en) Oxygen generating composition
CA2481526A1 (en) Self-heating composition based on orthophosphoric acid impregnated into a highly porous mineral oxide, method for the production thereof and use of the same
KR20090085382A (en) Solid fuel composition using coffee wastes
JP5612264B2 (en) Silicon-containing alloy for producing spherical silica powder, method for producing the same, and spherical silica powder
Wang et al. Sintering of rye straw ash and effect of additives
JP4818583B2 (en) Insensitive high-power non-explosive crushing agent
CN104711072B (en) A kind of gangue combustion adjuvant
WO2014009510A1 (en) Flame-retardant mineral fillers and flame-retardant polymer compositions
Junghare et al. Functional additives: Promising material for reducing emissions in sound emitting pyrotechnic formulations
CN106116997B (en) A kind of low-sulfur firecracker reagent and preparation method thereof
BE572891A (en)
RU2473205C2 (en) Pyrotechnical composition for formation of gygroscopic aerosol
JP2014031299A (en) Method for manufacturing hydrogen storage material, and hydrogen storage material
UA7773U (en) Aerosol-generating solid fire-extinguishing composition
RU2719680C1 (en) Multi-purpose fire extinguishing powder and a method for production thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140327

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250