JP5754636B2 - Germanium melt molding method and apparatus - Google Patents

Germanium melt molding method and apparatus Download PDF

Info

Publication number
JP5754636B2
JP5754636B2 JP2011170821A JP2011170821A JP5754636B2 JP 5754636 B2 JP5754636 B2 JP 5754636B2 JP 2011170821 A JP2011170821 A JP 2011170821A JP 2011170821 A JP2011170821 A JP 2011170821A JP 5754636 B2 JP5754636 B2 JP 5754636B2
Authority
JP
Japan
Prior art keywords
mold
germanium
temperature
cooling
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011170821A
Other languages
Japanese (ja)
Other versions
JP2013035000A (en
Inventor
國弘 田中
國弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2011170821A priority Critical patent/JP5754636B2/en
Publication of JP2013035000A publication Critical patent/JP2013035000A/en
Application granted granted Critical
Publication of JP5754636B2 publication Critical patent/JP5754636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明は、ゲルマニウムの溶融成形方法及び装置に関し、特に赤外線レンズ等に有用なゲルマニウムレンズ等の溶融成形に関する。   The present invention relates to a germanium melt molding method and apparatus, and more particularly to melt molding of germanium lenses and the like useful for infrared lenses and the like.

従来、例えば特許文献1においては、赤外線計測用のゲルマニウムレンズは、ゲルマニウム原料を融点以上に昇温して、液体状のゲルマニウムを鏡面仕上げしたレンズ鋳型に鋳込み、鋳型を冷却して製造している。また、このものでは、不純物の侵入を防止するために、窒素ガス雰囲気とし、さらには、封入した窒素ガスを抜き取り真空にし、ゲルマニウム液体から空気等を脱泡している。これにより、ゲルマニウムレンズを一度に必要な形状に成形する。   Conventionally, for example, in Patent Document 1, a germanium lens for infrared measurement is manufactured by heating a germanium raw material to a melting point or higher, casting liquid germanium into a mirror-finished lens mold, and cooling the mold. . Moreover, in this thing, in order to prevent the penetration | invasion of an impurity, it is set as nitrogen gas atmosphere, Furthermore, the enclosed nitrogen gas is extracted and it is made a vacuum and air etc. are degas | defoamed from germanium liquid. Thereby, a germanium lens is shape | molded to a required shape at once.

しかし、ゲルマニウムは、他の金属類やガラスとは異なり、凝固する際に体積が膨張し、クラックや、膨らみ、陥没が発生するという問題があった。そこで、特許文献2においては、鋳型にゲルマニウム融液を高圧注入して密度を高めながら冷却し、凝固点付近では、注入圧力を弱めて、材料の凝固膨張の圧力を吸収して内部歪みの発生を防止し、凝固点以下で再度注入圧力を高めながら鋳型により溶融成形している。また、成形型の温度及び加熱炉内の温度を温度モニターで測定し温度制御している。さらに、成形型の下部にガス供給管を設け、還元性ガスを供給して原料粉末中の水分等を置換している。   However, unlike other metals and glasses, germanium has a problem that its volume expands when solidified, causing cracks, swelling, and depression. Therefore, in Patent Document 2, germanium melt is injected into a mold at a high pressure and cooled while increasing the density. In the vicinity of the freezing point, the injection pressure is weakened to absorb the pressure of solidification expansion of the material to generate internal strain. The mold is melt-molded with a mold while increasing the injection pressure again below the freezing point. In addition, the temperature of the mold and the temperature in the heating furnace are measured with a temperature monitor to control the temperature. Further, a gas supply pipe is provided at the lower part of the mold, and a reducing gas is supplied to replace moisture and the like in the raw material powder.

特開昭63−157754号公報JP-A 63-157754 特開平7−314123号公報JP 7-314123 A

しかし、高圧注入しても、必ずしも、安定した形状を確保できないという問題があった。これは、ゲルマニウムが凝固する場合、成形部位において、結晶が一様に進展するのではなく、また、結晶の開始点も一定ではない点、さらに、ゲルマニウムの溶融液は流動性が期待できず、凝固時の膨張による流動はわずかであり鋳型形状にフィットし難い。このため、高圧注入しても、凝固点での熱膨張を防ぎきれず、依然としてクラックや膨らみ、陥没の発生が生じると考えられる。また、凝固時の膨張に対抗するためには大型の型締め装置が必要となり、装置全体も大きくコストもかかるという問題があった。また、温度モニターにより温度制御しているが詳細な温度分布や状態、変化については言及されていない。また、還元性ガスを供給しているが置換のために用いているにすぎず、冷却時については言及されていない。   However, there is a problem that a stable shape cannot always be secured even when high-pressure injection is performed. This is because, when germanium solidifies, the crystal does not progress uniformly at the forming site, the starting point of the crystal is not constant, and the germanium melt cannot be expected to have fluidity, The flow due to expansion during solidification is slight and difficult to fit into the mold shape. For this reason, even if high-pressure injection is performed, it is considered that thermal expansion at the freezing point cannot be prevented, and cracks, swelling, and depression are still generated. Moreover, in order to counter the expansion during solidification, a large mold clamping device is required, and there is a problem that the entire device is large and expensive. Although temperature control is performed by a temperature monitor, detailed temperature distribution, state, and change are not mentioned. Moreover, although reducing gas is supplied, it is only used for replacement, and there is no mention of cooling.

本発明の課題は、かかる問題点に鑑みて、ゲルマニウムの凝固点での膨張を制御し、あるいは、成形形状に影響のない方向に逃がし、ゲルマニウムの鋳型への溶融成形において、精度が高く、後加工工程が少ないゲルマニウムの溶融成形方法及び装置を提供することである。また、大型の型締め装置等を不要とし、装置全体を小型化することにある。さらに、より好ましい温度制御、冷却方法及び装置を提供することである。   In view of such problems, the object of the present invention is to control the expansion of germanium at the freezing point, or to escape in a direction that does not affect the molding shape. It is an object to provide a germanium melt molding method and apparatus with fewer steps. Another object is to eliminate the need for a large mold clamping device or the like and reduce the overall size of the device. Furthermore, it is to provide a more preferable temperature control, cooling method and apparatus.

本発明においては、不活性ガス雰囲気内の成形型を構成する下型内に固体のゲルマニウム原料を載置し、前記成形型を外部より加熱制御することで前記ゲルマニウム原料を溶融して、前記成形型を構成する上型および下型の各温度が前記ゲルマニウムの融点より高い温度になった後、前記上型を下降させることで前記下型に当接させて、その後、不活性ガスを用いて前記上型および下型の中央部より外側に向かって徐々に前記上下型を冷却させることで前記ゲルマニウムを凝固させ、前記ゲルマニウムの凝固が完了した後前記成形型の冷却を続行し、かつ前記上下型の温度を降下させ、前記ゲルマニウム原料を成形するゲルマニウムの溶融成形方法を提供することにより、前述した課題を解決した。 In the present invention, a solid germanium raw material is placed in a lower mold constituting a mold in an inert gas atmosphere, the germanium raw material is melted by controlling the heating of the mold from the outside, and the molding is performed. After each temperature of the upper mold and the lower mold constituting the mold reaches a temperature higher than the melting point of germanium, the upper mold is lowered to be brought into contact with the lower mold, and then an inert gas is used. the outwardly from the central portion of the upper and lower molds solidifying the germanium thereby gradually cooling the upper and lower molds, also continues the cooling of the mold after solidification of the germanium has been completed, and the The above- described problems were solved by providing a germanium melt molding method for lowering the temperature of the upper and lower molds and molding the germanium raw material.

即ち、ゲルマニウムの溶融後の成形型内での凝固工程において、溶融ゲルマニウムが入れられた成形型(鋳型)全体を均一又は自然のままに冷却するのではなく、一部又は複数部分から冷却を開始し、徐々に冷却範囲を全体に広げることにより、ゲルマニウムの凝固の開始点を制御する。成形型の外部周囲温度を比較的高温に保つことにより、冷却分布や冷却速度を安定させる。これにより、凝固の開始を安定させ、部分から全体に徐々に成形型にフィットした凝固が行われる。凝固が完了した時点で、加熱装置の電源を切り、成形型、ゲルマニウム(材料)、装置全体を冷却してゲルマニウム成形品を得る。なお、外部周囲温度は、成形型の冷却により、少なくとも成形型内のゲルマニウムの凝固が可能な温度あるいは熱量にされることはいうまでもない。   That is, in the solidification process in the mold after the germanium is melted, the entire mold (mold) containing the molten germanium is not cooled uniformly or naturally, but cooling is started from one or more parts. Then, the starting point of solidification of germanium is controlled by gradually extending the cooling range to the whole. By maintaining the external ambient temperature of the mold at a relatively high temperature, the cooling distribution and cooling rate are stabilized. As a result, the start of solidification is stabilized, and solidification is gradually performed from the portion to the whole so as to fit the mold. When solidification is completed, the heating device is turned off, and the mold, germanium (material), and the entire device are cooled to obtain a germanium molded product. Needless to say, the external ambient temperature is set to a temperature or a calorific value at which germanium in the mold can be solidified by cooling the mold.

本願発明者等は、種々の実験を行っている中で、ゲルマニウムの冷却時の成形型内近傍の温度を測定していたが、凝固点付近で、下降していた温度が潜熱によりある程度温度が上昇した後、再度温度が下降していることを発見した。外部周囲温度も同時に降下している場合は外乱が大きく見逃していたが、本発明のように、外部周囲温度を一定に保ち、成形型のみを冷却し、成形型内温度を測定することによりこの現象を確認できたものと考える。かかる知得により、ゲルマニウムの凝固完了を特定できる。   While conducting various experiments, the inventors of the present application measured the temperature near the inside of the mold during cooling of germanium, but the temperature that had dropped near the freezing point increased to some extent due to latent heat. After that, it was discovered that the temperature had fallen again. When the external ambient temperature is also decreasing at the same time, the disturbance was largely overlooked.However, as in the present invention, this was achieved by keeping the external ambient temperature constant, cooling only the mold, and measuring the mold internal temperature. I think that the phenomenon was confirmed. Such knowledge can identify the completion of the solidification of germanium.

そこで、請求項2に記載の発明においては、前記凝固の完了は、前記冷却を開始した後、前記上下型内の温度が下降を開始し、再度温度上昇が開始され、その後再び前記上下型内の温度が下降に転じた時を完了とするゲルマニウムの溶融成形方法とした。 Therefore, in the invention according to claim 2, the completion of the solidification is the completion of the cooling , the temperature in the upper and lower molds starts decreasing, the temperature starts increasing again, and then the upper and lower molds again. the temperature of the inner has a melt molding method germanium to complete when turned to descend.

また、請求項3に記載の発明においては、成形型の冷却の続行は、前記外部の加熱をやめて、前記不活性ガスのみによる冷却とするゲルマニウムの溶融成形方法とした。 In the invention described in claim 3, the cooling of the mold is continued with the germanium melt molding method in which the external heating is stopped and cooling is performed only with the inert gas .

また、ゲルマニウムの成形物としては、レンズ等が有用である。そこで請求項4に記載の発明においては、前記成形型内の形状はレンズ状であるゲルマニウムの溶融成形方法とした。 A lens or the like is useful as a germanium molded product. Therefore, in the invention described in claim 4 , a germanium melt molding method is used in which the molding mold has a lens shape .

より具体的な方法として、請求項5に記載の発明においては、前記成形型内形状が凹状の前記下型と平面又は凸状の前記上型とで形成され、前記ゲルマニウム溶融後に、前記上型を前記下型に嵌合させ成形すると共に余剰原料を逃がすゲルマニウムの溶融成形方法とした。 As a more specific method, in the invention described in claim 5, the shape in the mold is formed in said lower mold and a flat or convex of the upper mold of the concave after the germanium melt, the upper the mold was melt molding method germanium releasing the excess material with molding is fitted to the lower mold.

凹状の下型とすることで、ゲルマニウムの溶融液を貯留する。平面又は凸状の上型とすることで、型締め時にゲルマニウムを成形型内に充満させる。なお、ゲルマニウム溶融液は表面張力により下型の縁面より膨らんだ状態を保つことも可能であり、上型の成形型内形状は若干凹状となっていてもよい。また、溶融状態から型合わせや型締めを行う場合や、凝固時の膨張により体積が増し余剰原料が発生するので、余剰原料を逃がすようにする。   By using a concave lower mold, a germanium melt is stored. By using a flat or convex upper mold, germanium is filled in the mold during mold clamping. The germanium melt can also be kept in a state of swelling from the edge surface of the lower mold due to surface tension, and the inner mold shape of the upper mold may be slightly concave. In addition, when mold matching or clamping is performed from a molten state, or due to expansion during solidification, the volume increases and surplus raw materials are generated, so that surplus raw materials are allowed to escape.

かかるゲルマニウムの溶融成形方法を実施する装置は従来のものに対し、成形型の部分冷却装置を追加すればよい。そこで、請求項記載に発明においては、不活性ガス雰囲気内に設けられたゲルマニウムの溶融成形装置であって、ゲルマニウム原料が入れられる上向きの凹状型面を有する下型と、下向きの型面を有する上型と、前記上型又は前記下型の型面の縁に設けられた逃げ部と、前記上型又は下型の内部であって前記上型の型面又は下型の型面に近接して配置された上型又は下型温度センサと、前記上型および下型の上方および下方にそれぞれ位置することで前記上型および下型を固定する上支持部材蓋部および下支持部材蓋部と、前記上型及び下型を当接又は離隔させる移動装置と、前記上型及び下型の周囲に設けられた加熱装置と、前記加熱装置の温度を加熱装置温度センサと、を有し、前記上支持部材蓋部および下支持部材蓋部の各中央には、前記上型および下型に向かって開口する冷却用不活性ガス吹き出し口が設けられているゲルマニウムの溶融成形装置を提供する。 A device for carrying out such a germanium melt molding method may be added with a mold partial cooling device in contrast to the conventional device. Therefore, in the invention described in claim 6 , a germanium melt molding apparatus provided in an inert gas atmosphere, comprising a lower mold having an upward concave mold surface into which a germanium raw material is placed, and a downward mold surface. An upper mold having a relief portion provided at an edge of the mold surface of the upper mold or the lower mold, and close to the mold surface of the upper mold or the lower mold inside the upper mold or the lower mold An upper mold or lower mold temperature sensor, and an upper support member lid section and a lower support member lid section for fixing the upper mold and the lower mold by being positioned above and below the upper mold and the lower mold, respectively. A moving device for contacting or separating the upper die and the lower die, a heating device provided around the upper die and the lower die, and a heating device temperature sensor for measuring the temperature of the heating device, At the center of the upper support member lid and the lower support member lid, Providing a molten molding apparatus of germanium the upper and cooling inert gas blowing port opening toward the lower die is provided.

即ち、成形型の部分冷却のため冷却用不活性ガス吹き出し口を設け、成形型を部分的に冷却するようにした。また、温度センサ(モニター)は上型の型面又は下型の型面に近接して上型又は下型の内部に配置し、より正確な温度を測定できるようにする。さらに、上型又は下型の型面の縁に逃げ部を設け、凝固時のゲルマニウムの膨張を成形型の必要型面外へ逃すようにした。   That is, an inert gas blowout port for cooling is provided for partial cooling of the mold so that the mold is partially cooled. In addition, the temperature sensor (monitor) is disposed in the upper mold or the lower mold in the vicinity of the upper mold surface or the lower mold surface so that a more accurate temperature can be measured. Furthermore, an escape portion is provided at the edge of the upper or lower mold surface so that the expansion of germanium during solidification is released outside the necessary mold surface of the mold.

本発明においては、高圧の型締めを必要としないので、強度が低くてもゲルマニウムの鋳型に適した材料を使用できる。また、冷却用不活性ガスの通路の設計を容易にしたい。そこで、請求項に記載の発明においては、前記上型及び下型の材料はガラス状カーボンであって、前記上型及び下型がそれぞれ挿入される上支持部材及び下支持部材を介して、前記移動装置に接続されるゲルマニウムの溶融成形装置とした。 In the present invention, since high-pressure clamping is not required, a material suitable for a germanium mold can be used even if the strength is low. We also want to make it easier to design the cooling inert gas passage. Therefore, in the invention according to claim 7 , the material of the upper mold and the lower mold is glassy carbon, and through the upper support member and the lower support member into which the upper mold and the lower mold are respectively inserted, A germanium melt molding apparatus connected to the moving apparatus was used.

本発明においては、ゲルマニウムの溶融後の成形型内の凝固工程において、部分から冷却を開始し、徐々に冷却範囲を全体に広げ、ゲルマニウムの凝固の開始点を制御し、かつ、外部周囲温度を高温に保つことにより、凝固の開始を安定させ、部分から全体に徐々に成形型にフィットした凝固を行う。さらに、凝固完了後、加熱装置の電源を切り、不活性ガスのみによる冷却を行い、装置全体の温度を下げてゲルマニウム成形品を得るようにしたので、温度制御、冷却方法が容易になり、凝固時の膨張の影響がない又は少なく、クラックや膨らみ、陥没のない又は少ないものとなった。 In the present invention, in the solidification step in the mold after melting germanium, cooling is started from a portion, the cooling range is gradually widened, the start point of solidification of germanium is controlled, and the external ambient temperature is set. By maintaining a high temperature, the start of solidification is stabilized, and solidification that gradually fits the mold from the part to the whole is performed. In addition, after the solidification is completed, the heating device is turned off and cooling is performed only with an inert gas, and the temperature of the entire device is lowered to obtain a germanium molded product. There was no or little influence of time expansion, and there were no or few cracks, swelling, or depression.

また、請求項2に記載の発明においては、凝固の完了を、温度下降開始後、再度温度上昇が開始され、その後再び温度が下降に転じた時を完了としたので、凝固がどこで完了したかを特定することにより制御が容易になり、凝固工程が安定し、ばらつきが少なく形状も安定し、精度が高く、後加工工程が少ないものとなった。 Further, whether in the invention described in claim 2, the completion of coagulation, after the start of temperature drop is initiated the temperature rise again, since then again the temperature was completed when turned down, complete solidification where As a result, the solidification process is stabilized, the variation is small, the shape is stable, the accuracy is high, and the post-processing process is small.

また、請求項4に記載の発明においては、成形型内の形状はレンズ状にしたので、
レンズ成形が容易であり、ばらつきが少なく精度が高いものとなった。さらに、請求項5に記載の発明においては、成形型内形状を凹状の下型と平面又は凸状の上型とし、下型でゲルマニウム溶融後、上型を下型に嵌合させ成形すると共に余剰原料を逃がすようにしたので、バリの発生が成形品の必要部分(レンズ部分)の外周側とすることができるので後加工も容易である。また、溶融状態から型合わせや型締めを行う場合でも、余剰原料を逃がすので、過大な型締めを行う必要が無く付帯設備も簡単でよい。
In the invention according to claim 4, since the shape in the mold is a lens,
Lens molding is easy and there is little variation and accuracy is high. Furthermore, in the invention according to claim 5, the shape in the mold is a concave lower mold and a flat or convex upper mold, and after the germanium is melted in the lower mold, the upper mold is fitted to the lower mold and molded. In addition, since the surplus raw material is allowed to escape, the generation of burrs can be made on the outer peripheral side of the necessary part (lens part) of the molded product, and post-processing is easy. Further, even when mold matching or mold clamping is performed from a molten state, surplus raw materials are released, so that it is not necessary to perform excessive mold clamping, and the incidental equipment may be simple .

また、請求項記載の発明においては、不活性ガス雰囲気内に設けられたゲルマニウムの溶融成形装置において、成形型の部分冷却のため冷却用不活性ガス吹き出し口を設け、成形型を部分的に冷却し、温度センサ(モニター)を型面に近接した型内部に配置し、正確な温度を測定できるようにし、さらに、型面の縁に逃げ部を設け、凝固時のゲルマニウムの膨張を成形型の必要型面外へ逃がすようにしたので、大型の型締め装置等を不要とし、装置全体を小型化でき、より好ましい温度制御、冷却方法が可能なゲルマニウムの溶融成形装置となった。 According to a sixth aspect of the present invention, in the germanium melt molding apparatus provided in the inert gas atmosphere, a cooling inert gas outlet is provided for partial cooling of the mold, and the mold is partially Cool down and place a temperature sensor (monitor) inside the mold close to the mold surface so that accurate temperature can be measured. In addition, a relief part is provided at the edge of the mold surface, and the expansion of germanium during solidification is molded. Therefore, a large mold clamping apparatus or the like is not required, the entire apparatus can be miniaturized, and a germanium melt molding apparatus capable of more preferable temperature control and cooling method is obtained.

さらに、請求項7に記載の発明においては、型材料をガラス状カーボンとし、型が装入される支持部材を介して、移動可能にし、冷却用不活性ガス吹き出し口が上下支持部材側に設けられているゲルマニウムの溶融成形装置とした。 Furthermore, in the invention described in claim 7, the mold material is glassy carbon, the mold material is movable through a support member into which the mold is inserted, and a cooling inert gas outlet is provided on the upper and lower support members side. A germanium melt molding apparatus is used.

上下型の材料をガラス状カーボンとし精度の高い成形面とし、上下型が挿入される上下支持部材側に冷却用不活性ガスの吹き出し口及び排出口を設けるので冷却用不活性ガスの流れを容易に設計できるので、成形精度もより高く、後工程での加工も少ない。   The upper and lower mold materials are made of glassy carbon and have a highly precise molding surface, and the cooling inert gas blowout and discharge openings are provided on the upper and lower support members where the upper and lower molds are inserted, making it easy to flow the cooling inert gas. Therefore, the molding accuracy is higher and the processing in the subsequent process is less.

本発明の実施の形態を示すゲルマニウム溶解成形装置の断面説明図であり、上下型が当接してゲルマニウムが溶融している状態を示す。It is a section explanatory view of a germanium melt molding device showing an embodiment of the present invention, and shows a state where an upper and lower mold contacts and germanium is melted. 本発明の実施の形態を示すゲルマニウムの溶融成形方法の温度変化を模式的に示す時間−温度関係図であり、縦軸が摂氏温度、横軸が経過時間である。It is a time-temperature relationship figure which shows typically the temperature change of the melt-forming method of germanium which shows embodiment of this invention, a vertical axis | shaft is a Celsius temperature and a horizontal axis is elapsed time. 本発明の実施の形態を示すレンズ成形品の外観写真である。It is an external appearance photograph of the lens molded article which shows embodiment of this invention. 従来の方法で成形したレンズの成形品の例を示す外観写真である。It is an external appearance photograph which shows the example of the molded article of the lens shape | molded by the conventional method.

本発明の実施の形態について図面を参照して説明する。図1に示すように、本ゲルマニウムの溶融成形装置1は、密閉断熱容器2(以下「密閉容器」という)内に上下型3,4及び上下型が挿入される上下支持部材5,6が設けられている。密閉容器2には窒素等の不活性ガスを供給する吸気弁9a、ガス流入路7及び不活性ガスを排気する排気口8及び排気弁9bが設けられており、図示しないガス源と接続され密閉容器内が不活性ガス雰囲気とされる。また、断熱材により、外部と断熱され熱効率を向上させる。上下型3,4は鍔付き円筒状を為し、その材料はガラス状カーボンとされ、下型4は鍔側(上面)4aに上向きのレンズ状、凹状型面4bを有し、ゲルマニウム原料10が供給される。下型の型面の外周縁にリング状の逃げ部4cが設けられている。上型3は半鍔側(下面)3aに下向きの型面3bを有する。本実施の形態の型面3bは平面とされている。   Embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the germanium melt molding apparatus 1 is provided with upper and lower molds 3 and 4 and upper and lower support members 5 and 6 into which upper and lower molds are inserted in a hermetically insulated container 2 (hereinafter referred to as “sealed container”). It has been. The sealed container 2 is provided with an intake valve 9a for supplying an inert gas such as nitrogen, a gas inflow passage 7, an exhaust port 8 for exhausting the inert gas, and an exhaust valve 9b, which are connected to a gas source (not shown) and sealed. The inside of the container is an inert gas atmosphere. Moreover, it is insulated from the outside by a heat insulating material to improve thermal efficiency. The upper and lower molds 3 and 4 have a cylindrical shape with a collar, and the material thereof is glassy carbon. The lower mold 4 has an upward lens-shaped and concave mold surface 4b on the collar side (upper surface) 4a. Is supplied. A ring-shaped relief portion 4c is provided on the outer peripheral edge of the lower mold surface. The upper die 3 has a downwardly facing die surface 3b on the semi-finished side (lower surface) 3a. The mold surface 3b of the present embodiment is a flat surface.

上下型3,4の材料であるガラス状カーボンは、炭素電極等に用いられ、その性状は硬く稠密であり、酸化方向、還元方向に電位窓が広く、電気化学的に使いやすい。あるいは、耐薬品性に優れた黒色ガラス状の炭素素材であり、耐熱性に優れ、表面粗さも小さいといわれているものである。本実施の形態では、ガラス状カーボンとして、東海カーボン株式会社のグラッシーカーボン(登録商標)を用いた。なお、同様な性状を有するものであれば、本材料に限定されることなく適宜使用可能であることはいうまでもない。   Glassy carbon, which is the material of the upper and lower molds 3 and 4, is used for carbon electrodes and the like, and its properties are hard and dense, and has a wide potential window in the oxidation direction and reduction direction, and is easy to use electrochemically. Alternatively, it is a black glassy carbon material excellent in chemical resistance, and is said to be excellent in heat resistance and small in surface roughness. In the present embodiment, glassy carbon (registered trademark) manufactured by Tokai Carbon Co., Ltd. was used as the glassy carbon. Needless to say, any material having similar properties can be used as appropriate without being limited to this material.

上型の型面3b及び下型の型面4bの中心軸c上の各壁面に近接した上型3及び下型4の内部に上型及び下型温度センサ11、12が設けられている。上型3及び下型4の鍔3d、4dに隣接する円筒部3e、4eがそれぞれ上支持部材5の本体15の下側面段付き挿入穴15a及び下支持部材6の本体16の段付き上側面挿入穴16aに挿入されている。両鍔部3d、4dが上支持部材5、6の蓋部25、26の下端25a及び上端26aと本体部15、16の段部15b、16bとで挟持固定され、上下型3、4がそれぞれ上下支持部材5、6に固定されている。 Upper and lower mold temperature sensors 11 and 12 are provided inside the upper mold 3 and the lower mold 4 close to the respective wall surfaces on the central axis c of the upper mold surface 3b and the lower mold surface 4b. Cylindrical portions 3e and 4e adjacent to the flanges 3d and 4d of the upper die 3 and the lower die 4 are the lower side stepped insertion holes 15a of the main body 15 of the upper support member 5 and the stepped upper side surface of the main body 16 of the lower support member 6, respectively. It is inserted in the insertion hole 16a. Ryotsuba unit 3d, 4d is stepped portion 15b of the lower end 25a and the upper end 26a and the body portion 15 of the lid portion 25, 26 of the top and bottom support members 5, 6 are clamped fixed between 16b, the upper and lower molds 3 and 4 The upper and lower support members 5 and 6 are fixed to the upper and lower support members, respectively.

上支持部材5及び下支持部材6はそれぞれ移動装置である空気圧シリンダ35、36のロッド35a,36aに接続されている。空気圧シリンダ本体35b,36bはフランジ35c,36cで密閉容器2の外側の上下にそれぞれ取り付けられている。空気圧シリンダには図示しない空気圧源及び制御バルブが接続され、上下方向に上支持部材5及び上型3、又は下支持部材6及び下型4が移動可能にされ、上型及び下型が当接又は離隔可能にされている。なお、移動装置は空気圧シリンダ等以外に、ボールねじやラックピニオン等で駆動されるスライド機構等でもよい。   The upper support member 5 and the lower support member 6 are connected to rods 35a and 36a of pneumatic cylinders 35 and 36, which are moving devices, respectively. The pneumatic cylinder bodies 35b and 36b are respectively attached to the upper and lower sides outside the sealed container 2 by flanges 35c and 36c. A pneumatic cylinder and a control valve (not shown) are connected to the pneumatic cylinder, and the upper support member 5 and the upper mold 3 or the lower support member 6 and the lower mold 4 are movable in the vertical direction, and the upper mold and the lower mold are in contact with each other. Or it can be separated. The moving device may be a slide mechanism driven by a ball screw, a rack and pinion, or the like, in addition to the pneumatic cylinder.

上支持部材蓋部25の下面25bの中心部25cと上型3の上面3fとの間に隙間17aが設けられている。上支持部材蓋部25の中央に冷却用不活性ガス吹き出し口18aが隙間17aに開口している。また、冷却用不活性ガス吹き出し口18aはフレキシブルホース20aを介して密閉容器2外の図示しないバルブ及び不活性ガス供給装置に接続されている。上支持部材蓋部25の冷却用不活性ガス吹き出し口18aの周囲に等分4箇所に冷却用不活性ガス排出口19aが隙間17aに開口し、上支持部材蓋部25内の連通路21aを介して密閉容器2内と連通している。   A gap 17 a is provided between the center portion 25 c of the lower surface 25 b of the upper support member lid portion 25 and the upper surface 3 f of the upper mold 3. A cooling inert gas outlet 18 a is opened in the gap 17 a at the center of the upper support member lid 25. The cooling inert gas outlet 18a is connected to a valve and an inert gas supply device (not shown) outside the sealed container 2 via a flexible hose 20a. Around the periphery of the cooling inert gas outlet 18a of the upper support member lid 25, the cooling inert gas discharge ports 19a are opened at four equal positions in the gap 17a, and the communication path 21a in the upper support member lid 25 is formed. And communicated with the inside of the sealed container 2.

同様に、下支持部材蓋部26の上面26bの中心部26cと下型4の下面4fとの間に隙間17bが設けられている。下支持部材蓋部の中央に冷却用不活性ガス吹き出し口18bが隙間17bに開口している。また、冷却用不活性ガス吹き出し口18bはフレキシブルホース20bを介して密閉容器2外の図示しないバルブ及び不活性ガス供給装置に接続されている。下支持部材蓋部26の冷却用不活性ガス吹き出し口18bの周囲に等分4箇所に冷却用不活性ガス排出口19bが隙間17bに開口し、下支持部材蓋部26内の連通路21bを介して密閉容器2内と連通している。   Similarly, a gap 17 b is provided between the center portion 26 c of the upper surface 26 b of the lower support member lid portion 26 and the lower surface 4 f of the lower mold 4. A cooling inert gas outlet 18b opens in the gap 17b at the center of the lower support member lid. The cooling inert gas outlet 18b is connected to a valve and an inert gas supply device (not shown) outside the sealed container 2 via a flexible hose 20b. Cooling inert gas outlets 19b are opened at four positions equally around the cooling inert gas outlet 18b of the lower support member lid 26, and the communication passage 21b in the lower support member lid 26 is formed in the gap 17b. And communicated with the inside of the sealed container 2.

上型3及び下型4が当接した位置を上下中心として、上下型の周囲に加熱装置(ヒータ)22が設けられ、上下型内3b,4bの温度をゲルマニウムの融点を超える温度となるように加熱できるようにされている。また、加熱装置内側の温度を測定する加熱装置温度センサ23が設けられている。   A heating device (heater) 22 is provided around the upper and lower molds with the position where the upper mold 3 and the lower mold 4 are in contact with each other so that the temperature of the upper and lower molds 3b and 4b exceeds the melting point of germanium. To be heated. Further, a heating device temperature sensor 23 for measuring the temperature inside the heating device is provided.

次に、かかるゲルマニウム溶融成形装置1を用いたゲルマニウム溶融成形方法について述べる。なお、説明の簡単のため、下型4の位置は固定し、上型3のみ上下させる。図1において、まず、上型が上昇端位置において、密閉容器2の図示しない開口部を開け、下型4の型内4bに所定の量のゲルマニウム塊を載置する。次に、密閉容器2を密閉し、排気バルブ9b、供給バルブ9aを開放して密閉容器内に窒素ガスを封入し、空気を追い出しながら、窒素ガスを充満させる。窒素ガスの封入が完了したら、両バルブ9a、9bを閉じる。次に加熱装置22を運転し、加熱装置内側温度がゲルマニウム溶融温度(融点939℃)より高い、約1050℃の所定温度となるように加熱する(「加熱工程」とよぶ)。なお、この所定温度は装置の大きさ加熱装置の装置に対する配置、大きさ等によりゲルマニウム溶解時の温度が安定的に推移できる温度又は熱量に適宜設定する。なお、図2は説明のために定性的なものを図示した。したがって、実際のデータとは異なる。   Next, a germanium melt molding method using the germanium melt molding apparatus 1 will be described. For simplicity of explanation, the position of the lower mold 4 is fixed and only the upper mold 3 is moved up and down. In FIG. 1, first, when the upper mold is at the rising end position, an opening (not shown) of the sealed container 2 is opened, and a predetermined amount of germanium lump is placed in the mold 4 b of the lower mold 4. Next, the sealed container 2 is sealed, the exhaust valve 9b and the supply valve 9a are opened, nitrogen gas is sealed in the sealed container, and nitrogen gas is filled while expelling air. When the filling of nitrogen gas is completed, both valves 9a and 9b are closed. Next, the heating device 22 is operated, and heating is performed so that the temperature inside the heating device is higher than the germanium melting temperature (melting point: 939 ° C.) and a predetermined temperature of about 1050 ° C. (referred to as “heating step”). The predetermined temperature is appropriately set to a temperature or an amount of heat at which the temperature at the time of dissolution of germanium can be stably changed according to the size of the apparatus and the arrangement and size of the heating apparatus. FIG. 2 shows a qualitative one for explanation. Therefore, it is different from actual data.

図2の符号A1に示すように時間と共に加熱装置内側温度が所定温度に達するが、上下型3,4内の温度上昇は符号B1、C1に示すように遅れる。さらに、下型4内の温度がゲルマニウム融点以上となるとゲルマニウムの溶解が始まる。このとき、符号A2に示すように加熱装置内側センサ23温度は所定温度に達し一定となり、さらに、符号B2に示すように、上型3の温度センサ11の温度は上昇を続ける。しかし、符号C2−1に示すように下型4の温度センサ12の温度は横ばいとなる。一定時間経過後、符号C2−2に示すように、再び下型4の温度センサ12の温度が上昇を開始する(「溶融工程」とよぶ)。これは、ゲルマニウム溶解時の融解熱が吸収され温度上昇が緩和又は横ばいとなり、溶解が完了した後、再度加熱装置の加熱により温度が上昇するものと考える。下型温度センサの温度が横ばいより再度上昇に転じ、下型温度センサの温度は加熱装置の容量等によってばらつくが、実施例の装置では1000℃以上である。   As shown by reference symbol A1 in FIG. 2, the temperature inside the heating device reaches a predetermined temperature with time, but the temperature rise in the upper and lower molds 3 and 4 is delayed as indicated by reference symbols B1 and C1. Furthermore, when the temperature in the lower mold 4 is equal to or higher than the melting point of germanium, dissolution of germanium starts. At this time, the temperature inside the heating device inner sensor 23 reaches a predetermined temperature and becomes constant as indicated by reference numeral A2, and the temperature of the temperature sensor 11 of the upper mold 3 continues to increase as indicated by reference numeral B2. However, as indicated by reference numeral C2-1, the temperature of the temperature sensor 12 of the lower mold 4 is level. After a certain time has elapsed, as indicated by reference numeral C2-2, the temperature of the temperature sensor 12 of the lower mold 4 starts to rise again (referred to as a “melting step”). This is considered that the heat of fusion at the time of dissolution of germanium is absorbed and the temperature rise is moderated or leveled, and after the dissolution is completed, the temperature rises again by heating of the heating device. The temperature of the lower mold temperature sensor starts to rise again from the same level, and the temperature of the lower mold temperature sensor varies depending on the capacity of the heating device and the like, but is 1000 ° C. or higher in the apparatus of the embodiment.

下型温度センサ12の温度が横ばいより再度上昇に転じた時点をゲルマニウムの溶解が完了したとして、再度上昇に転じた後(実際は、符号C2−3に示す所定時間経過後、又は下型温度センサの温度が1000℃以上となった後)、符号A3、B3、C3に示すように、加熱装置の制御温度を下降させ、加熱装置22及び上下型3,4の温度が、溶融点よりやや高い温度(本実施の形態では950〜960℃ 以下同様)になるように下降させてゲルマニウム10が溶融状態のまま全体に安定した状態となるようにする(「溶融安定化工程」とよぶ)。   After the melting of germanium is completed at the time when the temperature of the lower mold temperature sensor 12 starts to rise again from leveling out, after the melting of germanium is completed (actually, after the predetermined time indicated by reference numeral C2-3 has elapsed, or the lower mold temperature sensor The temperature of the heating device 22 and the upper and lower molds 3 and 4 are slightly higher than the melting point, as shown by reference signs A3, B3, and C3. The temperature is lowered to 950 ° C. to 960 ° C. (this is the same as in the present embodiment) so that the germanium 10 is in a stable state in a molten state (referred to as “melting stabilization step”).

このとき、下型4には表面張力により、液体ゲルマニウム10が型内面4bより盛り上がるように溶融している。加熱装置22の制御温度を下降させると同時に又は遅れて上型3を下降させ、下型4に当接させる。これにより、ゲルマニウム10は上下型内面3b、4bに充満する。但し、凝固後の逃げ部4cを充満させるまでには至っていない。   At this time, the liquid germanium 10 is melted in the lower mold 4 so as to rise from the mold inner surface 4b due to surface tension. At the same time or after the control temperature of the heating device 22 is lowered, the upper die 3 is lowered and brought into contact with the lower die 4. Thereby, the germanium 10 fills the upper and lower mold inner surfaces 3b and 4b. However, it does not reach to the filling portion 4c after solidification.

次に、図示しないバルブ及び不活性ガス供給装置から、冷却用不活性ガス吹き出し口18a、18bより隙間17a、17bに向かって冷却用不活性ガスとして常温の窒素ガス(以下「冷却ガス」という)を吹き出し、上下型3,4の中央部を強制冷却する。冷却ガスは冷却用不活性ガス排出口19a、19b連通路21a、21bを通って密閉容器2内に排出される。さらに、排気弁9bを開いて、冷却ガスは排気口8、排気弁9bを通って外部へ排出される。   Next, nitrogen gas at normal temperature (hereinafter referred to as “cooling gas”) as a cooling inert gas from a valve and an inert gas supply device (not shown) to the gaps 17a and 17b from the cooling inert gas outlets 18a and 18b. And forcibly cool the center of the upper and lower molds 3 and 4. The cooling gas is discharged into the sealed container 2 through the cooling inert gas discharge ports 19a, 19b communication paths 21a, 21b. Further, the exhaust valve 9b is opened, and the cooling gas is discharged to the outside through the exhaust port 8 and the exhaust valve 9b.

これにより、上下型3,4は中心部より外側に向かって徐々に冷却され、上下型面内のゲルマニウム10が中心部より凝固を開始する(「凝固工程」とよぶ)。このとき、符号A4に示すように、加熱装置は安定化温度を保つように制御されている。一方、ゲルマニウム10は溶融温度より低い、凝固温度に達し凝固するのであるが、そのまま上下型温度センサ11,12の温度は下降を続けるのではなく、符号BC4−1の下降から、符号BC4−2に示すように上昇に転ずる(910〜920℃)。その後再び、符号BC4−3に示すように下降に転ずる(925℃)。このときを、凝固完了とする。   As a result, the upper and lower molds 3 and 4 are gradually cooled outward from the center, and the germanium 10 in the upper and lower mold surfaces starts to solidify from the center (referred to as “solidification process”). At this time, as indicated by reference numeral A4, the heating device is controlled to maintain the stabilization temperature. On the other hand, germanium 10 reaches the solidification temperature lower than the melting temperature and solidifies, but the temperature of the upper and lower temperature sensors 11 and 12 does not continue to decrease, but from the decrease of reference BC4-1, reference to BC4-2 As shown in FIG. After that, again, as indicated by reference numeral BC4-3, it starts to move downward (925 ° C.). This time is defined as completion of solidification.

温度が下降に転じた後、所定時間経過後、冷却ガスの供給を続行したまま、加熱装置22の電源を切り、符号A5、BC5に示すように、密閉容器2内全体を冷却する(「冷却工程」とよぶ)。常温又は取り扱い可能な温度までに下がったら、冷却ガスの供給を停止し、上下型3,4を開き、成形されたゲルマニウム成形品を取り出す。なお、記載した温度は実施の形態での測定温度であり、温度センサの性能、設置場所、状況により左右され、物性的に正確な温度を示すものではない。   After a predetermined time has elapsed after the temperature has been lowered, the heating device 22 is turned off while the supply of the cooling gas is continued, and the entire inside of the sealed container 2 is cooled as indicated by reference numerals A5 and BC5 ("cooling" Process)). When the temperature drops to room temperature or a handleable temperature, the supply of the cooling gas is stopped, the upper and lower molds 3 and 4 are opened, and the formed germanium molded product is taken out. The temperature described is a temperature measured in the embodiment, depends on the performance of the temperature sensor, the installation location, and the situation, and does not indicate a physically accurate temperature.

かかる装置、方法により得られた実施例について説明する。図3(a)は、本発明の実施の形態で作成したレンズ成形品の外観写真である。図3(a)に示すように、本レンズ成形品50はレンズ本体51とバリ部52を有する。レンズ本体51は膨らみや欠陥がなく、上下型面内に沿った形状とされている。また、面粗度も良好であり、バリ部を除けばそのまま後加工なしにレンズとして使用可能な精度であった。バリ部52は逃げ部4c縁に沿って形成されている。バリ部52は凝固の際の逃げとなって最終的に固まるので面粗度や形状は悪い。   Examples obtained by such an apparatus and method will be described. FIG. 3A is an external view photograph of the lens molded product created in the embodiment of the present invention. As shown in FIG. 3A, the lens molded product 50 has a lens body 51 and a burr 52. The lens body 51 has no bulge or defect, and has a shape along the upper and lower mold surfaces. Further, the surface roughness was also good, and it was an accuracy that could be used as a lens without post-processing as it was except for the burr part. The burr portion 52 is formed along the edge of the escape portion 4c. Since the burr 52 becomes an escape during solidification and eventually hardens, the surface roughness and shape are poor.

また、図3(b)は、非球面レンズの例である。本レンズ成形品53は、(a)の場合と同様、本体54は膨らみや欠陥がなく、面粗度、形状精度もよい。バリ部55はレンズ全周囲でなく、1箇所にまとまって舌状に延び凝固しており、形状は安定している。この(a)(b)の違いは、原料の量と型内3b、4b及び逃げ部4cの形状や容量によって変えることができる。   FIG. 3B shows an example of an aspheric lens. In the lens molded product 53, as in the case of (a), the main body 54 is free of swelling and defects, and has good surface roughness and shape accuracy. The burr portion 55 is not the entire circumference of the lens but is gathered in one place and extends in a tongue shape and solidifies, and the shape is stable. The difference between (a) and (b) can be changed according to the amount of raw material and the shapes and capacities of the molds 3b and 4b and the escape portion 4c.

一方、本発明の実施の形態の凝固工程を設けず冷却したものでは、図4に示すように、レンズ60の本体61に膨らみが発生し、形状も悪くそのままではレンズとして全く使用できない。また、バリ部62も数カ所に発生し、場所、大きさ、延び方向もばらばらであり、不安定な凝固が行われたと思われる状態であった。また、成形品のばらつきも大きく一定の形状を得られなかった。   On the other hand, in the case of cooling without the solidification step of the embodiment of the present invention, as shown in FIG. 4, the main body 61 of the lens 60 is swollen and the shape is bad so that it cannot be used as a lens at all. Moreover, the burr | flash part 62 generate | occur | produced in several places, and the place, the magnitude | size, and the extending direction were disperse | distributed, and it was in the state considered that unstable solidification was performed. Moreover, the variation of the molded product was large and a constant shape could not be obtained.

このように、本実施の形態に示すように、ゲルマニウム凝固時に中央部を冷却して、中央部から全体に凝固して行くように制御できるので、膨らみがなく、形状も安定し、ばらつきの少ないゲルマニウム成形品を得られる。また、型温度センサの温度を監視し、凝固工程時の温度下降後、温度が再上昇し、再下降に転じた時の温度を凝固工程時の凝固完了として判断できるので、制御も容易であり、再現性を容易とし、製品の安定化、品質の特定が容易になる。   In this way, as shown in the present embodiment, since the central portion can be cooled and solidified from the central portion to the entire solidification when germanium is solidified, there is no swelling, the shape is stable, and there is little variation. A germanium molded article can be obtained. In addition, the temperature of the mold temperature sensor is monitored, and after the temperature drops during the solidification process, the temperature rises again and the temperature when it starts to fall again can be determined as the completion of solidification during the solidification process, so control is also easy. , Making reproducibility easy, stabilizing the product and specifying the quality.

なお、各設定温度は、ゲルマニウム原料、装置、温度センサの種類や設置位置、型の形状等により適宜設定されることはいうまでもない。また、融点を本実施の態様では、939℃としたが、引用文献1では937.4℃、引用文献2では958.5℃であり、それぞれの条件や純度等により必ずしも一定ではなく、また、融点と凝固点の正確な値の測定も困難であり、材料及び装置により、適宜決定される。また、冷却ガスの量は、加熱装置の配置や、型の大きさ、配置等により適宜設定される。また、上下型同じに限らず、異ならせたり、変化させてもよい。また、上下型は1枚のレンズの場合について述べたが、複数のレンズや、レンズアレイ等にも適用できることはいうまでもない。   Needless to say, each set temperature is appropriately set depending on the germanium raw material, the apparatus, the type and installation position of the temperature sensor, the shape of the mold, and the like. Moreover, although melting | fusing point was set to 939 degreeC in this embodiment, it is 937.4 degreeC in the cited reference 1, and 958.5 degreeC in the cited reference 2, and is not necessarily constant by each conditions, purity, etc. It is also difficult to measure accurate values of the melting point and the freezing point, and it is determined appropriately depending on the material and the apparatus. Further, the amount of the cooling gas is appropriately set depending on the arrangement of the heating device, the size of the mold, the arrangement, and the like. Further, the upper and lower molds are not limited to the same, and may be different or changed. The upper and lower molds have been described with respect to a single lens, but it goes without saying that the upper and lower molds can be applied to a plurality of lenses, a lens array, and the like.

1 ゲルマニウムの溶融成形装置
3 成形型(上型)
3b 下向きの型面(成形型内面)
4 成形型(下型)
4b 上向きの凹状型面(成形型内面)
4c 逃げ部
5 上支持部材
6 下支持部材
10 ゲルマニウム
11 上型温度センサ
12 下型温度センサ
18a、18b 冷却用不活性ガス吹き出し口
19a、19b 冷却用不活性ガス排出口
23 加熱装置(外部周囲)温度センサ
22 加熱装置
36 移動装置
c 中心軸
1 Germanium melt molding equipment 3 Mold (upper mold)
3b Downward mold surface (inner mold inner surface)
4 Mold (Lower mold)
4b Upward concave mold surface (inside of mold)
4c Escape part 5 Upper support member 6 Lower support member 10 Germanium 11 Upper mold temperature sensor 12 Lower mold temperature sensors 18a and 18b Cooling inert gas outlets 19a and 19b Cooling inert gas outlet 23 Heating device (outside ambient) Temperature sensor 22 Heating device 36 Moving device c Center axis

Claims (7)

不活性ガス雰囲気内の成形型を構成する下型内に固体のゲルマニウム原料を載置し、前記成形型を外部より加熱制御することで前記ゲルマニウム原料を溶融して、前記成形型を構成する上型および下型の各温度が前記ゲルマニウムの融点より高い温度になった後、前記上型を下降させることで前記下型に当接させて、その後、不活性ガスを用いて前記上型および下型の中央部より外側に向かって徐々に前記上下型を冷却させることで前記ゲルマニウムを凝固させ、前記ゲルマニウムの凝固が完了した後前記成形型の冷却を続行し、かつ前記上下型の温度を降下させ、前記ゲルマニウム原料を成形することを特徴とするゲルマニウムの溶融成形方法。 A solid germanium raw material is placed in a lower mold constituting a mold in an inert gas atmosphere, and the germanium raw material is melted by controlling the heating of the mold from the outside to form the mold. After each temperature of the mold and the lower mold becomes higher than the melting point of the germanium, the upper mold is lowered to be brought into contact with the lower mold, and then the upper mold and the lower mold using an inert gas. The germanium is solidified by gradually cooling the upper and lower molds outward from the center of the mold, and cooling of the mold is continued even after the solidification of the germanium is completed, and the temperature of the upper and lower molds is increased . A germanium melt molding method, wherein the germanium raw material is molded by lowering. 前記凝固の完了は、前記冷却を開始した後、前記上下型内の温度が下降を開始、再度温度上昇が開始され、その後再び前記上下型内の温度が下降に転じた時を完了とすることを特徴とする請求項1記載のゲルマニウムの溶融成形方法。
The completion of the solidification, after starting the cooling start temperature is lowered in the upper and lower molds, is the temperature rise again started, the temperature of the subsequent in again said upper and lower molds is completed when the turned to descend The germanium melt molding method according to claim 1.
前記成形型の冷却の続行は、前記外部の加熱をやめて、前記不活性ガスのみによる冷却とすることを特徴とする請求項2記載のゲルマニウムの溶融成形方法。 3. The germanium melt molding method according to claim 2 , wherein the cooling of the mold is continued only by the inert gas by stopping the external heating . 前記成形型内の形状はレンズ状であることを特徴とする請求項3記載のゲルマニウムの溶融成形方法。 Melt-molding method of the germanium of claim 3, wherein a shape in said mold is a lenticular. 前記成形型内形状が凹状の前記下型と平面又は凸状の前記上型とで形成され、前記ゲルマニウム溶融後に、前記上型を前記下型に嵌合させ成形すると共に余剰原料を逃がすことを特徴とする請求項4記載のゲルマニウムの溶融成形方法。 The shape of the mold is formed in said lower mold and a flat or convex of the upper mold of the concave after the germanium melt, to escape the surplus material with molding is fitted to the upper die to the lower die The method for melt forming germanium according to claim 4. 不活性ガス雰囲気内に設けられたゲルマニウムの溶融成形装置であって、ゲルマニウム原料が入れられる上向きの凹状型面を有する下型と、下向きの型面を有する上型と、前記上型又は前記下型の型面の縁に設けられた逃げ部と、前記上型又は下型の内部であって前記上型の型面又は下型の型面に近接して配置された上型又は下型温度センサと、前記上型および下型の上方および下方にそれぞれ位置することで前記上型および下型を固定する上支持部材蓋部および下支持部材蓋部と、前記上型及び下型を当接又は離隔させる移動装置と、前記上型及び下型の周囲に設けられた加熱装置と、前記加熱装置の温度を加熱装置温度センサと、を有し、前記上支持部材蓋部および下支持部材蓋部の各中央には、前記上型および下型に向かって開口する冷却用不活性ガス吹き出し口が設けられていることを特徴とするゲルマニウムの溶融成形装置。An apparatus for melt forming germanium provided in an inert gas atmosphere, wherein a lower mold having an upward concave mold surface into which a germanium raw material is placed, an upper mold having a downward mold surface, and the upper mold or the lower mold Relief portion provided at the edge of the mold surface of the mold, and upper mold or lower mold temperature disposed inside the upper mold or the lower mold and close to the upper mold surface or the lower mold surface A sensor, an upper support member lid portion and a lower support member lid portion for fixing the upper die and the lower die by being positioned above and below the upper die and the lower die, and the upper die and the lower die are brought into contact with each other. Or a moving device for separating the heating device, a heating device provided around the upper die and the lower die, and a heating device temperature sensor for detecting the temperature of the heating device, and the upper support member lid portion and the lower support member lid At the center of each part, there is an opening toward the upper mold and the lower mold Melt forming apparatus germanium, characterized in that 却用 inert gas outlet are provided. 前記上型及び下型の材料はガラス状カーボンであって、前記上型及び下型がそれぞれ挿入される上支持部材及び下支持部材を介して、前記移動装置に接続されることを特徴とする請求項6に記載のゲルマニウムの溶融成形装置。 The material of the upper mold and the lower mold is glassy carbon, and is connected to the moving device via an upper support member and a lower support member into which the upper mold and the lower mold are inserted, respectively. The germanium melt molding apparatus according to claim 6 .
JP2011170821A 2011-08-04 2011-08-04 Germanium melt molding method and apparatus Expired - Fee Related JP5754636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170821A JP5754636B2 (en) 2011-08-04 2011-08-04 Germanium melt molding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170821A JP5754636B2 (en) 2011-08-04 2011-08-04 Germanium melt molding method and apparatus

Publications (2)

Publication Number Publication Date
JP2013035000A JP2013035000A (en) 2013-02-21
JP5754636B2 true JP5754636B2 (en) 2015-07-29

Family

ID=47885124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170821A Expired - Fee Related JP5754636B2 (en) 2011-08-04 2011-08-04 Germanium melt molding method and apparatus

Country Status (1)

Country Link
JP (1) JP5754636B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942330B2 (en) * 2012-08-08 2016-06-29 株式会社不二越 Germanium lens melt molding die, cooling method thereof, and germanium lens melt molding method
US9352997B2 (en) 2013-06-27 2016-05-31 Nachi-Fujikoshi Corp. Melt molding method of germanium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598169A (en) * 1969-03-13 1971-08-10 United Aircraft Corp Method and apparatus for casting directionally solidified discs and the like
JPS59156565A (en) * 1982-11-09 1984-09-05 Mitsubishi Metal Corp Method and device for producing germanium button
JPS63157754A (en) * 1986-12-19 1988-06-30 Matsushita Electric Ind Co Ltd Production of germanium lens
JPH07314123A (en) * 1994-05-30 1995-12-05 Tokyo Denshi Yakin Kenkyusho:Kk Melting and forming method of ge, si or ge-si alloy

Also Published As

Publication number Publication date
JP2013035000A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US8141616B2 (en) Gravity casting method
JP2007332022A (en) Apparatus for producing polycrystalline silicon ingot
JP5754636B2 (en) Germanium melt molding method and apparatus
JPH07314123A (en) Melting and forming method of ge, si or ge-si alloy
CN107107181A (en) Low-pressure casting apparatus and low-pressure casting method
JP5861928B2 (en) Germanium melt molding method
JP5720894B2 (en) Germanium melt molding method
JP5942330B2 (en) Germanium lens melt molding die, cooling method thereof, and germanium lens melt molding method
JP2007186357A (en) Method and apparatus for manufacturing optical element
US9352997B2 (en) Melt molding method of germanium
JP4966354B2 (en) Casting equipment
JP6017203B2 (en) Semi-solid metal manufacturing apparatus, semi-solid forming apparatus, semi-solid metal manufacturing method and semi-solid forming method
US20090218067A1 (en) Lost-wax method associated with piezocrystallization and a device for carrying out said method
CN105014035A (en) Device for simulating initial solidification of liquid steel in crystallizer
JP2537231B2 (en) Plastic lens molding method
CN102873283B (en) High purity gallium finished product ingot cast forming method
JP4228460B2 (en) Manufacturing method of glass gob for molding optical element
US9808861B2 (en) Process and apparatus for casting titanium aluminide components
KR101461708B1 (en) Apparatus and method of controlling temperature of mold
KR101471887B1 (en) Aluminium casting mold die having bar type heater
KR101729773B1 (en) Valve for supplying lead and processing apparatus for lead including the same
CN209969542U (en) Casting molding material control device
JP5412674B2 (en) Optical element molding method and optical element molding apparatus
WO2014115794A1 (en) Method for casting metal glass
JP2010162569A (en) Injection molding apparatus and injection molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140702

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5754636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees