JP5753605B1 - Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method - Google Patents

Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method Download PDF

Info

Publication number
JP5753605B1
JP5753605B1 JP2014068952A JP2014068952A JP5753605B1 JP 5753605 B1 JP5753605 B1 JP 5753605B1 JP 2014068952 A JP2014068952 A JP 2014068952A JP 2014068952 A JP2014068952 A JP 2014068952A JP 5753605 B1 JP5753605 B1 JP 5753605B1
Authority
JP
Japan
Prior art keywords
interference wave
correlation value
power
signal component
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014068952A
Other languages
Japanese (ja)
Other versions
JP2015192350A (en
Inventor
吉田 孝
吉田  孝
宏昭 渡辺
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2014068952A priority Critical patent/JP5753605B1/en
Application granted granted Critical
Publication of JP5753605B1 publication Critical patent/JP5753605B1/en
Publication of JP2015192350A publication Critical patent/JP2015192350A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる干渉波電力測定装置を提供する。【解決手段】干渉波電力測定装置20は、受信したリファレンス信号成分とこれの既知信号成分の複素共役との相関値を算出する相関値算出部22と、相関結果のデータに基づいてマルチパス特性考慮方式による差分相関値と高速移動特性考慮方式による各差分相関値とを算出する差分相関値算出部25と、マルチパス特性考慮方式又は高速移動特性考慮方式による差分相関値をそれぞれ所定数だけ積算して平均干渉波電力を方式ごとに算出する干渉波電力算出部26と、方式ごとの平均干渉波電力のうち電力が小さい方の値を選択する選択部28と、を備える。【選択図】図1An interference wave power measuring apparatus capable of measuring interference wave power with higher accuracy than conventional in a high-speed moving environment in addition to a multipath environment. An interference wave power measuring apparatus (20) includes a correlation value calculation unit (22) that calculates a correlation value between a received reference signal component and a complex conjugate of the known signal component, and multipath characteristics based on correlation result data. The differential correlation value calculation unit 25 that calculates the differential correlation value based on the consideration method and each differential correlation value based on the high-speed movement characteristic consideration method, and a predetermined number of differential correlation values based on the multipath characteristic consideration method or the high-speed mobility characteristic consideration method are integrated. Then, an interference wave power calculation unit 26 that calculates the average interference wave power for each method, and a selection unit 28 that selects a smaller value of the average interference wave power for each method are provided. [Selection] Figure 1

Description

本発明は、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)信号を用いた移動通信システムにおいて干渉波信号の電力を測定する干渉波電力測定装置及び干渉波電力測定方法並びにSIR測定装置及びSIR測定方法に関する。   The present invention relates to an interference wave power measuring apparatus, an interference wave power measuring method, an SIR measuring apparatus, and an SIR measurement for measuring the power of an interference wave signal in a mobile communication system using an OFDM (Orthogonal Frequency Division Multiplexing) signal. Regarding the method.

近年、携帯電話等の移動体通信網システムの通信方式として直交周波数変調方式が採用されている。例えば、3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)規格では、下り方向、すなわち基地局から移動局に向かう方向の通信方式としてOFDM信号を用いたOFDMA(Orthogonal Frequency Division Multiplexing Access:直交周波数分割多元接続)方式が採用されている。   In recent years, an orthogonal frequency modulation method has been adopted as a communication method for mobile communication network systems such as mobile phones. For example, in the LTE (Long Term Evolution) standard of 3GPP (3rd Generation Partnership Project), OFDMA (Orthogonal Frequency Division Multiplexing Access) using an OFDM signal as a communication method in a downlink direction, that is, a direction from a base station to a mobile station. The division multiple access method is adopted.

移動体通信網システムでは、電話サービス地域内に互いに近接して多数の基地局が設置されている。電話サービス地域内における各地点において、各基地局からの電波を測定して、該当地点の電波状態を評価することは、新規に基地局を設置したり、設置済みの基地局を維持管理したりする際に非常に重要なことである。具体的には、移動体通信網システムではマルチパス障害やフェージングの影響を受け易いので、実際に基地局から発射された電波を、例えば、車載の測定装置によって受信し、SIR(Signal to Interference Ratio:希望波電力対干渉波電力比)等を測定することにより、サービスエリアの特定や確認を行う作業が行われる。   In a mobile communication network system, a large number of base stations are installed close to each other in a telephone service area. Measuring the radio waves from each base station at each point in the telephone service area and evaluating the radio wave condition at that point is to install a new base station or maintain an installed base station. It is very important to do. Specifically, since the mobile communication network system is susceptible to multipath failures and fading, radio waves actually emitted from the base station are received by, for example, an in-vehicle measuring device, and SIR (Signal to Interference Ratio) is received. : The ratio of the desired wave power to the interference wave power) is measured, and the service area is identified and confirmed.

一般に、OFDM信号を用いた移動体通信網システムにおいては、時間軸方向及び周波数軸方向に離散的に配置されたリファレンス信号成分を用いてSIRを推定する手法がとられる。しかしながら、遅延波の存在するマルチパス環境下では、互いに異なる周波数に存在するリファレンス信号成分間の複素振幅相関が低くなるため、SIRを正確に測定することができないという課題があった。   Generally, in a mobile communication network system using an OFDM signal, a method of estimating SIR using reference signal components discretely arranged in the time axis direction and the frequency axis direction is used. However, in a multipath environment in which a delayed wave exists, there is a problem that the SIR cannot be accurately measured because the complex amplitude correlation between the reference signal components existing at different frequencies becomes low.

この課題の解決を図る手法としては、例えば、非特許文献1に開示されたSIR測定方法が知られているが、このSIR測定方法では、比較的複雑な演算を行う構成となっているので演算量が膨大となってしまうという課題があった。そのため、本出願人は、時間軸上及び周波数軸上におけるリファレンス信号成分の相関値間の変化量に着目し、マルチパス環境下において比較的少ない演算量で干渉波電力を求めることができる干渉波電力測定装置を提案した(特許文献1参照)。   As a method for solving this problem, for example, the SIR measurement method disclosed in Non-Patent Document 1 is known. However, since this SIR measurement method is configured to perform a relatively complicated calculation, the calculation is performed. There was a problem that the amount would be enormous. Therefore, the applicant pays attention to the amount of change between the correlation values of the reference signal components on the time axis and the frequency axis, and can obtain the interference wave power with a relatively small amount of calculation in a multipath environment. A power measuring device has been proposed (see Patent Document 1).

鈴木基紹、他著「OFDMシステムにおけるマルチパス環境下の高精度SIR測定方法の検討」電子情報通信学会、信学技報、A・P2008−165、pp.91−96Suzuki Motoaki et al., “Examination of high-accuracy SIR measurement method in multipath environment in OFDM system”, IEICE, IEICE Technical Report, A.P. 91-96

特開2011−193221号公報JP 2011-193221 A

しかしながら、本出願人の検討によれば、特許文献1に記載の技術では、干渉波電力測定装置を車載して移動しながら測定を行う際に、高速度で移動すると低速度で移動する場合よりも干渉波電力の測定誤差が大きくなるということが判明し、更なる改善の余地があることがわかった。   However, according to the study of the present applicant, in the technique described in Patent Document 1, when the measurement is performed while the interference wave power measuring device is moved on the vehicle, moving at a high speed is more than when moving at a low speed. However, it was found that the measurement error of the interference wave power becomes large and there is room for further improvement.

本発明は、前述のような事情に鑑みてなされたものであり、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる干渉波電力測定装置及び干渉波電力測定方法並びにSIR測定装置及びSIR測定方法を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and is capable of measuring interference wave power with higher accuracy than ever in a high-speed moving environment in addition to a multipath environment. It is an object to provide an apparatus, an interference wave power measuring method, an SIR measuring apparatus, and an SIR measuring method.

本発明の請求項1に係る干渉波電力測定装置は、既知のリファレンス信号成分を含む希望波信号成分と、この希望波信号成分に対して干渉する干渉波信号成分と、を含む信号を受信して前記干渉波信号成分の電力を測定する干渉波電力測定装置(20)であって、受信した受信波信号を時間領域の信号から周波数領域の信号に変換するフーリエ変換手段(21)と、前記受信波信号に含まれる受信リファレンス信号成分の信号値と前記既知のリファレンス信号成分の信号値との相関値を算出する相関値算出手段(22)と、前記相関値算出手段が算出した算出結果に基づいて所定の相関値間の差分を示す第1及び第2の差分相関値を算出する差分相関値算出手段(25)と、前記第1及び前記第2の差分相関値のそれぞれの絶対値の二乗を積算した結果に基づいて第1及び第2の干渉波信号成分の電力を算出する干渉波電力算出手段(26)と、前記第1及び前記第2の干渉波信号成分の電力のうち真値に対する誤差の小さい方を前記干渉波信号成分の電力として選択する選択手段(28)と、を備え、前記差分相関値算出手段は、第1周波数における第1時刻の相関値と前記第1時刻より遅い第2時刻の相関値との差分である第1差分と、第2周波数における前記第1時刻と前記第2時刻との間の第3時刻の相関値と前記第2時刻より遅い第4時刻の相関値との差分である第2差分との差分を前記第1の差分相関値として求め、第3周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第3差分と、第4周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第4差分との差分を前記第2の差分相関値として求めるものであって、前記第1周波数と前記第2周波数との周波数差は、前記第3周波数と前記第4周波数との周波数差よりも小さい構成を有している。   An interference wave power measuring apparatus according to claim 1 of the present invention receives a signal including a desired wave signal component including a known reference signal component and an interference wave signal component that interferes with the desired wave signal component. An interference wave power measuring device (20) for measuring the power of the interference wave signal component, the Fourier transform means (21) for converting the received wave signal received from a time domain signal to a frequency domain signal; Correlation value calculation means (22) for calculating the correlation value between the signal value of the received reference signal component included in the received wave signal and the signal value of the known reference signal component, and the calculation result calculated by the correlation value calculation means Differential correlation value calculating means (25) for calculating a first and second differential correlation value indicating a difference between predetermined correlation values based on the absolute value of each of the first and second differential correlation values; Multiply square An interference wave power calculating means (26) for calculating the power of the first and second interference wave signal components based on the result, and an error relative to a true value of the powers of the first and second interference wave signal components. Selecting means (28) for selecting the smaller one of the interference wave signal components as the power of the interference wave signal component, and the differential correlation value calculating means includes a correlation value at the first time at the first frequency and a delay time that is later than the first time. A first difference that is a difference from a correlation value at two times; a correlation value at a third time between the first time and the second time at a second frequency; and a correlation at a fourth time that is later than the second time. A third difference that is a difference between the correlation value at the first time and the correlation value at the second time at a third frequency is obtained as the first difference correlation value. And the correlation value at the first time at the fourth frequency and the second time The difference between the first difference and the fourth difference is obtained as the second difference correlation value, and the frequency difference between the first frequency and the second frequency is calculated as follows: The configuration is smaller than the frequency difference with the fourth frequency.

この構成により、本発明の請求項1に係る干渉波電力測定装置は、マルチパス特性を考慮した第1の干渉波信号成分の電力と、高速移動特性を考慮した第2の干渉波信号成分の電力とのうち真値に対する誤差の小さい方を選択することができるので、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる。   With this configuration, the interference power measuring apparatus according to claim 1 of the present invention has the power of the first interference wave signal component considering the multipath characteristics and the second interference wave signal component considering the high-speed movement characteristics. Since it is possible to select the power with the smaller error with respect to the true value, it is possible to measure the interference wave power with higher accuracy than in the conventional case in the high-speed moving environment in addition to the multipath environment.

本発明の請求項2に係る干渉波電力測定装置は、前記干渉波電力算出手段は、前記第1の干渉波信号成分の電力の平均値Pを後述する[数6]に基づいて算出し、前記第2の干渉波信号成分の電力の平均値Pを後述する[数7]に基づいて算出するのが好ましい。 Interference signal power measuring apparatus according to claim 2 of the present invention, the interference power calculating means, calculated on the basis of the average value P I of the power of the first interference signal component to [6] below , preferably calculated based on the second power average value P I of the interference signal component below Equation 7].

本発明の請求項3に係る干渉波電力測定装置は、前記受信波信号は、2つの送信アンテナから受信した受信リファレンス信号成分を含み、前記干渉波電力算出手段は、前記第1の干渉波信号成分の電力の平均値Pを後述する[数10]に基づいて算出し、前記第2の干渉波信号成分の電力の平均値Pを後述する[数11]に基づいて算出するのが好ましい。 In the interference wave power measuring apparatus according to claim 3 of the present invention, the reception wave signal includes reception reference signal components received from two transmission antennas, and the interference wave power calculation means includes the first interference wave signal. below the average value P I of the components of the power is calculated based on the formula [10], that is calculated based on the second power average value P I of the interference signal component below Equation 11] preferable.

本発明の請求項4に係る干渉波電力測定装置は、前記選択手段は、前記第1及び前記第2の干渉波信号成分の電力のうち小さい値の電力を前記干渉波信号成分の電力として選択するものであるのが好ましい。   In the interference wave power measuring apparatus according to claim 4 of the present invention, the selection unit selects a power having a smaller value from the powers of the first and second interference wave signal components as the power of the interference wave signal component. It is preferable that

本発明の請求項5に係る干渉波電力測定装置は、前記選択手段は、前記第1及び前記第2の干渉波信号成分の電力のうち、前記希望波信号成分の電力と前記干渉波信号成分の電力との比を示すSIRの大きい値が得られる方を前記干渉波信号成分の電力として選択するものであるのが好ましい。   In the interference wave power measuring apparatus according to claim 5 of the present invention, the selection means includes the power of the desired wave signal component and the interference wave signal component of the power of the first and second interference wave signal components. It is preferable to select the one that obtains a large SIR value indicating the ratio to the power of the interference wave signal component as the power of the interference wave signal component.

本発明の請求項6に係るSIR測定装置は、干渉波電力測定装置(20)と、前記希望波信号成分の電力と前記干渉波信号成分の電力との比を算出するSIR算出手段(14)と、を備えた構成を有している。   The SIR measuring apparatus according to claim 6 of the present invention is an interference wave power measuring apparatus (20) and SIR calculating means (14) for calculating a ratio between the power of the desired wave signal component and the power of the interference wave signal component. And a configuration provided with.

この構成により、本発明の請求項6に係るSIR測定装置は、干渉波電力測定装置を備えるので、マルチパス環境下に加えて高速移動環境下においてもSIRを従来よりも高精度で測定することができる。   With this configuration, since the SIR measuring apparatus according to claim 6 of the present invention includes the interference wave power measuring apparatus, it is possible to measure SIR with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment. Can do.

本発明の請求項7に係る干渉波電力測定方法は、既知のリファレンス信号成分を含む希望波信号成分と、この希望波信号成分に対して干渉する干渉波信号成分と、を含む信号を受信して前記干渉波信号成分の電力を測定する干渉波電力測定方法であって、受信した受信波信号を時間領域の信号から周波数領域の信号に変換するフーリエ変換ステップ(S12)と、前記受信波信号に含まれる受信リファレンス信号成分の信号値と前記既知のリファレンス信号成分の信号値との相関値を算出する相関値算出ステップ(S13)と、前記相関値算出ステップで算出した算出結果に基づいて所定の相関値間の差分を示す第1及び第2の差分相関値を算出するステップ(S15、S17)と、前記第1及び前記第2の差分相関値のそれぞれの絶対値の二乗を積算した結果に基づいて第1及び第2の干渉波信号成分の電力を算出する干渉波電力算出ステップ(S16、S18)と、前記第1及び前記第2の干渉波信号成分の電力のうち真値に対する誤差の小さい方を前記干渉波信号成分の電力として選択する選択ステップ(S19)と、含み、前記差分相関値算出ステップにおいて、第1周波数における第1時刻の相関値と前記第1時刻より遅い第2時刻の相関値との差分である第1差分と、第2周波数における前記第1時刻と前記第2時刻との間の第3時刻の相関値と前記第2時刻より遅い第4時刻の相関値との差分である第2差分との差分を前記第1の差分相関値として求め、第3周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第3差分と、第4周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第4差分との差分を前記第2の差分相関値として求め、前記第1周波数と前記第2周波数との周波数差は、前記第3周波数と前記第4周波数との周波数差よりも小さい構成を有している。   An interference wave power measuring method according to claim 7 of the present invention receives a signal including a desired wave signal component including a known reference signal component and an interference wave signal component interfering with the desired wave signal component. An interference wave power measurement method for measuring the power of the interference wave signal component, wherein the received wave signal is converted from a time domain signal into a frequency domain signal (S12), and the received wave signal A correlation value calculation step (S13) for calculating a correlation value between the signal value of the received reference signal component and the signal value of the known reference signal component included in the signal, and a predetermined value based on the calculation result calculated in the correlation value calculation step Calculating first and second differential correlation values indicating a difference between the correlation values of the first and second differential correlation values; and calculating absolute values of the first and second differential correlation values An interference wave power calculating step (S16, S18) for calculating the power of the first and second interference wave signal components based on the result of integrating the power, and the power of the first and second interference wave signal components; A selection step (S19) for selecting the one having a smaller error from the true value as the power of the interference wave signal component, and in the differential correlation value calculation step, the correlation value at the first time at the first frequency and the first time A first difference that is a difference from a correlation value at a second time later than the time, a correlation value at a third time between the first time and the second time at a second frequency, and a second later than the second time. A difference from the second difference, which is a difference from the correlation value at four times, is obtained as the first difference correlation value, and the difference between the correlation value at the first time and the correlation value at the second time at a third frequency is obtained. A third difference and a fourth frequency. The difference between the correlation value at the first time and the fourth difference that is the difference between the correlation value at the second time is obtained as the second difference correlation value, and the frequency between the first frequency and the second frequency The difference is smaller than the frequency difference between the third frequency and the fourth frequency.

この構成により、本発明の請求項7に係る干渉波電力測定方法は、マルチパス特性を考慮した第1の干渉波信号成分の電力と、高速移動特性を考慮した第2の干渉波信号成分の電力とのうち真値に対する誤差の小さい方を選択することができるので、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる。   With this configuration, the interference wave power measurement method according to claim 7 of the present invention has the power of the first interference wave signal component considering the multipath characteristics and the second interference wave signal component considering the high-speed movement characteristics. Since it is possible to select the power with the smaller error with respect to the true value, it is possible to measure the interference wave power with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment.

本発明の請求項8に係るSIR測定方法は、請求項7に記載の干渉波電力測定方法の各ステップと、前記希望波信号成分の電力と前記干渉波信号成分の電力との比を算出するSIR算出ステップ(S20)と、を含む構成を有している。   The SIR measurement method according to claim 8 of the present invention calculates each ratio of the power of the desired wave signal component and the power of the interference wave signal component, and each step of the interference wave power measurement method according to claim 7. SIR calculation step (S20).

この構成により、本発明の請求項8に係るSIR測定方法は、干渉波電力測定方法の各ステップを含むので、マルチパス環境下に加えて高速移動環境下においてもSIRを従来よりも高精度で測定することができる。   With this configuration, the SIR measurement method according to claim 8 of the present invention includes the steps of the interference wave power measurement method, so that SIR can be performed with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment. Can be measured.

本発明は、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができるという効果を有する干渉波電力測定装置及び干渉波電力測定方法並びにSIR測定装置及びSIR測定方法を提供することができるものである。   INDUSTRIAL APPLICABILITY The present invention provides an interference wave power measuring apparatus, interference wave power measuring method, and SIR measurement having an effect that interference wave power can be measured with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment. An apparatus and an SIR measurement method can be provided.

本発明に係るSIR測定装置の第1実施形態におけるブロック構成図である。It is a block block diagram in 1st Embodiment of the SIR measuring apparatus which concerns on this invention. 基地局が2つの送信アンテナでOFDM信号の電波を送信している場合におけるリファレンス信号成分の配置を示す図である。It is a figure which shows arrangement | positioning of the reference signal component in case the base station is transmitting the radio wave of an OFDM signal with two transmission antennas. 本発明に係るSIR測定装置の第1実施形態において、基地局が1つの送信アンテナでOFDM信号の電波を送信している場合に相関値算出部が算出した相関結果のデータを示す図である。It is a figure which shows the data of the correlation result which the correlation value calculation part calculated in the 1st Embodiment of the SIR measuring apparatus which concerns on this invention, when the base station is transmitting the radio wave of an OFDM signal with one transmission antenna. 本発明に係るSIR測定装置の第1実施形態におけるマルチパス特性考慮方式の説明図である。It is explanatory drawing of the multipath characteristic consideration system in 1st Embodiment of the SIR measuring apparatus which concerns on this invention. 本発明に係るSIR測定装置の第1実施形態における高速移動特性考慮方式の説明図である。It is explanatory drawing of the high-speed movement characteristic consideration system in 1st Embodiment of the SIR measuring apparatus which concerns on this invention. 本発明に係るSIR測定装置の第1実施形態におけるマルチパス特性考慮方式の特徴についての説明図である。It is explanatory drawing about the characteristic of the multipath characteristic consideration system in 1st Embodiment of the SIR measuring apparatus which concerns on this invention. 本発明に係るSIR測定装置の第1実施形態における高速移動特性考慮方式の特徴についての説明図である。It is explanatory drawing about the characteristic of the high-speed movement characteristic consideration system in 1st Embodiment of the SIR measuring apparatus which concerns on this invention. 本発明に係るSIR測定装置の第1実施形態におけるフローチャートである。It is a flowchart in 1st Embodiment of the SIR measuring apparatus which concerns on this invention. 本発明に係るSIR測定装置の第1実施形態において、基地局が2つの送信アンテナでOFDM信号の電波を送信している場合に相関値算出部が算出する相関結果のデータを示す図である。It is a figure which shows the data of the correlation result which a correlation value calculation part calculates, when the base station is transmitting the radio wave of an OFDM signal with two transmission antennas in 1st Embodiment of the SIR measuring apparatus which concerns on this invention. 本発明に係るSIR測定装置の第2実施形態におけるブロック構成図である。It is a block block diagram in 2nd Embodiment of the SIR measuring apparatus which concerns on this invention. 本発明に係るSIR測定装置の第2実施形態におけるフローチャートである。It is a flowchart in 2nd Embodiment of the SIR measuring apparatus which concerns on this invention.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明の干渉波電力測定装置を、例えばLTE規格に従ってOFDM信号成分を含むRF(無線周波数)信号の電波を送信する基地局から、その電波を受信してSIRを測定するSIR測定装置に適用した例を挙げて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the interference wave power measuring apparatus of the present invention is an SIR measuring apparatus that receives an electric wave from a base station that transmits an RF (radio frequency) signal including an OFDM signal component according to the LTE standard and measures the SIR. An applied example will be described.

(第1実施形態)
まず、本発明に係るSIR測定装置の第1実施形態における構成について説明する。
(First embodiment)
First, the structure in 1st Embodiment of the SIR measuring apparatus which concerns on this invention is demonstrated.

図1に示すように、本実施形態におけるSIR測定装置10は、受信アンテナ11、受信部12、干渉波電力測定装置20、平均受信電力算出部13、SIR算出部14、表示部15を備えている。   As shown in FIG. 1, the SIR measurement device 10 in this embodiment includes a reception antenna 11, a reception unit 12, an interference wave power measurement device 20, an average received power calculation unit 13, a SIR calculation unit 14, and a display unit 15. Yes.

干渉波電力測定装置20は、FFT演算部21、相関値算出部22、相関結果記憶部23、方式適用制御部24、差分相関値算出部25、干渉波電力算出部26、方式別結果記憶部27、選択部28を備えている。   The interference wave power measuring apparatus 20 includes an FFT calculation unit 21, a correlation value calculation unit 22, a correlation result storage unit 23, a method application control unit 24, a differential correlation value calculation unit 25, an interference wave power calculation unit 26, and a method-specific result storage unit. 27, a selection unit 28 is provided.

受信アンテナ11は、基地局(図示省略)から送信されたOFDM信号成分を含むRF信号(以下、単に「OFDM信号」という)の電波を受信し、受信した電波信号を受信部12に出力するようになっている。   The receiving antenna 11 receives radio waves of an RF signal (hereinafter simply referred to as “OFDM signal”) including OFDM signal components transmitted from a base station (not shown), and outputs the received radio signals to the receiving unit 12. It has become.

受信部12は、受信アンテナ11が受信したOFDM信号を予め定められた周波数のIF(中間周波数)信号に変換した後、IF信号をアナログ値からデジタル値に変換してFFT演算部21に出力するようになっている。   The receiving unit 12 converts the OFDM signal received by the receiving antenna 11 into an IF (intermediate frequency) signal having a predetermined frequency, converts the IF signal from an analog value to a digital value, and outputs the converted signal to the FFT operation unit 21. It is like that.

FFT演算部21は、受信部12から出力される時間領域の信号を周波数領域の信号に変換して相関値算出部22に出力するようになっている。このFFT演算部21は、本発明に係るフーリエ変換手段を構成する。FFT演算部21から出力される信号は、データシンボルの信号成分と、リファレンス信号成分とを含む。なお、リファレンス信号成分は、参照信号成分、参照信号シンボル、リファレンスシンボル、パイロット信号成分、パイロットシンボル、スキャッタードパイロット等と呼ばれる場合がある。   The FFT calculation unit 21 converts the time domain signal output from the reception unit 12 into a frequency domain signal and outputs the signal to the correlation value calculation unit 22. The FFT operation unit 21 constitutes a Fourier transform unit according to the present invention. The signal output from the FFT operation unit 21 includes a signal component of a data symbol and a reference signal component. The reference signal component may be called a reference signal component, a reference signal symbol, a reference symbol, a pilot signal component, a pilot symbol, a scattered pilot, or the like.

リファレンス信号成分(RS)は、基地局が2つの送信アンテナでOFDM信号の電波を送信している場合においては、例えば図2に示すように、TX=0(送信アンテナ0)及びTX=1(送信アンテナ1)で示した位置に配置される。以下の説明では、基地局が1つの送信アンテナ0でOFDM信号の電波を送信するものとし、図2にTX=0で示したリファレンス信号成分のみを対象とする。   When the base station transmits the radio wave of the OFDM signal with two transmission antennas, for example, as shown in FIG. 2, the reference signal component (RS) is TX = 0 (transmission antenna 0) and TX = 1 ( It is arranged at the position indicated by the transmitting antenna 1). In the following description, it is assumed that the base station transmits the radio wave of the OFDM signal with one transmission antenna 0, and only the reference signal component indicated by TX = 0 in FIG.

また、図2に示したように、受信したリファレンス信号成分の信号値をSnmで表す。ここで、nは、リファレンス信号成分の時間軸方向の位置を示す整数であって、nが大きいほど受信時刻が遅いことを示している。また、mは、リファレンス信号成分の周波数軸上の位置を示す整数であって、mが大きいほど周波数が高いことを示している。ここで、n=0〜N−1(ただし、Nは4以上)、m=0〜M−1(ただし、Mは2以上)である。 Further, as shown in FIG. 2, the signal value of the received reference signal component is represented by S nm . Here, n is an integer indicating the position of the reference signal component in the time axis direction, and the larger n is, the later the reception time is. M is an integer indicating the position of the reference signal component on the frequency axis, and indicates that the larger m is, the higher the frequency is. Here, n = 0 to N-1 (where N is 4 or more), m = 0 to M-1 (where M is 2 or more).

相関値算出部22は、図2に示したリファレンス信号成分Snmの既知信号成分であるCnmをSnmに対応させたパターンで予め記憶しており、時間軸n、周波数軸mの位置におけるリファレンス信号成分Snmと、既知信号成分Cnmの複素共役との相関値Rnmを[数1]により算出するようになっている。ここで、記号"*"は複素共役を示す。なお、相関値算出部22は、本発明に係る相関値算出手段を構成する。 The correlation value calculation unit 22 stores in advance a pattern in which C nm , which is a known signal component of the reference signal component S nm shown in FIG. 2, is associated with S nm , at a position on the time axis n and the frequency axis m. The correlation value R nm between the reference signal component S nm and the complex conjugate of the known signal component C nm is calculated by [Equation 1]. Here, the symbol “*” indicates a complex conjugate. The correlation value calculation unit 22 constitutes a correlation value calculation unit according to the present invention.

Figure 0005753605
Figure 0005753605

相関値算出部22が算出した相関結果のデータを図3に示す。例えば、左端に示す1つのスロット(7シンボル)の中には、R00、R02、・・・、R0M−2が含まれるシンボルと、R11、R13、・・・、R1M−1が含まれるシンボルの2シンボルが含まれている。このスロットの右側に隣接するスロットには、R20、R22、・・・、R2M−2が含まれるシンボルと、R31、R33、・・・、R3M−1が含まれるシンボルの2シンボルが含まれている。 The correlation result data calculated by the correlation value calculation unit 22 is shown in FIG. For example, in one slot (seven symbols) shown at the left end, a symbol including R 00 , R 02 ,..., R 0M-2 , R 11 , R 13 ,. 2 symbols including 1 are included. In a slot adjacent to the right side of this slot, a symbol including R 20 , R 22 ,..., R 2M-2 and a symbol including R 31 , R 33 ,. Two symbols are included.

相関結果記憶部23は、相関値算出部22が算出した相関結果のデータ(図3参照)を記憶するようになっている。   The correlation result storage unit 23 stores the correlation result data calculated by the correlation value calculation unit 22 (see FIG. 3).

方式適用制御部24は、相関値算出部22が算出した相関結果のデータに対して、マルチパス特性を考慮して干渉波信号成分の電力を求めるためのマルチパス特性考慮方式の適用と、高速移動特性を考慮して干渉波信号成分の電力を求めるための高速移動特性考慮方式の適用とを切り替える制御を差分相関値算出部25に対して実行するようになっている。なお、マルチパス特性考慮方式及び高速移動特性考慮方式については後述する。   The method application control unit 24 applies a multipath characteristic consideration method for obtaining the power of the interference wave signal component in consideration of the multipath characteristic for the correlation result data calculated by the correlation value calculation unit 22, Control for switching the application of the high-speed movement characteristic consideration method for obtaining the power of the interference wave signal component in consideration of the movement characteristic is executed on the differential correlation value calculation unit 25. The multipath characteristic consideration method and the high-speed movement characteristic consideration method will be described later.

差分相関値算出部25は、相関結果記憶部23が記憶している相関結果のデータに基づき、方式適用制御部24の制御に従って、所定の相関値間の差分を示す差分相関値をマルチパス特性考慮方式及び高速移動特性考慮方式により算出するようになっている。算出された各差分相関値は、干渉波電力算出部26に出力される。なお、差分相関値算出部25は、本発明に係る差分相関値算出手段を構成する。   Based on the correlation result data stored in the correlation result storage unit 23, the differential correlation value calculation unit 25 converts the differential correlation value indicating a difference between predetermined correlation values into a multipath characteristic under the control of the method application control unit 24. It is calculated by a consideration method and a high-speed movement characteristic consideration method. Each calculated differential correlation value is output to the interference wave power calculation unit 26. The differential correlation value calculation unit 25 constitutes differential correlation value calculation means according to the present invention.

干渉波電力算出部26は、差分相関値算出部25が算出したマルチパス特性考慮方式又は高速移動特性考慮方式による差分相関値をそれぞれ所定数だけ積算し、干渉波信号成分の平均電力を示す平均干渉波電力Pを方式ごとに算出するようになっている。算出された方式ごとの平均干渉波電力Pのデータは、方式別結果記憶部27に出力される。なお、干渉波電力算出部26は、本発明に係る干渉波電力算出手段を構成する。 The interference wave power calculation unit 26 integrates a predetermined number of differential correlation values calculated by the multipath characteristic consideration method or the high-speed movement characteristic consideration method calculated by the difference correlation value calculation unit 25, and averages the average power of the interference wave signal component. the interference signal power P I and calculates for each method. Data of the average interference signal power P I of each calculated manner is output to the system by result storage unit 27. The interference wave power calculation unit 26 constitutes interference wave power calculation means according to the present invention.

方式別結果記憶部27は、マルチパス特性考慮方式及び高速移動特性考慮方式のそれぞれについて、干渉波電力算出部26が算出した平均干渉波電力Pを方式別に記憶するようになっている。 Method-specific result storage unit 27, for each multipath characteristics considered system and high-speed transfer characteristics considered method, interference wave power calculation unit 26 is adapted to store the average interference signal power P I calculated by scheme.

選択部28は、方式別結果記憶部27が記憶している方式別の平均干渉波電力Pのうち、電力が小さい方の値を選択し、選択した平均干渉波電力PをSIR算出部14に出力するようになっている。この選択部28は、本発明に係る選択手段を構成する。 Selecting unit 28, out of the system by result storage unit 27 is stored in that manner by the average interference signal power P I, select a value towards low power, SIR calculator average interference signal power P I selected 14 is output. This selection part 28 comprises the selection means which concerns on this invention.

平均受信電力算出部13は、相関結果記憶部23から所定の相関結果のデータを入力し、マルチパス特性考慮方式及び高速移動特性考慮方式に応じた平均受信電力Pを算出してSIR算出部14に出力するようになっている。 Average received power calculating unit 13, the correlation result from the storage unit 23 inputs the data of the predetermined correlation result, and calculates the average reception power P R in accordance with the multipath characteristic considering system and high-speed transfer characteristics considered scheme SIR calculator 14 is output.

具体的には、平均受信電力算出部13は、マルチパス特性考慮方式が適用される場合には[数2]により、高速移動特性考慮方式が適用される場合には[数3]により、平均受信電力Pを算出してSIR算出部14に出力するようになっている。なお、[数2]、[数3]を導くための基本的な考え方は、先の出願である特開2011−193221に記載されているので、その説明は省略する(後述する平均干渉波電力Pの各算出式も同様)。 Specifically, the average received power calculation unit 13 calculates the average by [Equation 2] when the multipath characteristic consideration method is applied and by [Equation 3] when the high-speed mobility characteristic consideration method is applied. It calculates the reception power P R and outputs to the SIR calculation section 14. The basic concept for deriving [Equation 2] and [Equation 3] is described in Japanese Patent Application Laid-Open No. 2011-193221, which is an earlier application, and will not be described here (average interference wave power described later). each calculation formula P I also).

Figure 0005753605
Figure 0005753605

Figure 0005753605
Figure 0005753605

ここで、TXは基地局の送信アンテナ0又は1を示す変数であり、本実施形態では送信アンテナ0のみとしているのでTX=0である。また、例えば(n+m+TX)mod2は、(n+m+TX)を2で割った余りを示す。   Here, TX is a variable indicating the transmission antenna 0 or 1 of the base station. In this embodiment, only transmission antenna 0 is used, so TX = 0. For example, (n + m + TX) mod 2 indicates a remainder obtained by dividing (n + m + TX) by 2.

SIR算出部14は、マルチパス特性考慮方式及び高速移動特性考慮方式に応じて、選択部28が選択した平均干渉波電力Pのデータと、平均受信電力算出部13が算出した平均受信電力Pのデータとを入力し、[数4]により平均希望波受信電力Pを算出するようになっている。 SIR calculation unit 14, in response to the multi-path characteristics considered system and high-speed transfer characteristics considered method, and data of the average interference signal power P I of the selector 28 is selected, the average received average received power calculating unit 13 calculates power P inputs the R data, and calculates the average desired wave reception power P S by Equation 4].

Figure 0005753605
Figure 0005753605

また、SIR算出部14は、平均希望波受信電力Pと平均干渉波電力Pとから[数5]によりSIRを算出するようになっている。算出されたSIRのデータは、表示部15に出力される。このSIR算出部14は、本発明に係るSIR算出手段を構成する。 Further, SIR calculation unit 14, and calculates the SIR by [Expression 5] from the average desired wave reception power P S and the average interference signal power P I. The calculated SIR data is output to the display unit 15. The SIR calculation unit 14 constitutes SIR calculation means according to the present invention.

Figure 0005753605
Figure 0005753605

表示部15は、例えば液晶ディスプレイを備え、SIR算出部14が算出したSIRを表示するようになっている。なお、表示部15に、平均干渉波電力P、平均受信電力P、平均希望波受信電力P等を表示させる構成としてもよい。 The display unit 15 includes a liquid crystal display, for example, and displays the SIR calculated by the SIR calculation unit 14. Incidentally, the display unit 15, the average interference signal power P I, the average received power P R, may be configured to display the average desired wave reception power P S and the like.

次に、干渉波電力算出部26の機能について具体的に説明する。前述のように、干渉波電力算出部26は、マルチパス特性考慮方式及び高速移動特性考慮方式に応じた平均干渉波電力Pを算出するようになっている。 Next, the function of the interference wave power calculation unit 26 will be specifically described. As described above, the interference wave power calculation unit 26, and calculates the average interference signal power P I in accordance with the multipath characteristic considering system and high-speed transfer characteristics considered scheme.

まず、マルチパス特性考慮方式が適用される場合について説明する。この場合、干渉波電力算出部26は、[数6]に基づいて差分相関値を積算し、平均干渉波電力P(第1の干渉波信号成分の電力)を算出するようになっている。 First, the case where the multipath characteristic consideration method is applied will be described. In this case, the interference wave power calculation unit 26 integrates the differential correlation values based on [Equation 6] to calculate the average interference wave power P I (the power of the first interference wave signal component). .

Figure 0005753605
Figure 0005753605

[数6]のΣ内の第1項から第4項までについて、図4を参照しながら具体的に説明する。ここで、Σ内の第1項と第2項との差分、第3項と第4項との差分は、差分相関値算出部25が算出する。   The first to fourth terms in Σ in [Equation 6] will be specifically described with reference to FIG. Here, the difference between the first term and the second term in Σ and the difference between the third term and the fourth term are calculated by the differential correlation value calculation unit 25.

図4(a)の左側には、n=0のときに、m=0、1、2、3と変化させた場合、[数6]のΣ内の第1項から第4項までが示す各相関値(図3参照)を表示している。例えば、[数6]にn=0、m=0を代入すると、第1項はR00、第2項はR20、第3項はR11、第4項はR31が得られる。 The left side of FIG. 4A shows the first to fourth terms in Σ of [Equation 6] when n = 0, and m = 0, 1, 2, and 3 are changed. Each correlation value (see FIG. 3) is displayed. For example, if n = 0 and m = 0 are substituted into [Equation 6], R 00 is obtained for the first term, R 20 for the second term, R 11 for the third term, and R 31 for the fourth term.

図4(b)の左側には、n=0、m=0のとき、[数6]のΣ内の第1項から第4項までが示す各相関値の図3における各位置(横方向は時間軸、縦方向は周波数軸)を模式的に斜線で表している。この図より、第1項のR00と第2項のR20とが同一の周波数(同一のサブキャリア)であり、第3項のR11と第4項のR31とが同一の周波数(同一のサブキャリア)であることを示している。なお、例えば、本発明に係る第1周波数は第1項のR00と第2項のR20の周波数に対応し、第2周波数は第3項のR11と第4項のR31の周波数に対応する。 On the left side of FIG. 4B, when n = 0 and m = 0, the respective correlation values indicated by the first to fourth terms in Σ in [Equation 6] in FIG. Is a time axis, and a vertical axis is a frequency axis). From this figure, R 00 of the first term and R 20 of the second term are the same frequency (same subcarrier), and R 11 of the third term and R 31 of the fourth term are the same frequency ( The same subcarrier). For example, the first frequency according to the present invention corresponds to the frequency of R 00 of the first term and the frequency of R 20 of the second term, and the second frequency is the frequency of R 11 of the third term and the frequency of R 31 of the fourth term. Corresponding to

また、第1項のR00、第2項のR20、第3項のR11、第4項のR31は、互いに異なる時刻位置にあることを示している。なお、例えば、本発明に係る第1時刻は第1項のR00の時刻、第2時刻は第3項のR11の時刻、第3時刻は第2項のR20の時刻、第4時刻は第4項のR31の時刻にそれぞれ対応する。 Also, R 00 in the first term, R 20 in the second term, R 11 in the third term, and R 31 in the fourth term are at different time positions. For example, the first time according to the present invention is the time of R 00 of the first term, the second time is the time of R 11 of the third term, the third time is the time of R 20 of the second term, the fourth time Corresponds to the time of R 31 in the fourth term.

また、図3を参照すると、第1項のR00と第3項のR11とが同一のスロットにあり、第2項のR20と第4項のR31とが同一のスロットにあることを示している。ここで、第1項のR00と第2項のR20は互いに異なるスロットにある。 In addition, referring to FIG. 3, R 00 of the first term and R 11 of the third term are in the same slot, and R 20 of the second term and R 31 of the fourth term are in the same slot. Is shown. Here, R 00 of the first term and R 20 of the second term are in different slots.

図4(b)の左側と同様に、図4(c)の左側にはn=0、m=1のとき、図4(d)の左側にはn=0、m=2のときにおいて、[数6]のΣ内の第1項から第4項までが示す各相関値の図3における各位置を模式的に斜線で表している。これらの図は、mが増加するに従って[数6]のΣ内の第1項から第4項までが示す各相関値の位置が変化していくのを示している。   Similar to the left side of FIG. 4B, when n = 0 and m = 1 on the left side of FIG. 4C, and when n = 0 and m = 2 on the left side of FIG. Each position in FIG. 3 of each correlation value indicated by the first term to the fourth term in Σ in [Equation 6] is schematically represented by hatching. These figures show that the position of each correlation value indicated by the first term to the fourth term in Σ of [Equation 6] changes as m increases.

図4(a)〜(d)の右側には、左側の各図と同様な構成で、n=1のときに、m=0、1、2、3と変化させた場合、[数6]のΣ内の第1項から第4項までが示す各相関値(図3参照)を表示している。これらの図は、[数6]のΣ内の第1項から第4項までが示す各相関値が、図4(a)〜(d)の左側の図に対して、時刻が進む方向に1つ移動しているのを示している。   In the right side of FIGS. 4A to 4D, the same configuration as the left side diagrams is shown. When n = 1, when m = 0, 1, 2, and 3 are changed, [Equation 6] Each correlation value (see FIG. 3) indicated by the first term to the fourth term in Σ is displayed. In these figures, the correlation values indicated by the first term to the fourth term in Σ of [Equation 6] are in the direction in which the time advances with respect to the diagrams on the left side of FIGS. It shows that one is moving.

次に、高速移動特性考慮方式が適用される場合について説明する。この場合、干渉波電力算出部26は、[数7]に基づいて差分相関値を積算し、平均干渉波電力P(第2の干渉波信号成分の電力)を算出するようになっている。 Next, a case where the high-speed movement characteristic consideration method is applied will be described. In this case, the interference wave power calculation unit 26 integrates the differential correlation values based on [Equation 7] to calculate the average interference wave power P I (the power of the second interference wave signal component). .

Figure 0005753605
Figure 0005753605

[数7]のΣ内の第1項から第4項までについて、図5を参照しながら具体的に説明する。ここで、Σ内の第1項と第2項との差分、第3項と第4項との差分は、差分相関値算出部25が算出する。   The first to fourth terms in Σ of [Equation 7] will be specifically described with reference to FIG. Here, the difference between the first term and the second term in Σ and the difference between the third term and the fourth term are calculated by the differential correlation value calculation unit 25.

図5(a)の左側には、n=0のときに、m=0、1、2、3と変化させた場合、[数7]のΣ内の第1項から第4項までが示す各相関値(図3参照)を表示している。例えば、[数7]にn=0、m=0を代入すると、第1項はR00、第2項はR20、第3項はR02、第4項はR22が得られる。 On the left side of FIG. 5A, when n = 0, when m = 0, 1, 2, and 3 are changed, the first to fourth terms in Σ in [Expression 7] are shown. Each correlation value (see FIG. 3) is displayed. For example, if n = 0 and m = 0 are substituted into [Equation 7], R 00 is obtained for the first term, R 20 for the second term, R 02 for the third term, and R 22 for the fourth term.

図5(b)の左側には、n=0、m=0のとき、[数7]のΣ内の第1項から第4項までが示す各相関値の図3における各位置(横方向は時間軸、縦方向は周波数軸)を模式的に斜線で表している。この図より、第1項のR00と第2項のR20とが同一の周波数(同一のサブキャリア)であり、第3項のR02と第4項のR22とが同一の周波数(同一のサブキャリア)であることを示している。なお、例えば、本発明に係る第3周波数は第1項のR00と第2項のR20の周波数に対応し、第4周波数は第3項のR02と第4項のR22の周波数に対応する。 On the left side of FIG. 5B, when n = 0 and m = 0, each correlation value (horizontal direction) of each correlation value indicated by the first to fourth terms in Σ of [Equation 7] is shown. Is a time axis, and a vertical axis is a frequency axis). From this figure, R 00 of the first term and R 20 of the second term are the same frequency (same subcarrier), and R 02 of the third term and R 22 of the fourth term are the same frequency ( The same subcarrier). For example, the third frequency according to the present invention corresponds to the frequency of R 00 of the first term and the frequency of R 20 of the second term, and the fourth frequency is the frequency of R 02 of the third term and the frequency of R 22 of the fourth term. Corresponding to

また、第1項のR00と第3項のR02とが同一の時刻であり、第2項のR20と第4項のR22とが同一の時刻であることを示している。ここで、例えば、本発明に係る第1時刻は第1項のR00と第3項のR02の時刻に対応し、第2時刻は第2項のR20と第4項のR22の時刻に対応している。 In addition, R 00 in the first term and R 02 in the third term are the same time, and R 20 in the second term and R 22 in the fourth term are the same time. Here, for example, the first time according to the present invention corresponds to the time of R 00 of the first term and the time of R 02 of the third term, and the second time corresponds to the time of R 20 of the second term and R 22 of the fourth term. It corresponds to the time.

また、図3を参照すると、第1項のR00と第3項のR02とが同一のスロットにあり、第2項のR20と第4項のR22とが同一のスロットにあることを示している。ここで、第1項のR00と第2項のR20は互いに異なるスロットにある。 Also, referring to FIG. 3, R 00 in the first term and R 02 in the third term are in the same slot, and R 20 in the second term and R 22 in the fourth term are in the same slot. Is shown. Here, R 00 of the first term and R 20 of the second term are in different slots.

図5(b)の左側と同様に、図5(c)の左側にはn=0、m=1のとき、図5(d)の左側にはn=0、m=2のときにおいて、[数7]のΣ内の第1項から第4項までが示す各相関値の図3における各位置を模式的に斜線で表している。これらの図は、mが増加するに従って[数7]のΣ内の第1項から第4項までが示す各相関値の位置が変化していくのを示している。   Similar to the left side of FIG. 5B, when n = 0 and m = 1 on the left side of FIG. 5C, and when n = 0 and m = 2 on the left side of FIG. 5D, Each position in FIG. 3 of each correlation value indicated by the first term to the fourth term in Σ in [Expression 7] is schematically represented by hatching. These figures show that the position of each correlation value indicated by the first term to the fourth term in Σ of [Equation 7] changes as m increases.

図5(a)〜(d)の右側には、左側の各図と同様な構成で、n=1のときに、m=0、1、2、3と変化させた場合、[数7]のΣ内の第1項から第4項までが示す各相関値(図3参照)を表示している。これらの図は、[数7]のΣ内の第1項から第4項までが示す各相関値が、図5(a)〜(d)の左側の図に対して、時刻が進む方向に1つ移動しているのを示している。   In the right side of FIGS. 5A to 5D, the same configuration as the left side diagrams is shown. When n = 1, when m = 0, 1, 2, and 3 are changed, [Equation 7] Each correlation value (see FIG. 3) indicated by the first term to the fourth term in Σ is displayed. In these figures, the correlation values indicated by the first term to the fourth term in Σ of [Equation 7] are in the direction in which the time advances with respect to the diagrams on the left side of FIGS. It shows that one is moving.

次に、マルチパス特性考慮方式及び高速移動特性考慮方式の特徴について、両者を比較しながら説明する。   Next, the features of the multipath characteristic consideration method and the high-speed movement characteristic consideration method will be described by comparing the two.

まず、マルチパス特性考慮方式の特徴について図6を参照しながら説明する。   First, the characteristics of the multipath characteristic consideration method will be described with reference to FIG.

図6(a)は、[数6]においてn=0、m=0のとき、Σ内の第1項と第2項との差分をとる組み合わせ31と、Σ内の第3項と第4項との差分をとる組み合わせ32とを実線で囲っている。また、Σ内の絶対値記号内の差分をとる組み合わせ33を破線で囲っている。   FIG. 6A shows a combination 31 that takes the difference between the first term and the second term in Σ, and the third and fourth terms in Σ when n = 0 and m = 0 in [Equation 6]. A combination 32 that takes a difference from a term is surrounded by a solid line. Further, a combination 33 that takes a difference in absolute value symbols in Σ is surrounded by a broken line.

ここで、[数6]を変形すると[数8]が得られる。   Here, when [Formula 6] is transformed, [Formula 8] is obtained.

Figure 0005753605
Figure 0005753605

図6(b)は、図6(a)で示したものを[数8]を用いて表現し直したものであり、[数8]においてn=0、m=0のとき、Σ内の第1項と第2項との和をとる組み合わせ34と、Σ内の第3項と第4項との和をとる組み合わせ35とを実線で囲っている。また、Σ内の絶対値記号内の差分をとる組み合わせ33を破線で囲っている。   FIG. 6B is a representation of what is shown in FIG. 6A re-expressed using [Equation 8]. When n = 0 and m = 0 in [Equation 8], A combination 34 that takes the sum of the first term and the second term and a combination 35 that takes the sum of the third term and the fourth term in Σ are surrounded by a solid line. Further, a combination 33 that takes a difference in absolute value symbols in Σ is surrounded by a broken line.

図6(b)により、マルチパス特性考慮方式は、周波数差は3サブキャリアであるので、マルチパス環境下での周波数ごとの変動に対して、後述する高速移動特性考慮方式よりも耐性があることが示されている。一方、図6(b)により、マルチパス特性考慮方式は、R00とR31との組み合わせ34は、R11とR20との組み合わせ35よりも時間差が大きいので、高速移動環境下で発生する時間変動が大きい場合には特性が劣化することが示されている。 As shown in FIG. 6B, the multipath characteristic considering method has a frequency difference of 3 subcarriers, and thus is more resistant to fluctuation for each frequency in the multipath environment than the high-speed moving characteristic considering method described later. It has been shown. On the other hand, as shown in FIG. 6B, the multipath characteristic consideration method occurs in a high-speed moving environment because the combination 34 of R 00 and R 31 has a larger time difference than the combination 35 of R 11 and R 20. It is shown that the characteristics deteriorate when the time fluctuation is large.

次に、高速移動特性考慮方式の特徴について図7を参照しながら説明する。   Next, features of the high-speed movement characteristic consideration method will be described with reference to FIG.

図7(a)は、[数7]においてn=0、m=0のとき、Σ内の第1項と第2項との差をとる組み合わせ41と、Σ内の第3項と第4項との差をとる組み合わせ42とを実線で囲っている。また、Σ内の絶対値記号内の差分をとる組み合わせ43を破線で囲っている。   FIG. 7A shows a combination 41 that takes the difference between the first term and the second term in Σ, and the third and fourth terms in Σ when n = 0 and m = 0 in [Equation 7]. A combination 42 that takes a difference from a term is surrounded by a solid line. A combination 43 that takes a difference in the absolute value symbol in Σ is surrounded by a broken line.

ここで、[数7]を変形すると[数9]が得られる。   Here, [Equation 9] is obtained by transforming [Equation 7].

Figure 0005753605
Figure 0005753605

図7(b)は、図7(a)で示したものを[数9]を用いて表現し直したものであり、[数9]においてn=0、m=0のとき、Σ内の第1項と第2項との和をとる組み合わせ44と、Σ内の第3項と第4項との和をとる組み合わせ45とを実線で囲っている。また、Σ内の絶対値記号内の差分をとる組み合わせ43を破線で囲っている。   FIG. 7 (b) is a representation of what is shown in FIG. 7 (a) by using [Equation 9]. In [Equation 9], when n = 0 and m = 0, A combination 44 that takes the sum of the first term and the second term and a combination 45 that takes the sum of the third term and the fourth term in Σ are surrounded by a solid line. A combination 43 that takes a difference in the absolute value symbol in Σ is surrounded by a broken line.

図7(b)により、高速移動特性考慮方式は、R00とR22との組み合わせ44と、R02とR20との組み合わせ45の時間差は同じであり、高速移動環境下で発生する時間変動に対して、前述のマルチパス特性考慮方式よりも耐性があることが示されている。一方、高速移動特性考慮方式は、周波数差は6サブキャリアであるので、マルチパス環境下での周波数ごとの変動が大きい場合には特性が劣化することが示されている。 As shown in FIG. 7B, the high-speed movement characteristic consideration method is the same as that of the combination 44 of R 00 and R 22 and the time difference of the combination 45 of R 02 and R 20, and the time variation that occurs in a high-speed movement environment. On the other hand, it is shown that it is more resistant than the above-mentioned multipath characteristic consideration method. On the other hand, since the frequency difference is 6 subcarriers in the high-speed mobility characteristic consideration method, it is shown that the characteristic deteriorates when the variation for each frequency in a multipath environment is large.

以上のように、マルチパス特性考慮方式は、マルチパス環境下での周波数ごとの変動に対して耐性があるので、マルチパス環境下において干渉波電力を高精度で測定することができ、高速移動特性考慮方式は、高速移動環境下で発生する時間変動に対して耐性があるので、高速移動環境下において干渉波電力を高精度で測定することができることがわかる。   As described above, the multipath characteristic consideration method is resistant to fluctuations for each frequency in a multipath environment, so that it is possible to measure the interference wave power with high accuracy in a multipath environment and to move at high speed. It can be seen that the characteristic consideration method is resistant to temporal fluctuations that occur in a high-speed moving environment, so that interference wave power can be measured with high accuracy in a high-speed moving environment.

したがって、マルチパス特性考慮方式及び高速移動特性考慮方式により別個に平均干渉波電力Pを算出し、小さい方の平均干渉波電力Pを選択すれば、選択した平均干渉波電力Pが真値に対する誤差の小さい平均干渉波電力Pに相当することとなる。 Therefore, if the average interference wave power P I is calculated separately by the multipath characteristic consideration method and the high-speed movement characteristic consideration method and the smaller average interference wave power P I is selected, the selected average interference wave power P I is true. It becomes equivalent to small average interference signal power P I of error for the values.

すなわち、選択部28は、方式別結果記憶部27が記憶している方式別の平均干渉波電力Pのうち電力が小さい方の値を選択することにより、平均干渉波電力Pの真値に対する誤差の小さい方を選択するものである。 That is, the selection unit 28, by selecting a value towards small power of system-specific result storage unit 27 is stored in that manner by the average interference signal power P I, the true value of the average interference signal power P I The one with the smaller error with respect to is selected.

次に、本実施形態におけるSIR測定装置10の動作について図8に示すフローチャートを中心に説明する。   Next, the operation of the SIR measurement apparatus 10 in the present embodiment will be described with a focus on the flowchart shown in FIG.

受信部12は、受信アンテナ11を介してOFDM信号を受信し(ステップS11)、所定周波数のIF信号に変換した後、IF信号をアナログ値からデジタル値に変換してFFT演算部21に出力する。   The receiving unit 12 receives the OFDM signal via the receiving antenna 11 (step S11), converts the signal into an IF signal having a predetermined frequency, converts the IF signal from an analog value to a digital value, and outputs the converted signal to the FFT operation unit 21. .

FFT演算部21は、受信部12から出力される時間領域の信号を周波数領域の信号に変換し(ステップS12)、相関値算出部22に出力する。   The FFT calculation unit 21 converts the time domain signal output from the reception unit 12 into a frequency domain signal (step S <b> 12), and outputs the signal to the correlation value calculation unit 22.

相関値算出部22は、時間軸n、周波数軸mの位置におけるリファレンス信号成分Snmと、既知信号成分Cnmの複素共役との相関値Rnmを[数1]により算出する(ステップS13)。 Correlation value calculation unit 22, the time axis n, calculates a reference signal component S nm at the position of the frequency axis m, the correlation value R nm of the complex conjugate of the known signal component C nm by [Expression 1] (step S13) .

相関結果記憶部23は、相関値算出部22が算出した相関結果のデータを記憶する(ステップS14)。   The correlation result storage unit 23 stores the correlation result data calculated by the correlation value calculation unit 22 (step S14).

差分相関値算出部25は、相関結果記憶部23が記憶している相関結果のデータに基づき、方式適用制御部24の制御(マルチパス特性考慮方式を指示)に従って、マルチパス特性考慮方式による差分相関値を算出する(ステップS15)。具体的には、[数6]のΣ内の第1項と第2項との差分(第1差分)、第3項と第4項との差分(第2差分)を算出する。   The difference correlation value calculation unit 25 is based on the correlation result data stored in the correlation result storage unit 23 and performs the difference based on the multipath characteristic consideration method according to the control of the method application control unit 24 (instructing the multipath characteristic consideration method). A correlation value is calculated (step S15). Specifically, the difference (first difference) between the first term and the second term in Σ in [Equation 6], and the difference (second difference) between the third term and the fourth term are calculated.

干渉波電力算出部26は、マルチパス特性考慮方式で平均干渉波電力Pを[数6]により算出し、算出した平均干渉波電力Pのデータを方式別結果記憶部27が記憶する(ステップS16)。 Interference wave power calculation unit 26, the average interference signal power P I in multipath characteristics considered scheme calculated by Equation 6], the data of the calculated average interference signal power P I is a method-specific result storage unit 27 stores ( Step S16).

差分相関値算出部25は、相関結果記憶部23が記憶している相関結果のデータに基づき、方式適用制御部24の制御(高速移動特性考慮方式を指示)に従って、高速移動特性考慮方式による差分相関値を算出する(ステップS17)。具体的には、[数7]のΣ内の第1項と第2項との差分(第3差分)、第3項と第4項との差分(第4差分)を算出する。   The difference correlation value calculation unit 25 is based on the correlation result data stored in the correlation result storage unit 23, and the difference based on the high-speed movement characteristic consideration method according to the control of the method application control unit 24 (instructing the high-speed movement characteristic consideration method). A correlation value is calculated (step S17). Specifically, the difference (third difference) between the first term and the second term in Σ in [Equation 7] and the difference (fourth difference) between the third term and the fourth term are calculated.

干渉波電力算出部26は、高速移動特性考慮方式で平均干渉波電力Pを[数7]により算出し、算出した平均干渉波電力Pのデータを方式別結果記憶部27が記憶する(ステップS18)。 Interference wave power calculation unit 26, the average interference signal power P I fast transfer characteristics considered scheme calculated by [Equation 7], the data of the calculated average interference signal power P I is a method-specific result storage unit 27 stores ( Step S18).

選択部28は、方式別結果記憶部27が記憶している方式別の平均干渉波電力Pのうち、電力が小さい方の値を選択し(ステップS19)、選択した平均干渉波電力PのデータをSIR算出部14に出力する。 Selecting unit 28, out of the system by result storage unit 27 is stored in that manner by the average interference signal power P I, select a value towards the power is small (step S19), the average interference signal power P I selected Are output to the SIR calculation unit 14.

SIR算出部14は、平均受信電力算出部13からの平均希望波受信電力Pと、選択部28からの平均干渉波電力Pとから[数5]によりSIRを算出する(ステップS20)。 SIR calculation unit 14, an average desired wave reception power P S from the average received power calculating unit 13 calculates the SIR by [Expression 5] from the average interference power P I from the selector 28 (step S20).

表示部15は、SIR算出部14が算出したSIRを表示する(ステップS21)。   The display unit 15 displays the SIR calculated by the SIR calculation unit 14 (step S21).

なお、図8では、マルチパス特性考慮方式の演算を先に行い、高速移動特性考慮方式の演算を後に行う例を示したが、この順序を入れ替えてもよい。すなわち、ステップS14の後に、ステップS17、S18、S15、S16、S19・・・という順序であってもよい。   Although FIG. 8 shows an example in which the calculation of the multipath characteristic consideration method is performed first and the calculation of the high speed movement characteristic consideration method is performed later, this order may be changed. That is, the order of steps S17, S18, S15, S16, S19,.

以上のように、本実施形態における干渉波電力測定装置20は、マルチパス特性考慮方式及び高速移動特性考慮方式でそれぞれ平均干渉波電力Pを算出し、これら2つの平均干渉波電力Pのうち小さい方の値を選択部28が選択する構成としたので、マルチパス環境下においてはマルチパス特性考慮方式での平均干渉波電力P、高速移動環境下においては高速移動特性考慮方式での平均干渉波電力Pを選択することとなる。 As described above, the interference signal power measuring device 20 of this embodiment, respectively calculates the average interference signal power P I in multipath characteristics considered system and high-speed transfer characteristics considered method, these two average interference signal power P I because of which the smaller value selecting section 28 of the configured to select, multipath average interference signal power in the multipath characteristics considered scheme in environments P I, in high-speed transfer characteristics considered system under high-speed moving environment It will select the average interference signal power P I.

したがって、本実施形態における干渉波電力測定装置20は、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる。   Therefore, the interference wave power measuring apparatus 20 according to the present embodiment can measure the interference wave power with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment.

また、本実施形態におけるSIR測定装置10は、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる干渉波電力測定装置20を備えるので、マルチパス環境下に加えて高速移動環境下においてもSIRを従来よりも高精度で測定することができる。   Moreover, since the SIR measurement apparatus 10 in the present embodiment includes the interference wave power measurement apparatus 20 that can measure the interference wave power with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment, In addition to the multipath environment, the SIR can be measured with higher accuracy than in the prior art in a high-speed moving environment.

(他の態様)
前述の実施形態では、基地局が1つの送信アンテナ0でOFDM信号の電波を送信するものとしたが、基地局が2つの送信アンテナでOFDM信号の電波を送信する場合においても、前述の実施形態と同様な考え方で平均干渉波電力P及びSIRを求めることができる。
(Other aspects)
In the above-described embodiment, the base station transmits an OFDM signal radio wave with one transmission antenna 0. However, even when the base station transmits an OFDM signal radio wave with two transmission antennas, the above-described embodiment and it is possible to determine the average interference signal power P I and SIR in a similar idea.

図9は、図2おいてTX=0(送信アンテナ0)及びTX=1(送信アンテナ1)で示した位置に配置されたリファレンス信号成分に対する相関結果のデータを示す。この場合、[数2]、[数3]においてTX=0、TX=1を代入すれば、送信アンテナ0及び1での平均受信電力Pが方式ごとに求まる。 FIG. 9 shows correlation result data for the reference signal components arranged at the positions indicated by TX = 0 (transmitting antenna 0) and TX = 1 (transmitting antenna 1) in FIG. In this case, Equation 2, by substituting the TX = 0, TX = 1 in [Numerical equation 3], the average received power P R of the transmitting antenna 0 and 1 are obtained for each method.

また、[数6]〜[数9]に対応する数式は、それぞれ以下の各数式で示される。[数10]、[数11]でTX=0、TX=1を代入すれば、マルチパス特性考慮方式及び高速移動特性考慮方式において送信アンテナ0及び1での平均干渉波電力Pが求まる。 Also, the mathematical expressions corresponding to [Equation 6] to [Equation 9] are represented by the following mathematical expressions, respectively. [Expression 10], by substituting TX = 0, TX = 1 in Equation 11], in the multipath characteristics considered system and high-speed transfer characteristics considered scheme average interference power P I of the transmitting antenna 0 and 1 obtained.

[数6]に対応する数式は[数10]で示される。   The mathematical formula corresponding to [Formula 6] is represented by [Formula 10].

Figure 0005753605
Figure 0005753605

[数7]に対応する数式は[数11]で示される。   An equation corresponding to [Equation 7] is represented by [Equation 11].

Figure 0005753605
Figure 0005753605

[数8]に対応する数式は[数12]で示される。   An equation corresponding to [Equation 8] is represented by [Equation 12].

Figure 0005753605
Figure 0005753605

[数9]に対応する数式は[数13]で示される。   An equation corresponding to [Equation 9] is represented by [Equation 13].

Figure 0005753605
Figure 0005753605

[数10]、[数11]を適用することにより、SIR測定装置10は、基地局が2つの送信アンテナでOFDM信号の電波を送信する場合においても、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる。   By applying [Equation 10] and [Equation 11], the SIR measurement apparatus 10 can be used in a high-speed moving environment in addition to the multipath environment even when the base station transmits the radio wave of the OFDM signal using two transmission antennas. Even underneath, the interference wave power can be measured with higher accuracy than before.

(第2実施形態)
図10に示すように、本実施形態におけるSIR測定装置50は、第1実施形態の干渉波電力測定装置20(図1参照)に代えて干渉波電力測定装置60を備え、SIR算出部14が廃止されている点が異なる。したがって、第1実施形態と同様な構成には同一の符号を付して、その説明を省略する。
(Second Embodiment)
As shown in FIG. 10, the SIR measurement device 50 in the present embodiment includes an interference wave power measurement device 60 instead of the interference wave power measurement device 20 (see FIG. 1) of the first embodiment, and the SIR calculation unit 14 includes The difference is that it has been abolished. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

干渉波電力測定装置60は、第1実施形態における干渉波電力算出部26、方式別結果記憶部27及び選択部28に代えて、SIR算出部61、方式別結果記憶部62及び選択部63を備えている。   The interference wave power measurement device 60 includes an SIR calculation unit 61, a method-specific result storage unit 62, and a selection unit 63 instead of the interference wave power calculation unit 26, the method-specific result storage unit 27, and the selection unit 28 in the first embodiment. I have.

SIR算出部61は、第1実施形態における干渉波電力算出部26及びSIR算出部14の機能を有している。すなわち、SIR算出部61は、差分相関値算出部25が算出したマルチパス特性考慮方式又は高速移動特性考慮方式による差分相関値をそれぞれ所定数だけ積算し、干渉波信号成分の平均電力を示す平均干渉波電力Pを方式ごとに算出するようになっている。 The SIR calculation unit 61 has the functions of the interference wave power calculation unit 26 and the SIR calculation unit 14 in the first embodiment. That is, the SIR calculation unit 61 integrates a predetermined number of differential correlation values calculated by the multipath characteristic consideration method or the high-speed movement characteristic consideration method calculated by the differential correlation value calculation unit 25, and averages the average power of the interference wave signal component. the interference signal power P I and calculates for each method.

また、SIR算出部61は、算出した平均干渉波電力Pと、平均受信電力算出部13が算出した平均受信電力Pとにより、[数4]及び[数5]に基づいて方式別のSIRを算出するようになっている。 Further, SIR calculation unit 61, and the average interference signal power P I of calculated by the average reception power P R of the average received power calculating unit 13 is calculated, the specific method based on the formula [4] and [Equation 5] SIR is calculated.

方式別結果記憶部62は、マルチパス特性考慮方式及び高速移動特性考慮方式のそれぞれについて、SIR算出部61が算出したSIRのデータを方式別に記憶するようになっている。   The method-specific result storage unit 62 stores the SIR data calculated by the SIR calculation unit 61 for each of the multipath characteristic consideration method and the high-speed movement characteristic consideration method.

選択部63は、方式別結果記憶部27が記憶している方式別のSIRのうち、SIRが大きい方の値を選択するようになっている。すなわち、選択部63は、SIRの真値に対する誤差の小さい方を選択するものである。選択されたSIRのデータは表示部15に出力される。なお、第1実施形態のように、干渉波電力測定装置60に平均干渉波電力のデータを出力させる場合は、SIRの大きい値が得られる干渉波信号成分を選択部63が選択して出力する構成とすればよい。   The selection unit 63 selects a value having a larger SIR among the SIRs for each method stored in the result storage unit 27 for each method. That is, the selection unit 63 selects the one having a smaller error with respect to the true value of SIR. The selected SIR data is output to the display unit 15. Note that when the interference wave power measuring device 60 outputs average interference wave power data as in the first embodiment, the selection unit 63 selects and outputs an interference wave signal component that provides a large SIR value. What is necessary is just composition.

次に、本実施形態におけるSIR測定装置10の動作について図11に示すフローチャートを中心に説明する。なお、第1実施形態におけるフローチャート(図8参照)に対して、本実施形態ではステップS31〜S33のみが異なるので、他のステップについては説明を省略する。   Next, the operation of the SIR measurement apparatus 10 in the present embodiment will be described with a focus on the flowchart shown in FIG. In addition, since only the steps S31 to S33 are different in the present embodiment from the flowchart (see FIG. 8) in the first embodiment, description of other steps is omitted.

ステップS15において差分相関値算出部25がマルチパス特性考慮方式による差分相関値を算出した後、SIR算出部61は、[数4]及び[数5]に基づいてマルチパス特性考慮方式によるSIRを算出し、算出したSIRのデータを方式別結果記憶部62が記憶する(ステップS31)。   After the differential correlation value calculation unit 25 calculates the differential correlation value by the multipath characteristic consideration method in step S15, the SIR calculation unit 61 performs the SIR by the multipath characteristic consideration method based on [Equation 4] and [Equation 5]. The method-specific result storage unit 62 stores the calculated SIR data (step S31).

同様に、差分相関値算出部25が高速移動特性考慮方式による差分相関値を算出した後、SIR算出部61は、[数4]及び[数5]に基づいて高速移動特性考慮方式によるSIRを算出し、算出したSIRのデータを方式別結果記憶部62が記憶する(ステップS32)。   Similarly, after the differential correlation value calculation unit 25 calculates the differential correlation value by the high-speed movement characteristic consideration method, the SIR calculation unit 61 calculates the SIR by the high-speed movement characteristic consideration method based on [Equation 4] and [Equation 5]. The calculated result storage unit 62 stores the calculated SIR data (step S32).

選択部63は、方式別結果記憶部27が記憶している方式別のSIRのうち、SIRが大きい方の値を選択し(ステップS33)、選択したSIRのデータを表示部15に出力する。   The selection unit 63 selects a value having a larger SIR among the SIRs for each method stored in the result storage unit 27 for each method (step S33), and outputs the selected SIR data to the display unit 15.

なお、図11では、マルチパス特性考慮方式の演算を先に行い、高速移動特性考慮方式の演算を後に行う例を示したが、この順序を入れ替えてもよい。すなわち、ステップS14の後に、ステップS17、S32、S15、S31、S33・・・という順序であってもよい。   Although FIG. 11 shows an example in which the multipath characteristic considering method is calculated first and the high speed moving characteristic considering method is calculated later, this order may be changed. That is, the order of steps S17, S32, S15, S31, S33,.

以上のように、本実施形態における干渉波電力測定装置60は、マルチパス特性考慮方式及び高速移動特性考慮方式でそれぞれSIRを算出し、これら2つのSIRのうち大きい方のSIRを選択部63が選択する構成としたので、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる。   As described above, the interference wave power measuring apparatus 60 according to the present embodiment calculates the SIR using the multipath characteristic consideration method and the high-speed movement characteristic consideration method, and the selector 63 selects the larger SIR of these two SIRs. Since the selected configuration is adopted, it is possible to measure the interference wave power with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment.

また、本実施形態におけるSIR測定装置50は、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができる干渉波電力測定装置60を備えるので、マルチパス環境下に加えて高速移動環境下においてもSIRを従来よりも高精度で測定することができる。   In addition, the SIR measurement device 50 in the present embodiment includes the interference wave power measurement device 60 that can measure the interference wave power with higher accuracy than in the past in a high-speed moving environment in addition to a multipath environment. In addition to the multipath environment, the SIR can be measured with higher accuracy than in the prior art in a high-speed moving environment.

以上のように、本発明に係る干渉波電力測定装置及び干渉波電力測定方法並びにSIR測定装置及びSIR測定方法は、マルチパス環境下に加えて高速移動環境下においても干渉波電力を従来よりも高精度で測定することができるという効果を有し、OFDM信号を用いた移動通信システムにおいて干渉波信号の電力を測定する干渉波電力測定装置及び干渉波電力測定方法並びにSIR測定装置及びSIR測定方法として有用である。   As described above, the interference wave power measuring apparatus, the interference wave power measuring method, the SIR measuring apparatus, and the SIR measuring method according to the present invention can reduce the interference wave power in the high-speed moving environment in addition to the conventional multipath environment. Interference wave power measurement apparatus, interference wave power measurement method, SIR measurement apparatus and SIR measurement method for measuring the power of an interference wave signal in a mobile communication system using an OFDM signal, having the effect of being able to measure with high accuracy Useful as.

10、50 SIR測定装置
11 受信アンテナ
12 受信部
13 平均受信電力算出部
14 SIR算出部(SIR算出手段)
15 表示部
20、60 干渉波電力測定装置
21 FFT演算部(フーリエ変換手段)
22 相関値算出部(相関値算出手段)
23 相関結果記憶部
24 方式適用制御部
25 差分相関値算出部(差分相関値算出手段)
26 干渉波電力算出部(干渉波電力算出手段)
27、62 方式別結果記憶部
28、63 選択部(選択手段)
61 SIR算出部
DESCRIPTION OF SYMBOLS 10, 50 SIR measuring device 11 Reception antenna 12 Reception part 13 Average received power calculation part 14 SIR calculation part (SIR calculation means)
15 Display unit 20, 60 Interference wave power measurement device 21 FFT calculation unit (Fourier transform means)
22 Correlation value calculation unit (correlation value calculation means)
23 correlation result storage unit 24 method application control unit 25 differential correlation value calculation unit (differential correlation value calculation means)
26 Interference wave power calculation unit (interference wave power calculation means)
27, 62 Result storage unit by method 28, 63 Selection unit (selection means)
61 SIR calculation section

Claims (8)

既知のリファレンス信号成分を含む希望波信号成分と、この希望波信号成分に対して干渉する干渉波信号成分と、を含む信号を受信して前記干渉波信号成分の電力を測定する干渉波電力測定装置(20)であって、
受信した受信波信号を時間領域の信号から周波数領域の信号に変換するフーリエ変換手段(21)と、
前記受信波信号に含まれる受信リファレンス信号成分の信号値と前記既知のリファレンス信号成分の信号値との相関値を算出する相関値算出手段(22)と、
前記相関値算出手段が算出した算出結果に基づいて所定の相関値間の差分を示す第1及び第2の差分相関値を算出する差分相関値算出手段(25)と、
前記第1及び前記第2の差分相関値のそれぞれの絶対値の二乗を積算した結果に基づいて第1及び第2の干渉波信号成分の電力を算出する干渉波電力算出手段(26)と、
前記第1及び前記第2の干渉波信号成分の電力のうち真値に対する誤差の小さい方を前記干渉波信号成分の電力として選択する選択手段(28)と、
を備え、
前記差分相関値算出手段は、
第1周波数における第1時刻の相関値と前記第1時刻より遅い第2時刻の相関値との差分である第1差分と、第2周波数における前記第1時刻と前記第2時刻との間の第3時刻の相関値と前記第2時刻より遅い第4時刻の相関値との差分である第2差分との差分を前記第1の差分相関値として求め、
第3周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第3差分と、第4周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第4差分との差分を前記第2の差分相関値として求めるものであって、
前記第1周波数と前記第2周波数との周波数差は、前記第3周波数と前記第4周波数との周波数差よりも小さいことを特徴とする干渉波電力測定装置。
Interference wave power measurement for receiving a signal including a desired wave signal component including a known reference signal component and an interference wave signal component interfering with the desired wave signal component and measuring the power of the interference wave signal component A device (20) comprising:
Fourier transform means (21) for converting a received wave signal received from a time domain signal to a frequency domain signal;
Correlation value calculating means (22) for calculating a correlation value between the signal value of the received reference signal component included in the received wave signal and the signal value of the known reference signal component;
Differential correlation value calculation means (25) for calculating first and second differential correlation values indicating differences between predetermined correlation values based on the calculation result calculated by the correlation value calculation means;
Interference wave power calculating means (26) for calculating the power of the first and second interference wave signal components based on the result of integrating the squares of the absolute values of the first and second differential correlation values;
Selecting means (28) for selecting, as the power of the interference wave signal component, the one having the smaller error from the true value among the powers of the first and second interference wave signal components;
With
The differential correlation value calculating means includes
Between the first difference that is the difference between the correlation value at the first time at the first frequency and the correlation value at the second time later than the first time, and between the first time and the second time at the second frequency A difference between a correlation value at a third time and a second difference that is a difference between a correlation value at a fourth time later than the second time is obtained as the first difference correlation value;
A third difference that is a difference between the correlation value at the first time and the correlation value at the second time at a third frequency, and the correlation value at the first frequency and the correlation value at the second time at a fourth frequency. A difference with a fourth difference which is a difference is obtained as the second difference correlation value;
The interference wave power measuring device, wherein a frequency difference between the first frequency and the second frequency is smaller than a frequency difference between the third frequency and the fourth frequency.
前記干渉波電力算出手段は、前記第1の干渉波信号成分の電力の平均値Pを[数1]に基づいて算出し、前記第2の干渉波信号成分の電力の平均値Pを[数2]に基づいて算出するものであることを特徴とする請求項1に記載の干渉波電力測定装置。
Figure 0005753605
ただし、N(4以上の整数)は前記時間軸方向の受信リファレンス信号成分の位置、M(1以上の整数)は前記周波数軸方向の受信リファレンス信号成分の位置、Rnmはn(n=0〜N−3)とm(m=0〜M−1)とで表した受信リファレンス信号成分の相関値、(n+m)mod2は(n+m)を2で割った余りを示す。
Figure 0005753605
ただし、Rnmはn(n=0〜N−2)とm(m=0〜M/2−1)とで表した受信リファレンス信号成分の相関値、(n)mod2は(n)を2で割った余りを示す。
The interference wave power calculation means calculates an average power value P I of the first interference wave signal component based on [Equation 1], and calculates an average power value P I of the second interference wave signal component. 2. The interference wave power measuring apparatus according to claim 1, wherein the interference wave power measuring apparatus is calculated based on [Equation 2].
Figure 0005753605
Where N (an integer of 4 or more) is the position of the received reference signal component in the time axis direction, M (an integer of 1 or more) is the position of the received reference signal component in the frequency axis direction, and R nm is n (n = 0) ˜N−3) and m (m = 0 to M−1), the correlation value of the received reference signal components, and (n + m) mod 2 represents the remainder of dividing (n + m) by 2.
Figure 0005753605
However, R nm is the correlation value of the received reference signal component represented by n (n = 0 to N-2) and m (m = 0 to M / 2-1), and (n) mod 2 is (n) 2 Indicates the remainder when divided by.
前記受信波信号は、2つの送信アンテナから受信した受信リファレンス信号成分を含み、
前記干渉波電力算出手段は、前記第1の干渉波信号成分の電力の平均値Pを[数3]に基づいて算出し、前記第2の干渉波信号成分の電力の平均値Pを[数4]に基づいて算出するものであることを特徴とする請求項1に記載の干渉波電力測定装置。
Figure 0005753605
ただし、N(4以上の整数)は前記時間軸方向の受信リファレンス信号成分の位置、M(2以上の整数)は前記周波数軸方向の受信リファレンス信号成分の位置、Rnmはn(n=0〜N−3)とm(m=0〜M−1)とで表した受信リファレンス信号成分の相関値、TX(0又は1)は送信アンテナ0又は1、(n+m+TX)mod2は(n+m+TX)を2で割った余りを示す。
Figure 0005753605
ただし、Rnmはn(n=0〜N−2)とm(m=0〜M/2−1)とで表した受信リファレンス信号成分の相関値、(n+TX)mod2は(n+TX)を2で割った余りを示す。
The received wave signal includes received reference signal components received from two transmitting antennas,
The interference wave power calculation means calculates an average power value P I of the first interference wave signal component based on [Equation 3], and calculates an average power value P I of the second interference wave signal component. The interference wave power measuring apparatus according to claim 1, wherein the interference wave power measuring apparatus is calculated based on [Equation 4].
Figure 0005753605
Where N (an integer of 4 or more) is the position of the received reference signal component in the time axis direction, M (an integer of 2 or more) is the position of the received reference signal component in the frequency axis direction, and R nm is n (n = 0) ~ N-3) and m (m = 0 to M-1), the correlation value of the received reference signal component, TX (0 or 1) is the transmission antenna 0 or 1, and (n + m + TX) mod 2 is (n + m + TX). The remainder after dividing by 2.
Figure 0005753605
However, R nm is a correlation value of received reference signal components represented by n (n = 0 to N−2) and m (m = 0 to M / 2-1), and (n + TX) mod 2 is 2 (n + TX). Indicates the remainder when divided by.
前記選択手段は、前記第1及び前記第2の干渉波信号成分の電力のうち小さい値の電力を前記干渉波信号成分の電力として選択するものであることを特徴とする請求項1から請求項3までのいずれか1項に記載の干渉波電力測定装置。   The said selection means selects the electric power of a small value among the electric power of the said 1st and said 2nd interference wave signal component as the electric power of the said interference wave signal component, The Claim 1 characterized by the above-mentioned. 4. The interference wave power measuring apparatus according to any one of up to 3. 前記選択手段は、前記第1及び前記第2の干渉波信号成分の電力のうち、前記希望波信号成分の電力と前記干渉波信号成分の電力との比を示すSIRの大きい値が得られる方を前記干渉波信号成分の電力として選択するものであることを特徴とする請求項1から請求項3までのいずれか1項に記載の干渉波電力測定装置。   The selection means can obtain a large SIR value indicating a ratio between the power of the desired wave signal component and the power of the interference wave signal component, among the powers of the first and second interference wave signal components. The interference wave power measuring device according to any one of claims 1 to 3, wherein the interference wave signal component is selected as power of the interference wave signal component. 請求項1から請求項5までのいずれか1項に記載の干渉波電力測定装置(20)と、
前記希望波信号成分の電力と前記干渉波信号成分の電力との比を算出するSIR算出手段(14)と、
を備えたことを特徴とするSIR測定装置。
The interference wave power measuring device (20) according to any one of claims 1 to 5,
SIR calculating means (14) for calculating a ratio between the power of the desired wave signal component and the power of the interference wave signal component;
An SIR measuring apparatus comprising:
既知のリファレンス信号成分を含む希望波信号成分と、この希望波信号成分に対して干渉する干渉波信号成分と、を含む信号を受信して前記干渉波信号成分の電力を測定する干渉波電力測定方法であって、
受信した受信波信号を時間領域の信号から周波数領域の信号に変換するフーリエ変換ステップ(S12)と、
前記受信波信号に含まれる受信リファレンス信号成分の信号値と前記既知のリファレンス信号成分の信号値との相関値を算出する相関値算出ステップ(S13)と、
前記相関値算出ステップで算出した算出結果に基づいて所定の相関値間の差分を示す第1及び第2の差分相関値を算出するステップ(S15、S17)と、
前記第1及び前記第2の差分相関値のそれぞれの絶対値の二乗を積算した結果に基づいて第1及び第2の干渉波信号成分の電力を算出する干渉波電力算出ステップ(S16、S18)と、
前記第1及び前記第2の干渉波信号成分の電力のうち真値に対する誤差の小さい方を前記干渉波信号成分の電力として選択する選択ステップ(S19)と、
を含み、
前記差分相関値算出ステップにおいて、
第1周波数における第1時刻の相関値と前記第1時刻より遅い第2時刻の相関値との差分である第1差分と、第2周波数における前記第1時刻と前記第2時刻との間の第3時刻の相関値と前記第2時刻より遅い第4時刻の相関値との差分である第2差分との差分を前記第1の差分相関値として求め、
第3周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第3差分と、第4周波数における前記第1時刻の相関値と前記第2時刻の相関値との差分である第4差分との差分を前記第2の差分相関値として求め、
前記第1周波数と前記第2周波数との周波数差は、前記第3周波数と前記第4周波数との周波数差よりも小さいことを特徴とする干渉波電力測定方法。
Interference wave power measurement for receiving a signal including a desired wave signal component including a known reference signal component and an interference wave signal component interfering with the desired wave signal component and measuring the power of the interference wave signal component A method,
A Fourier transform step (S12) for converting the received received wave signal from a time domain signal to a frequency domain signal;
A correlation value calculating step (S13) for calculating a correlation value between the signal value of the received reference signal component included in the received wave signal and the signal value of the known reference signal component;
Calculating first and second differential correlation values indicating differences between predetermined correlation values based on the calculation result calculated in the correlation value calculating step (S15, S17);
Interference wave power calculating step (S16, S18) for calculating the power of the first and second interference wave signal components based on the result of integrating the squares of the absolute values of the first and second differential correlation values. When,
A selection step (S19) of selecting, as the power of the interference wave signal component, the smaller one of the errors of the first and second interference wave signal components with respect to the true value,
Including
In the differential correlation value calculating step,
Between the first difference that is the difference between the correlation value at the first time at the first frequency and the correlation value at the second time later than the first time, and between the first time and the second time at the second frequency A difference between a correlation value at a third time and a second difference that is a difference between a correlation value at a fourth time later than the second time is obtained as the first difference correlation value;
A third difference that is a difference between the correlation value at the first time and the correlation value at the second time at a third frequency, and the correlation value at the first frequency and the correlation value at the second time at a fourth frequency. The difference from the fourth difference which is a difference is obtained as the second difference correlation value,
An interference wave power measuring method, wherein a frequency difference between the first frequency and the second frequency is smaller than a frequency difference between the third frequency and the fourth frequency.
請求項7に記載の干渉波電力測定方法の各ステップと、
前記希望波信号成分の電力と前記干渉波信号成分の電力との比を算出するSIR算出ステップ(S20)と、
を含むことを特徴とするSIR測定方法。
Each step of the interference wave power measurement method according to claim 7,
A SIR calculating step (S20) for calculating a ratio between the power of the desired wave signal component and the power of the interference wave signal component;
SIR measurement method characterized by including.
JP2014068952A 2014-03-28 2014-03-28 Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method Active JP5753605B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014068952A JP5753605B1 (en) 2014-03-28 2014-03-28 Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014068952A JP5753605B1 (en) 2014-03-28 2014-03-28 Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method

Publications (2)

Publication Number Publication Date
JP5753605B1 true JP5753605B1 (en) 2015-07-22
JP2015192350A JP2015192350A (en) 2015-11-02

Family

ID=53638106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068952A Active JP5753605B1 (en) 2014-03-28 2014-03-28 Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method

Country Status (1)

Country Link
JP (1) JP5753605B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127081B2 (en) * 2020-03-31 2022-08-29 アンリツ株式会社 Signal processing device and its signal measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115783A (en) * 2001-10-05 2003-04-18 Matsushita Electric Ind Co Ltd Method for estimating transmission path characteristic of reception signal and cdma receiver
JP2003134060A (en) * 2001-10-23 2003-05-09 Matsushita Electric Ind Co Ltd Circuit and method for measuring ratio between desired wave power and interference wave power
JP2005204307A (en) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd Apparatus and method for estimating interference and noise in communication system
JP2011199618A (en) * 2010-03-19 2011-10-06 Kyocera Corp Communication apparatus and signal power measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115783A (en) * 2001-10-05 2003-04-18 Matsushita Electric Ind Co Ltd Method for estimating transmission path characteristic of reception signal and cdma receiver
JP2003134060A (en) * 2001-10-23 2003-05-09 Matsushita Electric Ind Co Ltd Circuit and method for measuring ratio between desired wave power and interference wave power
JP2005204307A (en) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd Apparatus and method for estimating interference and noise in communication system
JP2011199618A (en) * 2010-03-19 2011-10-06 Kyocera Corp Communication apparatus and signal power measuring method

Also Published As

Publication number Publication date
JP2015192350A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
EP2441300B1 (en) Rf fingerprinting for location estimation
CN105391671B (en) Method and apparatus for channel estimation and equalization
KR100954495B1 (en) Method for OFDM and OFDMA channel estimation
JP5691613B2 (en) Mobile terminal position estimation apparatus, mobile terminal position estimation method, and radio wave environment index calculation method
US20170086153A1 (en) Mobile terminal device, mobile processing circuit and method of processing signals
US20190349938A1 (en) Communication method utilizing at least two pieces of target sub-configuration information and a co-location rule
CN101512894A (en) System and method for determining a carrier to interference-noise ratio
Rodríguez-Piñeiro et al. Emulating extreme velocities of mobile LTE receivers in the downlink
US9564980B2 (en) Mobile telecommunication system with noise ratio estimation mechanism and method of operation thereof
JP5753605B1 (en) Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method
AU2014394870B2 (en) Method, device and user terminal for measuring discovery signal
EP2950459B1 (en) Method and apparatus for configuring transmission mode
US9124388B2 (en) Cellular communication system computation of RSRP in the presence of large frequency errors
Pham et al. Long term cluster-based channel envelope and phase prediction for dynamic link adaptation
CN103856974A (en) Communication terminal and cell measurement method and device in long term evolution system
CN103856973A (en) Communication terminal and measurement method and device in long term evolution system
JP5129832B2 (en) Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method
KR100718607B1 (en) Apparatus and method for estimating channel in communication system supporting ofdm/ofdma
US9769687B2 (en) Method and related mobile device for determining a reference signal received power
Thomas et al. Path loss Determination Using Hata Model and Effect of Path loss in OFDM
WO2013141307A1 (en) Reception device and reception power measurement method
KR101255636B1 (en) Methods of estimating integer times frequency offset based on ofdm system and apparatuses for performing the same
CN103856960A (en) Communication terminal and cell measurement method and device in long term evolution system
Redant et al. An MLS-Prony implementation for a cm-Precise Super 10 m range 802.15. 3c-PHY 60 GHz positioning application
KR102062256B1 (en) Apparatus and method for estimating doppler spread at orthogonal frequency division multiplexing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150522

R150 Certificate of patent or registration of utility model

Ref document number: 5753605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250