JP5752393B2 - Superconducting magnet device - Google Patents

Superconducting magnet device Download PDF

Info

Publication number
JP5752393B2
JP5752393B2 JP2010245585A JP2010245585A JP5752393B2 JP 5752393 B2 JP5752393 B2 JP 5752393B2 JP 2010245585 A JP2010245585 A JP 2010245585A JP 2010245585 A JP2010245585 A JP 2010245585A JP 5752393 B2 JP5752393 B2 JP 5752393B2
Authority
JP
Japan
Prior art keywords
magnet device
superconducting magnet
vacuum vessel
central hole
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010245585A
Other languages
Japanese (ja)
Other versions
JP2012099618A (en
Inventor
茂貴 高山
茂貴 高山
泰造 戸坂
泰造 戸坂
下之園 勉
勉 下之園
昌身 浦田
昌身 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010245585A priority Critical patent/JP5752393B2/en
Publication of JP2012099618A publication Critical patent/JP2012099618A/en
Application granted granted Critical
Publication of JP5752393B2 publication Critical patent/JP5752393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は超電導コイルを適用した超電導磁石装置に係り、特に超電導磁石を構成する容器等の強度を維持しつつ軽量化が図れる超電導磁石装置に関するものである。   The present invention relates to a superconducting magnet device to which a superconducting coil is applied, and more particularly to a superconducting magnet device capable of reducing the weight while maintaining the strength of a container or the like constituting the superconducting magnet.

超電導磁石装置は、超電導コイルを適用したマグネットと、このマグネットを冷却する冷凍機とを備える構成とされており、超電導コイルを冷却した状態で使用される。   The superconducting magnet device includes a magnet to which a superconducting coil is applied and a refrigerator that cools the magnet, and is used in a state in which the superconducting coil is cooled.

このため、超電導コイルへの侵入熱を低く抑える必要があり、超電導コイルを支持する支持材は加重に対して引張られる向きに配置される。   For this reason, it is necessary to suppress the intrusion heat into the superconducting coil to be low, and the support material that supports the superconducting coil is arranged in a direction in which it is pulled against the load.

その結果、超電導磁石装置の支持構造においては一般的に、超電導磁石装置を構成する容器の様々な領域を利用している(特許文献1−3等参照)。   As a result, the superconducting magnet device support structure generally uses various regions of the container constituting the superconducting magnet device (see Patent Documents 1-3 and the like).

例えば、特許文献1には、超電導コイルをその軸心に対して直交する方向から、螺子構造の押付け部材によって加圧固定する構成が開示されている。   For example, Patent Document 1 discloses a configuration in which a superconducting coil is pressure-fixed by a screw-shaped pressing member from a direction orthogonal to its axis.

特許文献2には、超電導マグネットを、そのコイル中心線方向両側から荷重支持体によって締結荷重を与えることにより固定支持する構成が開示されている。   Patent Document 2 discloses a configuration in which a superconducting magnet is fixedly supported by applying a fastening load from both sides in the coil center line direction by a load support.

また、特許文献3には、超電導コイルおよび内部容器とシールド部材との間に生じる相対振動を抑制するシールド部材移動手段を設ける技術が開示されている。   Patent Document 3 discloses a technique in which a superconducting coil and shield member moving means for suppressing relative vibration generated between the inner container and the shield member are provided.

特開2004−47712号公報Japanese Patent Laid-Open No. 2004-47712 特開2009−130081号公報JP 2009-130081 A 特開平05−135942号公報JP 05-135942 A

超電導磁石装置には一般的に大量の金属材料が使用されており、例えば単結晶引き上げ用の超電導磁石装置にあっては、一台の重量が数トンにも及ぶ。このように重量が大きいと、超電導磁石装置の設置場所に制約が生じる場合や過大な耐震性が要求される場合がある。   A large amount of metal material is generally used in the superconducting magnet device. For example, in a superconducting magnet device for pulling up a single crystal, the weight of one unit reaches several tons. When the weight is large as described above, there are cases where restrictions are imposed on the installation location of the superconducting magnet device and excessive earthquake resistance may be required.

このように超電導磁石装置の重量が大きくなる原因は、超電導磁石装置を構成する容器の様々な領域に力が作用するため、これらの力に対する補強または肉厚の増加が多く必要となるためである。   The reason why the weight of the superconducting magnet device is increased in this way is that force acts on various regions of the container constituting the superconducting magnet device, and thus it is necessary to reinforce or increase the thickness of these forces. .

例えば、単純に超電導磁石装置を構成する容器を肉薄にして軽量化を図ろうとした場合には、電磁力や質量によって容器の大きな変形や破壊が発生して、強度を維持しつつ軽量化することができないという問題が生じる。   For example, when trying to reduce the weight by simply thinning the container that constitutes the superconducting magnet device, large deformation or destruction of the container may occur due to electromagnetic force or mass, reducing the weight while maintaining the strength. The problem that cannot be done.

本発明はこのような事情に基いてなされたものであり、電磁力や質量などの荷重が作用する部材を限定する支持構造の適用により、補強が必要な部分を最小限に抑え、超電導磁石装置の強度を維持しつつ軽量化を図ることを目的とする。   The present invention has been made based on such circumstances, and by applying a support structure that limits a member to which a load such as electromagnetic force or mass acts, a superconducting magnet device is achieved by minimizing a portion that needs reinforcement. It aims at weight reduction, maintaining the intensity | strength of.

本発明は、超電導コイルを冷媒により冷却する超電導磁石装置において、前記冷媒を貯液して前記超電導コイルを収納および支持するとともに、前記超電導コイル中心孔を貫通する中心孔部を有するトーラス状の冷媒容器と、この冷媒容器を収納して前記冷媒容器の中心孔部をさらに貫通する中心孔部を有するトーラス状の真空容器と、この真空容器の中心孔部と前記冷媒容器の中心孔部との間に設けられ、前記真空容器と前記冷媒容器とを接続する断熱サポートとを備え、前記真空容器の中心孔部を真空容器脚部により設置基盤に支持させたことを特徴とする超電導磁石装置を提供する。 The present invention relates to a superconducting magnet device that cools a superconducting coil with a refrigerant, a torus-like refrigerant that stores the refrigerant and stores and supports the superconducting coil, and has a central hole that penetrates the central hole of the superconducting coil. A container, a torus-shaped vacuum container having a central hole portion that houses the refrigerant container and further penetrates the central hole portion of the refrigerant container , and the central hole portion of the vacuum container and the central hole portion of the refrigerant container A superconducting magnet device provided between the vacuum vessel and the refrigerant vessel, and having a central hole portion of the vacuum vessel supported on an installation base by a vacuum vessel leg. provide.

また、本発明は、超電導コイルを冷凍機と熱的に接続することで冷却する超電導磁石装置において、前記超電導コイルを支持し、かつ前記超電導コイル中心孔を貫通する内周壁を有するコイル台と、このコイル台の内周壁をさらに貫通する中心孔部とを有するトーラス状の真空容器と、この真空容器の中心孔部と前記コイル台の内周壁との間に配置され、前記真空容器と前記コイル台とを接続する断熱サポートとを備え、前記真空容器の中心孔部を真空容器脚部により設置基盤に支持させたことを特徴とする超電導磁石装置を提供する。 Further, the present invention provides a superconducting magnet device that cools a superconducting coil by thermally connecting it to a refrigerator, and a coil base that supports the superconducting coil and has an inner peripheral wall that penetrates the central hole of the superconducting coil; A torus-like vacuum vessel having a central hole portion that further penetrates the inner peripheral wall of the coil base, and the vacuum vessel and the coil disposed between the central hole portion of the vacuum vessel and the inner peripheral wall of the coil base. There is provided a superconducting magnet device comprising a heat insulating support for connecting to a base, wherein a central hole portion of the vacuum vessel is supported on an installation base by a vacuum vessel leg.

本発明においては、超電導コイルに発生する力を、真空容器の端板および外筒ではなく、超電導コイルを支持する脚部から直接地面等の設置基盤へと伝えることで、超電導コイルを支持するものである。   In the present invention, the superconducting coil is supported by transmitting the force generated in the superconducting coil from the legs supporting the superconducting coil directly to the installation base such as the ground instead of the end plate and the outer cylinder of the vacuum vessel. It is.

すなわち、超電導コイルに発生する力を断熱サポート、真空容器中心孔部を通じて真空容器脚部から地面へと伝え、その力が真空容器の端板および外筒に加わらないようにする。これにより、真空容器端板等を必要とすることなく超電導コイルが保持される。   That is, the force generated in the superconducting coil is transmitted from the vacuum vessel leg to the ground through the heat insulating support and the vacuum vessel center hole so that the force is not applied to the end plate and the outer cylinder of the vacuum vessel. Thereby, a superconducting coil is hold | maintained, without requiring a vacuum vessel end plate etc.

したがって、超電導コイルからの力が真空容器に加わらないため、容器等の肉厚を最小限に押えることが可能となり、軽量化を図ることができる。   Therefore, since the force from the superconducting coil is not applied to the vacuum container, the thickness of the container or the like can be suppressed to the minimum, and the weight can be reduced.

また、電磁力や質量を冷媒容器中心孔部、断熱サポート、真空容器中心孔部および真空容器脚部のみで支持することで、真空容器や冷媒容器の他の部材を肉厚にする必要がなく、補強を最小限に抑えることができ、強度を維持しつつ軽量化を図ることができる。   In addition, the electromagnetic force and mass are supported only by the refrigerant container center hole, the heat insulating support, the vacuum container center hole, and the vacuum container legs, so that it is not necessary to make the other members of the vacuum container and the refrigerant container thick. The reinforcement can be minimized, and the weight can be reduced while maintaining the strength.

本発明の第1実施形態による超電導磁石装置の全体構成を示す縦断面図。1 is a longitudinal sectional view showing the overall configuration of a superconducting magnet device according to a first embodiment of the present invention. 図1のA−A線断面図。AA sectional view taken on the line AA of FIG. 図1の背面図。The rear view of FIG. 本発明の第2実施形態による超電導磁石装置の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the superconducting magnet apparatus by 2nd Embodiment of this invention. 図4のB−B線断面図。BB sectional drawing of FIG. 本発明の第3実施形態による超電導磁石装置の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the superconducting magnet apparatus by 3rd Embodiment of this invention. 図6のC−C線断面図。The CC sectional view taken on the line of FIG. 本発明の第4実施形態による超電導磁石装置の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the superconducting magnet apparatus by 4th Embodiment of this invention. 図8のD−D線断面図。The DD sectional view taken on the line of FIG. 本発明の第5実施形態による超電導磁石装置の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the superconducting magnet apparatus by 5th Embodiment of this invention. 図10のE−E線断面図。EE sectional view taken on the line of FIG.

以下、本発明に係る超電導磁石装置の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a superconducting magnet device according to the present invention will be described with reference to the drawings.

[第1実施形態](図1−図3)
図1は本発明の第1実施形態による超電導磁石装置1Aの全体構成を示す縦断面図であり、図2は図1のA−A線に沿う断面図である。図3は図1に示した超電導磁石装置1Aの背面図である。
First Embodiment (FIGS. 1-3)
FIG. 1 is a longitudinal sectional view showing an overall configuration of a superconducting magnet apparatus 1A according to a first embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. 3 is a rear view of the superconducting magnet device 1A shown in FIG.

なお、本実施形態においては一例としてトラス構造の断熱サポートを適用し、冷媒によって超電導コイルを冷却する構成を有する超電導磁石装置について説明する。   In the present embodiment, a superconducting magnet device having a configuration in which a heat insulating support having a truss structure is applied and the superconducting coil is cooled by a refrigerant will be described as an example.

図1〜図3に示すように、本実施形態の超電導磁石装置1Aは主要構成部材として超電導コイル1、この超電導コイル1を収容する冷媒容器2、この冷媒容器2の外周側に設けられ内部を真空に保持する真空容器3、この真空容器3を支える真空容器脚部3bおよび断熱サポート4を備える。これらの部材は、例えば下記に示す水平な設置(支持)基盤または地面G等の上に縦配置で固定設置される。   As shown in FIGS. 1 to 3, the superconducting magnet device 1 </ b> A according to the present embodiment includes a superconducting coil 1 as a main constituent member, a refrigerant container 2 that accommodates the superconducting coil 1, and an outer periphery provided inside the refrigerant container 2. A vacuum vessel 3 for holding a vacuum, a vacuum vessel leg 3b for supporting the vacuum vessel 3, and a heat insulating support 4 are provided. These members are fixedly installed in a vertical arrangement on, for example, a horizontal installation (support) base shown below or the ground G.

本実施形態の超電導磁石装置1Aにおいて、超電導コイル1は水平軸心回りに配置された円環状をなす構成とされており、この超電導コイル1の外周側が、大径な円環状あるいはトーラス状の冷媒容器2によって被覆された状態で収納されている。 In the superconducting magnet device 1A of the present embodiment, the superconducting coil 1 has an annular configuration arranged around the horizontal axis, and the outer peripheral side of the superconducting coil 1 has a large-diameter annular or torus-like refrigerant. The container 2 is housed in a state of being covered.

また、断熱サポート4は複数の棒状をなすサポート要素4aを縦、横および斜め方向に組立て、それぞれ接合部材4bによって三角形状に組合せたトラス構造の断熱サポート組立体としてある。この断熱サポート4が、冷媒容器2と真空容器3の同心円状の各中心孔部2a,3a間に設けられる。断熱サポート4は同心円状の冷媒容器中心孔部2aと真空容器中心孔部3aに全周に亘ってそれぞれ取付けた複数の座(ブラケット)2c,3cを介して設けられ、全体として真空容器3の内面に接続されている。断熱サポート4は、図1に示すように、例えば内側四角形のサポート要素4aに外側四角形のサポート要素を45°回転させて組み立てたトラス構造以外にも、種々のトラス構造が考えられる。   The heat insulating support 4 is a heat insulating support assembly having a truss structure in which a plurality of rod-shaped support elements 4a are assembled in the vertical, horizontal, and diagonal directions and combined in a triangular shape by the joining members 4b. The heat insulating support 4 is provided between the concentric center hole portions 2 a and 3 a of the refrigerant container 2 and the vacuum container 3. The heat insulating support 4 is provided via a plurality of seats (brackets) 2c and 3c respectively attached to the concentric refrigerant container central hole 2a and the vacuum container central hole 3a over the entire circumference. Connected to the inner surface. As shown in FIG. 1, the heat insulating support 4 may have various truss structures other than the truss structure assembled by rotating the support element of the outer square shape by 45 ° on the support element 4a of the inner square shape, for example.

そして、真空容器中心孔部3aの周壁(突出延長部)は真空容器脚部3bに直接接続されて、設置(支持)基盤G上に立設され、支持されている。すなわち、真空容器中心孔部3aの周壁は真空容器3の外周面部を真空容器脚部3bに固定あるいは接続することで設置基盤G上に固定配置してあり、この冷媒容器2に冷媒5を貯液することで、超電導コイル1が冷却される構成としてある。   And the peripheral wall (projection extension part) of the vacuum vessel center hole 3a is directly connected to the vacuum vessel leg 3b, and is erected and supported on the installation (support) base G. That is, the peripheral wall of the vacuum vessel center hole portion 3a is fixedly arranged on the installation base G by fixing or connecting the outer peripheral surface portion of the vacuum vessel 3 to the vacuum vessel leg 3b, and the refrigerant 5 is stored in the refrigerant vessel 2. By superposing the liquid, the superconducting coil 1 is cooled.

この構成により、例えば金属の単結晶引上げ作業時等に適用する場合において、超電導コイル1に加わる電磁力および質量は、冷媒容器2、全周に亘り周方向に延びるトラス構造に組み立てられた断熱サポート4、真空容器中心孔部3aを経て、真空容器脚部3bから設置基盤G、例えば地面等に伝えられる。   With this configuration, for example, when applied to pulling a single crystal of metal, the electromagnetic force and mass applied to the superconducting coil 1 are insulated in the truss structure extending in the circumferential direction over the refrigerant container 2 and the entire circumference. 4. Via the vacuum vessel center hole 3a, the vacuum vessel leg 3b is transmitted to the installation base G, for example, the ground.

本実施形態によれば、超電導コイル1に発生する力が冷媒容器中心孔部2a、断熱サポート4、真空容器中心孔部3aを通じて真空容器脚部3bから地面等の設置基盤Gへと伝えられる。したがって、超電導コイル1に発生する力が真空容器3の端板および外筒に加わらないため、真空容器端板等がなくても超電導コイル1は、安定的に固定保持される。   According to the present embodiment, the force generated in the superconducting coil 1 is transmitted from the vacuum vessel leg 3b to the installation base G such as the ground through the refrigerant vessel central hole 2a, the heat insulating support 4, and the vacuum vessel central hole 3a. Therefore, since the force generated in the superconducting coil 1 is not applied to the end plate and the outer cylinder of the vacuum vessel 3, the superconducting coil 1 is stably fixed and held without the vacuum vessel end plate or the like.

この構成により、超電導コイル1からの力が真空容器の端板や外筒に加わらないため、冷媒容器2や真空容器3の肉厚を最小限に押えることが可能となり、強度を維持しつつ、軽量化を図ることができる。   With this configuration, since the force from the superconducting coil 1 is not applied to the end plate or the outer cylinder of the vacuum vessel, the thickness of the refrigerant vessel 2 or the vacuum vessel 3 can be minimized, while maintaining the strength, Weight reduction can be achieved.

すなわち、超電導コイル1の電磁力や質量を冷媒容器中心孔部2a、断熱サポート4、真空容器中心孔部3a、および、真空容器脚部3bのみで支持することができ、真空容器3や冷媒容器2の他の部材を肉厚にする必要がなく、補強を最小限に抑えることができ、強度を維持しつつ軽量化を図ることができる。   That is, the electromagnetic force and mass of the superconducting coil 1 can be supported only by the refrigerant container central hole 2a, the heat insulating support 4, the vacuum container central hole 3a, and the vacuum container leg 3b. It is not necessary to make the other members of the wall 2 thicker, the reinforcement can be minimized, and the weight can be reduced while maintaining the strength.

[第2実施形態](図4、図5)
図4は第2実施形態による超電導磁石装置1Bの構成を示す縦断面図であり、図5は図4のB−B線断面図である。
Second Embodiment (FIGS. 4 and 5)
FIG. 4 is a longitudinal sectional view showing the configuration of the superconducting magnet device 1B according to the second embodiment, and FIG. 5 is a sectional view taken along line BB in FIG.

本実施形態では、トラス構造の断熱サポート4を適用し、冷媒5によって超電導コイル1を冷却する構成を有する超電導磁石装置1Bについて説明する。なお、第1実施形態と同様の構成については、図4および図5に図1と同一符号を付して説明を省略する。   In the present embodiment, a superconducting magnet apparatus 1B having a configuration in which the heat insulating support 4 having a truss structure is applied and the superconducting coil 1 is cooled by the refrigerant 5 will be described. In addition, about the structure similar to 1st Embodiment, the same code | symbol as FIG. 1 is attached | subjected to FIG. 4 and FIG. 5, and description is abbreviate | omitted.

図4に示すように、本実施形態による超電導磁石装置1Bの基本構成については第1実施形態と略同様である。本実施形態では、第1実施形態の構成に加えて輻射シールド6および冷凍機7を有し、この輻射シールド6は冷凍機7と熱的に接続され、低温に維持される構成となっている。   As shown in FIG. 4, the basic configuration of the superconducting magnet device 1B according to the present embodiment is substantially the same as that of the first embodiment. In this embodiment, in addition to the structure of 1st Embodiment, it has the radiation shield 6 and the refrigerator 7, and this radiation shield 6 is thermally connected with the refrigerator 7, and becomes a structure maintained at low temperature. .

例えば、図4および図5に示すように、超電導磁石装置1Bはトラス構造の断熱サポート4および輻射シールド6を備えており、冷媒容器2内の冷媒5により超電導コイル1を冷却する構成としてある。冷凍機7は真空容器3の内部に複数段の冷却部(図示せず)を持つようになっている。   For example, as shown in FIGS. 4 and 5, the superconducting magnet device 1 </ b> B includes a heat-insulating support 4 having a truss structure and a radiation shield 6, and the superconducting coil 1 is cooled by the refrigerant 5 in the refrigerant container 2. The refrigerator 7 has a plurality of stages of cooling units (not shown) inside the vacuum vessel 3.

この構成において、超電導コイル1に加わる電磁力および質量は、冷媒容器中心孔部2a、断熱サポート4、真空容器中心孔部3aおよび真空容器脚部3bへと伝わる。また、真空容器3からの輻射による侵入熱は一旦輻射シールド6を経て冷凍機7へ取り除かれ、超電導コイル1へ侵入する輻射熱は輻射シールド6からのみとなる。   In this configuration, the electromagnetic force and mass applied to the superconducting coil 1 are transmitted to the refrigerant container central hole 2a, the heat insulating support 4, the vacuum container central hole 3a, and the vacuum container leg 3b. Further, intrusion heat due to radiation from the vacuum vessel 3 is once removed to the refrigerator 7 through the radiation shield 6, and radiant heat entering the superconducting coil 1 is only from the radiation shield 6.

本実施形態によれば、超電導コイル1の電磁力や質量を冷媒容器中心孔部2a、断熱サポート4、真空容器中心孔部3aおよび真空容器脚部3bのみで支持することにより、真空容器3や冷媒容器2の他の部材を肉厚にする必要がなく、補強を最小限に抑えることができ、強度を維持しつつ軽量化することができる。 According to the present embodiment, the electromagnetic force and mass of the superconducting coil 1 are supported only by the refrigerant container central hole 2a, the heat insulating support 4 , the vacuum container central hole 3a, and the vacuum container leg 3b, so that the vacuum container 3 and It is not necessary to make the other members of the refrigerant container 2 thick, reinforcing can be minimized, and weight can be reduced while maintaining strength.

また、輻射シールド6によって超電導コイル1への侵入熱を低減できるため、断熱サポート4からの伝導による侵入熱を受容する余力が生じ、断熱サポート4を短くすることができ、強度を維持しつつ軽量化することができる。   Further, since the heat entering the superconducting coil 1 can be reduced by the radiation shield 6, there is a surplus capacity for receiving the heat entering due to conduction from the heat insulating support 4, the heat insulating support 4 can be shortened, and light weight is maintained while maintaining the strength. Can be

[第3実施形態](図6、図7)
図6は、第3実施形態による超電導磁石装置1Cの構成を示す縦断面図であり、図7は図6のC−C線断面図である。
[Third Embodiment] (FIGS. 6 and 7)
FIG. 6 is a longitudinal sectional view showing the configuration of the superconducting magnet device 1C according to the third embodiment, and FIG. 7 is a sectional view taken along the line CC of FIG.

本実施形態の超電導磁石装置1Cは、前記実施形態と同様に超電導コイル1、この超電導コイル1を支持し、かつ、内周壁を備えたコイル台9、真空容器3、断熱サポート4、冷凍機7および伝熱板8を備えた構成とされている。 The superconducting magnet device 1C of the present embodiment is similar to the above embodiment in the superconducting coil 1, the coil base 9, the vacuum vessel 3, the heat insulating support 4, and the refrigerator 7 that support the superconducting coil 1 and have an inner peripheral wall. The heat transfer plate 8 is provided.

超電導コイル1はコイル台9に固定されており、また冷凍機7と伝熱板8を通じて熱的に接続されることで冷却される構成としてある。また、断熱サポート4はコイル台9と真空容器中心孔部3aに取付けられた座3cに接続されている。   The superconducting coil 1 is fixed to the coil base 9 and is cooled by being thermally connected through the refrigerator 7 and the heat transfer plate 8. The heat insulating support 4 is connected to a coil base 9 and a seat 3c attached to the vacuum vessel center hole 3a.

この構成において、超電導コイル1に加わる電磁力および質量は、コイル台9、断熱サポート4、真空容器中心孔部3a、真空容器脚部3bへと伝わる。   In this configuration, the electromagnetic force and mass applied to the superconducting coil 1 are transmitted to the coil base 9, the heat insulating support 4, the vacuum vessel center hole 3a, and the vacuum vessel leg 3b.

本実施形態においても、超電導コイル1に加わる電磁力や質量をコイル台9、断熱サポート、真空容器中心孔部3aおよび真空容器脚部3bのみで支持することにより、真空容器3やコイル台9の他の部材を肉厚にする必要がなく、補強を最小限に抑えることができ、強度を維持しつつ軽量化することができる。 Also in this embodiment, the electromagnetic force and mass applied to the superconducting coil 1 are supported only by the coil base 9, the heat insulating support, the vacuum vessel center hole portion 3 a and the vacuum vessel leg portion 3 b, so that the vacuum vessel 3 and the coil stand 9 It is not necessary to increase the thickness of the other members, the reinforcement can be minimized, and the weight can be reduced while maintaining the strength.

[第4実施形態](図8、図9)
図8は第4実施形態による超電導磁石装置1Dの構成を示す縦断面図であり、図9は図8のD−D線断面図である。
[Fourth Embodiment] (FIGS. 8 and 9)
FIG. 8 is a longitudinal sectional view showing the configuration of the superconducting magnet device 1D according to the fourth embodiment, and FIG. 9 is a sectional view taken along the line DD of FIG.

本実施形態の超電導磁石装置1Dは、基本構成において第1実施形態と略同様であるが、第1実施形態の構成に加え、輻射シールド6および冷凍機7を有するものとし、この輻射シールド6は冷凍機7と熱的に接続されて低温に維持される構成としてある。   The superconducting magnet device 1D of the present embodiment is substantially the same as the first embodiment in the basic configuration, but includes the radiation shield 6 and the refrigerator 7 in addition to the configuration of the first embodiment. It is configured to be thermally connected to the refrigerator 7 and maintained at a low temperature.

この超電導磁石装置1Dにおいては、超電導コイル1に加わる電磁力および質量が順次に、内周壁を備えたコイル台9、断熱サポート4、真空容器中心孔部3aおよび真空容器脚部3bへと伝わる。また、真空容器3からの輻射による侵入熱は一旦、輻射シールド6を経て冷凍機7へ取り除かれ、超電導コイル1に侵入する輻射熱は、輻射シールド6からのみとなる。 In this superconducting magnet device 1D, the electromagnetic force and mass applied to the superconducting coil 1 are sequentially transmitted to the coil base 9, the heat insulating support 4, the vacuum vessel center hole portion 3a, and the vacuum vessel leg 3b having the inner peripheral wall . Further, the intrusion heat due to the radiation from the vacuum vessel 3 is once removed to the refrigerator 7 through the radiation shield 6, and the radiant heat entering the superconducting coil 1 is only from the radiation shield 6.

本実施形態によれば、電磁力や質量をコイル台9、断熱サポート4、真空容器中心孔部3aおよび真空容器脚部3bのみで超電導コイル1に加わる電磁力および質量を支持することで、真空容器3やコイル台9の他の部材を肉厚にする必要なく補強を最小限に抑えることができ、強度を維持しつつ軽量化することができる。 According to the present embodiment, the electromagnetic force and mass are supported by the electromagnetic force and mass applied to the superconducting coil 1 only by the coil base 9, the heat insulating support 4, the vacuum vessel center hole portion 3a, and the vacuum vessel leg 3b. Reinforcement can be kept to a minimum without having to make the container 3 and other members of the coil base 9 thick, and the weight can be reduced while maintaining the strength.

また、輻射シールド6により超電導コイル1への侵入熱を低減できるため、断熱サポート4からの伝導による侵入熱に余力が生じ、断熱サポート4を短くすることができ、強度を維持しつつ軽量化することができる。   In addition, since the radiation heat into the superconducting coil 1 can be reduced by the radiation shield 6, there is a surplus in intrusion heat due to conduction from the heat insulating support 4, the heat insulating support 4 can be shortened, and the weight is reduced while maintaining the strength. be able to.

[第5実施形態](図10、図11)
図10は第5実施形態による超電導磁石装置1Eの構成を示す縦断面図であり、図11は図10のE−E線断面図である。
[Fifth Embodiment] (FIGS. 10 and 11)
FIG. 10 is a longitudinal sectional view showing the configuration of the superconducting magnet device 1E according to the fifth embodiment, and FIG. 11 is a sectional view taken along the line EE of FIG.

本実施形態による超電導磁石装置1Eは、図11に示すように、断熱サポート4は超電導コイル1のコイル軸方向(断熱サポート4の長手方向)に沿って配置してあり、複数の超電導コイル1の間に働く電磁力の方向と略平行に配置されている。   In the superconducting magnet apparatus 1E according to the present embodiment, as shown in FIG. 11, the heat insulating support 4 is arranged along the coil axial direction of the superconducting coil 1 (longitudinal direction of the heat insulating support 4). It is arranged substantially parallel to the direction of the electromagnetic force acting between them.

超電導コイル1に加わる電磁力、質量は冷媒容器中心孔部2aから断熱サポート4、真空容器中心孔部3a、真空容器脚部3bへと伝わる。また、真空容器3からの輻射による侵入熱は一旦輻射シールド6を経て冷凍機(図示せず)へ取り除かれ、超電導コイル1へ侵入する輻射熱は輻射シールド6からのみである。   The electromagnetic force and mass applied to the superconducting coil 1 are transmitted from the refrigerant container central hole 2a to the heat insulating support 4, the vacuum container central hole 3a, and the vacuum container leg 3b. Further, intrusion heat due to radiation from the vacuum vessel 3 is once removed to the refrigerator (not shown) through the radiation shield 6, and radiant heat entering the superconducting coil 1 is only from the radiation shield 6.

さらに、真空容器3からの伝導による侵入熱は、断熱サポート4から輻射シールド6を経て冷凍機で取り除かれ、超電導コイル1へ伝導により侵入する熱は輻射シールド6からのみである。   Further, intrusion heat due to conduction from the vacuum vessel 3 is removed from the heat insulating support 4 through the radiation shield 6 by the refrigerator, and heat entering the superconducting coil 1 by conduction is only from the radiation shield 6.

超電導コイル1の電磁力や質量を冷媒容器中心孔部2a、断熱サポート4、真空容器中心孔部3aおよび真空容器脚部3bのみで支持することで、真空容器3や冷媒容器2の他の部材を肉厚にする必要なく、補強を最小限に抑えることができ、強度を維持しつつ軽量化することができる。 By supporting the electromagnetic force and mass of the superconducting coil 1 only with the refrigerant container central hole 2a, the heat insulating support 4, the vacuum container central hole 3a and the vacuum container leg 3b, the vacuum container 3 and other members of the refrigerant container 2 are supported. Therefore, the reinforcement can be minimized and the weight can be reduced while maintaining the strength.

また、輻射シールド6により超電導コイル1への侵入熱を低減することができるため、断熱サポート4からの伝導による侵入熱に余力が生じ、断熱サポート4を短くすることができ、これにより強度を維持しつつ軽量化することができる。   Further, since the heat entering the superconducting coil 1 can be reduced by the radiation shield 6, there is a surplus in the heat entering due to conduction from the heat insulating support 4, and the heat insulating support 4 can be shortened, thereby maintaining the strength. However, the weight can be reduced.

[他の実施形態]
上記の各実施形態において、断熱サポート4を一般的な金属よりも熱伝導率が小さく、引張り強さが大きい繊維強化樹脂を使用することが可能である。
[Other Embodiments]
In each of the above-described embodiments, it is possible to use a fiber reinforced resin having a thermal conductivity smaller than that of a general metal and a large tensile strength for the heat insulating support 4.

すなわち、繊維強化樹脂を使用することで、超電導コイル1に加わる電磁力および質量は、冷媒容器中心孔部2aから断熱サポート4、真空容器中心孔部3a、真空容器脚部3bへと伝わり、超電導コイル1の電磁力や質量を冷媒容器中心孔部2a、真空容器中心孔部3aおよび真空容器脚部3bのみで支持することにより、真空容器3および冷媒容器2等の他の部材を肉厚にする必要がなく、補強を最小限に抑えることができる。   That is, by using the fiber reinforced resin, the electromagnetic force and mass applied to the superconducting coil 1 are transmitted from the refrigerant container central hole 2a to the heat insulating support 4, the vacuum container central hole 3a, and the vacuum container leg 3b, thereby By supporting the electromagnetic force and mass of the coil 1 only by the refrigerant container central hole 2a, the vacuum container central hole 3a, and the vacuum container leg 3b, other members such as the vacuum container 3 and the refrigerant container 2 are thickened. There is no need to do so and the reinforcement can be minimized.

また、断熱サポート4が一般的な金属よりも熱伝導率が小さく、引張り強さが大きい繊維強化樹脂で構成することにより、金属製の支持構造に比べて超電導磁石装置の強度を維持しつつより軽量化することができる。   Further, the heat insulating support 4 is made of a fiber reinforced resin having a lower thermal conductivity and a higher tensile strength than that of a general metal, thereby maintaining the strength of the superconducting magnet device as compared with a metal support structure. The weight can be reduced.

また、真空容器3を一般的に使用されるステンレス鋼よりも軽量なアルミニウムまたはアルミニウム合金を使用することが可能である。これにより、超電導コイル1の電磁力や質量を冷媒容器中心孔部2a、真空容器中心孔部3aおよび真空容器脚部3bのみで支持することで真空容器3や冷媒容器2の他の部材を肉厚にする必要がなく、補強を最小限に抑えることができる。   Further, it is possible to use aluminum or aluminum alloy which is lighter than stainless steel which is generally used for the vacuum vessel 3. As a result, the electromagnetic force and mass of the superconducting coil 1 are supported only by the refrigerant container central hole 2a, the vacuum container central hole 3a, and the vacuum container leg 3b, so that other members of the vacuum container 3 and the refrigerant container 2 can be meated. There is no need to increase the thickness, and the reinforcement can be minimized.

また、真空容器3に使用されているアルミニウムまたはアルミニウム合金は一般的に真空容器3に使用されるステンレス鋼に比べて重量が3分の1程度であり、超電導磁石装置の強度を維持しつつより軽量化することができる。   In addition, aluminum or aluminum alloy used in the vacuum vessel 3 is generally about one-third the weight of stainless steel used in the vacuum vessel 3, while maintaining the strength of the superconducting magnet device. The weight can be reduced.

これにより、超電導コイル1の電磁力や質量を冷媒容器中心孔部2a、真空容器中心孔部3aおよび真空容器脚部3bのみで支持することで、真空容器3や冷媒容器2の他の部材を肉厚にする必要がなくなり、補強を最小限に抑えることができる。   Thus, the electromagnetic force and mass of the superconducting coil 1 are supported only by the refrigerant container central hole 2a, the vacuum container central hole 3a, and the vacuum container leg 3b, so that the vacuum container 3 and other members of the refrigerant container 2 are supported. There is no need to increase the wall thickness, and reinforcement can be minimized.

また、冷媒容器2に使用されているアルミニウムまたはアルミニウム合金は、一般的に冷媒容器2に使用されるステンレス鋼に比べ重量が3分の1程度であり、超電導磁石装置の強度を維持しつつより軽量化することができる。   Moreover, the aluminum or aluminum alloy used for the refrigerant container 2 is generally about one-third the weight of stainless steel used for the refrigerant container 2, while maintaining the strength of the superconducting magnet device. The weight can be reduced.

なお、アルミニウム合金としては、例えばアルミニウム・ケイ素合金(Al-Si)、その他各種合金,例えばNa,K,Cu,Mg,Fe等を加えたもの等がある。   Examples of the aluminum alloy include an aluminum / silicon alloy (Al—Si) and other various alloys such as Na, K, Cu, Mg, Fe and the like.

また、真空容器3は、その内部に複数段の冷却部を持つ冷凍機と、真空容器内部にあって超電導コイルを包囲するように配置され、冷凍機によって伝導で冷却される輻射シールドとを有する構成としてもよい。   The vacuum vessel 3 includes a refrigerator having a plurality of stages of cooling units therein, and a radiation shield disposed inside the vacuum vessel so as to surround the superconducting coil and cooled by conduction by the refrigerator. It is good also as a structure.

1 超電導コイル
1A,1B,1C,1D,1E 超電導磁石装置
2 冷媒容器
2a 冷媒容器中心孔部
2c 座(ブラケット)
3 真空容器
3a 真空容器中心孔部
3b 真空容器脚部
3c 座(ブラケット)
4 断熱サポート
5 冷媒
6 輻射シールド
7 冷凍機
8 伝熱板
9 コイル台
G 支持基盤
1 Superconducting coils 1A, 1B, 1C, 1D, 1E Superconducting magnet device 2 Refrigerant container 2a Refrigerant container center hole 2c Seat (bracket)
3 Vacuum vessel 3a Vacuum vessel center hole 3b Vacuum vessel leg 3c Seat (bracket)
4 Insulation support 5 Refrigerant 6 Radiation shield 7 Refrigerator 8 Heat transfer plate 9 Coil base G Support base

Claims (11)

超電導コイルを冷媒により冷却する超電導磁石装置において、
前記冷媒を貯液して前記超電導コイルを収納および支持するとともに、前記超電導コイル中心孔を貫通する中心孔部を有するトーラス状の冷媒容器と、
この冷媒容器を収納して前記冷媒容器の中心孔部をさらに貫通する中心孔部を有するトーラス状の真空容器と、
この真空容器の中心孔部と前記冷媒容器の中心孔部との間に設けられ、前記真空容器と前記冷媒容器とを接続する断熱サポートとを備え、
前記真空容器の中心孔部を真空容器脚部により設置基盤に支持させたことを特徴とする超電導磁石装置。
In a superconducting magnet device that cools a superconducting coil with a refrigerant,
A torus-shaped refrigerant container having a central hole portion that stores the refrigerant and stores and supports the superconducting coil and penetrates the central hole of the superconducting coil;
A torus-shaped vacuum container having a central hole portion that houses the refrigerant container and further penetrates the central hole portion of the refrigerant container ;
Provided between the central hole portion of the vacuum container and the central hole portion of the refrigerant container, and a heat insulating support for connecting the vacuum container and the refrigerant container,
A superconducting magnet device, wherein a central hole portion of the vacuum vessel is supported on an installation base by a vacuum vessel leg.
前記真空容器の内部に冷却部を持つ冷凍機と、
前記真空容器の内部に設けられ、かつ前記冷媒容器を包囲するように配置された輻射シールドとを有し、前記輻射シールドは前記冷凍機によって伝導により冷却される構成とした請求項1記載の超電導磁石装置。
A refrigerator having a cooling part inside the vacuum vessel;
The superconductivity according to claim 1, further comprising: a radiation shield provided inside the vacuum vessel and disposed so as to surround the refrigerant vessel, wherein the radiation shield is cooled by conduction by the refrigerator. Magnet device.
超電導コイルを冷凍機と熱的に接続することで冷却する超電導磁石装置において、
前記超電導コイルを支持し、かつ前記超電導コイル中心孔を貫通する内周壁を有するコイル台と、
このコイル台の内周壁をさらに貫通する中心孔部とを有するトーラス状の真空容器と、
この真空容器の中心孔部と前記コイル台の内周壁との間に配置され、前記真空容器と前記コイル台とを接続する断熱サポートとを備え、
前記真空容器の中心孔部を真空容器脚部により設置基盤に支持させたことを特徴とする超電導磁石装置。
In a superconducting magnet device that cools a superconducting coil by thermally connecting it to a refrigerator,
A coil base supporting the superconducting coil and having an inner peripheral wall penetrating the central hole of the superconducting coil;
A torus-shaped vacuum vessel having a central hole portion that further penetrates the inner peripheral wall of the coil base;
It is arranged between the central hole of this vacuum vessel and the inner peripheral wall of the coil stand, and comprises a heat insulating support that connects the vacuum vessel and the coil stand,
A superconducting magnet device, wherein a central hole portion of the vacuum vessel is supported on an installation base by a vacuum vessel leg.
前記真空容器は、その内部に複数段の冷却部を持つ冷凍機と、
前記真空容器の内部にあって前記超電導コイルを包囲するように配置され、前記冷凍機によって伝導で冷却される輻射シールドとを有する請求項3記載の超電導磁石装置。
The vacuum vessel includes a refrigerator having a plurality of cooling units therein,
The superconducting magnet device according to claim 3, further comprising a radiation shield disposed inside the vacuum vessel so as to surround the superconducting coil and cooled by conduction by the refrigerator.
前記断熱サポートは、高温端である真空容器から低温端である冷媒容器までを複数のサポート要素で構成し、前記サポート要素の連結部の少なくとも一つが、前記輻射シールドと熱的に連結されている接合部材で接続されている請求項2記載の超電導磁石装置。 The heat insulating support includes a plurality of support elements from a vacuum container at a high temperature end to a refrigerant container at a low temperature end, and at least one of the connection portions of the support elements is thermally connected to the radiation shield. The superconducting magnet device according to claim 2 , wherein the superconducting magnet device is connected by a joining member. 前記断熱サポートは、高温端である真空容器から低温端であるコイル台までを複数のサポート要素で構成し、前記サポート要素の連結部の少なくとも一つが前記輻射シールドと熱的に連結されている接合部材で接続されている請求項4記載の超電導磁石装置。 The heat insulating support includes a plurality of support elements from a vacuum vessel at a high temperature end to a coil base at a low temperature end, and at least one of the connection portions of the support elements is thermally connected to the radiation shield. The superconducting magnet device according to claim 4 , wherein the superconducting magnet devices are connected by members. 前記断熱サポートは、複数の棒状をなすサポート要素を縦、横および斜め方向に組立てたトラス構造を有する請求項1から請求項6までのいずれか一項記載の超電導磁石装置。 The superconducting magnet device according to any one of claims 1 to 6, wherein the heat insulating support has a truss structure in which a plurality of bar-shaped support elements are assembled in a vertical, horizontal, and diagonal direction. 前記断熱サポートは、前記真空容器の中心孔部と前記冷媒容器の中心孔部との間に設けられ、前記真空容器と前記冷媒容器とを接続し、かつ、前記断熱サポートの長手方向が複数の超電導コイルの間に働く電磁力の方向と略平行に配置されている請求項1、請求項2および請求項5のいずれか一項記載の超電導磁石装置。 The heat insulating support is provided between a central hole portion of the vacuum container and a central hole portion of the refrigerant container, connects the vacuum container and the refrigerant container, and a plurality of longitudinal directions of the heat insulating support are provided. The superconducting magnet device according to any one of claims 1, 2, and 5, wherein the superconducting magnet device is disposed substantially parallel to a direction of electromagnetic force acting between the superconducting coils. 前記断熱サポートは、繊維強化樹脂からなる請求項1から請求項8までのいずれか一項記載の超電導磁石装置。 The superconducting magnet device according to any one of claims 1 to 8, wherein the heat insulating support is made of a fiber reinforced resin. 前記真空容器は、アルミニウムまたはその合金からなる請求項1から請求項9までのいずれか一項記載の超電導磁石装置。 The superconducting magnet device according to any one of claims 1 to 9, wherein the vacuum vessel is made of aluminum or an alloy thereof. 前記冷媒容器は、アルミニウムまたはその合金からなる請求項1、請求項2、請求項5、請求項7および請求項8のいずれか一項記載の超電導磁石装置。 The superconducting magnet device according to any one of claims 1, 2, 5, 7, and 8, wherein the refrigerant container is made of aluminum or an alloy thereof.
JP2010245585A 2010-11-01 2010-11-01 Superconducting magnet device Expired - Fee Related JP5752393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245585A JP5752393B2 (en) 2010-11-01 2010-11-01 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245585A JP5752393B2 (en) 2010-11-01 2010-11-01 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2012099618A JP2012099618A (en) 2012-05-24
JP5752393B2 true JP5752393B2 (en) 2015-07-22

Family

ID=46391211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245585A Expired - Fee Related JP5752393B2 (en) 2010-11-01 2010-11-01 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP5752393B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619809U (en) * 1984-06-21 1986-01-21 三菱電機株式会社 cryogenic container
JPS6123372A (en) * 1984-07-12 1986-01-31 Toshiba Corp Cryogenic apparatus
JPS63274117A (en) * 1987-05-06 1988-11-11 Hitachi Ltd Very low temperature heat-insulating supporting member
JPS63193808U (en) * 1987-06-02 1988-12-14
DE3833592A1 (en) * 1988-10-03 1990-04-05 Philips Patentverwaltung DEVICE FOR NOISE REDUCTION AND HIGH-FREQUENCY SHIELDING OF THE PATIENT RECORDING ROOM IN THE FIELD OF THE MAGNET OF AN MR TOMOGRAPHER
JPH05135942A (en) * 1991-06-11 1993-06-01 Hitachi Ltd Superconducting magnet
JPH0572109U (en) * 1992-02-28 1993-09-28 株式会社島津製作所 Superconducting magnet device
JP2003070765A (en) * 2001-08-31 2003-03-11 Hitachi Ltd Magnetic resonance imaging unit and method and material for sound insulation thereof
JP4945134B2 (en) * 2006-01-19 2012-06-06 株式会社東芝 Magnetic resonance imaging system

Also Published As

Publication number Publication date
JP2012099618A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
US8729990B2 (en) Supported superconducting magnet
JP5219420B2 (en) A cryostat having a cryogenic vessel supported within an external vacuum vessel
JP5025164B2 (en) Equipment for heat shielding superconducting magnets
JP2004229853A (en) Superconducting magnet
JP2007007111A5 (en)
CN108692187B (en) Cryostat deployment system
JP2018534759A (en) Support structure for HTS magnet
US6011454A (en) Superconducting magnet suspension assembly
JP2007000254A (en) Superconduction electromagnet apparatus for mri
GB2484079A (en) Cylindrical stiffener for cryoshield
US11810711B2 (en) Cryostat assembly having a resilient, heat-conducting connection element
JP2007053241A (en) Superconducting magnet device
JPH0559567B2 (en)
WO2016120309A1 (en) Superconducting magnetic arrangement, in particular for a magnetic resonance tomograph
JP5752393B2 (en) Superconducting magnet device
JP7404517B2 (en) coil support
US20120309630A1 (en) Penetration tube assemblies for reducing cryostat heat load
JPH0559566B2 (en)
JP5337829B2 (en) Cryogenic container
GB2465556A (en) Cryostat suspension arrangement including turret mount
GB2487813A (en) Cylindrical support for cryoshield
JP4521311B2 (en) Magnetic resonance imaging system
JP2010003943A (en) Heat insulating support and superconducting apparatus equipped with the heat insulating support
JP2012054260A (en) Superconducting magnet apparatus
JP3647266B2 (en) Superconducting magnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R151 Written notification of patent or utility model registration

Ref document number: 5752393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees