JP5751854B2 - Thermal spraying method and spraying machine for dissimilar metals - Google Patents

Thermal spraying method and spraying machine for dissimilar metals Download PDF

Info

Publication number
JP5751854B2
JP5751854B2 JP2011030315A JP2011030315A JP5751854B2 JP 5751854 B2 JP5751854 B2 JP 5751854B2 JP 2011030315 A JP2011030315 A JP 2011030315A JP 2011030315 A JP2011030315 A JP 2011030315A JP 5751854 B2 JP5751854 B2 JP 5751854B2
Authority
JP
Japan
Prior art keywords
sprayed
metal
wire
thermal
tube axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011030315A
Other languages
Japanese (ja)
Other versions
JP2012167341A (en
Inventor
五郎 船橋
五郎 船橋
清水 宏明
宏明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011030315A priority Critical patent/JP5751854B2/en
Publication of JP2012167341A publication Critical patent/JP2012167341A/en
Application granted granted Critical
Publication of JP5751854B2 publication Critical patent/JP5751854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、異種金属を管に溶射する溶射方法および溶射機に関する。   The present invention relates to a thermal spraying method and a thermal sprayer for spraying different types of metals onto a pipe.

既に、本出願人は、ダクタイル製の鋳鉄管などの管の防食性を向上させるために、亜鉛と亜鉛合金など犠牲陽極作用がある異種の金属皮膜を管の外面に形成することを提案している(特許文献1参照)。すなわち、前記特許文献1に開示されているように、例えば、Zn線材を第1の線材として用いるとともに、Zn−Sn−Mg線材、またはこれにTi、Co、Ni、Pのうち少なくともいずれか一つを含ませた亜鉛合金線材を第2の線材として用いて、管の外面に同時にアーク溶射を行っている。   Already, the present applicant has proposed to form a dissimilar metal film having a sacrificial anode action such as zinc and a zinc alloy on the outer surface of the pipe in order to improve the corrosion resistance of the ductile cast iron pipe or the like. (See Patent Document 1). That is, as disclosed in Patent Document 1, for example, a Zn wire is used as the first wire, and at least one of a Zn—Sn—Mg wire or Ti, Co, Ni, and P is used. Arc spraying is simultaneously performed on the outer surface of the pipe using a zinc alloy wire containing one as the second wire.

この溶射方法を用いると、鉄表面にZn−Sn−Mg合金の溶射皮膜が形成できる。この亜鉛合金は鉄よりも電位が低いため犠牲陽極として作用し、亜鉛合金中の亜鉛が溶け出すと考えられる。溶け出した亜鉛は、表面に比較的安定な腐食生成物を形成し、それにより、残りの亜鉛の消耗または溶解を抑制すると考えられている。また、Zn−Sn−Mg合金などの同種の亜鉛合金同士を線材として使用して得られた溶射被膜の気孔率よりも、亜鉛とZn−Sn−Mg合金などの亜鉛合金とを線材として使用して得られた溶射被膜の気孔率が低いことから、防食性能が向上したとも考えられる。このような理由から、亜鉛と亜鉛合金とを線材として使用して溶射すると、管の外面の防食性を向上できると考えられる。   When this thermal spraying method is used, a thermal spray coating of Zn—Sn—Mg alloy can be formed on the iron surface. Since this zinc alloy has a lower potential than iron, it acts as a sacrificial anode, and it is considered that zinc in the zinc alloy melts. The dissolved zinc is believed to form a relatively stable corrosion product on the surface, thereby inhibiting the consumption or dissolution of the remaining zinc. Moreover, zinc and zinc alloys, such as a Zn-Sn-Mg alloy, are used as a wire rather than the porosity of the sprayed coating obtained by using the same kind zinc alloys, such as a Zn-Sn-Mg alloy, as a wire. It is also considered that the anticorrosion performance was improved because of the low porosity of the sprayed coating obtained. For these reasons, it is considered that the corrosion resistance of the outer surface of the pipe can be improved by spraying using zinc and a zinc alloy as a wire.

鋳鉄管などの金属管への一般的な溶射方法としては、主にアーク溶射が用いられており、図7、図8(a)、(b)に示すように、鋳鉄管などの金属管からなる被溶射物Xをその管軸心Oを中心として回転させながら、溶射機(いわゆる溶射ガン)50を被溶射物Xに対して管軸心方向に沿って相対的に移動させることで施工している。例えば、鋳鉄管に亜鉛と亜鉛合金との異種金属の溶射を行う場合には、溶射機50のプラス極の線材送出部52に亜鉛の線材A、マイナス極の線材送出部53に亜鉛合金の線材Bを送出箇所で互いに接触するようにセットして溶射している(逆に、プラス極の線材送出部52に亜鉛合金の線材B、マイナス極の線材送出部53に亜鉛の線材Aをセットして溶射することも可能である)。なお、図8(a)、(b)における51は微粒子化用(アトマイズ用)の圧縮空気などのガス(気体)を供給する微粒子化用ガス供給部、Yは溶射皮膜である。この方法を用いることにより、異種金属よりなる2本の線材A、Bを1つの溶射機50に同時に送り込みながら連続的に溶融させ、これらの溶融金属を、高速で吹き付ける微粒子化用ガスによって被溶射物Xに対して微粒子状に吹き付けることができる。   As a general thermal spraying method for a metal pipe such as a cast iron pipe, arc spraying is mainly used. As shown in FIGS. 7, 8 (a), (b), a metal pipe such as a cast iron pipe is used. The thermal spraying machine (so-called thermal spraying gun) 50 is moved relative to the thermal spraying object X along the axial direction of the pipe while rotating the thermal spraying object X to be rotated about the pipe axial center O. ing. For example, in the case of spraying different metals of zinc and zinc alloy on a cast iron pipe, zinc wire A is applied to the positive electrode wire sending portion 52 and zinc alloy wire is applied to the negative electrode wire sending portion 53 of the thermal spraying machine 50. B is set to be in contact with each other at the delivery point and sprayed (conversely, a zinc alloy wire B is set in the positive electrode wire sending part 52 and a zinc wire A is set in the minus pole wire sending part 53. Spraying is also possible). 8 (a) and 8 (b), 51 is a gas supply unit for atomization that supplies a gas (gas) such as compressed air for atomization (for atomization), and Y is a thermal spray coating. By using this method, two wire rods A and B made of different metals are melted continuously while being simultaneously fed into one thermal sprayer 50, and these molten metals are sprayed by a gas for atomization sprayed at high speed. It can be sprayed on the object X in the form of fine particles.

この場合に、従来は、単に、溶射機50のプラス極の線材送出部52に亜鉛の線材A、マイナス極の線材送出部53に亜鉛合金の線材Bをセットして溶射しており、鋳鉄管などの被溶射物Xへ付着させる異種金属の溶射皮膜Yの溶射形状(いわゆる溶射パターン)は、図9の左側に簡略的に示すように、ほぼ丸形である。しかし、溶射形状が丸形であると、溶射幅が小さく、かつ、その幅内でも溶射量の変動が大きいため、単位時間当たりの溶射面積が小さくて生産効率が悪いとともに、歩留まりが低い欠点がある。   In this case, conventionally, the zinc wire A is set in the positive electrode wire feeding portion 52 of the thermal sprayer 50 and the zinc alloy wire B is set in the negative electrode wire feeding portion 53 and sprayed. The sprayed shape (so-called sprayed pattern) of the sprayed coating Y of the dissimilar metal adhered to the object to be sprayed X is substantially round as schematically shown on the left side of FIG. However, if the sprayed shape is round, the spraying width is small and the amount of spraying varies greatly within that width, so the spraying area per unit time is small, the production efficiency is poor, and the yield is low. is there.

この欠点を解消するものとして、図9の右側に簡略的に示すように、被溶射物Xへ付着させる異種金属の溶射皮膜Yの溶射形状を楕円形にすることが提案されている。すなわち、図10(a)、(b)、図11に示すように、溶射機60において、微粒子化用ガス供給部61の左右に異種金属よりなる2本の線材A、Bを送り込む線材送出部62、63をそれぞれ設けるとともに、これらの微粒子化用ガス供給部61および線材送出部62、63の上方と下方とに、圧縮空気などのガス(気体)を供給する形状制御用ガス供給部64を、管軸心と略平行な方向(いわゆる横方向)に複数並べて配設している。そして、形状制御用ガス供給部64から噴出させる圧縮空気などのガスにより、微粒子状になった溶融金属が上下に拡散することを抑制して溶射皮膜Yの横長の楕円扁平形状となるように構成している。なお、異種金属よりなる2本の線材A、Bを送り込む線材送出部62、63は、上記したように、微粒子化用ガス供給部61の左右など、管軸心Oの延びる方向に沿った方向に並べられて配置されている。この図10(a)、(b)、図11に示す溶射機60と、微粒子化用ガス供給部、線材送出部、形状制御用ガス供給部の配置構成および溶射皮膜Yの溶射形状が同様なアーク溶射装置が特許文献2等に開示されているが、このアーク溶射装置では、図10(a)、(b)、図11に示すような構成に加えて、吹出し軸と同軸をなす仮想円錐面に沿って前方に吹出す微粒子化用ガス供給部も有している。   In order to eliminate this drawback, it has been proposed that the sprayed shape of the sprayed coating Y of the dissimilar metal to be adhered to the sprayed object X is made elliptical as simply shown on the right side of FIG. That is, as shown in FIGS. 10A, 10 </ b> B, and 11, in the thermal spraying machine 60, a wire rod sending unit that feeds two wires A and B made of different metals to the left and right of the gas supply unit 61 for atomization. 62 and 63 are provided, respectively, and a shape control gas supply unit 64 for supplying a gas (gas) such as compressed air is provided above and below the atomization gas supply unit 61 and the wire feed units 62 and 63. A plurality of them are arranged side by side in a direction substantially parallel to the tube axis (so-called lateral direction). And, it is configured so that the molten metal in the form of fine particles is prevented from diffusing up and down by a gas such as compressed air ejected from the shape control gas supply unit 64 to form a horizontally long elliptical flat shape of the thermal spray coating Y. doing. In addition, the wire sending parts 62 and 63 for feeding the two wires A and B made of different metals are, as described above, directions along the direction in which the tube axis O extends, such as the left and right of the gas supply unit 61 for atomization. Are arranged side by side. 10 (a), 10 (b), and FIG. 11, the arrangement configuration of the atomizing gas supply unit, the wire rod feeding unit, the shape control gas supply unit, and the spraying shape of the spray coating Y are the same. An arc spraying device is disclosed in Patent Document 2 and the like. In this arc spraying device, in addition to the configuration shown in FIGS. 10A, 10B, and 11, a virtual cone that is coaxial with the blowout shaft. A gas supply unit for atomization that blows forward along the surface is also provided.

前記溶射機60を用いて、鋳鉄管などからなる被溶射物Xに対して、管軸心方向に対して横長の楕円形となるように異種金属を溶射すると、溶射形状が丸形である場合と比較して、溶射幅が大きく、かつ、幅方向に対して溶射量の変動が小さいため、単位時間当たりの溶射面積を大きくすることができて生産効率を向上させることができるとともに、歩留まりも向上させることができると考えられる。   When different types of metal are sprayed on the sprayed object X made of a cast iron pipe or the like using the thermal sprayer 60 so as to form an oblong shape that is horizontally long with respect to the axial direction of the pipe, the sprayed shape is round. Compared with, the spraying width is large and the variation in the spraying amount in the width direction is small, so the spraying area per unit time can be increased, the production efficiency can be improved, and the yield is also increased. It is thought that it can be improved.

特開2009−256792公報JP 2009-256792 A 特開2001−181818公報JP 2001-181818 A

しかしながら、図10(a)、(b)、図11に示すような溶射機60を用いて異種金属を溶射すると、線材送出部62、63が、微粒子化用ガス供給部61の左右など、管軸心Oの延びる方向に沿った方向に並べられて配置されているので、図12に示すように、溶射皮膜Yにおける横長の楕円形状部分の左右の端部で、線材Aの原料である第1の金属(例えば亜鉛)の成分割合が大きい部分Cと線材Bの原料である第2の金属(例えば亜鉛合金)の成分割合が大きい部分Dとができてしまい、溶射した鋳鉄管などの被溶射物Xの表面での溶射金属の成分割合が、鋳鉄管などの被溶射物Xの軸心方向に対して変動する恐れがある。そして、この場合には、鋳鉄管などの被溶射物Xの外面の防食性を良好には向上できなくなる。   However, when different types of metals are sprayed using a thermal sprayer 60 as shown in FIGS. 10A, 10B, and 11, the wire feed parts 62 and 63 are connected to the right and left sides of the atomizing gas supply part 61. Since they are arranged side by side in the direction along which the axis O extends, as shown in FIG. 12, the left and right ends of the horizontally long elliptical portion of the thermal spray coating Y are the raw materials for the wire A. A portion C having a large component ratio of one metal (for example, zinc) and a portion D having a large component ratio of the second metal (for example, zinc alloy) that is a raw material of the wire B are formed, and a coating such as a sprayed cast iron pipe is formed. There is a possibility that the component ratio of the sprayed metal on the surface of the sprayed material X may vary with respect to the axial direction of the sprayed material X such as a cast iron pipe. In this case, the corrosion resistance of the outer surface of the sprayed object X such as a cast iron pipe cannot be improved satisfactorily.

本発明は上記課題を解決するもので、異種金属を成分の偏りがない状態で鋳鉄管などの管の被溶射物に良好に溶射することができる異種金属の溶射方法および溶射機を提供することを目的とするものである。   The present invention solves the above problems, and provides a spraying method and a sprayer for dissimilar metals, which can thermally spray dissimilar metals to a sprayed object such as a cast iron pipe in a state without component bias. It is intended.

上記課題を解決するために、本発明は、被溶射物である管を、その管軸心を中心に回転させながら、互いに種類が異なる第1の金属と第2の金属とからなる異種金属を管の表面に溶射する異種金属の溶射方法であって、前記異種金属からなる2つの線材を、溶射機に個別に設けられた各線材送出部から、溶射機外部で接触させて溶融するように被溶射物の被溶射面に向けて送り出す線材送出動作と、前記異種金属の溶融箇所に微粒子化用気体を供給する微粒子化用気体供給動作と、溶射形状が楕円となるように形状制御用気体供給部から気体を供給する形状制御用気体供給動作とを並行して行い、前記線材送出動作において、前記線材を、これらの線材の接触箇所で、管軸心に対して略直交する方向に並んだ状態で接触させ、溶射した時に管軸心に対して略直交する溶射箇所の縦方向の端部では溶射金属の成分割合が異なり、被溶射物である管を、管軸心を中心に回転させることで、第1の金属の成分割合が大きい部分の上に第2の金属の成分割合が大きい部分を重ねて溶射することを特徴とする。 In order to solve the above-mentioned problem, the present invention provides a dissimilar metal composed of a first metal and a second metal, which are different from each other, while rotating a tube, which is a sprayed object, around its tube axis. A method for spraying dissimilar metals to be sprayed on the surface of a tube, wherein two wire rods made of the dissimilar metals are melted by being brought into contact with the outside of the sprayer from respective wire feed parts individually provided in the sprayer. a wire transmitting operation to feed toward the surface to be thermal sprayed of the thermal spray material, the heterogeneous and gas supply operation for atomization supplies gas for atomization to molten portion of the metal, shape control gas so that spray shape becomes elliptical A gas supply operation for shape control for supplying gas from the supply unit is performed in parallel, and in the wire feeding operation, the wires are arranged in a direction substantially orthogonal to the tube axis at the contact point of these wires. tube when brought into contact, was sprayed with it state The component ratio of the sprayed metal is different at the longitudinal end portion of the sprayed portion substantially orthogonal to the core, and the component ratio of the first metal is obtained by rotating the tube that is the sprayed object around the tube axis. The thermal spraying is performed by superposing a portion having a large component ratio of the second metal on a portion having a large thickness .

また、本発明の溶射機は、管軸心を中心に回転される管からなる被溶射物に対して、互いに種類が異なる第1の金属と第2の金属とからなる異種の金属を溶射する溶射機であって、互いに異なる材料の線材を外部で接触させて溶融するように送り込む2つの線材送出部と、溶融された金属を微粒子状にする気体を供給する微粒子化用ガス供給部と、溶射形状が前記管軸心に沿う方向に対して長い楕円形となるように気体を供給する形状制御用気体供給部とを備え、前記互いに種類が異なる第1の金属と第2の金属とからなる材料の線材を送り込む前記2つの線材送出部が、前記管軸心に対して略直交する方向に並べられて配設され、溶射した時に管軸心に対して略直交する溶射箇所の縦方向の端部では溶射金属の成分割合が異なり、被溶射物である管を、管軸心を中心に回転させることで、第1の金属の成分割合が大きい部分の上に第2の金属の成分割合が大きい部分を重ねるように構成していることを特徴とする。 Further, the thermal spraying machine of the present invention sprays different kinds of metals composed of a first metal and a second metal, which are different from each other, on a thermal spray target composed of a tube rotated about a tube axis. A thermal spraying machine, two wire feeding parts that feed the wires of different materials in contact with each other so as to be melted; a gas supply unit for atomization that supplies gas that makes the molten metal into fine particles; and A shape-controlling gas supply unit that supplies gas so that the sprayed shape is an ellipse that is long with respect to the direction along the tube axis, and the first metal and the second metal that are different from each other The longitudinal direction of the sprayed portion that is arranged in the direction substantially orthogonal to the tube axis and arranged to be substantially orthogonal to the tube axis when sprayed , wherein the two wire feeding parts for feeding the wire made of the material are arranged The composition ratio of the sprayed metal is different at the end of Certain tubes, by rotating about the tube axis, and characterized by being configured to overlap a portion component ratio of the second metal is greater over portions component ratio of the first metal is greater To do.

上記溶射方法や溶射機によれば、異種金属を溶射すると、横長の楕円形状部分の大部分の箇所では線材の原料である2つの金属の成分割合が同じであるが、横長の楕円形状部分の縦方向の端部では線材の原料である2つの金属の成分割合が異なる部分は少ないものの若干できてしまう。しかし、被溶射物である管は管軸心を中心に回転されているため、すなわち、横長の楕円形状部分の縦方向に沿って溶射箇所の表面が移動するように、被溶射物が回転されながら溶射されるので、継続して被溶射物に溶射されると、最終的には溶射皮膜の成分割合がほぼ同一となった良好な状態で溶射できる。   According to the above spraying method and thermal spraying machine, when dissimilar metals are sprayed, the proportion of the two metals that are the raw materials of the wire material is the same in most parts of the horizontally long elliptical part. At the end in the vertical direction, although there are few portions where the component ratios of the two metals that are raw materials of the wire are different, they are slightly formed. However, since the tube to be sprayed is rotated around the axis of the tube, that is, the sprayed material is rotated so that the surface of the sprayed portion moves along the longitudinal direction of the horizontally long elliptical portion. However, since the thermal spraying is continued, the thermal spraying can be performed in a good state where the component ratio of the thermal spray coating is finally almost the same.

なお、本発明の溶射機としては、微粒子化用ガス供給部が、2つの線材送出部の間に配設されていることが好ましく、また、形状制御用気体供給部が、管軸心に直行する方向に対して2つの線材送出部を間に挟んだ状態で、管軸心に沿う方向に複数並べられ、または、管軸心に沿う方向につながった状態で配設されていることが好ましい。この構成により、良好な楕円形に溶射することができる。   In the thermal spraying apparatus of the present invention, the gas supply unit for atomization is preferably disposed between the two wire rod feeding units, and the gas supply unit for shape control goes directly to the tube axis. It is preferable that a plurality of wires are placed in the direction along the tube axis or connected in the direction along the tube axis, with the two wire feed parts sandwiched between the two wire feeding parts. . With this configuration, it is possible to spray a good elliptical shape.

以上のように本発明によれば、線材送出動作において、線材を、これらの線材の接触箇所で、管軸心に対して略直交する方向に並んだ状態で接触させたり、異種金属を溶射する溶射機において、2つの線材送出部を、前記管軸心に対して略直交する方向に並べられて配設させたりすることにより、異種金属を被溶射物の全面に溶射皮膜の成分割合がほぼ同一となった良好な状態で溶射でき、管の防食性を良好に向上させることができる。   As described above, according to the present invention, in the wire feeding operation, the wires are brought into contact with each other in a state where they are arranged in a direction substantially perpendicular to the tube axis at the contact portion of these wires, or different metals are sprayed. In the thermal spraying machine, by arranging the two wire feeding parts in a direction substantially perpendicular to the tube axis, the dissimilar metal is almost entirely deposited on the entire surface of the sprayed material. Thermal spraying can be performed in the same good state, and the corrosion resistance of the tube can be improved satisfactorily.

(a)および(b)は、本発明の実施の形態に係る、異種金属の溶射方法および溶射機を示す側面断面図および平面断面図である。(A) And (b) is the side surface sectional view and plane sectional view which show the thermal spraying method and thermal spraying machine of a dissimilar metal based on embodiment of this invention. 同実施の形態に係る溶射機の簡略的な正面図である。It is a simplified front view of the thermal sprayer concerning the embodiment. 同実施の形態に係る溶射方法の溶射状態を示す図である。It is a figure which shows the thermal spraying state of the thermal spraying method which concerns on the same embodiment. (a)は本発明の実施の形態に係る異種金属の溶射方法による溶射部分およびその近傍の電子顕微鏡写真、(b)は従来の異種金属の溶射方法による溶射部分およびその近傍の電子顕微鏡写真を示す。(A) is an electron micrograph of a thermal sprayed part by a different metal spraying method according to an embodiment of the present invention and its vicinity, and (b) is an electron micrograph of a thermal sprayed part by a conventional different metal spraying method and an electron micrograph of its vicinity. Show. (a)は、図4(a)に対応する、本発明の実施の形態に係る異種金属の溶射方法による溶射部分およびその近傍の亜鉛の分布状態を示す図、(b)は、図4(b)に対応する、従来の異種金属の溶射方法による溶射部分およびその近傍の亜鉛の分布状態を示す図である。(A) is a figure which shows the thermal spraying part by the spraying method of the dissimilar metal which concerns on embodiment of this invention corresponding to FIG. 4 (a), and the zinc distribution state of the vicinity, (b) is FIG. It is a figure which shows the thermal spraying part by the conventional thermal spraying method of a dissimilar metal, and the zinc distribution state of the vicinity corresponding to b). (a)は、図4(a)に対応する、本発明の実施の形態に係る異種金属の溶射方法による溶射部分およびその近傍のSnの分布状態を示す図、(b)は、図4(b)に対応する、従来の異種金属の溶射方法による溶射部分およびその近傍のSnの分布状態を示す図である。(A) is a figure which shows the thermal spraying part by the thermal spraying method of the dissimilar metal which concerns on embodiment of this invention corresponding to FIG. 4 (a), and the distribution state of Sn of the vicinity, (b) is FIG. It is a figure which shows the thermal spraying part by the conventional thermal spraying method of a dissimilar metal, and the Sn distribution state of the vicinity corresponding to b). 管への溶射方法を簡略的に示す図である。It is a figure which shows simply the thermal spraying method to a pipe | tube. (a)および(b)は、従来の溶射方法を示す側面断面図および平面断面図である。(A) And (b) is side sectional drawing and plane sectional drawing which show the conventional thermal spraying method. 被溶射物への溶射形状を簡略的に示す図である。It is a figure which shows simply the spraying shape to a to-be-sprayed object. (a)および(b)は、他の従来の溶射方法を示す側面断面図および平面断面図である。(A) And (b) is a side sectional view and a plane sectional view showing other conventional thermal spraying methods. 同他の従来の溶射方法に用いる溶射機の簡略的な正面図である。It is a simplified front view of the thermal sprayer used for the other conventional thermal spraying method. 同他の従来の溶射方法での溶射状態を示す図である。It is a figure which shows the thermal spraying state in the other conventional thermal spraying method.

以下、本発明の実施の形態に係る異種金属の溶射方法およびこの溶射方法で用いる溶射機などを図面に基づき説明する。
図1(a)、(b)、図2などに示すように、本発明の実施の形態に係る異種金属の溶射方法では、アーク溶射が用いられており、鋳鉄管などの金属管かならなる被溶射物Xをその管軸心Oを中心として図外の回転用ローラなどで回転させながら、溶射機(いわゆる溶射ガン)1を被溶射物Xに対して管軸心方向(図7における矢印e方向)に相対的に移動させる(この実施の形態では、溶射機1を移動させる)ことで施工している。溶射機1はその溶射方向が、被溶射物Xの被溶射面にほぼ直交するように、すなわち、管軸心Oに向くように配置され、図1(a)、(b)においては、溶射機1が被溶射物Xの左側方で略水平に離れて対向させている場合を図示している。また、この実施の形態では、被溶射物Xとしてのダクタイル製などの鋳鉄管に、第1の金属としての亜鉛と、第1の金属とは異なる第2の金属としての亜鉛合金との溶射を行うよう構成されており、この場合には、溶射機1のプラス極の線材送出部3に第1の線材である亜鉛の線材A、マイナス極の線材送出部4に第2の線材である亜鉛合金の線材Bを、送出箇所前方で互いに接触するようにセットして溶射している(逆に、プラス極の線材送出部3に亜鉛合金の線材B、マイナス極の線材送出部4に亜鉛の線材Aをセットして溶射してもよい)。
Hereinafter, a thermal spraying method for dissimilar metals according to an embodiment of the present invention and a thermal spraying machine used in the thermal spraying method will be described with reference to the drawings.
As shown in FIGS. 1 (a), (b), FIG. 2, etc., in the thermal spraying method for dissimilar metals according to the embodiment of the present invention, arc spraying is used, which is a metal tube such as a cast iron tube. A spraying machine (so-called spray gun) 1 is rotated with respect to the sprayed object X in the direction of the tube axis (arrow in FIG. 7) while rotating the sprayed object X around the tube axis O with a rotating roller (not shown). Construction is performed by relatively moving in the e direction) (in this embodiment, the thermal sprayer 1 is moved). The thermal spraying machine 1 is arranged so that the spraying direction is substantially perpendicular to the sprayed surface of the sprayed object X, that is, toward the tube axis O. In FIGS. 1 (a) and 1 (b), the thermal spraying is performed. The case where the machine 1 is facing substantially horizontally apart on the left side of the sprayed object X is illustrated. Moreover, in this embodiment, the thermal spraying of zinc as a first metal and a zinc alloy as a second metal different from the first metal is performed on a ductile cast iron pipe as the sprayed object X. In this case, the zinc wire A as the first wire is supplied to the positive wire delivery portion 3 of the thermal sprayer 1, and the zinc as the second wire is supplied to the negative wire delivery portion 4 in this case. The alloy wire B is set and sprayed so as to be in contact with each other in front of the delivery point (reversely, the zinc alloy wire B is applied to the positive electrode wire delivery portion 3 and zinc is applied to the negative electrode wire delivery portion 4. The wire A may be set and sprayed).

本発明の実施の形態に係る溶射機1でも、互いに異なる材料の線材A、Bを外部で接触させて溶融するように送り込む上記した2つの線材送出部3、4に加えて、溶融された金属を微粒子状にする圧縮空気などからなるガスを供給する微粒子化用ガス供給部2と、溶射形状が管軸心に沿う方向に対して長い楕円形となるように圧縮空気などからなるガスを供給する形状制御用気体供給部5とを備えている。ところが、本発明の実施の形態に係る溶射機1では、互いに異なる材料の線材A、Bを送り込む2つの線材送出部3、4が、図1(a)、図2に示すように、管軸心Oに対して略直交する方向に、この実施の形態では上下方向に、並べられて配設されている。また、溶融された金属を微粒子状にする圧縮空気などからなるガスを供給する微粒子化用ガス供給部2は、2つの線材送出部3、4の間、この実施の形態では、溶射機1の中心に配設されている。   Also in the thermal sprayer 1 according to the embodiment of the present invention, in addition to the above-described two wire feed parts 3 and 4 that feed the wires A and B of different materials in contact with each other so as to melt, the molten metal A gas supply unit 2 for supplying fine particles for supplying a gas made of compressed air or the like for making the particles fine, and supplying a gas made of compressed air or the like so that the sprayed shape becomes a long ellipse with respect to the direction along the tube axis. The shape control gas supply unit 5 is provided. However, in the thermal spraying machine 1 according to the embodiment of the present invention, the two wire material feeding sections 3 and 4 for feeding the wire materials A and B made of different materials are connected to each other as shown in FIGS. In this embodiment, they are arranged side by side in a direction substantially perpendicular to the center O, in the vertical direction in this embodiment. Further, a gas supply unit 2 for atomization that supplies a gas composed of compressed air or the like that turns molten metal into a fine particle form is provided between the two wire feed units 3 and 4, in this embodiment, the thermal sprayer 1. It is arranged at the center.

また、この溶射機1の形状制御用ガス供給部5は、線材送出部3、4より管の周方向に所定距離離れた位置、この実施の形態では上方と下方とに離れた箇所において、管軸心方向(管軸心Oに沿って延びる方向)と略平行な方向(いわゆる横方向)に複数並べて配設されている。そして、形状制御用ガス供給部5から噴出させる圧縮空気などのガスにより、微粒子状になった溶融金属が上下(管の周方向)に拡散することが抑制されて横長の楕円扁平形状となるように構成されている。   In addition, the shape control gas supply unit 5 of the thermal sprayer 1 is arranged at a position that is a predetermined distance away from the wire feed units 3 and 4 in the circumferential direction of the tube, that is, at a location that is separated upward and downward in this embodiment. A plurality of elements are arranged side by side in a direction (so-called lateral direction) substantially parallel to the axial direction (direction extending along the tube axis O). Then, the gas such as compressed air ejected from the shape control gas supply unit 5 is prevented from diffusing the molten metal in the form of fine particles in the vertical direction (circumferential direction of the tube) so as to have a horizontally long elliptic flat shape. It is configured.

この構成において、異種金属からなる2つの線材A、Bを、溶射機1に個別に設けられた各線材送出部3、4から高電圧をかけた状態で、溶射機1の前方箇所で接触させて溶融するように被溶射物Xの被溶射面に向けて送り出す線材送出動作と、微粒子化用ガス供給部2から異種金属の溶融箇所に微粒子化用気体としての圧縮空気を供給する微粒子化用気体供給動作と、溶射形状が楕円となるように形状制御用気体供給部5から圧縮空気を供給する形状制御用気体供給動作とを並行して行わせる。そして特に、前記線材送出動作において、異種金属からなる2つの線材A、Bを、これらの線材A、Bの接触箇所で、管軸心Oに対して略直交する方向に並んだ状態で接触させる。このようにして、鋳鉄管などの金属管かならなる被溶射物Xの表面に、亜鉛(Zn)などの第1の金属と亜鉛合金(例えばZn−Sn−Mg合金)などの第2の金属とが混ぜ合わされた溶射皮膜Yを形成する。   In this configuration, two wires A and B made of different metals are brought into contact with each other at a location in front of the thermal sprayer 1 in a state where a high voltage is applied from each of the wire feeders 3 and 4 individually provided in the thermal sprayer 1. Wire feeding operation for feeding toward the sprayed surface of the sprayed material X so as to melt, and for atomization supplying compressed air as atomization gas from the atomizing gas supply unit 2 to the melting point of dissimilar metal The gas supply operation and the shape control gas supply operation for supplying compressed air from the shape control gas supply unit 5 are performed in parallel so that the sprayed shape becomes an ellipse. In particular, in the wire feeding operation, the two wires A and B made of different metals are brought into contact with each other in a state where they are aligned in a direction substantially orthogonal to the tube axis O at the contact point between these wires A and B. . In this way, the first metal such as zinc (Zn) and the second metal such as zinc alloy (for example, Zn—Sn—Mg alloy) are formed on the surface of the thermal spray X made of a metal tube such as a cast iron tube. And sprayed coating Y is formed.

なお、溶射時には、鋳鉄管からなる被溶射物Xをその管軸心Oを回転させると同時に、溶射機1を被溶射物Xに対して管軸心方向に相対的に移動させて施工するが、被溶射物Xを管軸心Oを中心として1回転させる際の管軸心方向への移動距離は、溶射皮膜Yの幅よりも小さくなるように設定する。また、鋳鉄管かならなる被溶射物Xの回転速度が、管軸心方向への移動速度よりも十分に大きい状態で行い、溶射皮膜Yが被溶射物Xの全周面(外面)に隙間無く形成されるようにする。   At the time of thermal spraying, the thermal spray object X made of a cast iron pipe is rotated while the tube axis O is rotated, and at the same time, the thermal sprayer 1 is moved relative to the thermal spray object X in the direction of the tube axis. The moving distance in the tube axis direction when the sprayed object X is rotated once around the tube axis O is set to be smaller than the width of the spray coating Y. In addition, the sprayed material X made of cast iron pipe is rotated in a state where the rotational speed of the sprayed material X is sufficiently larger than the moving speed in the axial direction of the tube, and the sprayed coating Y has a gap on the entire peripheral surface (outer surface) of the sprayed material X. To be formed without any problems.

この溶射方法によれば、異種金属を溶射すると、溶射した瞬間においては、溶融する際の線材A、Bの位置が、僅かではあるが、管軸心Oに対して略直交する方向に異なる。したがって、図3に示すように、溶射部分における楕円形状部分の管軸心Oに対して略直交する方向(図3では上下方向)の大部分の箇所、詳しくは上下方向の中心寄り箇所では、異種金属同士が良好に混ざり合って2つの金属の成分割合が同じであるが、縦方向の端部(この実施の形態では上縁部と下縁部)では線材A、Bの原料である2つの金属の成分割合が異なる部分ができてしまう。すなわち、異種金属を溶射すると、溶射した瞬間においては、溶射皮膜Yの上縁部では亜鉛などの線材Aの原料である第1の金属の成分割合が大きい部分Cができてしまい、また、溶射皮膜Yの下縁部では亜鉛合金などの線材Bの原料である第2の金属の成分割合が大きい部分Dとができてしまう。   According to this thermal spraying method, when different types of metals are sprayed, the positions of the wire rods A and B at the time of melting differ slightly in a direction substantially orthogonal to the tube axis O at the moment of thermal spraying. Therefore, as shown in FIG. 3, most of the locations in the direction (vertical direction in FIG. 3) that is substantially orthogonal to the tube axis O of the elliptical portion in the sprayed portion, more specifically, in the location near the center in the vertical direction, Although the dissimilar metals are mixed well and the component ratio of the two metals is the same, the end portions in the vertical direction (in this embodiment, the upper edge portion and the lower edge portion) are the raw materials for the wires A and B 2 Parts with different proportions of the two metals are formed. That is, when different types of metals are sprayed, at the instant of spraying, a portion C having a large component ratio of the first metal, which is the raw material of the wire A such as zinc, is formed at the upper edge portion of the sprayed coating Y. At the lower edge of the coating Y, a portion D having a high component ratio of the second metal, which is a raw material of the wire B such as a zinc alloy, is formed.

しかし、被溶射物Xである管は管軸心Oを中心に回転されているため、すなわち、横長の楕円形状部分の縦方向に沿って溶射箇所の表面が移動するように、被溶射物Xが回転されながら溶射されることとなる。したがって、被溶射物Xである管が管軸心Oを中心に回転されながら溶射されると、第1の金属の成分割合が大きい部分Cの上に第2の金属の成分割合が大きい部分Dが重なり、最終的には溶射皮膜Yの成分割合が、場所により偏ることがなくなって、ほぼ同一となった良好な状態で溶射できる。これにより、管の防食性を良好に向上させることができる。   However, since the tube that is the sprayed object X is rotated around the tube axis O, that is, the surface of the sprayed part X moves so that the surface of the sprayed portion moves along the longitudinal direction of the horizontally long elliptical portion. Will be sprayed while rotating. Therefore, when the tube being the sprayed object X is sprayed while being rotated around the tube axis O, the portion D having the large second metal component ratio on the portion C having the large first metal component ratio D. Finally, the component ratio of the thermal spray coating Y does not deviate depending on the location, and the thermal spraying can be performed in a good state that is almost the same. Thereby, the corrosion resistance of a pipe | tube can be improved favorably.

また、上記溶射方法によっても、鋳鉄管などからなる被溶射物Xに対して、管軸心方向に対して横長の楕円形となるように異種金属を溶射することができるので、溶射形状が丸形である場合と比較して、溶射幅が大きく、かつ、幅方向に対して溶射量の変動が小さくなり、単位時間当たりの溶射面積を大きくすることができて生産効率を向上させることができるとともに、歩留まりも向上させることができる。   Further, even with the above-described spraying method, different types of metal can be sprayed on the object to be sprayed X made of cast iron pipe or the like so as to have an elliptical shape that is horizontally long with respect to the axial direction of the tube. Compared to the shape, the spray width is large and the variation of the spray amount in the width direction is small, so that the spray area per unit time can be increased and the production efficiency can be improved. At the same time, the yield can be improved.

なお、上記のように溶射機1としては、微粒子化用ガス供給部2が、2つの線材送出部3、4の間に配設されていることが好ましいが、これに限るものではない。また、形状制御用気体供給部5が、管軸心Oに沿う方向に複数並べられ、または、管軸心Oに沿う方向につながった状態で配設されていることが好ましく、この構成により、良好な楕円形に溶射することができるが、これに限るものではない。   As described above, as the thermal sprayer 1, it is preferable that the gas supply unit 2 for atomization is disposed between the two wire feed units 3 and 4. However, the present invention is not limited to this. In addition, it is preferable that a plurality of shape control gas supply units 5 are arranged in a direction along the tube axis O, or arranged in a state connected in a direction along the tube axis O. With this configuration, Although it can be sprayed to a good oval shape, it is not limited to this.

ここで、本実施の形態の溶射機1ならびに溶射方法による溶射状態を確認すべく、以下の試験を行った。
すなわち、被溶射物Xとして直径100mmの鋳鉄管を使用するとともに、第1の金属の線材Aとして直径3.17mmのZn(亜鉛)線、第2の金属の線材Bとして直径3.17mmのZn−40%Sn−0.3%Mg(亜鉛合金)線(Sn:40質量%、Mg:0.3質量%、Zn:残部)を使用して電気式アーク溶射を行った。溶射量は325g/mで、溶射皮膜Yの厚さは約50μmである。鋳鉄管からなる被溶射物Xの外周面(外面)に溶射皮膜Yを形成した。ここで、図4(a)、(b)は溶射皮膜Y部分を含む被溶射物Xの電子顕微鏡写真を示すもので、図4(a)は本発明の実施の形態に係る溶射機1および溶射方法によるもの、図4(b)は図10(a)、(b)、図11に示す従来の溶射機60および溶射方法によるものである。また、図5(a)、(b)は図4(a)、(b)に対応する部分のZn(亜鉛)元素の存在箇所を分析した図であり、図6(a)、(b)は図4(a)、(b)に対応する部分のSn(スズ)元素の存在箇所を分析した図である。なお、被溶射物Xおよび溶射皮膜Yを電子顕微鏡写真で撮像する際は、断面を良好な状態で撮像するために、被溶射物Xおよび溶射皮膜Yを切断した後に研磨するが、図4(a)、(b)におけるFは、切断および研磨時に試料を埋め込むための樹脂である。
Here, in order to confirm the thermal spraying state by the thermal sprayer 1 and the thermal spraying method of the present embodiment, the following tests were performed.
That is, a cast iron pipe having a diameter of 100 mm is used as the sprayed object X, a Zn (zinc) wire having a diameter of 3.17 mm as the first metal wire A, and a Zn having a diameter of 3.17 mm as the second metal wire B. Electric arc spraying was performed using −40% Sn—0.3% Mg (zinc alloy) wire (Sn: 40% by mass, Mg: 0.3% by mass, Zn: balance). The thermal spraying amount is 325 g / m 2 and the thickness of the thermal spray coating Y is about 50 μm. The sprayed coating Y was formed on the outer peripheral surface (outer surface) of the sprayed material X made of a cast iron pipe. Here, FIGS. 4A and 4B show electron micrographs of the thermal spray X including the sprayed coating Y portion, and FIG. 4A shows the thermal sprayer 1 according to the embodiment of the present invention. FIG. 4B is based on the thermal spraying method, and FIG. 4B is based on the conventional thermal sprayer 60 and the thermal spraying method shown in FIGS. FIGS. 5 (a) and 5 (b) are diagrams showing the presence of Zn (zinc) elements in the portions corresponding to FIGS. 4 (a) and 4 (b), and FIGS. 6 (a) and 6 (b). These are the figures which analyzed the presence location of Sn (tin) element of the part corresponding to Drawing 4 (a) and (b). In addition, when imaging the to-be-sprayed object X and the sprayed coating Y with an electron micrograph, in order to image a cross section in a favorable state, it grind | polishes after cut | disconnecting the to-be-sprayed object X and the sprayed coating Y, but FIG. F in a) and (b) is a resin for embedding a sample during cutting and polishing.

図6(b)に示すように、図10(a)、(b)、図11に示す従来の溶射機60および溶射方法で溶射すると、溶射皮膜YにおけるSn(スズ)が認められない箇所が存在した。これに対して、本発明の実施の形態に係る溶射機1および溶射方法では、溶射皮膜YにおいてSn(スズ)が良好に分布しており、成分の偏りは認められず、溶射皮膜Yの成分割合がほぼ同一となった良好な状態で溶射されていることが確認できた。   As shown in FIG. 6 (b), when thermal spraying is performed with the conventional thermal sprayer 60 and the thermal spraying method shown in FIGS. 10 (a), 10 (b) and FIG. 11, there are places where Sn (tin) in the thermal spray coating Y is not recognized. Were present. On the other hand, in the thermal sprayer 1 and the thermal spraying method according to the embodiment of the present invention, Sn (tin) is well distributed in the thermal spray coating Y, no component bias is observed, and the components of the thermal spray coating Y are not observed. It was confirmed that the thermal spraying was performed in a good state where the ratio was almost the same.

なお、上記実施の形態では、溶射機1が被溶射物Xの左側または右側に水平に離れた位置に配設されている場合を示したが、これに限るものではなく、溶射機1はその溶射方向が、被溶射物Xの被溶射面にほぼ直交するように、すなわち、管軸心Oに向くように配置されていればよく、被溶射物Xの上方や下方、または斜め方向に配設されていてもよい。また、上記実施の形態では、被溶射物Xが鋳鉄管などの金属管である場合を述べたが、樹脂管などの金属以外の管にも適用可能である。   In the above-described embodiment, the case where the thermal sprayer 1 is disposed horizontally on the left side or the right side of the object X is not limited to this, and the thermal sprayer 1 is not limited to this. It suffices if the spraying direction is arranged so as to be substantially orthogonal to the sprayed surface of the sprayed object X, that is, so as to face the tube axis O, and is arranged above or below the sprayed object X or in an oblique direction. It may be provided. Moreover, although the case where the sprayed object X is a metal pipe such as a cast iron pipe has been described in the above embodiment, the present invention can also be applied to a pipe other than a metal such as a resin pipe.

1 溶射機
2 微粒子化用ガス供給部
3 プラス極の線材送出部
4 マイナス極の線材送出部
5 形状制御用気体供給部
A 第1の線材
B 第2の線材
O 管軸心
X 被溶射物
Y 溶射皮膜
DESCRIPTION OF SYMBOLS 1 Thermal sprayer 2 Gas supply part for atomization 3 Positive wire delivery part 4 Negative wire delivery part 5 Shape control gas supply part A 1st wire B 2nd wire O Tube axis X Sprayed object Y Thermal spray coating

Claims (4)

被溶射物である管を、その管軸心を中心に回転させながら、互いに種類が異なる第1の金属と第2の金属とからなる異種金属を管の表面に溶射する異種金属の溶射方法であって、
前記異種金属からなる2つの線材を、溶射機に個別に設けられた各線材送出部から、溶射機外部で接触させて溶融するように被溶射物の被溶射面に向けて送り出す線材送出動作と、前記異種金属の溶融箇所に微粒子化用気体を供給する微粒子化用気体供給動作と、溶射形状が楕円となるように形状制御用気体供給部から気体を供給する形状制御用気体供給動作とを並行して行い、
前記線材送出動作において、前記線材を、これらの線材の接触箇所で、管軸心に対して略直交する方向に並んだ状態で接触させ
溶射した時に管軸心に対して略直交する溶射箇所の縦方向の端部では溶射金属の成分割合が異なり、
被溶射物である管を、管軸心を中心に回転させることで、第1の金属の成分割合が大きい部分の上に第2の金属の成分割合が大きい部分を重ねて溶射することを特徴とする異種金属の溶射方法。
In a different metal spraying method, a pipe which is a sprayed object is rotated around the axis of the pipe, and a different metal composed of a first metal and a second metal different from each other is sprayed on the surface of the pipe. There,
Two wires made of the different metals, the wire rods delivery portion provided separately for spray gun, and the wire delivery operation to feed toward the surface to be thermal sprayed of the thermal spray material to melt in contact with thermal sprayer externally , a gas supply operation for atomization supplies gas for atomization to the melting point of said foreign metal, is spray shape and the gas supply operation for shape control supplies gas from the shape control gas supply unit such that the ellipse Done in parallel,
In the wire rod feeding operation, the wire rods are brought into contact with each other in a state of being arranged in a direction substantially orthogonal to the tube axis at the contact portion of these wire rods ,
The component ratio of the sprayed metal is different at the longitudinal end of the sprayed portion that is substantially orthogonal to the tube axis when sprayed.
By rotating the tube that is the object to be sprayed around the axis of the tube, the portion having a large component ratio of the first metal is sprayed on the portion having a large component ratio of the second metal. The thermal spraying method for dissimilar metals.
管軸心を中心に回転される管からなる被溶射物に対して、互いに種類が異なる第1の金属と第2の金属とからなる異種の金属を溶射する溶射機であって、
互いに異なる材料の線材を外部で接触させて溶融するように送り込む2つの線材送出部と、溶融された金属を微粒子状にする気体を供給する微粒子化用ガス供給部と、溶射形状が前記管軸心に沿う方向に対して長い楕円形となるように気体を供給する形状制御用気体供給部とを備え、
前記互いに種類が異なる第1の金属と第2の金属とからなる材料の線材を送り込む前記2つの線材送出部が、前記管軸心に対して略直交する方向に並べられて配設され、溶射した時に管軸心に対して略直交する溶射箇所の縦方向の端部では溶射金属の成分割合が異なり、
被溶射物である管を、管軸心を中心に回転させることで、第1の金属の成分割合が大きい部分の上に第2の金属の成分割合が大きい部分を重ねるように構成していることを特徴とする溶射機。
A thermal spraying machine that sprays different kinds of metals composed of a first metal and a second metal, which are different from each other, on a sprayed object composed of a tube rotated about a tube axis,
Two wire feed parts for feeding wires made of different materials in contact with each other so as to melt, a gas supply part for atomization for supplying a gas for making molten metal into fine particles, and a thermal spray shape of the tube axis A gas supply unit for shape control that supplies a gas so as to be a long oval shape in a direction along the heart,
The two wire rod feeding sections for feeding the wire rods made of the first metal and the second metal different from each other are arranged in a direction substantially orthogonal to the tube axis and sprayed. The component ratio of the sprayed metal is different at the longitudinal end of the sprayed part that is substantially perpendicular to the tube axis.
By rotating the tube that is the sprayed object around the tube axis, a portion having a large component ratio of the second metal is configured to overlap a portion having a large component ratio of the first metal . Thermal spraying machine characterized by that.
微粒子化用ガス供給部が、2つの線材送出部の間に配設されていることを特徴とする請求項2記載の溶射機。   The thermal spraying machine according to claim 2, wherein the gas supply unit for atomization is disposed between two wire rod feeding units. 形状制御用気体供給部が、管軸心に直行する方向に対して2つの線材送出部を間に挟んだ状態で、管軸心に沿う方向に複数並べられ、または、管軸心に沿う方向につながった状態で配設されていることを特徴とする請求項2または3に記載の溶射機。   A plurality of shape control gas supply units are arranged in the direction along the tube axis with the two wire feed parts sandwiched in the direction perpendicular to the tube axis, or the direction along the tube axis The thermal spraying machine according to claim 2 or 3, wherein the thermal spraying machine is arranged in a state of being connected to.
JP2011030315A 2011-02-16 2011-02-16 Thermal spraying method and spraying machine for dissimilar metals Active JP5751854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030315A JP5751854B2 (en) 2011-02-16 2011-02-16 Thermal spraying method and spraying machine for dissimilar metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030315A JP5751854B2 (en) 2011-02-16 2011-02-16 Thermal spraying method and spraying machine for dissimilar metals

Publications (2)

Publication Number Publication Date
JP2012167341A JP2012167341A (en) 2012-09-06
JP5751854B2 true JP5751854B2 (en) 2015-07-22

Family

ID=46971758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030315A Active JP5751854B2 (en) 2011-02-16 2011-02-16 Thermal spraying method and spraying machine for dissimilar metals

Country Status (1)

Country Link
JP (1) JP5751854B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511852B1 (en) 2013-10-14 2015-04-15 한양대학교 에리카산학협력단 Arc metal spray gun and method of metal spray using the same
KR101516885B1 (en) * 2013-10-14 2015-05-04 한양대학교 에리카산학협력단 Alloy for Arc spray and arc spray apparatus using the same
CN103657909B (en) * 2013-12-23 2016-08-31 石家庄新日锌业有限公司 Electric arc spray nozzle
WO2016137025A1 (en) * 2015-02-25 2016-09-01 한양대학교에리카산학협력단 Arc spraying system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190156A (en) * 1987-01-31 1988-08-05 Toyoda Gosei Co Ltd Thermally metal spraying method
JP2001181818A (en) * 1999-12-24 2001-07-03 Topy Ind Ltd Thermal spraying method and thermal spraying apparatus
JP2007107082A (en) * 2005-10-17 2007-04-26 Kurimoto Ltd Arc spraying apparatus

Also Published As

Publication number Publication date
JP2012167341A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5751854B2 (en) Thermal spraying method and spraying machine for dissimilar metals
US6723954B2 (en) Straight polarity metal cored wire
CN107685184A (en) More material components and its manufacture method
CN105229201A (en) There is the outer field cast iron member processed again of steel
WO2013129151A1 (en) Plasma-mig welding method and welding torch
CN108611637B (en) Surface plasma cladding method for agricultural straw cutting knife
US20220226921A1 (en) Contact tip contact arrangement for metal welding
JP2008246495A (en) Control device for welding wire
CN102847949B (en) Preparation method of spherical Ru-V powder brazing filler metal
KR100517768B1 (en) Method for depositing a high alloy stainless steel overlayer onto a substrate
JP6666098B2 (en) High current pulse arc welding method and flux cored welding wire
CN114918420A (en) Apparatus and method for manufacturing powder material
US12048081B2 (en) EIGA coil having annular turns
CN103567615A (en) Method for reinforcing welding tip and welding tip
AU2019204545B2 (en) Method for gas metal arc welding
JPH08267274A (en) Wire filler for electroslag welding
US20230089614A1 (en) Welding electrode with functional coatings
EP3481578B1 (en) Fluid-cooled contact tip assembly for metal welding
US7094987B2 (en) Hollow thermal spray electrode wire having multiple layers
JP2016040046A (en) Pulse arc weld method
JP2699763B2 (en) Blow hole prevention welding method
US20140042144A1 (en) Filler wire for a laser hot wire system
JP2007107082A (en) Arc spraying apparatus
WO2013108797A1 (en) Arc welding method and plasma torch
KR102232132B1 (en) Consumable welding wire, preferably mig/mag, and relating manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150519

R150 Certificate of patent or registration of utility model

Ref document number: 5751854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150