JP5751848B2 - Continuously variable transmission for vehicle - Google Patents

Continuously variable transmission for vehicle Download PDF

Info

Publication number
JP5751848B2
JP5751848B2 JP2011013193A JP2011013193A JP5751848B2 JP 5751848 B2 JP5751848 B2 JP 5751848B2 JP 2011013193 A JP2011013193 A JP 2011013193A JP 2011013193 A JP2011013193 A JP 2011013193A JP 5751848 B2 JP5751848 B2 JP 5751848B2
Authority
JP
Japan
Prior art keywords
planetary
transmission
shaft
continuously variable
rotating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011013193A
Other languages
Japanese (ja)
Other versions
JP2012154394A (en
Inventor
清水 雅浩
雅浩 清水
嘉久 菅野
嘉久 菅野
淳史 千葉
淳史 千葉
堺 幸男
幸男 堺
寿光 中嶋
寿光 中嶋
飛鳥 伊東
飛鳥 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011013193A priority Critical patent/JP5751848B2/en
Publication of JP2012154394A publication Critical patent/JP2012154394A/en
Application granted granted Critical
Publication of JP5751848B2 publication Critical patent/JP5751848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

本発明は、車両用無段変速機に関する。   The present invention relates to a continuously variable transmission for a vehicle.

従来、車両用無段変速機において、変速機軸と一体に回転するドライブ側伝達部材(駆動回転部材)と、変速機軸に回転自在に支持されるドリブン側伝達部材(従動回転部材)と、ドライブ側伝達部材とドリブン側伝達部材との間に圧接され、ドライブ側伝達部材の回転をドリブン側伝達部材に伝達する複数の遊星回転部材(変速回転部材)と、軸の回転トルクの一部を軸方向を向く力に変換し、ドリブン側伝達部材を遊星回転部材に圧接するトルクカム(調圧カム機構)と、変速機軸に軸支される円筒状の遊星キャリア(キャリア)とを備え、遊星回転部材を貫通する遊星支持軸(支軸)によって遊星回転部材を遊星キャリアに支持させたものが知られている(例えば、特許文献1参照)。特許文献1では、遊星支持軸は、変速機軸に対して略45°傾けて配置されている。   Conventionally, in a continuously variable transmission for a vehicle, a drive-side transmission member (drive rotation member) that rotates integrally with a transmission shaft, a driven-side transmission member (driven rotation member) that is rotatably supported by a transmission shaft, and a drive side A plurality of planetary rotating members (transmission rotating members) that are in pressure contact between the transmission member and the driven-side transmission member and transmit the rotation of the drive-side transmission member to the driven-side transmission member, and a part of the rotational torque of the shaft in the axial direction A torque cam (pressure adjusting cam mechanism) that presses the driven transmission member against the planetary rotating member, and a cylindrical planet carrier (carrier) that is pivotally supported by the transmission shaft. A planetary rotating member supported by a planetary carrier by a penetrating planetary support shaft (support shaft) is known (for example, see Patent Document 1). In Patent Document 1, the planetary support shaft is disposed at an angle of approximately 45 ° with respect to the transmission shaft.

特開2001−214958号公報JP 2001-214958 A

しかしながら、上記従来の車両用無段変速機では、遊星支持軸が略45°傾いているため、遊星回転部材とドライブ側伝達部材及びドリブン側伝達部材との間の摩擦接触面内部において滑りが発生して伝達効率が低下する。また、各部の変形が大きく影響するために、伝達トルクに対する変速レシオの変化量が大きく、変速レシオの制御手法が複雑となるという課題がある。
本発明は、上述した事情に鑑みてなされたものであり、車両用無段変速機において、遊星回転部材の滑りを抑制し、伝達効率を向上することを目的とする。
However, in the conventional vehicle continuously variable transmission, since the planetary support shaft is inclined by approximately 45 °, slip occurs in the frictional contact surface between the planetary rotating member, the drive-side transmission member, and the driven-side transmission member. As a result, transmission efficiency decreases. Further, since the deformation of each part greatly affects, there is a problem that a change amount of the shift ratio with respect to the transmission torque is large, and the control method of the shift ratio becomes complicated.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to suppress slipping of a planetary rotating member and improve transmission efficiency in a continuously variable transmission for a vehicle.

上記目的を達成するため、本発明は、ドライブフェース(53)と該ドライブフェース(53)に対して回転自在に支持されるドリブンフェース(54,254)とを有し、該両フェース間において回転軸(51)を支持するケーシング(23)に対して回転不能且つ軸方向に移動可能に設けられた遊星支持軸(57)に、前記両フェース間の動力伝達を行う遊星回転部材(55)が設けられた車両用無段変速機において、前記回転軸(51)上に回転力を軸方向の変位にかえるとともに前記両フェースと前記遊星回転部材(55)との摩擦力を付加する調圧カム機構(63,68,268)を設け、前記遊星支持軸(57)の傾きを前記回転軸(51)に対して45°より小さい鋭角で30°までの範囲に配置したことを特徴とする。
この構成によれば、両フェース間の動力伝達を行う遊星回転部材が設けられる遊星支持軸が回転軸に対して鋭角に配置されるため、両フェース間における遊星回転部材の摩擦力が増加する。このため、両フェース間における遊星回転部材の滑りを低減でき、変速レシオを確保しつつ、車両用無段変速機の伝達効率を向上できる。また、遊星回転部材の滑りが低減されるため、車両用無段変速機の品質が向上する。
また、本発明は、ドライブフェース(53)と該ドライブフェース(53)に対して回転自在に支持されるドリブンフェース(54,254)とを有し、該両フェース間において回転軸(51)を支持するケーシング(23)に対して回転不能且つ軸方向に移動可能に設けられた遊星支持軸(57)に、前記両フェース間の動力伝達を行う遊星回転部材(55)が設けられた車両用無段変速機において、前記回転軸(51)上に回転力を軸方向の変位にかえるとともに前記両フェースと前記遊星回転部材(55)との摩擦力を付加する調圧カム機構(63,68,268)を設け、前記遊星支持軸(57)の傾きを前記回転軸(51)に対して30°から41°の鋭角に配置したことを特徴とする。
In order to achieve the above object, the present invention has a drive face (53) and a driven face (54, 254) rotatably supported with respect to the drive face (53), and rotates between the two faces. A planetary rotating member (55) for transmitting power between the two faces is provided on a planetary support shaft (57) provided so as not to rotate and move in the axial direction with respect to a casing (23) supporting the shaft (51). In the continuously variable transmission for a vehicle, a pressure adjusting cam that changes the rotational force on the rotating shaft (51) to an axial displacement and adds a frictional force between the both faces and the planetary rotating member (55). A mechanism (63, 68, 268) is provided, and the inclination of the planetary support shaft (57) is arranged in an acute angle smaller than 45 ° and up to 30 ° with respect to the rotation shaft (51).
According to this configuration, the planetary support shaft provided with the planetary rotating member for transmitting power between the two faces is disposed at an acute angle with respect to the rotating shaft, so that the frictional force of the planetary rotating member between the two faces increases. For this reason, the slip of the planetary rotating member between the two faces can be reduced, and the transmission efficiency of the continuously variable transmission for the vehicle can be improved while ensuring the gear ratio. Moreover, since the slip of the planetary rotating member is reduced, the quality of the continuously variable transmission for the vehicle is improved.
The present invention also has a drive face (53) and a driven face (54, 254) rotatably supported with respect to the drive face (53), and a rotating shaft (51) is provided between the two faces. For a vehicle in which a planetary rotation shaft (57) that transmits power between the two faces is provided on a planetary support shaft (57) that is non-rotatable and movable in the axial direction with respect to a supporting casing (23). In the continuously variable transmission, the pressure adjusting cam mechanism (63, 68) changes the rotational force on the rotating shaft (51) to an axial displacement and applies a frictional force between the two faces and the planetary rotating member (55). 268), and the inclination of the planet support shaft (57) is arranged at an acute angle of 30 ° to 41 ° with respect to the rotation shaft (51).

また、上記構成において、前記調圧カム機構(63,68,268)は、前記各フェース(53,54,254をそれぞれ前記遊星回転部材(55)に押し付けるように前記遊星回転部材(55)の両側に設けられていても良い。
この場合、遊星回転部材の両側に設けられた調圧カム機構によって、各フェースがそれぞれ遊星回転部材に押し付けられるため、調圧カム機構を分散して小型化できるとともに、各フェースの調圧カム機構の追従性を向上でき、車両用無段変速機の伝達効率を向上できる。また、調圧カム機構が分散して設けられることで、調圧カム機構に作用する反力が小さくなり、調圧カム機構の振動を低減できる。このため、遊星回転部材の滑りを低減でき、車両用無段変速機の伝達効率を向上できる。
Further, in the above configuration, the pressure adjusting cam mechanism (63, 68, 268) is configured so that the face (53, 54, 254) of the planetary rotating member (55) is pressed against the planetary rotating member (55). It may be provided on both sides.
In this case, each face is pressed against the planetary rotating member by the pressure adjusting cam mechanisms provided on both sides of the planetary rotating member, so that the pressure adjusting cam mechanism can be dispersed and downsized, and the pressure adjusting cam mechanism of each face Can be improved, and the transmission efficiency of the continuously variable transmission for a vehicle can be improved. Further, since the pressure adjusting cam mechanisms are provided in a distributed manner, the reaction force acting on the pressure adjusting cam mechanism is reduced, and the vibration of the pressure adjusting cam mechanism can be reduced. For this reason, the slip of the planetary rotating member can be reduced, and the transmission efficiency of the continuously variable transmission for the vehicle can be improved.

また、前記遊星支持軸(57)は単一の前記回転軸(51)上に軸支され、前記ケーシング(23)に対して回り止めされる構成としても良い。
この場合、遊星支持軸が単一の回転軸上に軸支され、ケーシングに対して回り止めされる構成においても、調圧カム機構を左右両側に設けるとともに遊星支持軸を回転軸に対して鋭角に設けることで、遊星回転部材の滑りを低減でき、車両用無段変速機の伝達効率を向上できる。
The planetary support shaft (57) may be supported on a single rotating shaft (51) and prevented from rotating with respect to the casing (23).
In this case, even in a configuration in which the planetary support shaft is pivotally supported on a single rotation shaft and is prevented from rotating with respect to the casing, pressure control cam mechanisms are provided on both the left and right sides, and the planetary support shaft is at an acute angle with respect to the rotation shaft As a result, the slippage of the planetary rotating member can be reduced, and the transmission efficiency of the continuously variable transmission for the vehicle can be improved.

さらに、前記遊星支持軸(57)は支軸ホルダー(77)に対して隙間嵌合による調整機構を介して支持されても良い。
この場合、遊星支持軸が支軸ホルダーに対して隙間嵌合による調整機構を介して支持されており、遊星支持軸は支軸ホルダー内で動くことができる。これにより、遊星支持軸に支持される遊星回転部材も動くことができ、各部の歪みや寸法バラツキによる寸法誤差を遊星回転部材が動くことで吸収でき、伝達効率を低下させるフリクションを低減できるため、車両用無段変速機の伝達効率を向上できる。また、寸法誤差を吸収できるため、車両用無段変速機の品質が向上する。
Further, the planetary support shaft (57) may be supported on the support shaft holder (77) through an adjustment mechanism by fitting with a gap.
In this case, the planetary support shaft is supported via the adjusting mechanism by the clearance fit with respect to the support shaft holder, the planetary support shaft can move in the shaft holder. As a result, the planetary rotating member supported by the planetary support shaft can also move, and dimensional errors due to distortion and dimensional variation of each part can be absorbed by the movement of the planetary rotating member, so that friction that reduces transmission efficiency can be reduced. The transmission efficiency of the continuously variable transmission for a vehicle can be improved. Further, since the dimensional error can be absorbed, the quality of the continuously variable transmission for the vehicle is improved.

また、前記遊星回転部材(55)は、周方向に等間隔に複数個が並べて設けられていても良い。
この場合、遊星回転部材が周方向に等間隔に複数個が並べて設けられているため、複数個内の寸法のバラツキがあったとしても3個が摩擦面に強く当たる3個当たりとなり、3個当たりによる摩擦面の変形により残りの遊星回転部材も摩擦面に当たることができ、遊星回転部材の滑りを低減して、車両用無段変速機の伝達効率を向上できる。また、遊星回転部材の寸法のバラツキを吸収できるため、車両用無段変速機の品質が向上する
A plurality of the planetary rotating members (55) may be provided side by side at equal intervals in the circumferential direction.
In this case, since a plurality of planetary rotating members are arranged at equal intervals in the circumferential direction, even if there is a variation in the size of the plurality of planetary rotating members, the three are in contact with each other and strongly contact the friction surface. The remaining planetary rotating member can also hit the frictional surface due to the deformation of the frictional surface by hitting, reducing the slippage of the planetary rotating member and improving the transmission efficiency of the continuously variable transmission for the vehicle. Moreover, since the variation in the dimension of the planetary rotating member can be absorbed, the quality of the continuously variable transmission for the vehicle is improved .

本発明に係る車両用無段変速機では、両フェース間の動力伝達を行う遊星回転部材が設けられる遊星支持軸が回転軸に対して鋭角に配置されるため、両フェース間における遊星回転部材の摩擦力が増加する。このため、両フェース間における遊星回転部材の滑りを低減でき、変速レシオを確保しつつ、車両用無段変速機の伝達効率を向上できる。また、遊星回転部材の滑りが低減されるため、車両用無段変速機の品質が向上する。
また、遊星回転部材を調圧カム機構の両側に設けることで、調圧カム機構を分散して小型化できるとともに、各フェースの調圧カム機構の追従性を向上でき、車両用無段変速機の伝達効率を向上できる。また、調圧カム機構が分散して設けられることで、調圧カム機構に作用する反力が小さくなり、調圧カム機構の振動を低減できる。このため、遊星回転部材の滑りを低減でき、車両用無段変速機の伝達効率を向上できる。
In the continuously variable transmission for a vehicle according to the present invention, the planetary support shaft provided with the planetary rotating member for transmitting power between the two faces is disposed at an acute angle with respect to the rotating shaft. The frictional force increases. For this reason, the slip of the planetary rotating member between the two faces can be reduced, and the transmission efficiency of the continuously variable transmission for the vehicle can be improved while ensuring the gear ratio. Moreover, since the slip of the planetary rotating member is reduced, the quality of the continuously variable transmission for the vehicle is improved.
Further, by providing planetary rotating members on both sides of the pressure adjusting cam mechanism, the pressure adjusting cam mechanisms can be dispersed and miniaturized, and the followability of the pressure adjusting cam mechanism of each face can be improved. Can improve the transmission efficiency. Further, since the pressure adjusting cam mechanisms are provided in a distributed manner, the reaction force acting on the pressure adjusting cam mechanism is reduced, and the vibration of the pressure adjusting cam mechanism can be reduced. For this reason, the slip of the planetary rotating member can be reduced, and the transmission efficiency of the continuously variable transmission for the vehicle can be improved.

また、遊星支持軸が単一の回転軸上に軸支され、ケーシングに対して回り止めされる構成においても、調圧カム機構を左右両側に設けるとともに遊星支持軸を回転軸に対して鋭角に設けることで、遊星回転部材の滑りを低減でき、車両用無段変速機の伝達効率を向上できる。
さらに、支軸ホルダーに対して調整機構を介して支持された遊星支持軸が動くことで、遊星回転部材も動くことができ、各部の歪みや寸法バラツキによる寸法誤差を吸収でき、伝達効率を低下させるフリクションを低減できるため、車両用無段変速機の伝達効率を向上できる。また、寸法誤差を吸収できるため、車両用無段変速機の品質が向上する。
また、遊星回転部材が周方向に等間隔に複数個が並べて設けられているため、複数内の寸法のバラツキがあったとしても3個が摩擦面に強く当たる3個当たりとなり、3個当たりによる摩擦面の変形により残りの遊星回転部材も摩擦面に当たることができ、遊星回転部材の滑りを低減して、車両用無段変速機の伝達効率を向上できる。また、遊星回転部材の寸法のバラツキを吸収できるため、車両用無段変速機の品質が向上する。
Even in a configuration in which the planetary support shaft is pivotally supported on a single rotation shaft and is prevented from rotating with respect to the casing, pressure control cam mechanisms are provided on both the left and right sides, and the planetary support shaft is at an acute angle with respect to the rotation shaft. By providing, the slip of the planetary rotating member can be reduced, and the transmission efficiency of the continuously variable transmission for the vehicle can be improved.
In addition, the planetary support shaft supported via the adjustment mechanism with respect to the spindle holder can move, so that the planetary rotating member can also move, absorb dimensional errors due to distortion and dimensional variations of each part, and reduce transmission efficiency. Therefore, the transmission efficiency of the continuously variable transmission for a vehicle can be improved. Further, since the dimensional error can be absorbed, the quality of the continuously variable transmission for the vehicle is improved.
In addition, since a plurality of planetary rotating members are arranged at equal intervals in the circumferential direction, even if there is a variation in the size within the plurality, the three will be strongly hitting the friction surface and will depend on the three Due to the deformation of the friction surface, the remaining planetary rotating member can also hit the friction surface, reducing the slippage of the planetary rotating member and improving the transmission efficiency of the continuously variable transmission for the vehicle. Moreover, since the variation in the dimension of the planetary rotating member can be absorbed, the quality of the continuously variable transmission for the vehicle is improved.

本発明の第1の実施の形態に係る車両用無段変速機を備えたエンジンの断面図である。It is sectional drawing of the engine provided with the continuously variable transmission for vehicles which concerns on the 1st Embodiment of this invention. 無段変速機がロー変速比にある状態を示す断面図である。It is sectional drawing which shows the state which has a continuously variable transmission in a low gear ratio. 無段変速機がトップ変速比にある状態を示す断面図である。It is sectional drawing which shows the state which has a continuously variable transmission in top gear ratio. 図2における変速部の拡大図である。FIG. 3 is an enlarged view of a transmission unit in FIG. 2. 図4において入力側トルクカムを変速機軸に直交するZ方向から見た拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the input side torque cam as viewed from the Z direction orthogonal to the transmission shaft in FIG. 4. 入力側トルクカムに回転力が作用した状態を示す断面図である。It is sectional drawing which shows the state which the rotational force acted on the input side torque cam. 取付け角度とレシオ幅との関係を示す図である。It is a figure which shows the relationship between an attachment angle and a ratio width. 変速部を変速機軸の軸方向から見た断面図である。It is sectional drawing which looked at the transmission part from the axial direction of the transmission shaft. 第2の実施の形態における変速部の拡大図である。It is an enlarged view of the transmission part in 2nd Embodiment.

以下、本発明の実施の形態に係る車両用無段変速機について図面を参照して説明する。   Hereinafter, a continuously variable transmission for a vehicle according to an embodiment of the present invention will be described with reference to the drawings.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る車両用無段変速機を備えたエンジンの断面図である。
図1に示すように、自動二輪車等の車両に搭載されるエンジン10は、クランクケース11を有し、クランクケース11内には、クランク軸12が収容されるクランク室13、及び、無段変速機50(車両用無段変速機)が収容される変速機室14が画成されている。クランク軸12は、クランク室13の左右の壁部にそれぞれ設けられたベアリング15に回転自在に軸支され、車幅方向に延びている。クランク軸12の一端側には発電機16が設けられ、クランク軸12の他端には自動遠心クラッチ17が設けられている。クランク軸12の中央部にはクランクウェブ18が設けられ、クランクウェブ18には、クランクピン19を介してコンロッド20が連結されている。
[First Embodiment]
FIG. 1 is a cross-sectional view of an engine provided with a continuously variable transmission for a vehicle according to a first embodiment of the present invention.
As shown in FIG. 1, an engine 10 mounted on a vehicle such as a motorcycle has a crankcase 11, a crankcase 13 in which a crankshaft 12 is accommodated, and a continuously variable transmission. A transmission chamber 14 in which the machine 50 (a continuously variable transmission for a vehicle) is accommodated is defined. The crankshaft 12 is rotatably supported by bearings 15 provided on the left and right wall portions of the crank chamber 13 and extends in the vehicle width direction. A generator 16 is provided on one end side of the crankshaft 12, and an automatic centrifugal clutch 17 is provided on the other end of the crankshaft 12. A crank web 18 is provided at the center of the crankshaft 12, and a connecting rod 20 is connected to the crank web 18 via a crank pin 19.

自動遠心クラッチ17は、クランク軸12と一体に回転する切り替え部17Aと、クランク軸12上にクランク軸12に対して回転自在に軸支される出力歯車17Bとを有し、切り替え部17Aの回転数が所定値以上となったときに出力歯車17Bにクランク軸12の動力が伝達されるようになる自動式のクラッチである。自動遠心クラッチ17の側方はクラッチカバー21で覆われ、発電機16の側方は発電機カバー22で覆われている。   The automatic centrifugal clutch 17 includes a switching portion 17A that rotates integrally with the crankshaft 12, and an output gear 17B that is rotatably supported on the crankshaft 12 with respect to the crankshaft 12, and the rotation of the switching portion 17A. This is an automatic clutch in which the power of the crankshaft 12 is transmitted to the output gear 17B when the number exceeds a predetermined value. The side of the automatic centrifugal clutch 17 is covered with a clutch cover 21, and the side of the generator 16 is covered with a generator cover 22.

変速機室14はクランク室13の後部に連なるケーシング23内に設けられている。無段変速機50は、ケーシング23の左右の側壁23A,23Bに跨ってクランク軸12と平行に延びる変速機軸51(回転軸)と、変速機軸51に設けられる変速部52とを有している。
変速機軸51は、左右の側壁23A,23Bに設けられたボールベアリング24A,24Bを介して回転自在に支持され、変速機軸51における自動遠心クラッチ17側の端はケーシング23の外側まで延び、この端には、自動遠心クラッチ17の出力歯車17Bに常時噛み合う入力歯車25が固定されている。
The transmission chamber 14 is provided in a casing 23 connected to the rear portion of the crank chamber 13. The continuously variable transmission 50 includes a transmission shaft 51 (rotary shaft) extending in parallel with the crankshaft 12 across the left and right side walls 23A and 23B of the casing 23, and a transmission portion 52 provided on the transmission shaft 51. .
The transmission shaft 51 is rotatably supported via ball bearings 24A and 24B provided on the left and right side walls 23A and 23B, and the end of the transmission shaft 51 on the side of the automatic centrifugal clutch 17 extends to the outside of the casing 23. The input gear 25 that is always meshed with the output gear 17B of the automatic centrifugal clutch 17 is fixed.

変速機室14には、変速機軸51と平行に延びる減速軸26及び最終出力軸27が設けられている。減速軸26は、変速部52の出力側に噛み合う被動歯車26Aと、最終出力軸27に固定された被動歯車27Aに噛み合う駆動歯車26Bとを有している。最終出力軸27の端に形成された出力軸端部27Bはケーシング23の外側に延び、出力軸端部27Bには、ドライブスプロケット28が固定されている。ドライブスプロケット28と後輪(不図示)との間には駆動チェーン29が掛け渡される。   The transmission chamber 14 is provided with a reduction shaft 26 and a final output shaft 27 that extend in parallel with the transmission shaft 51. The reduction shaft 26 has a driven gear 26 </ b> A that meshes with the output side of the transmission unit 52, and a drive gear 26 </ b> B that meshes with a driven gear 27 </ b> A fixed to the final output shaft 27. An output shaft end 27B formed at the end of the final output shaft 27 extends outside the casing 23, and a drive sprocket 28 is fixed to the output shaft end 27B. A drive chain 29 is spanned between the drive sprocket 28 and a rear wheel (not shown).

図2は、無段変速機50がロー変速比にある状態を示す断面図である。図3は、無段変速機50がトップ変速比にある状態を示す断面図である。
図1〜図3に示すように、無段変速機50では、変速機軸51上で変速部52を操作することで、ロー変速比とトップ変速比との間で無段階に変速比を変更することができる。
変速機軸51は軸芯に中空部42を有し、中空部42には、オイルポンプ(不図示)から潤滑オイルが供給される。変速機軸51は、中空部42を外周面に連通させる油孔43を複数有し、油孔43を通った潤滑オイルは、無段変速機50の各部に供給される。
FIG. 2 is a cross-sectional view showing a state where the continuously variable transmission 50 is in a low gear ratio. FIG. 3 is a cross-sectional view showing a state where the continuously variable transmission 50 is at the top gear ratio.
As shown in FIGS. 1 to 3, in the continuously variable transmission 50, the gear ratio is changed steplessly between the low gear ratio and the top gear ratio by operating the transmission unit 52 on the transmission shaft 51. be able to.
The transmission shaft 51 has a hollow portion 42 in the shaft core, and lubricating oil is supplied to the hollow portion 42 from an oil pump (not shown). The transmission shaft 51 has a plurality of oil holes 43 that allow the hollow portion 42 to communicate with the outer peripheral surface, and the lubricating oil that has passed through the oil holes 43 is supplied to each part of the continuously variable transmission 50.

変速部52は、変速機軸51と一体に回転するドライブ側伝達部材53(ドライブフェース)と、変速機軸51に相対回転自在に支承されるドリブン側伝達部材54(ドリブンフェース)と、ドライブ側伝達部材53とドリブン側伝達部材54との間に設けられ動力を伝達する複数の遊星回転部材55と、変速機軸51の軸方向に移動可能な遊星キャリアー56と、遊星キャリアー56に設けられ各遊星回転部材55を軸支する複数の遊星支持軸57とを備えて構成される。
ドライブ側伝達部材53は単一の軸である変速機軸51に一体に設けられ、ドリブン側伝達部材54は、変速機軸51に軸支されてドライブ側伝達部材53に対して回転自在である。
The transmission unit 52 includes a drive-side transmission member 53 (drive face) that rotates integrally with the transmission shaft 51, a driven-side transmission member 54 (driven face) that is rotatably supported on the transmission shaft 51, and a drive-side transmission member. 53 and a plurality of planetary rotating members 55 provided between the driven transmission member 54 and transmitting power, a planetary carrier 56 movable in the axial direction of the transmission shaft 51, and each planetary rotating member provided on the planetary carrier 56. And a plurality of planetary support shafts 57 that support 55.
The drive-side transmission member 53 is provided integrally with the transmission shaft 51 that is a single shaft, and the driven-side transmission member 54 is supported by the transmission shaft 51 and is rotatable with respect to the drive-side transmission member 53.

ドライブ側伝達部材53は、変速機軸51の外周面から径方向に突出する円板状受け部60と、変速機軸51に嵌合されるリング状の駆動回転部材61とを有している。円板状受け部60と駆動回転部材61とは、円板状受け部60と駆動回転部材61との間に設けられる入力側トルクカム63(調圧カム機構)によって連結され、一体に回転する。駆動回転部材61の外周面には、遊星回転部材55に接触する摩擦接触面61Aが形成されている。
変速機軸51において、入力歯車25側からドライブ側伝達部材53近傍までの部分は、クランク軸12から動力が入力される入力軸部51Aとして機能する。
The drive-side transmission member 53 includes a disk-shaped receiving portion 60 that protrudes in the radial direction from the outer peripheral surface of the transmission shaft 51, and a ring-shaped drive rotation member 61 that is fitted to the transmission shaft 51. The disc-shaped receiving portion 60 and the drive rotating member 61 are connected by an input side torque cam 63 (pressure adjusting cam mechanism) provided between the disc-shaped receiving portion 60 and the driving rotating member 61, and rotate integrally. A friction contact surface 61 </ b> A that contacts the planetary rotation member 55 is formed on the outer peripheral surface of the drive rotation member 61.
In the transmission shaft 51, a portion from the input gear 25 side to the vicinity of the drive-side transmission member 53 functions as an input shaft portion 51A to which power is input from the crankshaft 12.

ドリブン側伝達部材54は、ドライブ側伝達部材53側に開放した椀状に形成される従動回転部材64と、減速軸26の被動歯車26Aに噛み合う出力歯車部65とを有している。従動回転部材64は、変速機軸51の外周に設けられるニードルベアリング66を介して変速機軸51に対して相対回転可能に設けられている。出力歯車部65は、変速機軸51の外周に設けられるアンギュラーコンタクトベアリング67を介して変速機軸51に対して相対回転可能に設けられている。従動回転部材64と出力歯車部65とは、従動回転部材64と出力歯車部65との間に設けられる出力側トルクカム68(調圧カム機構)によって連結され、一体に回転する。
変速機軸51において、ドリブン側伝達部材54側から側壁23Aまでの部分は、クランク軸12からの動力を減速軸26に出力する出力軸部51Bとして機能する。
The driven-side transmission member 54 has a driven rotation member 64 that is formed in a bowl shape that opens toward the drive-side transmission member 53, and an output gear portion 65 that meshes with the driven gear 26 </ b> A of the reduction shaft 26. The driven rotation member 64 is provided so as to be rotatable relative to the transmission shaft 51 via a needle bearing 66 provided on the outer periphery of the transmission shaft 51. The output gear portion 65 is provided to be rotatable relative to the transmission shaft 51 via an angular contact bearing 67 provided on the outer periphery of the transmission shaft 51. The driven rotation member 64 and the output gear portion 65 are connected by an output side torque cam 68 (pressure adjusting cam mechanism) provided between the driven rotation member 64 and the output gear portion 65, and rotate integrally.
In the transmission shaft 51, a portion from the driven-side transmission member 54 side to the side wall 23 </ b> A functions as an output shaft portion 51 </ b> B that outputs power from the crankshaft 12 to the reduction shaft 26.

従動回転部材64は、ニードルベアリング66に支持される円筒状の基部69と、基部69から径方向に延びる円板部70と、円板部70からドライブ側伝達部材53側へ延びる円筒状の筒部71とを有している。筒部71の内周面には、遊星回転部材55に接触する摩擦接触面71Aが形成されている。   The driven rotation member 64 includes a cylindrical base portion 69 supported by the needle bearing 66, a disc portion 70 extending in the radial direction from the base portion 69, and a cylindrical tube extending from the disc portion 70 to the drive side transmission member 53 side. Part 71. A frictional contact surface 71 </ b> A that contacts the planetary rotating member 55 is formed on the inner peripheral surface of the cylindrical portion 71.

出力歯車部65は円筒状に形成され、出力歯車部65における側壁23A側の端の内周には、アンギュラーコンタクトベアリング67が収容されるベアリング収容部72が形成されている。ベアリング収容部72は段状に形成されており、アンギュラーコンタクトベアリング67は、その外周面67A及び側面67Bがベアリング収容部72に当接した状態で配置されている。
出力歯車部65は、従動回転部材64の基部69の外周面に沿うように基部69の外側を延びる押圧片73を有している。押圧片73の先端と円板部70との間には、従動回転部材64をドライブ側伝達部材53側に付勢する皿ばね74が介装されている。従動回転部材64は皿ばね74によって常にドライブ側伝達部材53側に押し付けられている。
The output gear portion 65 is formed in a cylindrical shape, and a bearing accommodating portion 72 in which the angular contact bearing 67 is accommodated is formed on the inner periphery of the end of the output gear portion 65 on the side wall 23A side. The bearing accommodating portion 72 is formed in a step shape, and the angular contact bearing 67 is arranged in a state where the outer peripheral surface 67A and the side surface 67B are in contact with the bearing accommodating portion 72.
The output gear portion 65 has a pressing piece 73 that extends outside the base portion 69 so as to follow the outer peripheral surface of the base portion 69 of the driven rotation member 64. A disc spring 74 that biases the driven rotation member 64 toward the drive-side transmission member 53 is interposed between the tip of the pressing piece 73 and the disc portion 70. The driven rotating member 64 is always pressed against the drive side transmission member 53 side by the disc spring 74.

変速機軸51上においてボールベアリング24Aとアンギュラーコンタクトベアリング67との間には、エンジン10の各部にオイルを送出するオイルポンプ(不図示)を駆動するポンプ駆動歯車75が固定されている。
ポンプ駆動歯車75とアンギュラーコンタクトベアリング67との間には、リング状のシム76が固定されている。シム76は、変速機軸51に嵌め込まれるコッタ(不図示)によって軸方向に固定されている。
On the transmission shaft 51, between the ball bearing 24A and the angular contact bearing 67, a pump drive gear 75 for driving an oil pump (not shown) for sending oil to each part of the engine 10 is fixed.
A ring-shaped shim 76 is fixed between the pump drive gear 75 and the angular contact bearing 67. The shim 76 is fixed in the axial direction by a cotter (not shown) fitted into the transmission shaft 51.

遊星キャリアー56は、従動回転部材64側に向かって小径になる円錐状の第1キャリア半体77(支軸ホルダー)と、円板状に形成され第1キャリア半体77を支持する第2キャリア半体78とを備えて構成されている。遊星キャリアー56は、第1キャリア半体77の先端側の内周面、及び、第2キャリア半体78の内周面にニードルベアリング79をそれぞれ有し、ニードルベアリング79を介して変速機軸51に対し回転可能かつ軸方向に摺動可能となっている。   The planetary carrier 56 includes a conical first carrier half body 77 (support shaft holder) having a small diameter toward the driven rotation member 64 side, and a second carrier that is formed in a disc shape and supports the first carrier half body 77. A half body 78 is provided. The planetary carrier 56 has needle bearings 79 on the inner peripheral surface on the front end side of the first carrier half body 77 and the inner peripheral surface of the second carrier half body 78, and is connected to the transmission shaft 51 via the needle bearing 79. On the other hand, it is rotatable and slidable in the axial direction.

ケーシング23の右の側壁23Bには、側壁23Bを貫通して変速機軸51と略平行に延びるガイド軸30が設けられている。第2キャリア半体78は、ガイド軸30が挿通されるガイド孔部78Bを有し、ガイド軸30によって変速機軸51の軸方向への移動をガイドされるとともに、変速機軸51に対する相対回転を規制されている。すなわち、遊星キャリアー56は、変速機軸51の軸方向に移動可能であるが、変速機軸51の軸回りには回転しない。また、遊星キャリアー56がガイド軸30に規制されて回転しないため、遊星キャリアー56に支持されている遊星支持軸57も、ケーシング23に対して変速機軸51の軸回りに回り止めされていることになる。
また、第2キャリア半体78の後面には、変速機軸51の軸方向に延びる被動ねじ部78Aが設けられている。
The right side wall 23B of the casing 23 is provided with a guide shaft 30 that extends through the side wall 23B and substantially parallel to the transmission shaft 51. The second carrier half body 78 has a guide hole portion 78B through which the guide shaft 30 is inserted. The second carrier half body 78 is guided by the guide shaft 30 in the axial direction of the transmission shaft 51 and restricts relative rotation with respect to the transmission shaft 51. Has been. That is, the planet carrier 56 can move in the axial direction of the transmission shaft 51, but does not rotate around the transmission shaft 51. Further, since the planetary carrier 56 is restricted by the guide shaft 30 and does not rotate, the planetary support shaft 57 supported by the planetary carrier 56 is also prevented from rotating about the transmission shaft 51 with respect to the casing 23. Become.
A driven screw portion 78 </ b> A extending in the axial direction of the transmission shaft 51 is provided on the rear surface of the second carrier half body 78.

第1キャリア半体77の外周面には、その周方向に等間隔をあけて複数の窓孔が形成されている。各遊星支持軸57は変速機軸51の軸線を中心線とする円錐母線に沿って上記窓孔に重なるように配置され、遊星回転部材55は外周側の一部が上記窓孔から露出するように遊星支持軸57に支持される。すなわち、遊星回転部材55は、従動回転部材64の側に頂点を有し変速機軸51の軸線を中心線とする円錐の円錐母線に沿うように傾斜しており、ドライブ側伝達部材53側に行くほど径方向に広がるように傾斜して配置されている。   A plurality of window holes are formed on the outer peripheral surface of the first carrier half body 77 at equal intervals in the circumferential direction. Each planetary support shaft 57 is disposed so as to overlap the window hole along a conical generatrix centered on the axis of the transmission shaft 51, and the planetary rotating member 55 is exposed so that a part of the outer peripheral side is exposed from the window hole. It is supported by the planetary support shaft 57. In other words, the planetary rotation member 55 has an apex on the side of the driven rotation member 64 and is inclined along a conical conical generatrix centered on the axis of the transmission shaft 51 and goes to the drive-side transmission member 53 side. It is inclined and arranged so as to spread in the radial direction.

第1キャリア半体77には、遊星支持軸57の従動回転部材64側の端を支持する止まり穴の先端側支持穴80と、遊星支持軸57のドライブ側伝達部材53側の端を支持する基端側支持孔81とが形成されている。遊星支持軸57は基端側支持孔81側から挿入され、基端側支持孔81及び先端側支持穴80の両方の嵌合部に隙間嵌合により固定される。遊星支持軸57は隙間嵌合によって所定の隙間を有して嵌合されているため、遊星支持軸57に作用する力に応じて基端側支持孔81及び先端側支持穴80内でわずかに移動することができる。ここで、一例として、遊星支持軸57の直径は6mmであり、この場合、基端側支持孔81及び先端側支持穴80の内径は、遊星支持軸57の直径よりも1μm〜16μmだけ大きく設定される。
第1キャリア半体77及び遊星支持軸57は、遊星支持軸57が隙間嵌合することで、遊星支持軸57が移動可能な調整機構を構成している。
The first carrier half 77 supports a leading end side support hole 80 of a blind hole that supports an end of the planetary support shaft 57 on the driven rotation member 64 side, and an end of the planetary support shaft 57 on the drive side transmission member 53 side. A proximal end support hole 81 is formed. The planetary support shaft 57 is inserted from the base end side support hole 81 side and fixed to both fitting portions of the base end side support hole 81 and the front end side support hole 80 by clearance fitting. Since the planetary support shaft 57 is fitted with a predetermined gap by gap fitting, the planetary support shaft 57 is slightly in the proximal support hole 81 and the distal support hole 80 according to the force acting on the planet support shaft 57. Can move. Here, as an example, the diameter of the planetary support shaft 57 is 6 mm. In this case, the inner diameters of the proximal support hole 81 and the distal support hole 80 are set to be 1 μm to 16 μm larger than the diameter of the planetary support shaft 57. Is done.
The first carrier half body 77 and the planetary support shaft 57 constitute an adjustment mechanism in which the planetary support shaft 57 can move when the planetary support shaft 57 is fitted in a gap.

遊星回転部材55は、その軸方向の中央部が大径で両端部が小径となるテーパ状に形成された筒状部材であり、駆動回転部材61の摩擦接触面61Aに接触する第1テーパ面55Aと、従動回転部材64の摩擦接触面71Aに接触する第2テーパ面55Bと、遊星回転部材55中央部をその軸方向に貫通する支持孔55Cとを有している。図2に示すように、遊星支持軸57の中心を通る側方断面視では、第1テーパ面55A及び第2テーパ面55Bにおいて互いに対向する辺は、平行となっている。
支持孔55Cの両端部には、一対のニードルベアリング82,82が設けられ、駆動回転部材61はニードルベアリング82,82を介して遊星支持軸57に相対回転可能かつ軸方向に摺動可能に設けられている。
The planetary rotating member 55 is a cylindrical member formed in a tapered shape having a large central diameter in the axial direction and a small diameter at both ends, and a first tapered surface that contacts the frictional contact surface 61A of the drive rotating member 61. 55A, a second tapered surface 55B that contacts the frictional contact surface 71A of the driven rotating member 64, and a support hole 55C that penetrates the central portion of the planetary rotating member 55 in the axial direction. As shown in FIG. 2, the sides facing each other in the first tapered surface 55 </ b> A and the second tapered surface 55 </ b> B are parallel in a side sectional view passing through the center of the planetary support shaft 57.
A pair of needle bearings 82 and 82 are provided at both ends of the support hole 55C, and the drive rotation member 61 is provided so as to be rotatable relative to the planetary support shaft 57 and slidable in the axial direction via the needle bearings 82 and 82. It has been.

遊星キャリアー56とボールベアリング24Bとの間には、変速機軸51上で回転自在な駆動ねじ部40が設けられている。駆動ねじ部40は、ボールベアリング41を介して回転自在に設けられ、遊星キャリアー56の被動ねじ部78Aに螺合されている。駆動ねじ部40は、不図示の駆動モータによって減速機構を介して回転駆動され、駆動ねじ部40が回転することで被動ねじ部78Aに軸方向へ移動する力が作用し、遊星キャリアー56が変速機軸51の軸方向に移動される。すなわち、無段変速機50では、遊星回転部材55を支持する遊星キャリアー56を、上記駆動モータの駆動によって変速機軸51の軸方向に移動させることができ、これにより、変速比の変更が行われる。   Between the planet carrier 56 and the ball bearing 24 </ b> B, a drive screw portion 40 that is rotatable on the transmission shaft 51 is provided. The drive screw portion 40 is rotatably provided via the ball bearing 41 and is screwed to the driven screw portion 78A of the planet carrier 56. The drive screw portion 40 is rotationally driven by a drive motor (not shown) via a speed reduction mechanism. When the drive screw portion 40 rotates, a force that moves in the axial direction acts on the driven screw portion 78A, and the planetary carrier 56 changes speed. It is moved in the axial direction of the machine shaft 51. That is, in the continuously variable transmission 50, the planetary carrier 56 that supports the planetary rotating member 55 can be moved in the axial direction of the transmission shaft 51 by driving the drive motor, thereby changing the gear ratio. .

図2及び図3に示すように、駆動回転部材61の摩擦接触面61Aと遊星回転部材55の第1テーパ面55Aとの接触点から変速機軸51の軸線まで距離をA、摩擦接触面61Aと第1テーパ面55Aとの接触点から遊星支持軸57の軸線までの距離をB、従動回転部材64の摩擦接触面71Aと遊星回転部材55の第2テーパ面55Bとの接触点から遊星支持軸57の軸線までの距離をC、従動回転部材64の摩擦接触面71Aと遊星回転部材55の第2テーパ面55Bとの接触点から変速機軸51の軸線まで距離をDとし、駆動回転部材61の回転数をNI、従動回転部材64の回転数をNOとし、変速比RをR=NI/NOとしたときに、
R=NI/NO=(B/A)×(D/C)となる。
ここで、第1の実施の形態では、遊星キャリアー56が変速機軸51の軸方向に移動したとしても距離A、Dは一定であり変化しない。従って、変速比Rは次式となる。
R=B/C
2 and 3, the distance from the contact point between the frictional contact surface 61A of the drive rotating member 61 and the first tapered surface 55A of the planetary rotating member 55 to the axis of the transmission shaft 51 is A, and the frictional contact surface 61A. The distance from the contact point with the first taper surface 55A to the axis of the planetary support shaft 57 is B, and the contact point between the friction contact surface 71A of the driven rotation member 64 and the second taper surface 55B of the planetary rotation member 55 is the planet support shaft. 57, the distance from the contact point between the frictional contact surface 71A of the driven rotating member 64 and the second tapered surface 55B of the planetary rotating member 55 to the axis of the transmission shaft 51 is defined as D. When the rotational speed is NI, the rotational speed of the driven rotary member 64 is NO, and the gear ratio R is R = NI / NO,
R = NI / NO = (B / A) × (D / C).
Here, in the first embodiment, even if the planet carrier 56 moves in the axial direction of the transmission shaft 51, the distances A and D are constant and do not change. Therefore, the gear ratio R is expressed by the following equation.
R = B / C

そして、上記駆動モータの駆動によって、図2に示すように、遊星キャリアー56が従動回転部材64に近接する方向に移動されると、距離Bが大きくなるとともに距離Cが小さくなり、変速比Rは大きくなる。すなわち、距離Bが最大かつ距離Cが最小となる図2の状態がロー変速比である。
また、上記駆動モータの駆動によって、図3に示すように、遊星キャリアー56が従動回転部材64から離れる方向に移動されると、距離Bが小さくなるとともに距離Cが大きくなり、変速比Rは小さくなる。すなわち、距離Bが最小かつ距離Cが最大となる図3の状態がトップ変速比である。
When the planetary carrier 56 is moved in the direction approaching the driven rotation member 64 by driving the drive motor as shown in FIG. 2, the distance B increases and the distance C decreases, and the speed ratio R becomes growing. That is, the state shown in FIG. 2 where the distance B is the maximum and the distance C is the minimum is the low gear ratio.
When the planetary carrier 56 is moved away from the driven rotating member 64 by driving the drive motor as shown in FIG. 3, the distance B decreases and the distance C increases, and the speed ratio R decreases. Become. That is, the state of FIG. 3 in which the distance B is the minimum and the distance C is the maximum is the top gear ratio.

変速機軸51は、クランク軸12からの動力により回転し、変速機軸51と一体に回転するドライブ側伝達部材53が各遊星回転部材55を回転させ、変速比Rに応じて変速された回転が各遊星回転部材55を介してドリブン側伝達部材54に伝達され、ドリブン側伝達部材54の回転は、出力歯車部65を介して減速軸26に伝達され、減速軸26は、最終出力軸27を駆動する。   The transmission shaft 51 is rotated by the power from the crankshaft 12, and the drive-side transmission member 53 that rotates integrally with the transmission shaft 51 rotates each planetary rotation member 55, and the rotations that are shifted according to the transmission gear ratio R are The rotation is transmitted to the driven transmission member 54 via the planetary rotating member 55, and the rotation of the driven transmission member 54 is transmitted to the reduction shaft 26 via the output gear portion 65, and the reduction shaft 26 drives the final output shaft 27. To do.

図4は、図2における変速部52の拡大図である。
次に、入力側トルクカム63及び出力側トルクカム68について説明する。
入力側トルクカム63及び出力側トルクカム68は、変速機軸51側から伝達される回転力(トルク)の一部を変速機軸51の軸方向の推力に変換し、ドライブ側伝達部材53及びドリブン側伝達部材54を、遊星回転部材55に押し付けるために設けられている。この推力により、摩擦接触面61Aと第1テーパ面55Aとの間の接触圧、及び、摩擦接触面71Aと第2テーパ面55Bとの間の接触圧を得ることができ、接触圧に生じる摩擦力によって、遊星回転部材55、ドライブ側伝達部材53及びドリブン側伝達部材54との間で回転が伝達される。
ここで、無段変速機50を減速機として使用する場合、出力側トルクカム68は低速側のトルクカムとなり、出力側トルクカム68よりも高速で回転する入力側トルクカム63は高速側のトルクカムとなる。
FIG. 4 is an enlarged view of the transmission unit 52 in FIG.
Next, the input side torque cam 63 and the output side torque cam 68 will be described.
The input-side torque cam 63 and the output-side torque cam 68 convert part of the rotational force (torque) transmitted from the transmission shaft 51 side into axial thrust of the transmission shaft 51, and drive side transmission member 53 and driven side transmission member 54 is provided to press against the planetary rotating member 55. With this thrust, the contact pressure between the friction contact surface 61A and the first taper surface 55A and the contact pressure between the friction contact surface 71A and the second taper surface 55B can be obtained, and the friction generated in the contact pressure. The rotation is transmitted between the planetary rotation member 55, the drive-side transmission member 53, and the driven-side transmission member 54 by the force.
Here, when the continuously variable transmission 50 is used as a speed reducer, the output side torque cam 68 is a low speed side torque cam, and the input side torque cam 63 rotating at a higher speed than the output side torque cam 68 is a high speed side torque cam.

図4に示すように、駆動回転部材61は、変速機軸51に形成された円板状受け部60の軸方向の端面60Aに対向する対向面61Bを有している。入力側トルクカム63は、端面60A及び対向面61Bにそれぞれ複数設けられたカム溝83及びカム溝84間にボール85が狭持されて構成されている。カム溝83及びカム溝84は、端面60A及び対向面61Bの周方向に略等間隔をあけて円環状の並びとなるように複数並べて配置され、各カム溝31,32間にボール85がそれぞれ狭持されている。   As shown in FIG. 4, the drive rotation member 61 has a facing surface 61 </ b> B that faces the end surface 60 </ b> A in the axial direction of the disc-shaped receiving portion 60 formed on the transmission shaft 51. The input side torque cam 63 is configured such that a ball 85 is sandwiched between a plurality of cam grooves 83 and cam grooves 84 provided on the end surface 60A and the opposing surface 61B, respectively. A plurality of cam grooves 83 and cam grooves 84 are arranged side by side so as to form an annular arrangement at substantially equal intervals in the circumferential direction of the end surface 60A and the opposing surface 61B, and balls 85 are respectively provided between the cam grooves 31 and 32. It is pinched.

図5は、図4において入力側トルクカム63を変速機軸51に直交するZ方向から見た拡大断面図である。ここで、図5では、入力側トルクカム63に回転力が作用していない状態が示されている。
図4及び図5に示すように、端面60Aと対向面61Bとの間には、ボール85が狭持された状態で隙間Sが設けられており、この隙間Sには、変速機軸51に挿通されるリング状のリテイナー86が配置されている。リテイナー86は、各ボール85の位置に対応して周方向に略等間隔をあけて形成された円形のボール支持孔87を複数有し、ボール支持孔87にはボール85が収容されている。リテイナー86の中央には、変速機軸51が挿通される挿通孔86Aが形成されている。
FIG. 5 is an enlarged cross-sectional view of the input side torque cam 63 seen from the Z direction orthogonal to the transmission shaft 51 in FIG. Here, FIG. 5 shows a state in which no rotational force is acting on the input side torque cam 63.
As shown in FIGS. 4 and 5, a gap S is provided between the end face 60 </ b> A and the opposing face 61 </ b> B in a state where the ball 85 is sandwiched, and the gap S is inserted into the transmission shaft 51. A ring-shaped retainer 86 is disposed. The retainer 86 has a plurality of circular ball support holes 87 formed at substantially equal intervals in the circumferential direction corresponding to the positions of the balls 85, and the balls 85 are accommodated in the ball support holes 87. An insertion hole 86 </ b> A through which the transmission shaft 51 is inserted is formed in the center of the retainer 86.

対向面61Bに形成されるカム溝83は、V字状に形成されたV字溝であり、V字を構成する2つの平面83A,83Aでボール85に接触している。カム溝83では、V字溝の底部83Bよりも対向面61B側に位置する2点でボール85に接触しており、ボール85は、底部83Bに接触しない。   The cam groove 83 formed on the facing surface 61B is a V-shaped groove formed in a V shape, and is in contact with the ball 85 on two flat surfaces 83A and 83A constituting the V shape. In the cam groove 83, the ball 85 is in contact with the ball 85 at two points located on the opposing surface 61B side with respect to the bottom 83B of the V-shaped groove, and the ball 85 does not contact the bottom 83B.

端面60Aに形成されるカム溝84は、略V字状に形成された溝であるが、ボール85の半径よりも大きい曲率半径を有する曲面部84Aを底部に備えたR溝である。すなわち、カム溝84は、曲面部84Aと、曲面部84Aと端面60Aとを繋ぐ直線状に延びる2つの平面部84B,84Bとを有している。入力側トルクカム63にほとんどトルクが作用していない状態では、ボール85は曲面部84Aに1点で接触しており、平面部84B,84Bには接触していない。   The cam groove 84 formed in the end surface 60A is a groove formed in a substantially V shape, but is an R groove provided with a curved surface portion 84A having a radius of curvature larger than the radius of the ball 85 at the bottom. That is, the cam groove 84 has a curved surface portion 84A and two flat surface portions 84B and 84B extending in a straight line connecting the curved surface portion 84A and the end surface 60A. In a state where almost no torque is applied to the input side torque cam 63, the ball 85 is in contact with the curved surface portion 84A at one point, and is not in contact with the flat surface portions 84B and 84B.

図2に示すように、変速機軸51には、中空部42を隙間Sに連通させる給油穴44が形成されており、潤滑オイルは給油穴44を介して入力側トルクカム63に直接供給される。このため、入力側トルクカム63を効果的に潤滑でき、入力側トルクカム63の追従性を向上できる。   As shown in FIG. 2, the transmission shaft 51 has an oil supply hole 44 that allows the hollow portion 42 to communicate with the gap S, and the lubricating oil is directly supplied to the input side torque cam 63 through the oil supply hole 44. For this reason, the input side torque cam 63 can be effectively lubricated, and the followability of the input side torque cam 63 can be improved.

図6は、入力側トルクカム63に回転力が作用した状態を示す断面図である。
入力側トルクカム63に回転力が作用すると、円板状受け部60と駆動回転部材61との間で相対回転が生じ、円板状受け部60と駆動回転部材61との相対位置は、ボール85によって規制され、駆動回転部材61は、ボール85を介して円板状受け部60の回転動力を受けて回転する。この状態では、ボール85は、一方の平面83Aと、この平面83Aに対向する平面部84B側の曲面部84Aに接触し、各接触点では、駆動回転部材61を回転させるトルクT1、及び、トルクT1の大きさに応じて発生する軸方向の推力F1が生じている。この推力F1によって、駆動回転部材61は軸方向に変形するようにしてわずかに変位し、駆動回転部材61が遊星回転部材55に押し付けられるとともに、遊星回転部材55がドリブン側伝達部材54に押し付けられるため、摩擦接触面61Aと第1テーパ面55Aとの間の接触圧、及び、摩擦接触面71Aと第2テーパ面55Bとの間の接触圧を十分に確保できる。
FIG. 6 is a cross-sectional view showing a state in which a rotational force is applied to the input side torque cam 63.
When a rotational force acts on the input side torque cam 63, relative rotation occurs between the disk-shaped receiving part 60 and the drive rotating member 61, and the relative position between the disk-shaped receiving part 60 and the drive rotating member 61 is determined by the ball 85. The drive rotating member 61 receives the rotational power of the disk-shaped receiving portion 60 via the ball 85 and rotates. In this state, the ball 85 is in contact with one flat surface 83A and the curved surface portion 84A on the flat surface portion 84B facing the flat surface 83A. At each contact point, the torque T1 for rotating the drive rotation member 61, and the torque An axial thrust F1 generated according to the magnitude of T1 is generated. Due to this thrust F1, the drive rotation member 61 is slightly displaced so as to deform in the axial direction, the drive rotation member 61 is pressed against the planetary rotation member 55, and the planetary rotation member 55 is pressed against the driven transmission member 54. Therefore, the contact pressure between the friction contact surface 61A and the first taper surface 55A and the contact pressure between the friction contact surface 71A and the second taper surface 55B can be sufficiently secured.

カム溝84では、ボール85は、曲面部84Aの中央に1点接触で底付いた状態(図5)から、ボール85の半径よりも大きい曲率半径を有する曲面部84A(図6)に沿って滑らかに移動するため、カム溝83において平面83Aに沿ってボール85が移動する場合に比して、カム溝84の部分では推力F1の増加が緩やかになる。このため、入力側トルクカム63では、トルク変動に対する推力F1の変動が緩和されることになる。ここで、トルク変動は、車両の運転状態の変化によって生じるものであり、変速比Rの変更等によって生じる。
また、リテイナー86は、ボール85の中心に略一致する位置に配置され、ボール85の移動を許容しつつボール85を保持しており、トルク変動に対してボール85が過度に移動することを抑制している。このため、リテイナー86を用いることで、トルク変動に対する推力F1の変動を緩和することができる。
In the cam groove 84, the ball 85 extends along the curved surface portion 84A (FIG. 6) having a radius of curvature larger than the radius of the ball 85 from a state where the ball 85 bottoms out at the center of the curved surface portion 84A (FIG. 5). Because of the smooth movement, the increase in thrust F1 is moderate in the cam groove 84 as compared with the case where the ball 85 moves along the plane 83A in the cam groove 83. For this reason, in the input side torque cam 63, the fluctuation | variation of the thrust F1 with respect to a torque fluctuation | variation is relieve | moderated. Here, the torque fluctuation is caused by a change in the driving state of the vehicle, and is caused by a change in the gear ratio R or the like.
The retainer 86 is disposed at a position substantially coinciding with the center of the ball 85, holds the ball 85 while allowing the ball 85 to move, and suppresses excessive movement of the ball 85 due to torque fluctuation. doing. For this reason, by using the retainer 86, the fluctuation of the thrust F1 with respect to the torque fluctuation can be reduced.

無段変速機50においては、摩擦接触面61A及び摩擦接触面71Aの接触圧が高ければ、摩擦接触面61A及び摩擦接触面71Aと遊星回転部材55との間の滑りを抑制でき、動力の伝達効率を向上できる。しかし、上記接触圧が過大である場合、動力損失が低下するとともに、接触面の負荷が増加することになるため、変速部52に作用するトルクに応じて接触圧が設定されることが望ましい。第1の実施の形態では、入力側トルクカム63を用いることで、推力F1は、トルクT1が大きいほど大きくなり、負荷トルクに応じた推力F1を発生させることができるため、例えばばねによって一定の推力を作用させる構成に比して、特に低負荷時の接触圧を低く設定でき、低負荷時の伝達効率の向上及び接触面の負荷の低減を図ることができる。   In the continuously variable transmission 50, if the contact pressure between the frictional contact surface 61A and the frictional contact surface 71A is high, slippage between the frictional contact surface 61A and the frictional contact surface 71A and the planetary rotating member 55 can be suppressed. Efficiency can be improved. However, when the contact pressure is excessive, the power loss is reduced and the load on the contact surface is increased. Therefore, it is desirable to set the contact pressure according to the torque acting on the transmission unit 52. In the first embodiment, by using the input side torque cam 63, the thrust F1 increases as the torque T1 increases, and the thrust F1 corresponding to the load torque can be generated. Compared with the configuration in which the contact pressure is applied, the contact pressure at the time of low load can be set low, and the transmission efficiency at the time of low load can be improved and the load on the contact surface can be reduced.

図4に示すように、出力歯車部65は、ドリブン側伝達部材54における基部69の軸方向の端面69Aに対向する対向面65Aを有している。出力側トルクカム68は、端面69A及び対向面65Aにそれぞれ複数設けられたカム溝31とカム溝32との間にボール33が狭持されて構成されている。詳細には、カム溝31及びカム溝32は、端面69A及び対向面65Aの周方向に略等間隔をあけて複数並べて円環状に配置され、各カム溝31,32間にボール33がそれぞれ狭持されている。ここで、カム溝31は、図5に示した曲面部84Aを有するカム溝84と同様のR溝であり、カム溝32は、カム溝83と同様のV字溝である。   As shown in FIG. 4, the output gear portion 65 has a facing surface 65 </ b> A that faces the axial end surface 69 </ b> A of the base portion 69 of the driven-side transmission member 54. The output side torque cam 68 is configured such that a ball 33 is sandwiched between the cam grooves 31 and the cam grooves 32 provided in plural on the end surface 69A and the opposing surface 65A. Specifically, a plurality of cam grooves 31 and cam grooves 32 are arranged in an annular shape with a substantially equal interval in the circumferential direction of the end surface 69A and the opposing surface 65A, and the ball 33 is narrowed between the cam grooves 31 and 32, respectively. It is held. Here, the cam groove 31 is an R groove similar to the cam groove 84 having the curved surface portion 84 </ b> A shown in FIG. 5, and the cam groove 32 is a V-shaped groove similar to the cam groove 83.

出力側トルクカム68に回転力が作用すると、ドリブン側伝達部材54と出力歯車部65との間で相対回転が生じ、ドリブン側伝達部材54と出力歯車部65との回転方向の相対位置は、ボール33によって規制され、出力歯車部65は、ボール33を介してドリブン側伝達部材54の回転動力を受けて回転する。この状態では、出力側トルクカム68では、駆動回転部材61を回転させるトルク、及び、このトルクの大きさに応じて発生する軸方向の推力F2(図4)が生じている。この推力F2によって、ドリブン側伝達部材54が軸方向にわずかに変位して遊星回転部材55に押し付けられるとともに、遊星回転部材55が駆動回転部材61に押し付けられるため、摩擦接触面71Aと第2テーパ面55Bとの間の接触圧、及び、摩擦接触面61Aと第1テーパ面55Aとの間の接触圧を十分に確保できる。
また、ドリブン側伝達部材54は、皿ばね74によっても遊星回転部材55側に押し付けられている。
When a rotational force acts on the output-side torque cam 68, relative rotation occurs between the driven-side transmission member 54 and the output gear portion 65, and the relative position in the rotational direction between the driven-side transmission member 54 and the output gear portion 65 is the ball position. The output gear 65 is restricted by the rotation 33 and receives the rotational power of the driven transmission member 54 via the ball 33 to rotate. In this state, in the output side torque cam 68, a torque for rotating the drive rotating member 61 and an axial thrust F2 (FIG. 4) generated according to the magnitude of the torque are generated. Due to this thrust F2, the driven-side transmission member 54 is slightly displaced in the axial direction and pressed against the planetary rotating member 55, and the planetary rotating member 55 is pressed against the drive rotating member 61. Therefore, the friction contact surface 71A and the second taper The contact pressure between the surface 55B and the contact pressure between the friction contact surface 61A and the first taper surface 55A can be sufficiently secured.
The driven transmission member 54 is also pressed against the planetary rotation member 55 by a disc spring 74.

第1の実施の形態では、遊星回転部材55に対し、変速機軸51の軸方向の両側に入力側トルクカム63及び出力側トルクカム68を設け、推力F1,F2によって駆動回転部材61及びドリブン側伝達部材54を入力側及び出力側の両側から押し付けるため、片側のみにトルクカムを設けて片側から推力を発生させる場合に比して、推力の追従性を向上できる。すなわち、入力側及び出力側の両側から推力F1,F2を発生させることで、要求される接触圧が得られる推力を得やすくなり、遊星回転部材55の滑りを低減して、無段変速機50の伝達効率を向上できる。また、トルクカムの追従性が低い場合、要求される接触圧よりも余裕を見たより高い接触圧が得られるようにトルクカムの推力の設定値を大きくする必要があるが、第1の実施の形態では両側にトルクカムを設けることで推力の追従性が高くなっているため、トルクカム63,68の推力の設定値を小さくして接触圧を小さくできる。このため、伝達効率を向上できるとともに、接触面の負荷を低減できる。
さらに、入力側トルクカム63及び出力側トルクカム68が分散して設けられることで、トルクカム63,68を小型化して配置できるとともに、入力側トルクカム63及び出力側トルクカム68に作用する反力が小さくなり、無段変速機50の振動を低減できる。
In the first embodiment, an input side torque cam 63 and an output side torque cam 68 are provided on both sides in the axial direction of the transmission shaft 51 with respect to the planetary rotation member 55, and the drive rotation member 61 and the driven side transmission member are driven by the thrusts F1 and F2. Since 54 is pressed from both the input side and the output side, the followability of the thrust can be improved as compared with the case where the torque cam is provided only on one side and the thrust is generated from one side. That is, by generating the thrusts F1 and F2 from both the input side and the output side, it becomes easy to obtain a thrust that can obtain the required contact pressure, and the slip of the planetary rotating member 55 is reduced, thereby continuously variable transmission 50. Can improve the transmission efficiency. Further, when the followability of the torque cam is low, it is necessary to increase the set value of the torque cam thrust so as to obtain a higher contact pressure with a margin than the required contact pressure. In the first embodiment, By providing torque cams on both sides, the followability of thrust is enhanced, so that the set pressure of the torque cams 63 and 68 can be reduced to reduce the contact pressure. For this reason, the transmission efficiency can be improved and the load on the contact surface can be reduced.
Furthermore, since the input side torque cam 63 and the output side torque cam 68 are provided in a distributed manner, the torque cams 63 and 68 can be reduced in size and the reaction force acting on the input side torque cam 63 and the output side torque cam 68 is reduced. The vibration of the continuously variable transmission 50 can be reduced.

ところで、変速部52で発生するトルク変動は、車両の加減速等の変動に伴って入力側及び出力側の両方から発生し、このトルク変動に伴って推力F1,F2の大きさは変化する。このため、トルク変動が断続的に発生すると推力F1,F2が不安定になり、その結果、遊星回転部材55に対する接触圧が変動したり、変速部52に振動が発生したりしてしまうことがあり、ここでは、この現象をトルクハンチングと呼ぶ。
しかし、無段変速機50においては、入力側トルクカム63及び出力側トルクカム68が曲面部84Aを有し、ボール85、33が曲面部84Aに沿って緩やかに移動することで推力F1,F2の増減を緩やかにできる。このため、トルク変動に伴うトルクハンチングを抑制でき、伝達効率を向上できるとともに、振動を低減できる。
また、曲面部84Aは、入力側トルクカム63の円板状受け部60に設けられており、高速回転して高負荷がかかる部分に設けられているため、ボール85の振動に起因するトルク変動を効果的に低減でき、伝達効率を向上できる。
さらに、リテイナー86がトルク変動に対する推力F1の変動を緩和するため、トルクハンチングを抑制できる。ここで、リテイナー86は出力側トルクカム68にも設けられても良い。
By the way, torque fluctuations generated in the transmission unit 52 are generated from both the input side and the output side in accordance with fluctuations such as acceleration / deceleration of the vehicle, and the magnitudes of the thrusts F1, F2 change in accordance with the torque fluctuations. For this reason, when torque fluctuation occurs intermittently, the thrusts F1 and F2 become unstable, and as a result, the contact pressure with respect to the planetary rotating member 55 may fluctuate or vibration may occur in the transmission unit 52. Here, this phenomenon is called torque hunting.
However, in the continuously variable transmission 50, the input side torque cam 63 and the output side torque cam 68 have the curved surface portion 84A, and the balls 85 and 33 gradually move along the curved surface portion 84A, so that the thrusts F1 and F2 increase or decrease. Can be relaxed. For this reason, torque hunting accompanying torque fluctuation can be suppressed, transmission efficiency can be improved, and vibration can be reduced.
Further, the curved surface portion 84A is provided in the disk-shaped receiving portion 60 of the input side torque cam 63, and is provided in a portion where the high-speed rotation and high load are applied. It can be effectively reduced and transmission efficiency can be improved.
Furthermore, since the retainer 86 relaxes the fluctuation of the thrust F1 with respect to the torque fluctuation, torque hunting can be suppressed. Here, the retainer 86 may also be provided in the output side torque cam 68.

また、変速部52を構成する各部材間において、寸法公差等の誤差に起因する変速機軸51の軸方向のクリアランス(間隔)が大きい場合、これら各部材が軸方向に移動してガタツキが生じ、トルクハンチングが発生する要因となる。第1の実施の形態では、変速機軸51にシム76を固定することでアンギュラーコンタクトベアリング67をドリブン側伝達部材54側に押圧するため、上記各部材間のクリアランスを詰めることができる。詳細には、シム76は板厚違いで複数設けられており、変速部52を組み付ける際には上記クリアランスが実測され、このクリアランスを最適にできる板厚のシム76が選択されて変速機軸51に固定される。これにより、トルクハンチングの発生を抑制できる。   Also, when the axial clearance (interval) of the transmission shaft 51 due to errors such as dimensional tolerances is large between the members constituting the transmission unit 52, these members move in the axial direction to cause backlash, This will cause torque hunting. In the first embodiment, the shim 76 is fixed to the transmission shaft 51 to press the angular contact bearing 67 toward the driven transmission member 54, so that the clearance between the above members can be reduced. Specifically, a plurality of shims 76 are provided with different plate thicknesses, and when the transmission unit 52 is assembled, the clearance is measured, and a shim 76 having a plate thickness that can optimize the clearance is selected and attached to the transmission shaft 51. Fixed. Thereby, generation | occurrence | production of torque hunting can be suppressed.

さらに、遊星支持軸57が第1キャリア半体77に隙間嵌合により固定されるため、遊星支持軸57は第1キャリア半体77内で隙間に対応する分だけ動くことができる。これにより、遊星支持軸57に支持される遊星回転部材55も動くことができ、変速部52の歪みや寸法バラツキによる寸法誤差を遊星回転部材55が動くことで吸収できる。これにより、変速部52を構成する各部材のガタツキを低減できるため、トルクハンチングの発生を抑制できる。   Furthermore, since the planetary support shaft 57 is fixed to the first carrier half body 77 by clearance fitting, the planetary support shaft 57 can move within the first carrier half body 77 by an amount corresponding to the clearance. Thereby, the planetary rotating member 55 supported by the planetary support shaft 57 can also move, and a dimensional error due to distortion and dimensional variation of the transmission unit 52 can be absorbed by the movement of the planetary rotating member 55. Thereby, rattling of each member constituting the transmission unit 52 can be reduced, so that occurrence of torque hunting can be suppressed.

図4に示すように、入力側トルクカム63及び出力側トルクカム68は、変速機軸51が入力側トルクカム63及び出力側トルクカム68を支持する軸支部の近傍に設けられており、その回転半径が略等しくなるように設けられている。詳細には、入力側トルクカム63及び出力側トルクカム68は、変速機軸51の径方向において、ボール85及びボール33の位置が、遊星回転部材55の中心Oよりも内側で、変速機軸51の外周面の近傍において略等しくなるように構成されている。これにより、入力側トルクカム63及び出力側トルクカム68が、変速機軸51の回転中心の近傍で回転するため、両トルクカム63,68の動作に対する遠心力の影響が低減され、車両の加減速に伴うトルクの変動に対して、適正なカム推力を発生させることができる。その結果、トルクの変動による伝達効率の変化を抑制できる。
また、両トルクカム63,68が略等しい回転半径で略同一に作用するため、入力側及び出力側で発生する推力の大きさを略均一化でき、トルクの変動に対して、入力側トルクカム63及び出力側トルクカム68を略等しく追従させることができる。
As shown in FIG. 4, the input side torque cam 63 and the output side torque cam 68 are provided in the vicinity of the shaft support portion where the transmission shaft 51 supports the input side torque cam 63 and the output side torque cam 68, and the rotation radii thereof are substantially equal. It is provided to become. Specifically, the input side torque cam 63 and the output side torque cam 68 are arranged such that the positions of the ball 85 and the ball 33 are inside the center O of the planetary rotating member 55 in the radial direction of the transmission shaft 51 and the outer peripheral surface of the transmission shaft 51. It is comprised so that it may become substantially equal in the vicinity. Thereby, since the input side torque cam 63 and the output side torque cam 68 rotate in the vicinity of the rotation center of the transmission shaft 51, the influence of centrifugal force on the operation of both the torque cams 63, 68 is reduced, and the torque accompanying acceleration / deceleration of the vehicle Therefore, it is possible to generate an appropriate cam thrust against the fluctuation. As a result, changes in transmission efficiency due to torque fluctuations can be suppressed.
In addition, since both torque cams 63 and 68 operate substantially the same with substantially the same radius of rotation, the magnitude of the thrust generated on the input side and the output side can be made substantially uniform, and the input side torque cam 63 and The output side torque cam 68 can follow substantially the same.

変速部52は、単一の軸である変速機軸51に、ドライブ側伝達部材53、遊星回転部材55及びドリブン側伝達部材54を設けているため、変速部52の組み付け精度及び組付性を向上できる。また、変速機軸51が単一の軸であるため、変速機軸51を介してクランク軸12側と最終出力軸27側との間で振動が伝達され易くなることが考えられるが、変速部52に入力側トルクカム63及び出力側トルクカム68が設けられており、この2個所のトルクカム63,68で振動を緩和させることができるため、エンジン10の振動を全体的に低減できる。   Since the transmission unit 52 is provided with the drive-side transmission member 53, the planetary rotation member 55, and the driven-side transmission member 54 on the transmission shaft 51 that is a single shaft, the assembling accuracy and assembling property of the transmission unit 52 are improved. it can. Further, since the transmission shaft 51 is a single shaft, it is considered that vibration is easily transmitted between the crankshaft 12 side and the final output shaft 27 side via the transmission shaft 51. Since the input side torque cam 63 and the output side torque cam 68 are provided and vibrations can be reduced by the two torque cams 63 and 68, the vibration of the engine 10 can be reduced as a whole.

図4に示すように、遊星回転部材55は、変速機軸51に対して傾斜して設けられている。ここでは、変速機軸51の軸線と遊星支持軸57の軸線とが交差する角度を取付け角度Xとする。また、摩擦接触面61Aと第1テーパ面55Aとの接触部Pにおいて、第1テーパ面55Aに対して略垂直に作用する接触圧を接触圧P1とし、摩擦接触面71Aと第2テーパ面55Bとの接触部Qにおいて、第2テーパ面55Bに対して略垂直に作用する接触圧を接触圧Q1とする。また、接触圧P1の作用する方向の延長線と接触圧Q1の作用する方向の延長線との間の距離をオフセットUとする。   As shown in FIG. 4, the planetary rotating member 55 is provided to be inclined with respect to the transmission shaft 51. Here, the angle at which the axis of the transmission shaft 51 intersects with the axis of the planetary support shaft 57 is defined as an attachment angle X. Further, in the contact portion P between the friction contact surface 61A and the first taper surface 55A, the contact pressure acting substantially perpendicular to the first taper surface 55A is defined as the contact pressure P1, and the friction contact surface 71A and the second taper surface 55B. In the contact portion Q, a contact pressure acting substantially perpendicular to the second tapered surface 55B is defined as a contact pressure Q1. Further, an offset U is a distance between an extension line in the direction in which the contact pressure P1 acts and an extension line in the direction in which the contact pressure Q1 acts.

図7は、取付け角度Xとレシオ幅との関係を示す図である。ここで、レシオ幅Wは、ロー変速比とトップ変速比との比であり、このレシオ幅Wが大きいほど、変速比の範囲が大きくなる。
変速部52においては、図7に示すように、遊星回転部材55の取付け角度Xが大きくなると、摩擦接触面61A,71A内部における遊星回転部材55とドライブ側伝達部材53及びドリブン側伝達部材54との間での滑りが大きくなる。一方、取付け角度Xが小さくなる程、遊星回転部材55とドライブ側伝達部材53及びドリブン側伝達部材54との間での滑りが減少し、伝達効率は高くなる。
レシオ幅Wは、41度付近までは取付け角度Xが大きくなるほど増加し、それ以上の角度では小さくなる。
また、取付け角度Xが小さくなる程、遊星支持軸57が占める変速機軸51の軸方向のスペースが大きくなるため、変速部52が軸方向に大型化することになる。
FIG. 7 is a diagram showing the relationship between the mounting angle X and the ratio width. Here, the ratio width W is a ratio between the low gear ratio and the top gear ratio, and the larger the ratio width W, the larger the gear ratio range.
In the transmission unit 52, as shown in FIG. 7, when the mounting angle X of the planetary rotating member 55 increases, the planetary rotating member 55, the drive-side transmission member 53, and the driven-side transmission member 54 in the frictional contact surfaces 61A and 71A Sliding between the two will increase. On the other hand, as the mounting angle X becomes smaller, slip between the planetary rotating member 55, the drive-side transmission member 53, and the driven-side transmission member 54 decreases, and transmission efficiency increases.
The ratio width W increases as the mounting angle X increases up to about 41 degrees, and decreases at angles beyond that.
Further, as the mounting angle X becomes smaller, the space in the axial direction of the transmission shaft 51 occupied by the planetary support shaft 57 becomes larger, so that the transmission portion 52 becomes larger in the axial direction.

第1の実施の形態では、取付け角度Xを41°に設定している。これにより、高い伝達効率と大きなレシオ幅Wを両立できるとともに、変速部52の軸方向の大きさを小型化することができる。取付け角度Xは、伝達効率、レシオ幅W及び変速部52の軸方向の小スペース性を向上できる30°〜41°の範囲に設定することが望ましい。
さらに、取付け角度Xを45°より小さい鋭角に設定することで、オフセットUを小さくすることができる。オフセットUが大きい場合、図4に示すように、遊星回転部材55を遊星支持軸57対してこじるように回転させる回転モーメントMの大きさが大きくなり、フリクションが大きくなる。第1の実施の形態では、取付け角度Xを45°より小さい鋭角にすることで、オフセットUを小さくして回転モーメントMを小さくでき、フリクションが低下するため、伝達効率を向上できる。
さらに、変速部52がトルク変動等によって微小に変形した場合、変速レシオも変化するが、取付け角度Xを45°より小さくすることで、変速部52の変形が変速レシオに与える影響を低減でき、変速レシオの制御が容易になる。
In the first embodiment, the attachment angle X is set to 41 °. Accordingly, both high transmission efficiency and a large ratio width W can be achieved, and the size of the transmission unit 52 in the axial direction can be reduced. The attachment angle X is desirably set in a range of 30 ° to 41 ° that can improve the transmission efficiency, the ratio width W, and the small space in the axial direction of the transmission unit 52.
Furthermore, the offset U can be reduced by setting the attachment angle X to an acute angle smaller than 45 °. When the offset U is large, as shown in FIG. 4, the magnitude of the rotational moment M that rotates the planetary rotating member 55 so as to pry about the planetary support shaft 57 increases, and the friction increases. In the first embodiment, by setting the attachment angle X to an acute angle smaller than 45 °, the offset U can be reduced, the rotational moment M can be reduced, and the friction can be reduced, so that the transmission efficiency can be improved.
Furthermore, when the speed change portion 52 is slightly deformed due to torque fluctuation or the like, the speed change ratio also changes, but by making the attachment angle X smaller than 45 °, the influence of the deformation of the speed change portion 52 on the speed change ratio can be reduced, Control of the gear ratio becomes easy.

図8は、変速部52を変速機軸51の軸方向から見た断面図である。
図8に示すように、遊星回転部材55は、変速機軸51の周方向に等間隔に5個が並べて設けられている。従動回転部材64の摩擦接触面71Aと遊星回転部材55の第2テーパ面55Bとの間には、寸法公差等の誤差によって、隙間が生じることが考えられる。変速部52では、負荷が増加するに伴い遊星回転部材55と従動回転部材64との接触圧が増加し、略真円形状であった従動回転部材64は、図8に示すように、全ての遊星回転部材55に接触するように略楕円形状に弾性変形することになる。すなわち、遊星回転部材55が等間隔に5個配置されているため、略真円形状であった従動回転部材64は、バランスの良い3点当たりで遊星回転部材55に接触するように自然に弾性変形し、その結果、残りの2個の遊星回転部材55にも接触することになる。これにより、寸法公差等の誤差があったとしても、遊星回転部材55が従動回転部材64に5点で接触するため、高い伝達効率を得られる。
FIG. 8 is a cross-sectional view of the transmission unit 52 as viewed from the axial direction of the transmission shaft 51.
As shown in FIG. 8, five planetary rotating members 55 are arranged in the circumferential direction of the transmission shaft 51 at equal intervals. It is conceivable that a gap is generated between the frictional contact surface 71A of the driven rotating member 64 and the second tapered surface 55B of the planetary rotating member 55 due to an error such as a dimensional tolerance. In the transmission unit 52, as the load increases, the contact pressure between the planetary rotating member 55 and the driven rotating member 64 increases. As shown in FIG. It is elastically deformed into a substantially elliptical shape so as to come into contact with the planetary rotating member 55. In other words, since the five planetary rotating members 55 are arranged at equal intervals, the driven rotating member 64 having a substantially perfect circle shape is naturally elastic so as to come into contact with the planetary rotating member 55 at three well-balanced points. As a result, the remaining two planetary rotating members 55 come into contact with each other. Thereby, even if there is an error such as a dimensional tolerance, the planetary rotating member 55 contacts the driven rotating member 64 at five points, so that high transmission efficiency can be obtained.

以上説明したように、本発明を適用した第1の実施の形態によれば、ドライブ側伝達部材53とドリブン側伝達部材54との間の動力伝達を行う遊星回転部材55が設けられる遊星支持軸57が変速機軸51に対して45°より小さい鋭角に配置されるため、ドライブ側伝達部材53とドリブン側伝達部材54との間における遊星回転部材55の摩擦力が増加する。このため、ドライブ側伝達部材53とドリブン側伝達部材54との間における遊星回転部材55の滑りを低減でき、レシオ幅Wを確保しつつ、無段変速機50の伝達効率を向上できる。また、遊星回転部材55の滑りが低減されるため、摩擦面の負荷を低減でき、無段変速機50の品質が向上する。   As described above, according to the first embodiment to which the present invention is applied, the planetary support shaft provided with the planetary rotating member 55 that transmits power between the drive-side transmission member 53 and the driven-side transmission member 54 is provided. Since 57 is disposed at an acute angle smaller than 45 ° with respect to the transmission shaft 51, the frictional force of the planetary rotating member 55 between the drive-side transmission member 53 and the driven-side transmission member 54 increases. For this reason, slip of the planetary rotating member 55 between the drive side transmission member 53 and the driven side transmission member 54 can be reduced, and the transmission efficiency of the continuously variable transmission 50 can be improved while ensuring the ratio width W. Further, since the slip of the planetary rotating member 55 is reduced, the load on the friction surface can be reduced, and the quality of the continuously variable transmission 50 is improved.

また、遊星回転部材55の両側に設けられた入力側トルクカム63及び出力側トルクカム68によって、ドライブ側伝達部材53とドリブン側伝達部材54がそれぞれ遊星回転部材55に押し付けられるため、入力側トルクカム63及び出力側トルクカム68を分散して配置して小型化できるとともに、入力側トルクカム63及び出力側トルクカム68の追従性を向上でき、無段変速機50の伝達効率を向上できる。また、入力側トルクカム63及び出力側トルクカム68が分散して設けられることで、入力側トルクカム63及び出力側トルクカム68に作用する反力が小さくなり、入力側トルクカム63及び出力側トルクカム68の振動を低減できる。このため、遊星回転部材55の滑りを低減でき、無段変速機50の伝達効率を向上できる。   Further, since the drive side transmission member 53 and the driven side transmission member 54 are pressed against the planetary rotation member 55 by the input side torque cam 63 and the output side torque cam 68 provided on both sides of the planetary rotation member 55, respectively, the input side torque cam 63 and The output side torque cams 68 can be arranged in a distributed manner to reduce the size, and the followability of the input side torque cam 63 and the output side torque cam 68 can be improved, and the transmission efficiency of the continuously variable transmission 50 can be improved. Further, since the input side torque cam 63 and the output side torque cam 68 are provided in a distributed manner, the reaction force acting on the input side torque cam 63 and the output side torque cam 68 is reduced, and the vibration of the input side torque cam 63 and the output side torque cam 68 is reduced. Can be reduced. For this reason, the slip of the planetary rotating member 55 can be reduced, and the transmission efficiency of the continuously variable transmission 50 can be improved.

また、遊星支持軸57が単一の変速機軸51上に軸支され、ケーシング23に対して回り止めされる構成においても、入力側トルクカム63及び出力側トルクカム68を遊星回転部材55の両側に設けるとともに遊星支持軸57を変速機軸51に対して鋭角に設けることで、遊星回転部材55の滑りを低減でき、無段変速機50の伝達効率を向上できる。   Further, the input side torque cam 63 and the output side torque cam 68 are provided on both sides of the planetary rotating member 55 even in a configuration in which the planetary support shaft 57 is pivotally supported on the single transmission shaft 51 and is prevented from rotating with respect to the casing 23. At the same time, by providing the planetary support shaft 57 at an acute angle with respect to the transmission shaft 51, the slip of the planetary rotating member 55 can be reduced, and the transmission efficiency of the continuously variable transmission 50 can be improved.

さらに、遊星支持軸57が第1キャリア半体77の先端側支持穴80及び基端側支持孔81に対して隙間嵌合されており、遊星支持軸57は第1キャリア半体77内で隙間に対応する分だけ動くことができる。これにより、遊星支持軸57に支持される遊星回転部材55も動くことができ、各部の歪みや寸法バラツキによる寸法誤差を遊星回転部材55が動くことで吸収して調整でき、伝達効率を低下させるフリクションを低減できるため、無段変速機50の伝達効率を向上できる。また、寸法誤差を吸収できるため、無段変速機50の品質が向上する。
また、遊星回転部材55が周方向に等間隔に5個が並べて設けられているため、5個内の寸法のバラツキがあったとしても3個が従動回転部材64の摩擦接触面71Aに強く当たる3個当たりとなり、3個当たりによる摩擦接触面71Aの変形により残りの2個も摩擦接触面71Aに当たることができ、遊星回転部材55の滑りを低減して、無段変速機50の伝達効率を向上できる。また、遊星回転部材55の寸法のバラツキを吸収できるため、無段変速機50の品質が向上する。
Further, the planetary support shaft 57 is fitted into a clearance with respect to the distal end side support hole 80 and the proximal end side support hole 81 of the first carrier half body 77, and the planetary support shaft 57 is spaced apart within the first carrier half body 77. You can move as much as you can. As a result, the planetary rotating member 55 supported by the planetary support shaft 57 can also move, and dimensional errors due to distortions and dimensional variations of each part can be absorbed and adjusted by the movement of the planetary rotating member 55, thereby reducing transmission efficiency. Since the friction can be reduced, the transmission efficiency of the continuously variable transmission 50 can be improved. Further, since the dimensional error can be absorbed, the quality of the continuously variable transmission 50 is improved.
In addition, since five planetary rotating members 55 are arranged at equal intervals in the circumferential direction, even if there is a variation in the size within the five, three strongly contact the frictional contact surface 71A of the driven rotating member 64. Due to the deformation of the friction contact surface 71A by the three, the remaining two can hit the friction contact surface 71A, reducing the slip of the planetary rotating member 55 and improving the transmission efficiency of the continuously variable transmission 50. It can be improved. Moreover, since the variation in the dimension of the planetary rotating member 55 can be absorbed, the quality of the continuously variable transmission 50 is improved.

なお、上記第1の実施の形態は本発明を適用した一態様を示すものであって、本発明は上記第1の実施の形態に限定されるものではない。
上記第1の実施の形態では、入力側トルクカム63及び出力側トルクカム68において、一方のカム溝84,31がR溝で構成されるものとして説明したが、本発明はこれに限定されるものではなく、カム溝83,32もR溝で構成しても良い。或いは、カム溝84,31をV字溝とし、カム溝83,32のみをR溝で構成しても良い。
また、上記第1の実施の形態では、R溝は、曲面部84Aを底部に備えた溝であるものとして説明したが、これに限らず、例えば、R溝は、略V字状の溝において、両斜面部を曲面状の曲面部とし、平面状の底部をこの曲面部に滑らかに連続させて形成されたものでも良い。
また、上記第1の実施の形態では、調整機構として隙間嵌合を例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば、遊星支持軸57を偏心軸で構成することで調整機構を設けても良い。
また、上記第1の実施の形態では、遊星回転部材55は、変速機軸51の周方向に等間隔に5個が並べて設けられるものとして説明したが、これに限らず、遊星回転部材55は複数個が周方向に等間隔に並べて設けられれば良い。特に、遊星回転部材55を5個以上設けることで、バランスの良い3点接触の状態を得ることができる。
In addition, the said 1st Embodiment shows the one aspect | mode which applied this invention, Comprising: This invention is not limited to the said 1st Embodiment.
In the first embodiment described above, in the input side torque cam 63 and the output side torque cam 68, one of the cam grooves 84, 31 is configured as an R groove, but the present invention is not limited to this. Alternatively, the cam grooves 83 and 32 may also be R grooves. Alternatively, the cam grooves 84 and 31 may be V-shaped grooves, and only the cam grooves 83 and 32 may be R grooves.
In the first embodiment, the R groove is described as a groove having the curved surface portion 84A at the bottom. However, the present invention is not limited to this. For example, the R groove is a substantially V-shaped groove. Alternatively, both the slope portions may be curved curved surface portions, and the flat bottom portion may be formed so as to be smoothly connected to the curved surface portion.
In the first embodiment, the gap fitting is described as an example of the adjustment mechanism. However, the present invention is not limited to this, and for example, the planetary support shaft 57 is configured by an eccentric shaft. Thus, an adjustment mechanism may be provided.
In the first embodiment described above, five planetary rotating members 55 are provided at equal intervals in the circumferential direction of the transmission shaft 51. However, the present invention is not limited to this, and a plurality of planetary rotating members 55 are provided. It suffices if the pieces are provided at equal intervals in the circumferential direction. In particular, by providing five or more planetary rotating members 55, a well-balanced three-point contact state can be obtained.

[第2の実施の形態]
以下、図9を参照して、本発明を適用した第2の実施の形態について説明する。この第2の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
第2の実施の形態では、ドリブン側伝達部材254の一部構成が、第1の実施の形態のドリブン側伝達部材54と異なっている。
[Second Embodiment]
Hereinafter, a second embodiment to which the present invention is applied will be described with reference to FIG. In the second embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the second embodiment, a part of the configuration of the driven-side transmission member 254 is different from the driven-side transmission member 54 of the first embodiment.

図9は、第2の実施の形態における変速部52の拡大図である。
ドリブン側伝達部材254は、椀状の従動回転部材264と、被動歯車26Aに噛み合う出力歯車部265とを有している。
出力歯車部265は軸方向に延在しており、ドリブン側伝達部材254側の一端に小径の段部265Aを有し、段部265Aの内周面に設けられるニードルベアリング66と、他端に設けられるアンギュラーコンタクトベアリング67とを介して変速機軸51に対して相対回転可能に設けられている。
従動回転部材264は、段部265Aの外周面に嵌合する円板部270と円板部270からドライブ側伝達部材53側へ延びる円筒状の筒部271とを有している。
従動回転部材264と出力歯車部265とは、従動回転部材264と出力歯車部265との間に設けられる出力側トルクカム268(調圧カム機構)によって連結され、一体に回転する。従動回転部材264は、皿ばね274によって常にドライブ側伝達部材53側に押し付けられている。
FIG. 9 is an enlarged view of the transmission unit 52 according to the second embodiment.
The driven-side transmission member 254 includes a bowl-shaped driven rotation member 264 and an output gear portion 265 that meshes with the driven gear 26A.
The output gear portion 265 extends in the axial direction, has a small-diameter step portion 265A at one end on the driven side transmission member 254 side, a needle bearing 66 provided on the inner peripheral surface of the step portion 265A, and the other end. It is provided so as to be rotatable relative to the transmission shaft 51 via an angular contact bearing 67 provided.
The driven rotation member 264 has a disc portion 270 fitted to the outer peripheral surface of the step portion 265A and a cylindrical tube portion 271 extending from the disc portion 270 to the drive side transmission member 53 side.
The driven rotation member 264 and the output gear portion 265 are connected by an output side torque cam 268 (pressure adjusting cam mechanism) provided between the driven rotation member 264 and the output gear portion 265, and rotate integrally. The driven rotation member 264 is always pressed against the drive side transmission member 53 side by the disc spring 274.

出力歯車部265には、円板部270の軸方向の端面270Aに対向する対向面265Bが段部265Aに連続して形成されている。
出力側トルクカム268は、端面270Aに設けられたカム溝231と、対向面265Bに設けられたカム溝232との間にボール233が狭持されて構成されている。カム溝231はR溝であり、カム溝232はV字溝である。出力側トルクカム268にトルクが作用すると、このトルクの大きさに応じて軸方向の推力F2が発生する。
In the output gear portion 265, a facing surface 265B facing the axial end surface 270A of the disc portion 270 is formed continuously to the step portion 265A.
The output side torque cam 268 is configured such that a ball 233 is sandwiched between a cam groove 231 provided on the end surface 270A and a cam groove 232 provided on the facing surface 265B. The cam groove 231 is an R groove, and the cam groove 232 is a V-shaped groove. When torque acts on the output-side torque cam 268, an axial thrust F2 is generated according to the magnitude of this torque.

第2の実施の形態では、ドライブ側伝達部材53及びドリブン側伝達部材254にそれぞれ設けられた入力側トルクカム63及び出力側トルクカム268が、その回転半径を略等しくなるようにドライブ側伝達部材53及びドリブン側伝達部材254の軸支部近傍に配置されているため、トルク変動に対し、両トルクカム63,268が軸支部近傍において略等しい回転半径上で略等しく作用する。これにより、両トルクカム63,268の動作に対する遠心力の影響が低減され、車両の加減速に伴うトルクの変動に対して、適正なカム推力を発生させることができるため、ドライブ側伝達部材53及びドリブン側伝達部材254と遊星回転部材55との間の摩擦力が適正になり、無段変速機50の伝達効率を向上できる。   In the second embodiment, the drive-side transmission member 53 and the output-side torque cam 268 provided on the drive-side transmission member 53 and the driven-side transmission member 254, respectively, have a substantially equal radius of rotation. Since it is arranged in the vicinity of the shaft support portion of the driven-side transmission member 254, both torque cams 63 and 268 act substantially equally on the same rotational radius in the vicinity of the shaft support portion with respect to torque fluctuation. As a result, the influence of centrifugal force on the operation of both torque cams 63 and 268 is reduced, and an appropriate cam thrust can be generated with respect to torque fluctuations accompanying acceleration / deceleration of the vehicle. The frictional force between the driven side transmission member 254 and the planetary rotation member 55 becomes appropriate, and the transmission efficiency of the continuously variable transmission 50 can be improved.

23 ケーシング
50 無段変速機(車両用無段変速機)
51 変速機軸(回転軸)
53 ドライブ側伝達部材(ドライブフェース)
54,254 ドリブン側伝達部材(ドリブンフェース)
55 遊星回転部材
57 遊星支持軸
63 入力側トルクカム(調圧カム機構)
68,268 出力側トルクカム(調圧カム機構)
77 第1キャリア半体(支軸ホルダー)
23 Casing 50 Continuously variable transmission (Vehicle continuously variable transmission)
51 Transmission shaft (rotary shaft)
53 Drive-side transmission member (drive face)
54,254 Driven side transmission member (driven face)
55 Planetary rotating member 57 Planetary support shaft 63 Input side torque cam (pressure regulating cam mechanism)
68,268 Output-side torque cam (pressure-regulating cam mechanism)
77 First carrier half (support shaft holder)

Claims (6)

ドライブフェース(53)と該ドライブフェース(53)に対して回転自在に支持されるドリブンフェース(54,254)とを有し、該両フェース間において回転軸(51)を支持するケーシング(23)に対して回転不能且つ軸方向に移動可能に設けられた遊星支持軸(57)に、前記両フェース間の動力伝達を行う遊星回転部材(55)が設けられた車両用無段変速機において、
前記回転軸(51)上に回転力を軸方向の変位にかえるとともに前記両フェースと前記遊星回転部材(55)との摩擦力を付加する調圧カム機構(63,68,268)を設け、前記遊星支持軸(57)の傾きを前記回転軸(51)に対して45°より小さい鋭角で30°までの範囲に配置したことを特徴とする車両用無段変速機。
A casing (23) having a drive face (53) and a driven face (54, 254) rotatably supported with respect to the drive face (53), and supporting the rotating shaft (51) between the two faces. In a continuously variable transmission for a vehicle, a planetary support shaft (57) provided so as to be non-rotatable and movable in the axial direction is provided with a planetary rotating member (55) for transmitting power between the two faces.
A pressure adjusting cam mechanism (63, 68, 268) is provided on the rotating shaft (51) to change the rotational force into an axial displacement and add a frictional force between the two faces and the planetary rotating member (55). A continuously variable transmission for a vehicle, wherein the planetary support shaft (57) is inclined at an acute angle of less than 45 ° to 30 ° with respect to the rotation shaft (51).
ドライブフェース(53)と該ドライブフェース(53)に対して回転自在に支持されるドリブンフェース(54,254)とを有し、該両フェース間において回転軸(51)を支持するケーシング(23)に対して回転不能且つ軸方向に移動可能に設けられた遊星支持軸(57)に、前記両フェース間の動力伝達を行う遊星回転部材(55)が設けられた車両用無段変速機において、
前記回転軸(51)上に回転力を軸方向の変位にかえるとともに前記両フェースと前記遊星回転部材(55)との摩擦力を付加する調圧カム機構(63,68,268)を設け、前記遊星支持軸(57)の傾きを前記回転軸(51)に対して30°から41°の鋭角に配置したことを特徴とする車両用無段変速機。
A casing (23) having a drive face (53) and a driven face (54, 254) rotatably supported with respect to the drive face (53), and supporting the rotating shaft (51) between the two faces. In a continuously variable transmission for a vehicle, a planetary support shaft (57) provided so as to be non-rotatable and movable in the axial direction is provided with a planetary rotating member (55) for transmitting power between the two faces.
A pressure adjusting cam mechanism (63, 68, 268) is provided on the rotating shaft (51) to change the rotational force into an axial displacement and add a frictional force between the two faces and the planetary rotating member (55). A continuously variable transmission for a vehicle, wherein the planetary support shaft (57) is inclined at an acute angle of 30 ° to 41 ° with respect to the rotation shaft (51).
前記調圧カム機構(63,68,268)は、前記各フェース(53,54,254をそれぞれ前記遊星回転部材(55)に押し付けるように前記遊星回転部材(55)の両側に設けられたことを特徴とする請求項1または2に記載の車両用無段変速機。   The pressure adjusting cam mechanism (63, 68, 268) is provided on both sides of the planetary rotating member (55) so as to press the faces (53, 54, 254) against the planetary rotating member (55). The continuously variable transmission for a vehicle according to claim 1 or 2. 前記遊星支持軸(57)は単一の前記回転軸(51)上に軸支され、前記ケーシング(23)に対して回り止めされることを特徴とする請求項1から3のいずれかに記載の車両用無段変速機。   4. The planetary support shaft (57) is supported on a single rotating shaft (51) and is prevented from rotating with respect to the casing (23). Continuously variable transmission for vehicles. 前記遊星支持軸(57)は支軸ホルダー(77)に対して隙間嵌合による調整機構を介して支持されることを特徴とする請求項1から4のいずれかに記載の車両用無段変速機。   The continuously variable transmission for a vehicle according to any one of claims 1 to 4, wherein the planetary support shaft (57) is supported by a support mechanism (77) through a gap fitting adjustment mechanism. Machine. 前記遊星回転部材(55)は、周方向に等間隔に複数個が並べて設けられていることを特徴とする請求項1から5のいずれかに記載の車両用無段変速機。   The continuously variable transmission for a vehicle according to any one of claims 1 to 5, wherein a plurality of the planetary rotating members (55) are arranged at equal intervals in the circumferential direction.
JP2011013193A 2011-01-25 2011-01-25 Continuously variable transmission for vehicle Expired - Fee Related JP5751848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013193A JP5751848B2 (en) 2011-01-25 2011-01-25 Continuously variable transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013193A JP5751848B2 (en) 2011-01-25 2011-01-25 Continuously variable transmission for vehicle

Publications (2)

Publication Number Publication Date
JP2012154394A JP2012154394A (en) 2012-08-16
JP5751848B2 true JP5751848B2 (en) 2015-07-22

Family

ID=46836329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013193A Expired - Fee Related JP5751848B2 (en) 2011-01-25 2011-01-25 Continuously variable transmission for vehicle

Country Status (1)

Country Link
JP (1) JP5751848B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182488A (en) * 1996-10-25 1999-03-26 Nippon Seiko Kk Roll bearing and spindle device
JP2002372115A (en) * 2001-06-18 2002-12-26 Ntn Corp Frictional continuously variable transmission
JP2007255699A (en) * 2006-02-24 2007-10-04 Mikuni Corp Planetary roller transmission device and power transmission converting mechanism
JP2008095796A (en) * 2006-10-11 2008-04-24 Mikuni Corp Planetary roller transmission device

Also Published As

Publication number Publication date
JP2012154394A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US20130035200A1 (en) Toroidal continuously variable transmission
JP2017053467A (en) Torque fluctuation restriction device, torque converter and power transmission device
WO2012124640A1 (en) Friction roller type deceleration device and drive device for electric automobile
JPWO2016038927A1 (en) Electric power steering device
JP6702310B2 (en) Friction roller reducer
JP5772983B2 (en) Torsional vibration damping device
JP6993242B2 (en) Differential device
JP5687977B2 (en) Continuously variable transmission for vehicle
JP4971012B2 (en) Oscillating gear unit
JP5751848B2 (en) Continuously variable transmission for vehicle
WO2016167261A1 (en) Friction-roller-type reduction gear
JP2021526621A (en) Fixed ratio traction or friction drive
JP5817918B2 (en) Torsional vibration damping device
JP6265061B2 (en) Planetary roller traction drive device
US11143062B2 (en) Valve opening-closing timing control apparatus
JP7194051B2 (en) internal planetary gear
JP5867132B2 (en) Friction roller reducer
JP2005265089A (en) Friction type transmission
JP5966625B2 (en) Toroidal continuously variable transmission
JP2000009193A (en) Variable diameter pulley
JP4511708B2 (en) Continuously variable transmission
JP2022054007A (en) Continuously variable transmission
JP4929977B2 (en) Toroidal continuously variable transmission
JP5810863B2 (en) Friction roller reducer
JP2007113749A (en) Continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150519

R150 Certificate of patent or registration of utility model

Ref document number: 5751848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees