JP5750938B2 - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
JP5750938B2
JP5750938B2 JP2011041156A JP2011041156A JP5750938B2 JP 5750938 B2 JP5750938 B2 JP 5750938B2 JP 2011041156 A JP2011041156 A JP 2011041156A JP 2011041156 A JP2011041156 A JP 2011041156A JP 5750938 B2 JP5750938 B2 JP 5750938B2
Authority
JP
Japan
Prior art keywords
drive electrode
dielectric plate
discharge space
frequency
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011041156A
Other languages
Japanese (ja)
Other versions
JP2012176868A (en
Inventor
光治 竹村
光治 竹村
悌二 山本
悌二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2011041156A priority Critical patent/JP5750938B2/en
Publication of JP2012176868A publication Critical patent/JP2012176868A/en
Application granted granted Critical
Publication of JP5750938B2 publication Critical patent/JP5750938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、誘電体バリア放電を利用してオゾンを発生させるオゾン発生装置に関するものである。   The present invention relates to an ozone generator that generates ozone using dielectric barrier discharge.

従来のオゾン発生装置として、放電室を誘電体材料で構成し、誘電体材料を介して放電室に駆動電圧を印加するものがある(例えば特許文献1参照。)。図1は、従来のオゾン発生装置の構成を説明する図である。   As a conventional ozone generator, there is one in which a discharge chamber is made of a dielectric material, and a driving voltage is applied to the discharge chamber through the dielectric material (see, for example, Patent Document 1). FIG. 1 is a diagram illustrating a configuration of a conventional ozone generator.

オゾン発生装置100は、第1金属板101、第2金属板102、第1硝子板103、第2硝子板104、および、スペーサ105を備える。第1金属板101は第1硝子板103上に配置され、第2金属板102は第2硝子板104上に配置される。第1硝子板103と第2硝子板104とはスペーサ105を介して接合されて、放電室を構成する。第1金属板101と第2金属板102との間には駆動電圧が印加されることにより放電室で放電が生じてオゾンが発生する。放電室は壁面に形成される第一の通気孔を介して送気装置に接続され、第二の通気孔を介してオゾンを排出可能に構成されている。第1硝子板103と第2硝子板104とは誘電体であり、このような放電空間に露出する誘電体を介して生じる放電現象は誘電体バリア放電と呼ばれる。   The ozone generator 100 includes a first metal plate 101, a second metal plate 102, a first glass plate 103, a second glass plate 104, and a spacer 105. The first metal plate 101 is disposed on the first glass plate 103, and the second metal plate 102 is disposed on the second glass plate 104. The first glass plate 103 and the second glass plate 104 are joined via a spacer 105 to constitute a discharge chamber. When a driving voltage is applied between the first metal plate 101 and the second metal plate 102, a discharge is generated in the discharge chamber to generate ozone. The discharge chamber is connected to the air supply device through a first vent formed in the wall surface, and is configured to be able to discharge ozone through the second vent. The first glass plate 103 and the second glass plate 104 are dielectrics, and such a discharge phenomenon that occurs through the dielectric exposed to the discharge space is called dielectric barrier discharge.

特許第2983153号公報Japanese Patent No. 2983153

従来のオゾン発生装置は、放電室での壁面間隔が著しく狭いために気体の粘性の影響で送気が阻害され、放電室への酸素の供給が不足してオゾンの発生効率が低下することや、酸素の供給が絶たれてオゾンの生成が停止することがあった。そのため、出力の大きな送気装置と合わせて使用する必要があり、装置の全体サイズが大型化し、また送気装置の分だけコストが増大していた。   Conventional ozone generators have a remarkably narrow wall spacing in the discharge chamber, which hinders air supply due to the effect of gas viscosity, resulting in a shortage of oxygen supply to the discharge chamber and a decrease in ozone generation efficiency. Oxygen supply was cut off and ozone generation stopped. Therefore, it is necessary to use it together with an air supply device having a large output, the overall size of the device is increased, and the cost is increased by the amount of the air supply device.

そこで、本発明の目的は、放電空間への酸素供給が容易で、出力の大きな送気装置を用いる必要性を抑えることができる、オゾン発生装置を提供にすることにある。   Therefore, an object of the present invention is to provide an ozone generator that can easily supply oxygen to the discharge space and can suppress the necessity of using an air supply device having a large output.

本発明に係るオゾン発生装置は、第一・第二の誘電体板と、第一・第二の駆動電極と、駆動電圧印加部と、を備える。第一・第二の誘電体板は、放電空間を隔てて対向する。第一の駆動電極は、第一の誘電体板を隔てて放電空間に対向する。第二の駆動電極は、第二の誘電体板を隔てて放電空間に対向する。駆動電圧印加部は、第一の駆動電極と第二の駆動電極との間に駆動電圧を印加する。ここで、少なくとも第一の誘電体板および第一の駆動電極の積層体は、積層方向に撓み振動自在に構成される。駆動電圧は、積層体の固有振動数になる周波数、または、その高次モードになる周波数の高周波信号である。
この構成では、高周波信号である駆動電圧の印加によって、第一の駆動電極と第二の駆動電極との間に静電力が作用して、第一の誘電体板および第一の駆動電極の積層体が積層方向に撓み振動する。すると、放電空間において誘電体バリア放電が生じるとともに、放電空間の体積変動が生じる。この体積変動により放電空間で気流が生じて酸素の供給が容易になる。
The ozone generator according to the present invention includes first and second dielectric plates, first and second drive electrodes, and a drive voltage application unit. The first and second dielectric plates face each other with a discharge space therebetween. The first drive electrode faces the discharge space across the first dielectric plate. The second drive electrode faces the discharge space across the second dielectric plate. The drive voltage application unit applies a drive voltage between the first drive electrode and the second drive electrode. Here, the laminated body of at least the first dielectric plate and the first drive electrode is configured to be able to bend and vibrate in the laminating direction. The drive voltage is a high-frequency signal having a frequency that becomes the natural frequency of the laminate or a frequency that becomes a higher-order mode.
In this configuration, an electrostatic force acts between the first drive electrode and the second drive electrode by applying a drive voltage that is a high-frequency signal, and the first dielectric plate and the first drive electrode are laminated. The body bends and vibrates in the stacking direction. Then, a dielectric barrier discharge is generated in the discharge space, and the volume of the discharge space is changed. Due to this volume fluctuation, an air flow is generated in the discharge space, and oxygen supply becomes easy.

上述のオゾン発生装置において、放電空間は周縁部で外部空間と連通するとともに、第一の誘電体板または第二の誘電体板の基板中央に形成された貫通孔で外部空間と連通すると好適である。
この構成では、放電空間で気流がより強く生じて高濃度のオゾンを得やすくなる。
In the above-described ozone generator, it is preferable that the discharge space communicates with the external space at the peripheral portion and communicates with the external space through a through hole formed in the center of the substrate of the first dielectric plate or the second dielectric plate. is there.
In this configuration, airflow is more strongly generated in the discharge space, and high-concentration ozone is easily obtained.

上述のオゾン発生装置において、駆動電圧は、積層体の固有振動数の2次共振モードになる周波数の高周波信号であると好適である。
この構成では、放電空間で気流がより強く生じてさらに高濃度のオゾンを得やすくなる。
In the above-described ozone generator, the driving voltage is preferably a high-frequency signal having a frequency at which the laminated body has a secondary resonance mode having the natural frequency.
In this configuration, airflow is more strongly generated in the discharge space, and it becomes easier to obtain a higher concentration of ozone.

本発明によれば、高周波信号である駆動電圧によって、第一の駆動電極と第二の駆動電極との間に静電力が作用し、第一の積層体が積層方向に撓み振動する。すると、第一・第二の誘電体板の間の放電空間において、誘電体バリア放電が生じるとともに放電空間の体積変動が生じ、放電空間で気流が生じて酸素の供給が容易になって高濃度のオゾンを得やすくなる。これにより、オゾン発生装置を強力な送気装置に接続する必要性を抑えることができ、全体サイズの小型化や全体コストの低廉化が可能になる。   According to the present invention, an electrostatic force acts between the first drive electrode and the second drive electrode by the drive voltage that is a high-frequency signal, and the first stacked body is flexed and vibrated in the stacking direction. Then, in the discharge space between the first and second dielectric plates, a dielectric barrier discharge occurs and the volume of the discharge space changes, and an air flow is generated in the discharge space to facilitate the supply of oxygen, thereby increasing the concentration of ozone. It will be easier to get. Thereby, it is possible to suppress the necessity of connecting the ozone generator to a powerful air supply device, and it is possible to reduce the overall size and the overall cost.

従来のオゾン発生装置の構成例を説明する図である。It is a figure explaining the structural example of the conventional ozone generator. 本発明の実施形態に係るオゾン発生装置の構成例を説明する図である。It is a figure explaining the structural example of the ozone generator which concerns on embodiment of this invention. 実施例における積層体の2次共振モードでの振動状態を説明する図である。It is a figure explaining the vibration state in the secondary resonance mode of the laminated body in an Example. 実施例における積層体の1次共振モードでの振動状態を説明する図である。It is a figure explaining the vibration state in the primary resonance mode of the laminated body in an Example.

図2は実施形態に係るオゾン発生装置1の構成例を説明する要部図であり、図2(A)は断面図、図2(B)は平面図である。
オゾン発生装置1は、上側駆動電極2、上側誘電体板3、スペーサ4、下側誘電体板5、下側駆動電極6、駆動電圧源7、および、実装基板8を備える。
2A and 2B are main part views for explaining a configuration example of the ozone generator 1 according to the embodiment. FIG. 2A is a cross-sectional view, and FIG. 2B is a plan view.
The ozone generator 1 includes an upper drive electrode 2, an upper dielectric plate 3, a spacer 4, a lower dielectric plate 5, a lower drive electrode 6, a drive voltage source 7, and a mounting substrate 8.

上側誘電体板3は平面視して正方形状である。上側駆動電極2は上側誘電体板3の上面に正方形で形成され、上側誘電体板3とともに上側積層体を構成する。この上側積層体の平面視した中央近傍には貫通孔9が形成される。   The upper dielectric plate 3 has a square shape in plan view. The upper drive electrode 2 is formed in a square shape on the upper surface of the upper dielectric plate 3 and constitutes an upper laminate together with the upper dielectric plate 3. A through hole 9 is formed in the vicinity of the center of the upper laminate in plan view.

下側誘電体板5は、上側誘電体板3と同様に正方形状である。下側駆動電極6は下側誘電体板5の下面全面に形成され、下側誘電体板5とともに下側積層体を構成する。下側積層体は実装基板8の上面に実装される。また下側誘電体板5は、平面視して上面の四隅にスペーサ4が設けられ、スペーサ4を介して上側誘電体板3と接合される。なお、スペーサ4は下側誘電体板5と一体に成形されても、別体に成形されてもよい。   The lower dielectric plate 5 has a square shape like the upper dielectric plate 3. The lower drive electrode 6 is formed on the entire lower surface of the lower dielectric plate 5 and constitutes a lower laminate together with the lower dielectric plate 5. The lower laminated body is mounted on the upper surface of the mounting substrate 8. The lower dielectric plate 5 is provided with spacers 4 at the four corners of the upper surface in plan view, and is joined to the upper dielectric plate 3 via the spacers 4. The spacer 4 may be molded integrally with the lower dielectric plate 5 or may be molded separately.

駆動電圧源7は、上側駆動電極2と下側駆動電極6との間に駆動電圧を印加する。駆動電圧としては、上側積層体の固有振動数の2次共振モードになる周波数が好適である。   The drive voltage source 7 applies a drive voltage between the upper drive electrode 2 and the lower drive electrode 6. As the drive voltage, a frequency at which a secondary resonance mode of the natural frequency of the upper laminated body is obtained is preferable.

このオゾン発生装置1では、上側駆動電極2と下側駆動電極6とが放電空間を介して対向し、上側駆動電極2または下側駆動電極6と放電空間との間に上側誘電体板3と下側誘電体板5とが設けられる。したがって、上側駆動電極2と下側駆動電極6とへの駆動電圧の印加により、放電空間において誘電体バリア放電が生じてオゾンが発生する。この放電空間は、上側誘電体板3と下側誘電体板5との外縁部および貫通孔9で外部空間と通気し、誘電体バリア放電により発生するオゾンは、外部空間に排出される。   In this ozone generator 1, the upper drive electrode 2 and the lower drive electrode 6 face each other through the discharge space, and the upper dielectric plate 3 or the upper drive electrode 2 or the lower drive electrode 6 is disposed between the discharge space and the upper drive plate 2. A lower dielectric plate 5 is provided. Therefore, application of a drive voltage to the upper drive electrode 2 and the lower drive electrode 6 causes dielectric barrier discharge in the discharge space to generate ozone. This discharge space is ventilated with the outer space through the outer edge portion of the upper dielectric plate 3 and the lower dielectric plate 5 and the through hole 9, and ozone generated by the dielectric barrier discharge is discharged to the outer space.

また、上記構成では、上側積層体がメンブレン構造となり、駆動電圧の印加により上側駆動電極2と下側駆動電極6との間に静電力が作用し、上側誘電体板3が撓み振動する。通常、この撓み量は極微小であるが、本実施形態では上側積層体の固有振動数の2次共振モードとなる周波数の高周波信号を駆動電圧として印加するため、上側誘電体板3の撓み量を最大化することができる。すると、放電空間の体積が変動し、放電空間に気流が発生することになる。これにより、放電空間に外部空間から供給される酸素が不足しにくくなり、一定のオゾン発生効率を確保し易くなる。   In the above configuration, the upper laminated body has a membrane structure, and an electrostatic force acts between the upper drive electrode 2 and the lower drive electrode 6 by applying a drive voltage, and the upper dielectric plate 3 bends and vibrates. Normally, the amount of bending is extremely small, but in this embodiment, a high-frequency signal having a frequency that becomes the secondary resonance mode of the natural frequency of the upper laminated body is applied as a drive voltage, so that the amount of bending of the upper dielectric plate 3 is increased. Can be maximized. Then, the volume of the discharge space fluctuates, and an air flow is generated in the discharge space. As a result, oxygen supplied from the external space to the discharge space is unlikely to be insufficient, and it is easy to ensure a certain ozone generation efficiency.

次に、本実施形態の構成をより具体化した実施例について説明する。実施例に係るオゾン発生装置では、上側誘電体板3を10mm×10mmの石英製で、厚み450μmの寸法とし、貫通孔9をφ1mmとした。また、スペーサ4を高さ50μmとした。また、下側誘電体板5を平面視して10mm×10mmの石英製とした。なお、下側誘電体板5は厚み数10〜数100μmであると好適であり、上側誘電体板3は厚み100〜500μmであると好適である。   Next, examples in which the configuration of the present embodiment is made more specific will be described. In the ozone generator according to the example, the upper dielectric plate 3 was made of quartz of 10 mm × 10 mm, had a thickness of 450 μm, and the through hole 9 had a diameter of 1 mm. In addition, the spacer 4 has a height of 50 μm. The lower dielectric plate 5 was made of quartz of 10 mm × 10 mm in plan view. The lower dielectric plate 5 preferably has a thickness of several tens to several hundreds of μm, and the upper dielectric plate 3 preferably has a thickness of 100 to 500 μm.

図3は、実施例に係るオゾン発生装置における上側積層体の撓み振動の解析結果を示す図である。なお、図3(A)は貫通孔を設けない構成例についての解析結果を示し、図3(B)は貫通孔を設けた構成例についての解析結果を示している。この実施例では固有振動数の2次共振モードとなる周波数が47.5kHzであり、駆動電圧を同周波数の正弦波信号とした。
すると、いずれの構成でも、基板中央を挟んで一方の領域11と他方の領域12とのそれぞれに振動の腹が生じ、基板中央が振動の節となり、各領域11,12の振動の位相が180°異なる2次共振モードが生じることが確認できた。貫通孔を設けない図3(A)の構成例では撓み量が−230〜+230μmであり、貫通孔を設ける図3(B)の構成例では撓み量が−220〜+220μmであった。このような2次共振モードの撓み振動が生じることで、各領域11,12では放電空間の体積が大きく変動し、放電空間に気流が生じることになる。なお、上記実施例について実機での試験を行ってオゾン発生濃度を確認すると、貫通孔を設けた図3(B)の構成例のほうがより高濃度であることが確認できた。
FIG. 3 is a diagram illustrating an analysis result of flexural vibration of the upper laminate in the ozone generator according to the example. Note that FIG. 3A shows an analysis result for a configuration example in which no through hole is provided, and FIG. 3B shows an analysis result for a configuration example in which a through hole is provided. In this embodiment, the frequency at which the secondary resonance mode has the natural frequency is 47.5 kHz, and the drive voltage is a sine wave signal having the same frequency.
Then, in any configuration, the antinodes of vibration occur in each of the one region 11 and the other region 12 across the center of the substrate, the center of the substrate becomes a vibration node, and the phase of vibration of each of the regions 11 and 12 is 180. It was confirmed that different secondary resonance modes occurred. In the configuration example of FIG. 3A in which no through hole is provided, the deflection amount is −230 to +230 μm, and in the configuration example of FIG. 3B in which the through hole is provided, the deflection amount is −220 to +220 μm. As a result of such bending vibration in the secondary resonance mode, the volume of the discharge space fluctuates greatly in each of the regions 11 and 12, and airflow is generated in the discharge space. In addition, when the ozone generation density | concentration was confirmed by performing the test with an actual machine about the said Example, it has confirmed that the structure example of FIG. 3 (B) which provided the through-hole was higher concentration.

また、本実施例のオゾン発生装置で、上側積層体を1次共振モードで振動させた場合の解析も実施した。図4は、1次共振モードで振動させた場合の上側積層体の撓み振動の解析結果を示す図である。なお、図4(A)は貫通孔を設けない構成例についての解析結果を示し、図4(B)は貫通孔を設けた構成例についての解析結果を示している。この実施例では固有振動数の1次共振モードとなる周波数が24.3kHzであり、駆動電圧は同周波数の正弦波信号とした。
すると、いずれの構成でも、基板中央の領域21に振動の腹が生じ周縁部のスペーサ4に重なる領域22が振動の節となる1次共振モードが生じることが確認できた。貫通孔を設けない図3(A)の構成例では領域21での振幅が188μmであり、貫通孔を設ける図3(B)の構成例では領域21での振幅が195μmであった。このような1次共振モードの撓み振動が生じても、中心の領域21で放電空間の体積が大きく変動することから、放電空間には気流が生じることになる。ただし、この実施例においては、1次共振モードで振動させた場合のほうが撓み量が小さく、撓み量の確保と放電空間における体積変動量の確保の面からは2次共振モードで振動させるほうが有利であった。
In addition, in the ozone generator of this example, an analysis was also performed when the upper laminate was vibrated in the primary resonance mode. FIG. 4 is a diagram illustrating an analysis result of the flexural vibration of the upper laminate when it is vibrated in the primary resonance mode. 4A shows an analysis result for a configuration example in which no through hole is provided, and FIG. 4B shows an analysis result for a configuration example in which a through hole is provided. In this embodiment, the frequency at which the natural resonance frequency becomes the primary resonance mode is 24.3 kHz, and the drive voltage is a sine wave signal having the same frequency.
Then, in any configuration, it was confirmed that a vibration resonance occurred in the region 21 in the center of the substrate, and a primary resonance mode in which the region 22 overlapping the spacer 4 at the peripheral portion became a vibration node occurred. In the configuration example of FIG. 3A in which no through hole is provided, the amplitude in the region 21 is 188 μm, and in the configuration example in FIG. 3B in which the through hole is provided, the amplitude in the region 21 is 195 μm. Even if such a bending vibration in the primary resonance mode occurs, the volume of the discharge space fluctuates greatly in the central region 21, so that an air flow is generated in the discharge space. However, in this embodiment, the amount of bending is smaller when vibrating in the primary resonance mode, and it is more advantageous to vibrate in the secondary resonance mode in terms of securing the amount of bending and securing the volume variation in the discharge space. Met.

したがって、オゾン発生装置1においては固有振動数となる周波数、または高次共振モードとなる周波数の駆動電圧を用いることで、放電空間における気流を発生させて、酸素の供給量を改善できるといえる。   Therefore, it can be said that the ozone generator 1 can improve the supply amount of oxygen by generating an air flow in the discharge space by using a driving voltage having a frequency that is a natural frequency or a frequency that is a higher-order resonance mode.

なお、上記した実施形態はあくまで例示であり、本発明の作用効果は特許請求の範囲の構成であれば、どのような構成であっても得ることができる。例えば、スペーサを四隅に設けるほかにも対向する2辺に沿って設けるようにしてもよい。また、積層体は平面視して矩形状の他、円形状など他の形状であってもよい。また、貫通孔は上側積層体に形成する他、下側積層体および実装基板に形成するようにしてもよい。   The above-described embodiment is merely an example, and the effects of the present invention can be obtained with any configuration as long as the configuration is within the scope of the claims. For example, in addition to providing the spacers at the four corners, the spacers may be provided along two opposing sides. Further, the laminated body may have other shapes such as a circular shape in addition to a rectangular shape in plan view. Further, the through hole may be formed in the lower laminate and the mounting substrate in addition to being formed in the upper laminate.

1…オゾン発生装置
2…駆動電極
2…上側駆動電極
3…上側誘電体板
4…スペーサ
5…下側誘電体板
6…下側駆動電極
7…駆動電圧源
8…実装基板
9…貫通孔
DESCRIPTION OF SYMBOLS 1 ... Ozone generator 2 ... Drive electrode 2 ... Upper drive electrode 3 ... Upper dielectric plate 4 ... Spacer 5 ... Lower dielectric plate 6 ... Lower drive electrode 7 ... Drive voltage source 8 ... Mounting substrate 9 ... Through-hole

Claims (3)

放電空間を隔てて対向する第一・第二の誘電体板と、
前記第一の誘電体板を隔てて前記放電空間に対向する第一の駆動電極と、
前記第二の誘電体板を隔てて前記放電空間に対向する第二の駆動電極と、
前記第一の駆動電極と前記第二の駆動電極との間に駆動電圧を印加する駆動電圧印加部と、
を備え、
少なくとも、前記第一の誘電体板および前記第一の駆動電極の積層体は、積層方向に撓み振動自在に構成され、
前記駆動電圧は、前記積層体の固有振動数になる周波数、または、その高次共振モードになる周波数の高周波信号である、オゾン発生装置。
First and second dielectric plates facing each other across a discharge space;
A first drive electrode facing the discharge space across the first dielectric plate;
A second drive electrode facing the discharge space across the second dielectric plate;
A drive voltage application unit that applies a drive voltage between the first drive electrode and the second drive electrode;
With
At least the laminate of the first dielectric plate and the first drive electrode is configured to be flexibly vibrated in the lamination direction,
The ozone generator, wherein the drive voltage is a high-frequency signal having a frequency that becomes a natural frequency of the laminate or a frequency that becomes a higher-order resonance mode.
前記放電空間は、前記第一・第二の誘電体板の間の周縁部で外部空間と連通するとともに、前記第一の誘電体板または前記第二の誘電体板の基板中央に形成された貫通孔で外部空間と連通する、請求項1に記載のオゾン発生装置。   The discharge space communicates with the external space at the peripheral edge between the first and second dielectric plates, and is a through hole formed in the center of the first dielectric plate or the second dielectric plate. The ozone generator according to claim 1, which communicates with an external space. 前記駆動電圧は、前記積層体の固有振動数の2次共振モードになる周波数の高周波信号である、請求項2に記載のオゾン発生装置。   The ozone generator according to claim 2, wherein the driving voltage is a high-frequency signal having a frequency at which a secondary resonance mode having a natural frequency of the multilayer body is obtained.
JP2011041156A 2011-02-28 2011-02-28 Ozone generator Expired - Fee Related JP5750938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041156A JP5750938B2 (en) 2011-02-28 2011-02-28 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041156A JP5750938B2 (en) 2011-02-28 2011-02-28 Ozone generator

Publications (2)

Publication Number Publication Date
JP2012176868A JP2012176868A (en) 2012-09-13
JP5750938B2 true JP5750938B2 (en) 2015-07-22

Family

ID=46979011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041156A Expired - Fee Related JP5750938B2 (en) 2011-02-28 2011-02-28 Ozone generator

Country Status (1)

Country Link
JP (1) JP5750938B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172802A (en) * 1988-12-26 1990-07-04 Hitachi Ltd Ozonizer
JPH04238801A (en) * 1990-12-28 1992-08-26 O D S:Kk Ozonizer
DE4141025C2 (en) * 1991-12-12 1996-01-18 Manfred Prof Dr Rer Na Rimpler Device for generating ozone
JPH09278406A (en) * 1996-04-05 1997-10-28 Sumitomo Precision Prod Co Ltd Discharge cell for ozone generator
JP4094111B2 (en) * 1998-04-15 2008-06-04 東芝三菱電機産業システム株式会社 Dielectric barrier discharge device
JP4321308B2 (en) * 2004-03-02 2009-08-26 パナソニック株式会社 Plasma generation method and apparatus

Also Published As

Publication number Publication date
JP2012176868A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
US10107281B2 (en) Piezoelectric blower
WO2013187271A1 (en) Blower
US8492957B2 (en) Apparatus for generating electric energy
JP6047575B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2014103454A1 (en) Sound emitter and electronic apparatus employing same
WO2014050983A1 (en) Acoustic generator, acoustic generation device, and electronic apparatus
JPWO2014045645A1 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP2011077924A (en) Electrostatic speaker
WO2014050214A1 (en) Acoustic generator, acoustic generation device and electronic device
JP5750938B2 (en) Ozone generator
JP2010016603A (en) Electrostatic speaker
JP5602978B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
KR101597560B1 (en) Ultrasonic wave-generating device
WO2021253749A1 (en) Miniature super bass dual-drive low-frequency vibrator
WO2016060148A1 (en) Fixed pole and electroacoustic transducer
JP2012095112A (en) Ultrasonic generation unit
JP2016184786A (en) Acoustic generation device and electronic apparatus including the same
JP6263902B2 (en) Ultrasonic generator
JP2006262092A (en) Ultrasonic transducer
JP6020465B2 (en) Oscillator
WO2012127943A1 (en) Ultrasonic irradiation device
TW201932712A (en) Actuator structure and micro-fluid control device using the same
WO2013122048A1 (en) Ultrasonic generation apparatus
WO2014091834A1 (en) Acoustic generator, acoustic generation device, and electronic apparatus
JP6408432B2 (en) SOUND GENERATOR AND ELECTRONIC DEVICE HAVING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R150 Certificate of patent or registration of utility model

Ref document number: 5750938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees