JP5749690B2 - Anticorrosion method for metal structures - Google Patents

Anticorrosion method for metal structures Download PDF

Info

Publication number
JP5749690B2
JP5749690B2 JP2012141713A JP2012141713A JP5749690B2 JP 5749690 B2 JP5749690 B2 JP 5749690B2 JP 2012141713 A JP2012141713 A JP 2012141713A JP 2012141713 A JP2012141713 A JP 2012141713A JP 5749690 B2 JP5749690 B2 JP 5749690B2
Authority
JP
Japan
Prior art keywords
metal structure
ground
microorganisms
corrosion
slime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012141713A
Other languages
Japanese (ja)
Other versions
JP2014005500A (en
Inventor
齋藤 博之
博之 齋藤
植田 充美
充美 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012141713A priority Critical patent/JP5749690B2/en
Publication of JP2014005500A publication Critical patent/JP2014005500A/en
Application granted granted Critical
Publication of JP5749690B2 publication Critical patent/JP5749690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、一部が土中に埋設されて用いられるなど地面に配置されている金属構造体の腐食を防止する金属構造体の防食方法に関する。   The present invention relates to a metal structure corrosion prevention method for preventing corrosion of a metal structure disposed on the ground, such as a part of which is buried in soil.

高強度鋼などの鋼材は、鉄骨などとして建築物やプラントなどの部材として用いられている。このような鋼材は、大気中の環境で腐食し、例えば強度の低下などを招くため、腐食を防ぐことが重要となる。このような金属構造体の大気中での腐食は、水を介しての金属と金属イオンの平衡が酸素または水素イオンの還元反応により酸化方向に進むことによって生じると考えられる。特に、一部が地中に埋設されて用いられる場合、地際に腐食が生じやすい。地際においては、湿った地面(地中)から生じる水膜が地際上部にのぼり、この部分での水膜の厚さが大きくないので酸素をよく透過し、電気化学的な腐食が生じやすいことが知られている(非特許文献1参照)。   Steel materials such as high-strength steel are used as members of buildings and plants as steel frames. Such a steel material corrodes in the environment in the atmosphere and causes, for example, a decrease in strength. Therefore, it is important to prevent corrosion. Such corrosion of the metal structure in the air is considered to occur when the equilibrium between the metal and the metal ion through water proceeds in the oxidation direction by the reduction reaction of oxygen or hydrogen ions. In particular, when a part is buried in the ground and used, corrosion tends to occur on the ground. On the ground, the water film generated from the moist ground (underground) rises to the upper part of the ground, and the thickness of the water film in this part is not large, so it penetrates oxygen well and is susceptible to electrochemical corrosion. It is known (see Non-Patent Document 1).

http://www.sabidome.com/use/use02.htmlhttp://www.sabidome.com/use/use02.html

上述したような金属構造体の地際における部分の防食には、塗装を施すなどの対策が採られている。しかしながら、既設の金属構造体には、このような対策は適用しにくいという問題がある。   Measures such as painting are taken to prevent the corrosion of the metal structure on the ground as described above. However, the existing metal structure has a problem that it is difficult to apply such measures.

本発明は、以上のような問題点を解消するためになされたものであり、既設の金属構造体においても、地際における腐食が抑制できるようにすることを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to suppress corrosion on the ground even in an existing metal structure.

本発明に係る金属構造体の防食方法は、スライムを生成する微生物を用意する第1ステップと、金属構造体が配置されている地面の金属構造体の周囲に、微生物を配置し、金属構造体が配置されている地面の金属構造体の周囲に配置した微生物が生成したスライムで地面を被覆する第2ステップとを少なくとも備える。例えば、微生物は、微生物の培地と共に地面に配置すればよい。また、微生物は、ショ糖と共に地面に配置してもよい。なお、微生物は、MT8−1およびBY4741の少なくとも1種類である。 The anticorrosion method for a metal structure according to the present invention includes a first step of preparing a microorganism that generates slime, and arranging the microorganism around the metal structure on the ground where the metal structure is disposed , And at least a second step of covering the ground with slime generated by microorganisms arranged around the metal structure on the ground . For example, the microorganisms may be placed on the ground together with the microorganism culture medium. Moreover, you may arrange | position microorganisms on the ground with sucrose. The microorganism is at least one of MT8-1 and BY4741.

以上説明したことにより、本発明によれば、既設の金属構造体においても、地際における腐食が抑制できるようになるという優れた効果が得られる。   As described above, according to the present invention, even in an existing metal structure, an excellent effect that corrosion on the ground can be suppressed can be obtained.

図1は、本発明の実施の形態における金属構造体の防食方法を説明するフローチャートである。FIG. 1 is a flowchart illustrating a method for preventing corrosion of a metal structure according to an embodiment of the present invention. 図2は、金属構造体201が配置されている状態を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a state in which the metal structure 201 is arranged.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における金属構造体の防食方法を説明するフローチャートである。この方法は、ステップS101で、スライムを生成する微生物を用意する。次に、ステップS102で、金属構造体が配置されている地面の金属構造体の周囲に、用意した微生物を配置する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart illustrating a method for preventing corrosion of a metal structure according to an embodiment of the present invention. In this method, a microorganism that produces slime is prepared in step S101. Next, in step S102, the prepared microorganisms are arranged around the metal structure on the ground where the metal structure is arranged.

このように、金属構造体近傍の地面(地表面)に微生物を配置することにより、微生物が生成したスライムにより地面が被覆され、地中から生じる水膜が地際上部に登ってくることを抑制し、金属構造体の腐食が防止できるようになるものと考えられる。   In this way, by placing microorganisms on the ground (surface of the ground) near the metal structure, the ground is covered with slime generated by the microorganisms, and water films generated from the ground are prevented from climbing to the top of the ground. Therefore, it is considered that corrosion of the metal structure can be prevented.

図2に示すように、金属構造体201が土壌202に設置(埋設)されている状態では、地際近辺には、土壌202中の水分と平衡する蒸気圧による水膜211が形成される。水膜211は薄いので、大気中からの酸素が拡散しやすく、金属構造体201の表面において金属の酸化と対になる酸素の還元反応を生じ、金属腐食が進行する。具体例として、金属構造体201が亜鉛板の場合、土壌202の表面203より上の地際の部分に黒色のかなり激しい腐食がみられた。   As shown in FIG. 2, in a state where the metal structure 201 is installed (embedded) in the soil 202, a water film 211 is formed in the vicinity of the ground by vapor pressure that balances with moisture in the soil 202. Since the water film 211 is thin, oxygen from the atmosphere is likely to diffuse, causing a reduction reaction of oxygen paired with metal oxidation on the surface of the metal structure 201, and metal corrosion proceeds. As a specific example, in the case where the metal structure 201 is a zinc plate, the black portion of the ground 202 above the surface 203 of the soil 202 was significantly corroded.

上述した状態に対し、金属構造体201の近傍の表面203に、酵母などの微生物およびこれらの培地より構成した細菌層212を配置すると、上述したような金属構造体201の地際における腐食が抑制された。このとき用いた酵母菌は、MT8−1およびBY4741である。なお、用いた酵母菌MT8−1は、米国基準菌株保存機関(American Type Culture Collection:ATTC)で入手可能な株であり、BY4741は、Euroscarf(EUROpean Saccharomyces Cerevisiae ARchive for Functional Analysis)で入手可能な株である。   In contrast to the above-described state, when a bacterial layer 212 composed of microorganisms such as yeast and these media is disposed on the surface 203 in the vicinity of the metal structure 201, the above-described corrosion of the metal structure 201 on the ground is suppressed. It was done. The yeast used at this time is MT8-1 and BY4741. The yeast MT8-1 used is a strain available from the American Type Culture Collection (ATTC), and BY4741 is a strain available from Euroscarf (EUROpean Saccharomyces Cerevisiae ARchive for Functional Analysis). It is.

上述した腐食防止の一因として,微生物は、細菌層212の大気と接する面に集中して増殖し、微生物個体が細菌層212の大気との界面を被覆し、また、微生物が生成したスライムが界面を被覆することが考えられる。このような微生物および微生物が生成したスライムによる表面203の被覆により、土壌202中の水が表面203より大気中に蒸散することを抑制し、この結果として、金属構造体201地際近傍の大気中の蒸気圧が下がり、金属構造体201表面への水膜211の形成が抑制されるものと考えられる。   As a cause of the above-described corrosion prevention, microorganisms are concentrated on the surface of the bacterial layer 212 in contact with the atmosphere, the individual microorganisms cover the interface of the bacterial layer 212 with the atmosphere, and the slime produced by the microorganisms It is conceivable to cover the interface. By covering the surface 203 with such microorganisms and the slime produced by the microorganisms, water in the soil 202 is prevented from being evaporated from the surface 203 to the atmosphere. As a result, the metal structure 201 is exposed to the atmosphere near the ground. It is considered that the vapor pressure of the water drops and the formation of the water film 211 on the surface of the metal structure 201 is suppressed.

なお、酵母菌などのスライムを生成する微生物は、種々の環境下において自然界に存在するが、集落(細菌叢)を作る程度に集まることで、上述した効果が初めて得られるものと考えられる。従って、腐食を抑制しようとする場所に、最初に自然界に通常存在する量と比較してより多い大量の微生物を人為的に配置することが、上述した防食の効果を得るためには重要となる。   In addition, although microorganisms which produce slime, such as yeast, exist in nature in various environments, it is considered that the above-described effects can be obtained for the first time by gathering to the extent that a colony (bacteria flora) is formed. Therefore, in order to obtain the above-described anticorrosion effect, it is important to artificially place a larger amount of microorganisms in a place where corrosion is to be suppressed at first than the amount normally present in nature. .

なお、上述では、酵母菌を培地と共に配置しているが、雨による流失などが起こらない環境であれば、ショ糖等の酵母菌の栄養分のみを酵母菌と共に配置するようにしてもよい。また、腐葉土に類するような、酵母菌にとっての栄養分が非常に豊富な土壌であれば、酵母菌のみを配置してもかまわない。これらの場合には、例えば多量の酵母菌による細菌叢より生成されるスライムが、表面に形成され、地中からの水蒸気の蒸散を抑制できるものと考えられる。   In the above description, the yeast is arranged together with the culture medium. However, in an environment where no loss due to rain occurs, only the nutrients of yeast such as sucrose may be arranged together with the yeast. Further, if the soil is very rich in nutrients for yeast, such as humus, only yeast may be placed. In these cases, for example, slime produced from a bacterial flora of a large amount of yeast is formed on the surface, and it is considered that the evaporation of water vapor from the ground can be suppressed.

以上に説明したように、本発明では、スライムを生成する微生物を、金属構造体が配置されている地面の金属構造体の周囲に配置するようにしたので、既設の金属構造体においても、地際における腐食が抑制できるようになるという優れた効果が得られる。   As described above, in the present invention, since the microorganisms that generate slime are arranged around the metal structure on the ground where the metal structure is arranged, even in the existing metal structure, An excellent effect is obtained in that corrosion at the time can be suppressed.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.

例えば、上述では、土壌の場合を例に説明したが、これに限るものではなく、コンクリートなどで舗装された地面に設けられている金属構造体に対しても、同様の効果が得られる。コンクリートやいわゆるアスファルトなどは、多孔体であり、大気中に配置されている状態では、多くの水分を含んでいる。このため、これらに接して設けられている金属構造体においても、地際における腐食の問題が存在する。これに対し、スライムを生成する微生物を、金属構造体が配置されている地面の金属構造体の周囲に配置することで、地際における腐食が抑制できるようになる。   For example, in the above description, the case of soil has been described as an example. However, the present invention is not limited to this, and the same effect can be obtained for a metal structure provided on the ground paved with concrete or the like. Concrete and so-called asphalt are porous bodies and contain a lot of moisture when placed in the atmosphere. For this reason, even in the metal structure provided in contact therewith, there is a problem of corrosion on the ground. On the other hand, by arranging the microorganisms that generate slime around the metal structure on the ground where the metal structure is arranged, corrosion on the ground can be suppressed.

201…金属構造体、202…土壌、203…表面、211…水膜、212…細菌層。   201 ... Metal structure, 202 ... Soil, 203 ... Surface, 211 ... Water film, 212 ... Bacterial layer.

Claims (3)

スライムを生成する微生物を用意する第1ステップと、
金属構造体が配置されている地面の前記金属構造体の周囲に、前記微生物を配置し、前記金属構造体が配置されている地面の前記金属構造体の周囲に配置した前記微生物が生成したスライムで地面を被覆する第2ステップと
を少なくとも備え
前記微生物は、MT8−1およびBY4741の少なくとも1種類である
ことを特徴とする金属構造体の防食方法。
A first step of preparing a microorganism that produces slime;
A slime produced by the microorganisms arranged around the metal structure on the ground where the metal structure is arranged, and arranged around the metal structure on the ground where the metal structure is arranged at least a second step for covering the ground in,
The said microorganism is at least 1 type of MT8-1 and BY4741, The corrosion prevention method of the metal structure characterized by the above-mentioned .
請求項1記載の金属構造体の防食方法において、
前記微生物は、前記微生物の培地と共に前記地面に配置することを特徴とする金属構造体の防食方法。
In the corrosion prevention method of the metal structure according to claim 1,
The said microorganisms are arrange | positioned on the said ground with the culture medium of the said microorganisms, The corrosion prevention method of the metal structure characterized by the above-mentioned.
請求項1記載の金属構造体の防食方法において、
前記微生物は、ショ糖と共に前記地面に配置することを特徴とする金属構造体の防食方法。
In the corrosion prevention method of the metal structure according to claim 1,
The said microorganisms are arrange | positioned on the said ground with sucrose, The corrosion prevention method of the metal structure characterized by the above-mentioned.
JP2012141713A 2012-06-25 2012-06-25 Anticorrosion method for metal structures Expired - Fee Related JP5749690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141713A JP5749690B2 (en) 2012-06-25 2012-06-25 Anticorrosion method for metal structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141713A JP5749690B2 (en) 2012-06-25 2012-06-25 Anticorrosion method for metal structures

Publications (2)

Publication Number Publication Date
JP2014005500A JP2014005500A (en) 2014-01-16
JP5749690B2 true JP5749690B2 (en) 2015-07-15

Family

ID=50103485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141713A Expired - Fee Related JP5749690B2 (en) 2012-06-25 2012-06-25 Anticorrosion method for metal structures

Country Status (1)

Country Link
JP (1) JP5749690B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877581A (en) * 1981-11-04 1983-05-10 Idemitsu Kosan Co Ltd Method of preventing corrosion of metal using microorganism
WO2003016525A1 (en) * 2001-08-16 2003-02-27 Kansai Chemical Engineering Co., Ltd. Process for producing alcohol from starch
JP2004075953A (en) * 2002-08-22 2004-03-11 Tsugio Sasaki Anti-oxidative calcium powder
JP5070534B2 (en) * 2004-04-24 2012-11-14 株式会社大林環境技術研究所 Inorganic / organic deterioration prevention materials and / or construction methods.
JP4491588B2 (en) * 2006-03-03 2010-06-30 独立行政法人農業生物資源研究所 Purification method of killer protein

Also Published As

Publication number Publication date
JP2014005500A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
Keiluweit et al. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?
Johansson et al. Estimation of mould growth levels on rendered façades based on surface relative humidity and surface temperature measurements
Lin et al. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland
Borken et al. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil
Cutler et al. Eukaryotic microorganisms and stone biodeterioration
Estop-Aragonés et al. Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding
Bao et al. Much stronger tundra methane emissions during autumn freeze than spring thaw
Kotiaho et al. Methanogen activity in relation to water table level in two boreal fens
Adan et al. Water relations of fungi in indoor environments
Peng et al. Corrosion and capacity prediction of marine steel infrastructure under a changing environment
De Leo et al. Laboratory tests of fungal biocorrosion of unbonded lubricated post-tensioned tendons
JP5749690B2 (en) Anticorrosion method for metal structures
Berenjkar et al. Methane oxidation in a landfill biowindow under wide seasonally fluctuating climatic conditions
Michette et al. Assessing the long-term success of reigate stone conservation at Hampton Court Palace and the Tower of London
Chen et al. Application of Budyko framework to irrigation districts in China under various climatic conditions
Fox et al. Field test of hygrothermal performance of highly insulated wall assemblies
Kretschmar et al. Investigating physicochemical sediment conditions at decayed wooden pile foundation sites in Amsterdam
CN209365500U (en) A kind of pipeline corrosion protection structure of wet environment
EP3755984A1 (en) System and method for measuring a condition of a building envelope
JP2013142170A (en) Method for preventing hydrogen embrittlement
Aglan et al. Effect of long‐term exposure and delayed drying time on moisture and mechanical integrity of flooded homes
Klõšeiko et al. Overview of damage to medieval rural churches in Estonia
Bryant et al. Performance and design of foundations on unsaturated expansive soil
Yang A retrospective and forensic approach to assessment of fungal growth in the indoor environment
Schneck Insights from corrosion current measurements on corrosion mechanisms in reinforced concrete and on the evaluation of other corrosion data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees