JP5749553B2 - Light modulation control method, control program, control device, and laser light irradiation device - Google Patents

Light modulation control method, control program, control device, and laser light irradiation device Download PDF

Info

Publication number
JP5749553B2
JP5749553B2 JP2011096268A JP2011096268A JP5749553B2 JP 5749553 B2 JP5749553 B2 JP 5749553B2 JP 2011096268 A JP2011096268 A JP 2011096268A JP 2011096268 A JP2011096268 A JP 2011096268A JP 5749553 B2 JP5749553 B2 JP 5749553B2
Authority
JP
Japan
Prior art keywords
condensing
propagation
modulation
modulation pattern
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011096268A
Other languages
Japanese (ja)
Other versions
JP2012226268A (en
Inventor
直也 松本
直也 松本
卓 井上
卓 井上
優 瀧口
優 瀧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2011096268A priority Critical patent/JP5749553B2/en
Publication of JP2012226268A publication Critical patent/JP2012226268A/en
Application granted granted Critical
Publication of JP5749553B2 publication Critical patent/JP5749553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、空間光変調器の複数の画素に呈示する変調パターンによって集光点へのレーザ光の集光照射を制御する光変調制御方法、制御プログラム、制御装置、及びそれを用いたレーザ光照射装置に関するものである。   The present invention relates to a light modulation control method, a control program, a control device, and a laser beam using the same, which control condensing irradiation of laser light to a condensing point by a modulation pattern presented to a plurality of pixels of a spatial light modulator The present invention relates to an irradiation apparatus.

近年、ガラス内部に導波路、光分岐器、方向性結合器などの光集積回路を3次元に作製する研究が盛んに行われている。このような光集積回路の作製方法の1つとして、フェムト秒レーザ光を用いる方法がある。この方法では、例えば、フェムト秒レーザ光の集光点において2光子吸収等により衝撃が誘起され、それによって局所的にガラスの屈折率を変化させる加工を行うことができる。また、このような照射対象物へのレーザ光の集光照射は、光集積回路の作製以外にも、様々なレーザ加工装置、あるいは、レーザ光の散乱、反射を観察するレーザ顕微鏡などにおいて広く用いられている(例えば、特許文献1〜3、非特許文献1〜6参照)。   In recent years, active research has been conducted on three-dimensional fabrication of optical integrated circuits such as waveguides, optical splitters, and directional couplers inside glass. One method for manufacturing such an optical integrated circuit is a method using femtosecond laser light. In this method, for example, an impact is induced by two-photon absorption or the like at the condensing point of the femtosecond laser beam, and thereby processing for locally changing the refractive index of the glass can be performed. In addition to the fabrication of optical integrated circuits, such focused irradiation of laser light onto an object to be irradiated is widely used in various laser processing apparatuses or laser microscopes that observe scattering and reflection of laser light. (For example, refer to Patent Documents 1 to 3 and Non-Patent Documents 1 to 6).

ここで、レーザ光源から出射された1本のレーザ光ビームを用いて、複雑な3次元構造の加工などのレーザ光照射を行う場合、その加工工程に莫大な時間を要するという問題がある。この場合の加工時間の短縮方法としては、複数の集光点による多点同時加工を行う方法が考えられる。このような方法を実現する最も簡単な構成は、複数のレーザ光源から供給される複数本のレーザ光ビームを用いる構成である。しかしながら、このような構成は、複数のレーザ光源を用意するコスト、設置スペース等を考えれば現実的ではない。   Here, when laser light irradiation such as processing of a complicated three-dimensional structure is performed using one laser light beam emitted from a laser light source, there is a problem that an enormous time is required for the processing step. As a method for shortening the processing time in this case, a method of performing multi-point simultaneous processing using a plurality of condensing points is conceivable. The simplest configuration for realizing such a method is a configuration using a plurality of laser light beams supplied from a plurality of laser light sources. However, such a configuration is not realistic in view of the cost of preparing a plurality of laser light sources, installation space, and the like.

これに対して、位相変調型の空間光変調器(SLM:Spatial LightModulator)、及び数値計算により求められたホログラム(CGH:Computer GeneratedHologram)を用いて、多点同時加工を実現する方法が検討されている。CGHが呈示された空間光変調器にレーザ光を入力すると、CGHの変調パターンに応じて入力光の位相が変調される。そして、光変調器から出力された変調レーザ光の波面をフーリエ変換レンズにて集光させると、1本のレーザ光ビームから複数の集光点を作り出すことができ、多点同時照射による同時加工、同時観察等のレーザ操作が可能となる。   On the other hand, a method of realizing multi-point simultaneous processing using a phase modulation type spatial light modulator (SLM) and a hologram (CGH: Computer Generated Hologram) obtained by numerical calculation has been studied. Yes. When laser light is input to the spatial light modulator on which CGH is presented, the phase of the input light is modulated according to the modulation pattern of CGH. When the wave front of the modulated laser light output from the optical modulator is condensed by a Fourier transform lens, a plurality of condensing points can be created from one laser light beam, and simultaneous processing by multi-point simultaneous irradiation Laser operation such as simultaneous observation becomes possible.

空間光変調器を用いた照射対象物(加工対象物)の内部における多点同時加工では、光軸に対して垂直な1面内において、任意の位置にレーザ光を集光させることができる。また、このような多点同時加工では、レンズ効果を持つフレネルレンズパターンを空間光変調器に呈示するなどの方法を用いることにより、光軸方向も含めた3次元の任意の位置にレーザ光を集光させることも可能である。   In multi-point simultaneous processing inside an irradiation object (processing object) using a spatial light modulator, laser light can be condensed at an arbitrary position in one plane perpendicular to the optical axis. In such multi-point simultaneous processing, by using a method such as presenting a Fresnel lens pattern having a lens effect on a spatial light modulator, laser light can be applied to an arbitrary three-dimensional position including the optical axis direction. It is also possible to collect light.

特開2010−058128号公報JP 2010-058128 A 特開2010−075997号公報JP 2010-075997 A 特許第4300101号公報Japanese Patent No. 4300101

J. Bengtsson, "Kinoformdesign with an optimal-rotation-angle method", Appl. Opt. Vol.33 No.29(1994) pp.6879-6884J. Bengtsson, "Kinoformdesign with an optimal-rotation-angle method", Appl. Opt. Vol.33 No.29 (1994) pp.6879-6884 J. Bengtsson, "Design offan-out kinoforms in the entire scalar diffraction regime with anoptimal-rotation-angle method", Appl. Opt. Vol.36 No.32 (1997) pp.8435-8444J. Bengtsson, "Design of fan-out kinoforms in the entire scalar diffraction regime with anoptimal-rotation-angle method", Appl. Opt. Vol. 36 No. 32 (1997) pp. 8435-8444 N. Yoshikawa et al., "Phaseoptimization of a kinoform by simulated annealing", Appl. Opt. Vol.33 No.5(1994) pp.863-868N. Yoshikawa et al., "Phaseoptimization of a kinoform by simulated annealing", Appl. Opt. Vol.33 No.5 (1994) pp.863-868 N. Yoshikawa et al., "Quantizedphase optimization of two-dimensional Fourier kinoforms by a genetic algorithm",Opt. Lett. Vol.20 No.7 (1995) pp.752-754N. Yoshikawa et al., "Quantized phase optimization of two-dimensional Fourier kinoforms by a genetic algorithm", Opt. Lett. Vol.20 No.7 (1995) pp.752-754 C. Mauclair et al., "Ultrafastlaser writing of homogeneous longitudinal waveguides in glasses using dynamicwavefront correction", Opt. Exp. Vol.16 No.8 (2008) pp.5481-5492C. Mauclair et al., "Ultrafastlaser writing of homogeneous longitudinal waveguides in glasses using dynamicwavefront correction", Opt. Exp. Vol.16 No.8 (2008) pp.5481-5492 A. Jesacher et al., "Paralleldirect laser writing in three dimensions with spatially dependent aberrationcorrection", Opt. Exp. Vol.18 No.20 (2010) pp.21090-21099A. Jesacher et al., "Paralleldirect laser writing in three dimensions with spatially dependent aberration correctionion", Opt. Exp. Vol.18 No.20 (2010) pp.21090-21099 久保田広、「光学」、岩波書店、1967年、pp.128〜131、pp.300〜301Hiroshi Kubota, "Optics", Iwanami Shoten, 1967, pp. 128-131, pp. 300-301 Y. Ogura et al., "Wavelength-multiplexing diffractive phaseelements: design, fabrication, and performance evaluation", J. Opt. Soc. Am.A Vol.18 No.5 (2001) pp.1082-1092Y. Ogura et al., "Wavelength-multiplexing diffractive phaseelements: design, fabrication, and performance evaluation", J. Opt. Soc. Am.A Vol.18 No.5 (2001) pp.1082-1092

上記した照射対象物へのレーザ光の集光照射において、空間光変調器から照射対象物へのレーザ光の伝搬経路上に収差物体が存在する場合、伝搬するレーザ光が収差の影響を受けることになる。例えば、レーザ光照射によってガラス内部の加工を行う場合、対物レンズから出射された収束光において、雰囲気媒質である空気と、加工対象物であるガラス媒体との間での屈折率の違いにより、焦点位置ずれ(収差)が発生する。   In the above-mentioned focused irradiation of laser light onto the irradiation target, if there is an aberration object on the propagation path of the laser light from the spatial light modulator to the irradiation target, the propagating laser light is affected by the aberration. become. For example, when processing the inside of the glass by laser light irradiation, in the convergent light emitted from the objective lens, due to the difference in refractive index between the air that is the atmosphere medium and the glass medium that is the processing target, Misalignment (aberration) occurs.

このような収差が発生すると、レーザ光の集光点の形状が光軸方向に伸び、集光点における集光密度が低下する。この場合、対象物を加工する際に、集光点におけるレーザ光強度を加工閾値に到達させるために入射レーザ光強度を高くしなければならず、あるいは、集光形状が伸張したために微細加工が出来なくなるなどの問題が生じる。このような収差の影響の問題は、多点同時照射の場合に限らず、単一の集光点にレーザ光を集光照射する場合にも同様に生じる。   When such aberration occurs, the shape of the condensing point of the laser light extends in the optical axis direction, and the condensing density at the condensing point decreases. In this case, when processing the object, the incident laser light intensity must be increased in order to make the laser light intensity at the condensing point reach the processing threshold, or fine processing is performed because the condensing shape is extended. Problems such as being unable to do so occur. Such a problem of the influence of aberration occurs not only in the case of multi-point simultaneous irradiation but also in the case of condensing and irradiating a single condensing point with laser light.

本発明は、以上の問題点を解決するためになされたものであり、集光点におけるレーザ光の集光状態を好適に制御することが可能な光変調制御方法、光変調制御プログラム、光変調制御装置、及びそれを用いたレーザ光照射装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an optical modulation control method, an optical modulation control program, and an optical modulation capable of suitably controlling the condensing state of laser light at the condensing point. It aims at providing a control apparatus and a laser beam irradiation apparatus using the same.

このような目的を達成するために、本発明による光変調制御方法は、(1)レーザ光を入力し、レーザ光の位相を変調して、位相変調後のレーザ光を出力する位相変調型の空間光変調器を用い、空間光変調器に呈示する変調パターンによって、設定された集光点へのレーザ光の集光照射を制御する光変調制御方法であって、(2)レーザ光の照射条件として、空間光変調器へのレーザ光の入射パターン、空間光変調器から集光点へのレーザ光の伝搬経路上にある第1伝搬媒質の第1屈折率n、及び第1伝搬媒質よりも集光点側にある第2伝搬媒質の第1屈折率とは異なる第2屈折率nを取得する照射条件取得ステップと、(3)レーザ光の集光条件として、空間光変調器からのレーザ光を集光照射する集光点の個数s(s以上の整数)、及びs個の集光点sのそれぞれについての集光位置、集光強度を設定する集光条件設定ステップと、(4)空間光変調器から集光点sへのレーザ光の伝搬において、互いに屈折率が異なる第1伝搬媒質、及び第2伝搬媒質によって生じる収差条件を導出する収差条件導出ステップと、(5)収差条件導出ステップで導出された収差条件を考慮して、空間光変調器に呈示する変調パターンを設計する変調パターン設計ステップとを備え、(6)変調パターン設計ステップは、空間光変調器において2次元配列された複数の画素を想定し、複数の画素に呈示する変調パターンの1画素での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目して、その集光状態が所望の状態に近づくように位相値を変更し、そのような位相値の変更操作を変調パターンの全ての画素について行うことで変調パターンを設計するとともに、集光点での集光状態を評価する際に、空間光変調器の変調パターンにおける画素jから集光点sへの光の伝搬について、伝搬媒質が均質な状態の自由伝搬の波動伝搬関数φjsに収差条件を加えて変換した伝搬関数φjs’を用い、収差条件導出ステップは、画素jから集光点sへの光の伝搬についての収差条件として、その伝搬での光路長差を与える位相Φ j−OPD を求め、変調パターン設計ステップは、変換式
φ js ’=φ js +Φ j−OPD
によって、収差条件が考慮された伝搬関数φ js ’を求めることを特徴とする。
In order to achieve such an object, an optical modulation control method according to the present invention includes (1) a phase modulation type of inputting laser light, modulating the phase of the laser light, and outputting the laser light after phase modulation. A light modulation control method that uses a spatial light modulator to control condensing irradiation of laser light to a set condensing point according to a modulation pattern presented to the spatial light modulator, and (2) irradiation of laser light As conditions, the incident pattern of the laser light to the spatial light modulator, the first refractive index n 1 of the first propagation medium on the propagation path of the laser light from the spatial light modulator to the condensing point, and the first propagation medium An irradiation condition acquisition step of acquiring a second refractive index n 2 different from the first refractive index of the second propagation medium closer to the condensing point side, and (3) a spatial light modulator as the laser light condensing condition the number s t (s t of the focal point of the laser beam focused irradiation from two or more Integer), and s t number of condensing positions of the respective focal point s, and the condensing condition setting step of setting the current intensity, (4) the laser light from the spatial light modulator to the focusing point s In consideration of the aberration condition derived in the aberration condition deriving step, and (5) the aberration condition deriving step for deriving the aberration condition caused by the first propagation medium and the second propagation medium having different refractive indexes, A modulation pattern design step for designing a modulation pattern to be presented to the spatial light modulator, and (6) the modulation pattern design step assumes a plurality of pixels arranged two-dimensionally in the spatial light modulator, Focusing on the effect of changing the phase value at one pixel of the modulation pattern to be presented on the condensing state of the laser beam at the condensing point, changing the phase value so that the condensing state approaches a desired state, That Such a phase value change operation is performed on all the pixels of the modulation pattern to design the modulation pattern, and when evaluating the condensing state at the condensing point, it collects from the pixel j in the modulation pattern of the spatial light modulator. For propagation of light to the light spot s, a propagation function φ js ′ obtained by adding an aberration condition to the wave propagation function φ js of free propagation in a state where the propagation medium is homogeneous is used , and the aberration condition derivation step is performed from the pixel j. As an aberration condition for the propagation of light to the condensing point s, a phase Φ j-OPD that gives an optical path length difference in the propagation is obtained, and the modulation pattern design step is performed by a conversion equation.
φ js ' = φ js + Φ j-OPD
Accordingly, characterized Rukoto seek propagation function phi js' aberration condition is considered.

また、本発明による光変調制御プログラムは、(1)レーザ光を入力し、レーザ光の位相を変調して、位相変調後のレーザ光を出力する位相変調型の空間光変調器を用い、空間光変調器に呈示する変調パターンによって、設定された集光点へのレーザ光の集光照射を制御する光変調制御をコンピュータに実行させるためのプログラムであって、(2)レーザ光の照射条件として、空間光変調器へのレーザ光の入射パターン、空間光変調器から集光点へのレーザ光の伝搬経路上にある第1伝搬媒質の第1屈折率n、及び第1伝搬媒質よりも集光点側にある第2伝搬媒質の第1屈折率とは異なる第2屈折率nを取得する照射条件取得処理と、(3)レーザ光の集光条件として、空間光変調器からのレーザ光を集光照射する集光点の個数s(s以上の整数)、及びs個の集光点sのそれぞれについての集光位置、集光強度を設定する集光条件設定処理と、(4)空間光変調器から集光点sへのレーザ光の伝搬において、互いに屈折率が異なる第1伝搬媒質、及び第2伝搬媒質によって生じる収差条件を導出する収差条件導出処理と、(5)収差条件導出処理で導出された収差条件を考慮して、空間光変調器に呈示する変調パターンを設計する変調パターン設計処理とをコンピュータに実行させ、(6)変調パターン設計処理は、空間光変調器において2次元配列された複数の画素を想定し、複数の画素に呈示する変調パターンの1画素での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目して、その集光状態が所望の状態に近づくように位相値を変更し、そのような位相値の変更操作を変調パターンの全ての画素について行うことで変調パターンを設計するとともに、集光点での集光状態を評価する際に、空間光変調器の変調パターンにおける画素jから集光点sへの光の伝搬について、伝搬媒質が均質な状態の自由伝搬の波動伝搬関数φjsに収差条件を加えて変換した伝搬関数φjs’を用い、収差条件導出処理は、画素jから集光点sへの光の伝搬についての収差条件として、その伝搬での光路長差を与える位相Φ j−OPD を求め、変調パターン設計処理は、変換式
φ js ’=φ js +Φ j−OPD
によって、収差条件が考慮された伝搬関数φ js ’を求めることを特徴とする。
An optical modulation control program according to the present invention uses (1) a phase modulation type spatial light modulator that inputs laser light, modulates the phase of the laser light, and outputs the laser light after phase modulation. A program for causing a computer to execute light modulation control for controlling the condensing irradiation of laser light to a set condensing point according to a modulation pattern presented to the optical modulator, and (2) laser light irradiation conditions From the incident pattern of the laser light to the spatial light modulator, the first refractive index n 1 of the first propagation medium on the propagation path of the laser light from the spatial light modulator to the condensing point, and the first propagation medium Also, an irradiation condition acquisition process for acquiring a second refractive index n 2 different from the first refractive index of the second propagation medium on the condensing point side, and (3) from the spatial light modulator as the laser light condensing condition Number of focusing points s t for focusing and irradiating the laser beam (S t is an integer of 2 or more), and a condensing condition setting process for setting a condensing position and a condensing intensity for each of the s t condensing points s, and (4) condensing from the spatial light modulator An aberration condition deriving process for deriving an aberration condition caused by the first propagation medium and the second propagation medium having different refractive indexes in the propagation of the laser beam to the point s, and (5) the aberration derived by the aberration condition deriving process. In consideration of the conditions, the computer executes a modulation pattern design process for designing a modulation pattern to be presented to the spatial light modulator. (6) The modulation pattern design process includes a plurality of two-dimensionally arranged modulation patterns in the spatial light modulator. Assuming a pixel, paying attention to the effect of changing the phase value in one pixel of the modulation pattern presented to a plurality of pixels on the condensing state of the laser beam at the condensing point, the condensing state becomes a desired state Set the phase value closer In addition, the modulation pattern is designed by performing such a phase value changing operation for all the pixels of the modulation pattern, and the modulation pattern of the spatial light modulator is evaluated when evaluating the light collection state at the light collection point. for propagation of light from the pixel j to the focal point s, the propagation medium is converted by adding aberration condition the wave propagation function phi js the free propagation of the homogeneous state transfer function phi js' used in aberration condition deriving process Obtains a phase Φ j-OPD that gives an optical path length difference in the propagation as an aberration condition for the propagation of light from the pixel j to the condensing point s.
φ js ' = φ js + Φ j-OPD
Accordingly, characterized Rukoto seek propagation function phi js' aberration condition is considered.

また、本発明による光変調制御装置は、(1)レーザ光を入力し、レーザ光の位相を変調して、位相変調後のレーザ光を出力する位相変調型の空間光変調器を用い、空間光変調器に呈示する変調パターンによって、設定された集光点へのレーザ光の集光照射を制御する光変調制御装置であって、(2)レーザ光の照射条件として、空間光変調器へのレーザ光の入射パターン、空間光変調器から集光点へのレーザ光の伝搬経路上にある第1伝搬媒質の第1屈折率n、及び第1伝搬媒質よりも集光点側にある第2伝搬媒質の第1屈折率とは異なる第2屈折率nを取得する照射条件取得手段と、(3)レーザ光の集光条件として、空間光変調器からのレーザ光を集光照射する集光点の個数s(s以上の整数)、及びs個の集光点sのそれぞれについての集光位置、集光強度を設定する集光条件設定手段と、(4)空間光変調器から集光点sへのレーザ光の伝搬において、互いに屈折率が異なる第1伝搬媒質、及び第2伝搬媒質によって生じる収差条件を導出する収差条件導出手段と、(5)収差条件導出手段で導出された収差条件を考慮して、空間光変調器に呈示する変調パターンを設計する変調パターン設計手段とを備え、(6)変調パターン設計手段は、空間光変調器において2次元配列された複数の画素を想定し、複数の画素に呈示する変調パターンの1画素での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目して、その集光状態が所望の状態に近づくように位相値を変更し、そのような位相値の変更操作を変調パターンの全ての画素について行うことで変調パターンを設計するとともに、集光点での集光状態を評価する際に、空間光変調器の変調パターンにおける画素jから集光点sへの光の伝搬について、伝搬媒質が均質な状態の自由伝搬での波動伝搬関数φjsに収差条件を加えて変換した伝搬関数φjs’を用い、収差条件導出手段は、画素jから集光点sへの光の伝搬についての収差条件として、その伝搬での光路長差を与える位相Φ j−OPD を求め、変調パターン設計手段は、変換式
φ js ’=φ js +Φ j−OPD
によって、収差条件が考慮された伝搬関数φ js ’を求めることを特徴とする。
The light modulation control apparatus according to the present invention uses (1) a phase modulation type spatial light modulator that inputs laser light, modulates the phase of the laser light, and outputs the laser light after phase modulation. An optical modulation control device for controlling the condensing irradiation of laser light to a set condensing point according to a modulation pattern presented to the optical modulator, and (2) as a laser light irradiation condition, to the spatial light modulator The incident pattern of the laser light, the first refractive index n 1 of the first propagation medium on the propagation path of the laser light from the spatial light modulator to the condensing point, and the condensing point side of the first propagation medium An irradiation condition acquiring means for acquiring a second refractive index n 2 different from the first refractive index of the second propagation medium; and (3) condensing and irradiating the laser light from the spatial light modulator as the condensing condition of the laser light. Number of focusing points s t (s t is an integer of 2 or more), and s t focusing points a condensing condition setting means for setting a condensing position and a condensing intensity for each of s, and (4) a first propagation having a different refractive index in the propagation of laser light from the spatial light modulator to the condensing point s. An aberration condition deriving unit for deriving an aberration condition caused by the medium and the second propagation medium, and (5) designing a modulation pattern to be presented to the spatial light modulator in consideration of the aberration condition derived by the aberration condition deriving unit (6) The modulation pattern design means assumes a plurality of pixels arranged two-dimensionally in the spatial light modulator, and calculates a phase value of one modulation pattern to be presented to the plurality of pixels. Paying attention to the effect of the change on the condensing state of the laser beam at the condensing point, the phase value is changed so that the condensing state approaches the desired state, and such an operation of changing the phase value is performed on the modulation pattern. All pixels When designing the modulation pattern and evaluating the light condensing state at the condensing point, the propagation medium is used to propagate light from the pixel j to the condensing point s in the modulation pattern of the spatial light modulator. Using the propagation function φ js ′ converted by adding the aberration condition to the wave propagation function φ js in the free propagation in the homogeneous state , the aberration condition deriving means uses the aberration for the light propagation from the pixel j to the condensing point s. As a condition, the phase Φ j-OPD that gives the optical path length difference in the propagation is obtained, and the modulation pattern design means uses the conversion formula
φ js ' = φ js + Φ j-OPD
Accordingly, characterized Rukoto seek propagation function phi js' aberration condition is considered.

上記した光変調制御方法、制御プログラム、及び制御装置においては、空間光変調器を用いた集光点へのレーザ光の集光照射について、レーザ光の入射パターン、及び伝搬経路上の第1、第2伝搬媒質に関する情報を取得するとともに、レーザ光の集光点の個数、及び各集光点での集光位置、集光強度を含む集光条件を設定する。そして、屈折率が異なる第1、第2伝搬媒質が伝搬経路上にあることによって生じる収差条件を導出し、その収差条件を考慮して、空間光変調器に呈示する変調パターンを設計する。これにより、設定された単一または複数の集光点に対し、各集光点でのレーザ光の集光状態において、第1、第2伝搬媒質による収差の影響を低減することができる。   In the light modulation control method, the control program, and the control device described above, with regard to the focused irradiation of the laser beam to the focusing point using the spatial light modulator, the incident pattern of the laser beam and the first on the propagation path, Information on the second propagation medium is acquired, and the number of condensing points of the laser light, the condensing position at each condensing point, and the condensing condition including the condensing intensity are set. Then, an aberration condition generated when the first and second propagation media having different refractive indexes are on the propagation path is derived, and a modulation pattern to be presented to the spatial light modulator is designed in consideration of the aberration condition. Thereby, the influence of the aberration by the 1st, 2nd propagation medium can be reduced in the condensing state of the laser beam in each condensing point with respect to the set single condensing point or a plurality of condensing points.

さらに、このような構成での変調パターンの設計について、具体的に、空間光変調器において、2次元配列された複数の画素による画素構造を想定する。そして、変調パターンの1画素での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目した設計方法を用いるとともに、集光点での集光状態の評価において、自由伝搬を仮定した場合の波動伝搬関数φjsを用いるのではなく、収差条件が考慮された伝搬関数φjs’に変換した上で集光状態を評価している。このような構成によれば、集光点におけるレーザ光の集光状態を好適かつ確実に評価、制御することが可能となる。なお、空間光変調器として、2次元配列された複数の画素を有する空間光変調器を用いる場合には、その画素構造をそのまま変調パターンの設計に適用することができる。 Furthermore, regarding the design of the modulation pattern in such a configuration, specifically, a pixel structure including a plurality of pixels arranged two-dimensionally in the spatial light modulator is assumed. Then, a design method that focuses on the influence of the change of the phase value at one pixel of the modulation pattern on the condensing state of the laser beam at the condensing point is used, and free propagation is performed in the evaluation of the condensing state at the condensing point. rather than using wave propagation function phi js assuming a, is evaluating condensed state after having converted the propagation function phi js' aberration condition is considered. According to such a configuration, it is possible to appropriately and reliably evaluate and control the condensing state of the laser light at the condensing point. When a spatial light modulator having a plurality of pixels arranged two-dimensionally is used as the spatial light modulator, the pixel structure can be applied to the design of the modulation pattern as it is.

ここで、上記した光変調制御方法、制御プログラム、及び制御装置は、収差条件の導出において、画素jから集光点sへの光の伝搬についての収差条件として、その伝搬での光路長差を与える位相Φj−OPDを求め、変調パターンの設計において、変換式
φjs’=φjs+Φj−OPD
によって、収差条件が考慮された伝搬関数φjs’を求めることが好ましい。このような構成によれば、自由伝搬の伝搬関数φjsを、収差条件が考慮された伝搬関数φjs’に好適に変換することができる。
Here, the light modulation control method, the control program, and the control device described above calculate the optical path length difference in the propagation as the aberration condition for the light propagation from the pixel j to the condensing point s in the derivation of the aberration condition. The phase Φ j-OPD to be given is obtained, and in the modulation pattern design, the conversion formula φ js ′ = φ js + Φ j-OPD
Thus, it is preferable to obtain the propagation function φ js ′ in consideration of the aberration condition. According to such a configuration, the propagation function φ js of free propagation can be suitably converted into a propagation function φ js ′ in which the aberration condition is considered.

また、光変調制御方法、制御プログラム、及び制御装置は、変調パターンの設計において、空間光変調器の画素jへのレーザ光の入射振幅をAj−in、位相をφj−in、画素jでの位相値をφとして、下記式
=Aexp(iφ
=Σj−inexp(iφjs’)exp(i(φ+φj−in))
によって、集光点sにおける集光状態を示す複素振幅Uを求めることが好ましい。これにより、集光点におけるレーザ光の集光状態を好適に評価することができる。
Further, the light modulation control method, the control program, and the control device, in designing the modulation pattern, set the incident amplitude of the laser light to the pixel j of the spatial light modulator as A j-in , the phase as φ j-in , and the pixel j. as the phase values phi j in the following formula U s = a s exp (iφ s)
= Σ j A j-in exp (iφ js ') exp (i (φ j + φ j-in ))
Thus, it is preferable to obtain the complex amplitude U s indicating the condensing state at the condensing point s. Thereby, the condensing state of the laser beam in a condensing point can be evaluated suitably.

変調パターンの設計の具体的な構成については、変調パターンの画素jでの位相値の変更において、集光点sにおける集光状態を示す複素振幅の位相φ、収差条件が考慮された伝搬関数φjs’、及び画素jでの変更前の位相値φに基づいて解析的に求められた値によって、位相値を変更する構成を用いることができる。このように解析的に位相値を更新する方法としては、例えばORA(Optimal Rotation Angle)法がある。あるいは、変調パターンの画素jでの位相値の変更において、山登り法、焼きなまし法、または遺伝的アルゴリズムのいずれかの方法を用いて探索で求められた値によって、位相値を変更する構成を用いても良い。 As for the specific configuration of the modulation pattern design, in the change of the phase value at the pixel j of the modulation pattern, the propagation function considering the phase φ s of the complex amplitude indicating the condensing state at the condensing point s and the aberration condition A configuration in which the phase value is changed based on φ js ′ and a value analytically obtained based on the phase value φ j before the change at the pixel j can be used. As a method of updating the phase value analytically in this way, for example, there is an ORA (Optimal Rotation Angle) method. Alternatively, in the change of the phase value at the pixel j of the modulation pattern, a configuration in which the phase value is changed by a value obtained by searching using any one of the hill-climbing method, the annealing method, and the genetic algorithm is used. Also good.

また、レーザ光の伝搬経路上にある第1、第2伝搬媒質については、例えば、第2伝搬媒質が、集光点が内部に設定される照射対象物であり、第1伝搬媒質が、空間光変調器と照射対象物との間にある雰囲気媒質である構成を用いることができる。なお、雰囲気媒質については、空気などの他、水、オイル等であっても良い。また、空間光変調器と集光点との間に3つ以上の媒質があっても良い。   For the first and second propagation media on the propagation path of the laser beam, for example, the second propagation medium is an irradiation object with a condensing point set inside, and the first propagation medium is a space. A configuration that is an atmospheric medium between the light modulator and the irradiation object can be used. The atmosphere medium may be water, oil, or the like in addition to air. There may be three or more media between the spatial light modulator and the condensing point.

また、光変調制御装置は、空間光変調器を駆動制御して、変調パターン設計手段によって設計された変調パターンを空間光変調器に呈示する光変調器駆動制御手段を備えていても良い。また、このような光変調器駆動制御手段については、変調パターンの設計を行う光変調制御装置とは別装置として設けられる構成としても良い。   The light modulation control device may include light modulator drive control means for driving and controlling the spatial light modulator and presenting the modulation pattern designed by the modulation pattern design means to the spatial light modulator. Further, such an optical modulator drive control means may be provided as a separate device from the optical modulation control device for designing the modulation pattern.

本発明によるレーザ光照射装置は、(a)レーザ光を供給するレーザ光源と、(b)レーザ光を入力し、レーザ光の位相を変調して、位相変調後の変調レーザ光を出力する位相変調型の空間光変調器と、(c)空間光変調器に呈示する変調パターンによって、設定された集光点への変調レーザ光の集光照射を制御する上記構成の光変調制御装置とを備えることを特徴とする。   The laser light irradiation apparatus according to the present invention includes (a) a laser light source that supplies laser light, and (b) a phase that inputs the laser light, modulates the phase of the laser light, and outputs the modulated laser light after phase modulation. A modulation-type spatial light modulator; and (c) a light modulation control device having the above-described configuration that controls the focused irradiation of the modulated laser beam to the set focal point by the modulation pattern presented to the spatial light modulator. It is characterized by providing.

このような構成によれば、光変調制御装置によって、集光点におけるレーザ光の集光状態を好適かつ確実に制御して、照射対象物において設定された単一または複数の集光点に対するレーザ光の集光照射、及びそれによる対象物の加工、観察等の操作を好適に実現することが可能となる。このようなレーザ光照射装置は、例えばレーザ加工装置、レーザ顕微鏡などとして用いることができる。なお、空間光変調器としては、2次元配列された複数の画素を有し、複数の画素それぞれにおいてレーザ光の位相を変調する構成の空間光変調器を用いることが好ましい。   According to such a configuration, the light modulation control device suitably and surely controls the condensing state of the laser light at the condensing point, and the laser for a single condensing point or a plurality of condensing points set in the irradiation object. It is possible to suitably realize operations such as focused irradiation of light and processing and observation of an object by the light. Such a laser beam irradiation apparatus can be used as a laser processing apparatus, a laser microscope, etc., for example. As the spatial light modulator, it is preferable to use a spatial light modulator that has a plurality of pixels arranged two-dimensionally and modulates the phase of laser light in each of the plurality of pixels.

本発明の光変調制御方法、制御プログラム、制御装置、及びそれを用いたレーザ光照射装置によれば、空間光変調器を用いた集光点へのレーザ光の集光照射について、レーザ光の入射パターン、及び伝搬経路上の第1、第2伝搬媒質の屈折率を取得し、レーザ光の集光点の個数、及び各集光点での集光位置、集光強度を設定し、第1、第2伝搬媒質によって生じる収差条件を導出し、その収差条件を考慮して、空間光変調器に呈示する変調パターンを設計するとともに、変調パターンの設計において、変調パターンの1画素での位相値の変更が集光点でのレーザ光の集光状態に与える影響に着目した設計方法を用い、集光点での集光状態を評価する際に、収差条件が考慮された伝搬関数を用いることにより、集光点におけるレーザ光の集光状態を好適かつ確実に制御することが可能となる。   According to the light modulation control method, the control program, the control apparatus, and the laser beam irradiation apparatus using the same according to the present invention, the laser beam is focused on the focused spot using the spatial light modulator. Obtain the incident pattern and the refractive index of the first and second propagation media on the propagation path, set the number of condensing points of the laser light, the condensing position and condensing intensity at each condensing point, 1. Deriving the aberration condition caused by the second propagation medium, and designing the modulation pattern to be presented to the spatial light modulator in consideration of the aberration condition, and in the modulation pattern design, the phase of the modulation pattern in one pixel Using a design method that focuses on the effect of changing the value on the focusing state of the laser beam at the focusing point, and using a propagation function that takes aberration conditions into account when evaluating the focusing state at the focusing point By focusing the laser beam at the condensing point It is possible to suitably and reliably controlled.

レーザ光照射装置の一実施形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of a laser beam irradiation apparatus. レーザ光の伝搬過程における収差の発生について示す図である。It is a figure shown about generation | occurrence | production of the aberration in the propagation process of a laser beam. 光変調制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a light modulation control apparatus. 光変調制御方法の一例を示すフローチャートである。It is a flowchart which shows an example of the light modulation control method. レーザ光の伝搬において生じる収差条件の導出について示す図である。It is a figure shown about derivation | leading-out of the aberration conditions produced in the propagation of a laser beam. 変調パターンの設計方法の一例を示すフローチャートである。It is a flowchart which shows an example of the design method of a modulation pattern. レーザ光照射装置によるレーザ光の照射パターンの例を示す図である。It is a figure which shows the example of the irradiation pattern of the laser beam by a laser beam irradiation apparatus. レーザ光照射装置によるレーザ光の照射パターンの例を示す図である。It is a figure which shows the example of the irradiation pattern of the laser beam by a laser beam irradiation apparatus. レーザ光照射装置によるレーザ光の照射パターンの例を示す図である。It is a figure which shows the example of the irradiation pattern of the laser beam by a laser beam irradiation apparatus. 変調パターンの設計方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the design method of a modulation pattern. レーザ光照射装置の他の実施形態の構成を示す図である。It is a figure which shows the structure of other embodiment of a laser beam irradiation apparatus. 照射対象物へのレーザ光の集光照射の一例について示す図である。It is a figure shown about an example of the condensing irradiation of the laser beam to an irradiation target object.

以下、図面とともに本発明による光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。   Hereinafter, preferred embodiments of a light modulation control method, a control program, a control apparatus, and a laser light irradiation apparatus according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.

まず、本発明による光変調制御の対象となる、空間光変調器を含むレーザ光照射装置の基本的な構成について、その構成例とともに説明する。図1は、本発明による光変調制御装置を含むレーザ光照射装置の一実施形態の構成を示す図である。本実施形態によるレーザ光照射装置1Aは、照射対象物15に対してレーザ光を集光照射する装置であって、レーザ光源10と、空間光変調器20と、可動ステージ18とを備えている。   First, a basic configuration of a laser beam irradiation apparatus including a spatial light modulator, which is an object of light modulation control according to the present invention, will be described together with a configuration example thereof. FIG. 1 is a diagram showing a configuration of an embodiment of a laser beam irradiation apparatus including a light modulation control apparatus according to the present invention. The laser beam irradiation apparatus 1 </ b> A according to the present embodiment is a device that condenses and irradiates an irradiation object 15 with laser light, and includes a laser light source 10, a spatial light modulator 20, and a movable stage 18. .

図1に示す構成において、照射対象物15は、X方向、Y方向(水平方向)、及びZ方向(垂直方向)に移動可能に構成された可動ステージ18上に載置されている。また、本装置1Aでは、この照射対象物15に対し、その内部に対象物15の加工、観察等を行うための集光点が設定され、その集光点に対してレーザ光の集光照射が行われる。   In the configuration shown in FIG. 1, the irradiation object 15 is placed on a movable stage 18 configured to be movable in the X direction, the Y direction (horizontal direction), and the Z direction (vertical direction). Further, in the present apparatus 1A, a condensing point for processing, observing, etc. of the object 15 is set inside the irradiation object 15, and the condensing irradiation of the laser beam is performed on the condensing point. Is done.

レーザ光源10は、ステージ18上の照射対象物15に対して集光照射するためのパルスレーザ光などのレーザ光を供給する。レーザ光源10から出力されたレーザ光は、ビームエキスパンダ11によって広げられた後、反射ミラー12、13を介して、空間光変調器(SLM)20へと入力される。   The laser light source 10 supplies laser light such as pulsed laser light for condensing and irradiating the irradiation target 15 on the stage 18. The laser light output from the laser light source 10 is spread by the beam expander 11 and then input to the spatial light modulator (SLM) 20 via the reflection mirrors 12 and 13.

空間光変調器20は、位相変調型の空間光変調器であり、例えばその2次元の変調面の各部においてレーザ光の位相を変調して、位相変調後のレーザ光を出力する。この空間光変調器20としては、好ましくは、2次元配列された複数の画素を有し、複数の画素それぞれにおいてレーザ光の位相を変調する空間光変調器が用いられる。このような構成において、空間光変調器20には例えばCGHなどの変調パターンが呈示され、この変調パターンによって、設定された集光点へのレーザ光の集光照射が制御される。また、空間光変調器20は、光変調器駆動装置28を介して、光変調制御装置30によって駆動制御されている。光変調制御装置30の具体的な構成等については後述する。また、空間光変調器20としては、上記した画素構造を有していないものを用いても良い。   The spatial light modulator 20 is a phase modulation type spatial light modulator, and modulates the phase of the laser light at each part of the two-dimensional modulation surface, for example, and outputs the laser light after phase modulation. As the spatial light modulator 20, preferably, a spatial light modulator that has a plurality of pixels arranged two-dimensionally and modulates the phase of laser light in each of the plurality of pixels is used. In such a configuration, the spatial light modulator 20 is presented with a modulation pattern such as CGH, for example, and condensing irradiation of the laser beam to the set condensing point is controlled by this modulation pattern. The spatial light modulator 20 is driven and controlled by the light modulation control device 30 via the light modulator driving device 28. A specific configuration and the like of the light modulation control device 30 will be described later. Further, the spatial light modulator 20 may be one that does not have the pixel structure described above.

この空間光変調器20は、反射型のものであってもよいし、透過型のものであってもよい。図1では、空間光変調器20として反射型のものが示されている。また、空間光変調器20としては、屈折率変化材料型SLM(例えば液晶を用いたものでは、LCOS(Liquid Crystal on Silicon)型、LCD(LiquidCrystal Display))、Segment Mirror型SLM、Continuous Deformable Mirror型SLM、DOE(Diffractive Optical Element)などが挙げられる。なお、DOEには、離散的に位相を表現したもの、あるいは後述する方法を用いてパターンを設計し、スムージングなどにより連続的なパターンに変換したものが含まれる。   The spatial light modulator 20 may be a reflection type or a transmission type. In FIG. 1, a reflection type is shown as the spatial light modulator 20. Further, as the spatial light modulator 20, a refractive index changing material type SLM (for example, a liquid crystal on silicon (LCOS) type, a liquid crystal display (LCD) type using a liquid crystal), a segment mirror type SLM, or a continuous deformable mirror type is used. SLM, DOE (Diffractive Optical Element), etc. are mentioned. Note that the DOE includes a discrete representation of a phase or a pattern designed using a method described later and converted into a continuous pattern by smoothing or the like.

空間光変調器20で所定のパターンに位相変調されて出力されたレーザ光は、レンズ21、22から構成される4f光学系によって対物レンズ25へと伝搬される。そして、この対物レンズ25によって、照射対象物15の表面または内部に設定された単一または複数の集光点にレーザ光が集光照射される。   The laser light that is phase-modulated into a predetermined pattern by the spatial light modulator 20 and is output is propagated to the objective lens 25 by the 4f optical system including the lenses 21 and 22. Then, the objective lens 25 condenses and irradiates laser light onto one or a plurality of condensing points set on the surface or inside of the irradiation object 15.

なお、レーザ光照射装置1Aにおける光学系の構成については、具体的には図1に示した構成に限らず、様々な構成を用いることが可能である。例えば、図1では、ビームエキスパンダ11によってレーザ光を広げる構成としているが、スペイシャルフィルタとコリメートレンズとの組合せを用いる構成としても良い。また、駆動装置28については、空間光変調器20と一体に設けられる構成としても良い。また、レンズ21、22による4f光学系については、一般には、複数のレンズで構成された両側テレセントリック光学系を用いることが好ましい。   Note that the configuration of the optical system in the laser light irradiation apparatus 1A is not limited to the configuration shown in FIG. 1, and various configurations can be used. For example, in FIG. 1, the laser beam is expanded by the beam expander 11, but a configuration using a combination of a spatial filter and a collimating lens may be used. Further, the drive device 28 may be configured to be integrated with the spatial light modulator 20. For the 4f optical system using the lenses 21 and 22, it is generally preferable to use a double-sided telecentric optical system composed of a plurality of lenses.

また、照射対象物15を移動させる可動ステージ18については、例えばこのステージを固定とし、光学系側に可動機構、ガルバノミラー等を設ける構成としても良い。また、レーザ光源10としては、例えばNd:YAGレーザ光源、フェムト秒レーザ光源など、パルスレーザ光を供給するパルスレーザ光源を用いることが好ましい。   The movable stage 18 for moving the irradiation object 15 may be configured, for example, such that the stage is fixed and a movable mechanism, a galvano mirror, or the like is provided on the optical system side. Further, as the laser light source 10, it is preferable to use a pulse laser light source that supplies pulse laser light, such as an Nd: YAG laser light source or a femtosecond laser light source.

図1に示すレーザ光照射装置1Aにおいて、空間光変調器20から照射対象物15内の集光点へのレーザ光の伝搬経路上に収差物体が存在する場合、レーザ光は伝搬過程において収差の影響を受ける。ここで、図2は、レーザ光の伝搬過程における収差の発生について示す図である。例えば、上記したように照射対象物15の内部に集光点が設定される場合、対物レンズ25から出力された収束レーザ光は、対物レンズ25から集光点までの伝搬経路上にある雰囲気媒質(第1伝搬媒質)である空気の屈折率nと、ガラス媒体などの照射対象物(第2伝搬媒質)15の屈折率nとの違いにより、近軸光線と、最外縁の光線とで、雰囲気媒質と、ガラス媒体などの照射対象物15との境界面での屈折角が異なることとなり、それによって焦点ずれ(球面収差)が発生する。 In the laser light irradiation apparatus 1A shown in FIG. 1, when there is an aberration object on the propagation path of the laser light from the spatial light modulator 20 to the condensing point in the irradiation object 15, the laser light has an aberration in the propagation process. to be influenced. Here, FIG. 2 is a diagram illustrating the occurrence of aberration in the propagation process of laser light. For example, when a condensing point is set inside the irradiation object 15 as described above, the convergent laser light output from the objective lens 25 is an atmospheric medium on the propagation path from the objective lens 25 to the condensing point. the refractive index n 1 of the air is (first propagation medium), the difference between the refractive index n 2 of the irradiated object (second propagation medium) 15 such as a glass medium, and the paraxial ray, a ray of outermost Thus, the refraction angle at the boundary surface between the atmospheric medium and the irradiation object 15 such as a glass medium is different, and thereby defocus (spherical aberration) occurs.

例えば、図2に示すように、対物レンズ25による焦点Oが、照射対象物15の内部の深さdの位置にある場合を考える。この場合、この焦点Oが、屈折率nの空気と、屈折率nの対象物15との境界面での屈折角により、焦点O’へと焦点ずれ量δだけずれることとなる。また、この焦点ずれ量δは、対物レンズ25に入射する光の入射高さhによって変化する。このような入射高さhに依存する焦点ずれδによる球面収差により、対象物15においてレーザ光の集光点の形状が光軸方向に伸び、集光密度が低下する。 For example, as shown in FIG. 2, consider a case where the focal point O by the objective lens 25 is at a position of a depth d inside the irradiation target 15. In this case, the focal point O is shifted to the focal point O ′ by the defocus amount δ due to the refraction angle at the boundary surface between the air having the refractive index n 1 and the object 15 having the refractive index n 2 . Further, the defocus amount δ varies depending on the incident height h of light incident on the objective lens 25. Due to the spherical aberration due to the defocus δ depending on the incident height h, the shape of the condensing point of the laser beam in the object 15 extends in the optical axis direction, and the condensing density decreases.

また、このような伝搬媒質による収差の発生は、照射対象物15の内部に複数の集光点を設定し、対象物15に対して多点同時照射(例えば、多点同時加工)を行う場合にも問題となる。すなわち、上記の球面収差は、レーザ光の光軸方向での集光位置(光軸深さ)によって収差量が異なり、光軸深さが深くなると球面収差量が大きくなる傾向がある。この場合、対象物15に対して3次元多点同時照射を行う際には、集光点毎に、それぞれの集光位置の光軸深さに応じて異なる球面収差量を補正する必要がある。   In addition, the generation of aberration due to such a propagation medium is a case where a plurality of condensing points are set inside the irradiation target 15 and multipoint simultaneous irradiation (for example, multipoint simultaneous processing) is performed on the target 15. It also becomes a problem. That is, the spherical aberration described above has a different amount of aberration depending on the condensing position (optical axis depth) of the laser beam in the optical axis direction, and the spherical aberration amount tends to increase as the optical axis depth increases. In this case, when performing three-dimensional multi-point simultaneous irradiation on the object 15, it is necessary to correct a spherical aberration amount that differs depending on the optical axis depth of each condensing position for each condensing point. .

また、多点同時照射を行う場合、各集光点に対するレーザ光の集光強度の調整の問題もある。例えば、フェムト秒レーザ光を用いたガラス内部加工では、集光点でのレーザ光の集光強度により、対象部位で加工によって発生する屈折率変化量が異なることが知られている。したがって、屈折率分布が等しい複数の導波路をレーザ光の多点同時照射によって一度に作製する場合には、空間光変調器に呈示される変調パターンにより、複数の集光点での集光強度が高い均一性で再生されることが望ましい。また、逆に複数の集光点での集光強度を互いに異なる強度に設定することで、屈折率分布が異なる複数の導波路を作製することも可能である。これらのいずれの場合においても、複数の集光点が設定された場合に、各集光点でのレーザ光の集光強度を任意に制御できることが望ましい。   Moreover, when performing multipoint simultaneous irradiation, there also exists a problem of adjustment of the condensing intensity | strength of the laser beam with respect to each condensing point. For example, in glass internal processing using femtosecond laser light, it is known that the amount of change in the refractive index generated by processing at the target site varies depending on the intensity of the laser light at the focal point. Therefore, when producing multiple waveguides with the same refractive index distribution at the same time by simultaneous multi-point irradiation of laser light, the intensity of light collected at multiple light collection points is determined by the modulation pattern presented on the spatial light modulator. Is preferably reproduced with high uniformity. Conversely, it is also possible to produce a plurality of waveguides having different refractive index distributions by setting the condensing intensities at a plurality of condensing points to different intensities. In any of these cases, when a plurality of condensing points are set, it is desirable that the condensing intensity of the laser light at each condensing point can be arbitrarily controlled.

これに対して、図1のレーザ光照射装置1Aは、駆動装置28を介して空間光変調器20に呈示する変調パターンのCGHを、光変調制御装置30において適切に設計することで、伝搬経路上の屈折率が異なる伝搬媒質による収差の影響を低減して、集光点におけるレーザ光の集光状態を好適に制御するものである。また、本実施形態によるレーザ光照射装置1A及び光変調制御装置30によれば、複数の集光点が設定された場合での、3次元多点のレーザ光照射、及び集光点間での集光強度の調整も好適に実現可能である。   On the other hand, the laser light irradiation apparatus 1A in FIG. 1 appropriately designs the CGH of the modulation pattern to be presented to the spatial light modulator 20 via the drive device 28 in the light modulation control device 30 so that the propagation path By reducing the influence of aberration caused by propagation media having different refractive indexes on the upper side, the condensing state of the laser beam at the condensing point is suitably controlled. Further, according to the laser light irradiation apparatus 1A and the light modulation control apparatus 30 according to the present embodiment, when a plurality of condensing points are set, three-dimensional multi-point laser light irradiation and between the condensing points are performed. Adjustment of the light collecting intensity can also be suitably realized.

図3は、図1に示したレーザ光照射装置1Aに適用される、光変調制御装置30の構成の一例を示すブロック図である。本構成例による光変調制御装置30は、照射条件取得部31と、集光条件設定部32と、収差条件導出部33と、変調パターン設計部34と、光変調器駆動制御部35とを有して構成されている。なお、このような光変調制御装置30は、例えばコンピュータによって構成することができる。また、この制御装置30には、光変調制御について必要な情報、指示等の入力に用いられる入力装置37、及び操作者に対する情報の表示に用いられる表示装置38が接続されている。   FIG. 3 is a block diagram showing an example of the configuration of the light modulation control device 30 applied to the laser light irradiation device 1A shown in FIG. The light modulation control device 30 according to this configuration example includes an irradiation condition acquisition unit 31, a condensing condition setting unit 32, an aberration condition derivation unit 33, a modulation pattern design unit 34, and a light modulator drive control unit 35. Configured. Note that such a light modulation control device 30 can be configured by a computer, for example. The control device 30 is connected to an input device 37 used for inputting information necessary for light modulation control, instructions, and a display device 38 used for displaying information to the operator.

照射条件取得部31は、照射対象物15に対するレーザ光の照射条件に関する情報を取得する照射条件取得手段である。具体的には、照射条件取得部31は、レーザ光の照射条件として、空間光変調器20へのレーザ光の入射パターン(例えば強度分布、位相分布情報)、光変調器20から集光点へのレーザ光の伝搬経路上にある第1伝搬媒質(例えば雰囲気媒質)の第1屈折率n、及び第1伝搬媒質よりも集光点側にある第2伝搬媒質の第1屈折率とは異なる第2屈折率nを取得する(照射条件取得ステップ)。 The irradiation condition acquisition unit 31 is an irradiation condition acquisition unit that acquires information related to the irradiation condition of the laser beam on the irradiation target 15. Specifically, the irradiation condition acquisition unit 31 sets the laser light incident pattern (for example, intensity distribution and phase distribution information) to the spatial light modulator 20 as the laser light irradiation condition, from the light modulator 20 to the condensing point. Are the first refractive index n 1 of the first propagation medium (for example, atmosphere medium) on the laser light propagation path and the first refractive index of the second propagation medium closer to the condensing point than the first propagation medium. to get a different second refractive index n 2 (irradiation condition acquiring step).

集光条件設定部32は、照射対象物15に対するレーザ光の集光条件を設定する集光条件設定手段である。具体的には、集光条件設定部32は、レーザ光の集光条件として、空間光変調器20からの変調レーザ光を集光照射する集光点の個数s、及びs個の集光点s(s=1〜s)のそれぞれについての集光位置、集光強度を設定する(集光条件設定ステップ)。集光点の個数sは、1以上の整数として設定され、また、多点同時照射の場合には2以上の整数として設定される。なお、取得部31による照射条件の取得、及び設定部32による集光条件の設定は、制御装置30にあらかじめ用意された情報、入力装置37から入力される情報、あるいは外部装置から供給される情報等に基づいて、自動で、もしくは操作者により手動で行われる。 The condensing condition setting unit 32 is a condensing condition setting unit that sets the condensing condition of the laser beam with respect to the irradiation target 15. Specifically, the condensing condition setting unit 32, as the condensing condition of the laser light, the number s t of the focal point for irradiating light collecting the modulated laser beam from the spatial light modulator 20, and s t number of current The condensing position and condensing intensity are set for each of the light spots s (s = 1 to s t ) (condensing condition setting step). The number s t of the focal point is set as an integer of 1 or more, also, in the case of multi-point simultaneous irradiation is set as an integer of 2 or more. The acquisition of the irradiation condition by the acquisition unit 31 and the setting of the light collection condition by the setting unit 32 are information prepared in advance in the control device 30, information input from the input device 37, or information supplied from an external device. Based on the above, it is performed automatically or manually by an operator.

収差条件導出部33は、空間光変調器20から照射対象物15に対して設定された集光点sへのレーザ光の伝搬において、その伝搬経路上で生じる収差に関する収差条件を導出する収差条件導出手段である。ここでは、収差条件導出部33は、図2に関して上述したように、レーザ光の伝搬経路上にあって互いに屈折率が異なる光学系側の第1伝搬媒質、及び集光点側の第2伝搬媒質について、それらの伝搬媒質によって生じる収差条件を導出する(収差条件導出ステップ)。また、伝搬経路上に伝搬媒質が3つ以上ある場合には、収差条件導出部33は、それらの全ての伝搬媒質による収差条件を導出する。   The aberration condition deriving unit 33 derives an aberration condition related to the aberration generated on the propagation path in the propagation of the laser light from the spatial light modulator 20 to the condensing point s set for the irradiation target 15. Deriving means. Here, as described above with reference to FIG. 2, the aberration condition deriving unit 33 includes the first propagation medium on the optical system side having different refractive indexes on the propagation path of the laser light, and the second propagation on the condensing point side. For the medium, an aberration condition caused by the propagation medium is derived (aberration condition deriving step). When there are three or more propagation media on the propagation path, the aberration condition deriving unit 33 derives aberration conditions for all of the propagation media.

変調パターン設計部34は、収差条件導出部33で導出された伝搬経路上での収差条件を考慮して、空間光変調器20に呈示する変調パターンとなるCGHを設計する変調パターン設計手段である。具体的には、変調パターン設計部34は、取得部31で取得された照射条件、設定部32で設定された集光条件、及び導出部33で導出された収差条件を参照し、それらの条件に基づいて、所望の単一または複数の集光点へとレーザ光を集光照射させる変調パターンを設計する(変調パターン設計ステップ)。   The modulation pattern design unit 34 is a modulation pattern design unit that designs CGH as a modulation pattern to be presented to the spatial light modulator 20 in consideration of the aberration condition on the propagation path derived by the aberration condition deriving unit 33. . Specifically, the modulation pattern design unit 34 refers to the irradiation conditions acquired by the acquisition unit 31, the condensing conditions set by the setting unit 32, and the aberration conditions derived by the derivation unit 33, and those conditions are referred to. Based on the above, a modulation pattern for condensing and irradiating laser light to a desired single or plural condensing points is designed (modulation pattern design step).

特に、本実施形態における変調パターン設計部34では、空間光変調器20に呈示する変調パターンの設計において、空間光変調器20について2次元配列された複数の画素を想定するとともに、複数の画素に呈示する変調パターンの1画素(空間光変調器20において想定された1画素、空間光変調器20が2次元配列の複数の画素による画素構造を有する場合には、その1画素に対応)での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目した設計方法を用いる。そして、その集光状態が所望の状態に近づくように1画素の位相値を変更するとともに、そのような位相値の変更操作を変調パターンの全ての画素(少なくとも光が入射する全ての画素)について行うことで最適な変調パターンを設計する。   In particular, the modulation pattern design unit 34 in the present embodiment assumes a plurality of pixels that are two-dimensionally arranged for the spatial light modulator 20 in the design of the modulation pattern presented to the spatial light modulator 20, and uses a plurality of pixels. In one pixel of the modulation pattern to be presented (one pixel assumed in the spatial light modulator 20, corresponding to the one pixel when the spatial light modulator 20 has a two-dimensional array of pixels) A design method focusing on the influence of the change of the phase value on the focused state of the laser beam at the focusing point is used. And while changing the phase value of 1 pixel so that the condensing state may approach a desired state, such a phase value change operation is performed about all the pixels (at least all the pixels which light enters) of a modulation pattern. By doing so, an optimal modulation pattern is designed.

また、この変調パターン設計部34では、上記した各画素での位相値の変更操作において、集光点でのレーザ光の集光状態を評価する際に、空間光変調器20の変調パターンにおける画素jから集光点sへの光の伝搬について、伝搬媒質が均質な状態での自由伝搬を仮定した場合における波動伝搬関数φjsをそのまま用いるのではなく、伝搬関数φjsに対して、収差条件導出部33で求められた収差条件を加えて変換した伝搬関数φjs’を用いる。これにより、レーザ光の集光状態は、伝搬経路上での収差条件を考慮して制御される。 In addition, in the modulation pattern design unit 34, when evaluating the condensing state of the laser light at the condensing point in the above-described operation of changing the phase value in each pixel, the pixels in the modulation pattern of the spatial light modulator 20 For the propagation of light from j to the condensing point s, the wave propagation function φ js in the case of assuming free propagation in a homogeneous state of the propagation medium is not used as it is, but the aberration condition for the propagation function φ js The propagation function φ js ′ converted by adding the aberration condition obtained by the deriving unit 33 is used. Thereby, the condensing state of the laser beam is controlled in consideration of the aberration condition on the propagation path.

光変調器駆動制御部35は、駆動装置28を介して空間光変調器20を駆動制御して、変調パターン設計部34によって設計された変調パターンを空間光変調器20の複数の画素に呈示する駆動制御手段である。このような駆動制御部35は、光変調制御装置30がレーザ光照射装置1Aに含まれている場合に、必要に応じて設けられる。   The light modulator drive control unit 35 drives and controls the spatial light modulator 20 via the driving device 28 and presents the modulation pattern designed by the modulation pattern design unit 34 to a plurality of pixels of the spatial light modulator 20. Drive control means. Such a drive control unit 35 is provided as necessary when the light modulation control device 30 is included in the laser light irradiation device 1A.

図3に示した光変調制御装置30において実行される制御方法に対応する処理は、光変調制御をコンピュータに実行させるための光変調制御プログラムによって実現することが可能である。例えば、光変調制御装置30は、光変調制御の処理に必要な各ソフトウェアプログラムを動作させるCPUと、上記ソフトウェアプログラムなどが記憶されるROMと、プログラム実行中に一時的にデータが記憶されるRAMとによって構成することができる。このような構成において、CPUによって所定の制御プログラムを実行することにより、上記した光変調制御装置30を実現することができる。   The processing corresponding to the control method executed in the light modulation control device 30 shown in FIG. 3 can be realized by a light modulation control program for causing a computer to execute light modulation control. For example, the light modulation control device 30 includes a CPU that operates each software program necessary for light modulation control processing, a ROM that stores the software program and the like, and a RAM that temporarily stores data during program execution. And can be configured. In such a configuration, the light modulation control device 30 described above can be realized by executing a predetermined control program by the CPU.

また、空間光変調器20を用いた光変調制御、特に、空間光変調器20に呈示する変調パターンの設計のための各処理をCPUによって実行させるための上記プログラムは、コンピュータ読取可能な記録媒体に記録して頒布することが可能である。このような記録媒体には、例えば、ハードディスク及びフレキシブルディスクなどの磁気媒体、CD−ROM及びDVD−ROMなどの光学媒体、フロプティカルディスクなどの磁気光学媒体、あるいはプログラム命令を実行または格納するように特別に配置された、例えばRAM、ROM、及び半導体不揮発性メモリなどのハードウェアデバイスなどが含まれる。   In addition, the above-described program for causing the CPU to execute each process for light modulation control using the spatial light modulator 20, particularly for designing a modulation pattern presented to the spatial light modulator 20, is recorded on a computer-readable recording medium. Can be recorded and distributed. In such a recording medium, for example, a magnetic medium such as a hard disk and a flexible disk, an optical medium such as a CD-ROM and a DVD-ROM, a magneto-optical medium such as a floppy disk, or a program instruction is executed or stored. For example, hardware devices such as RAM, ROM, and semiconductor non-volatile memory are included.

本実施形態による光変調制御方法、光変調制御プログラム、光変調制御装置30、及びレーザ光照射装置1Aの効果について説明する。   The effects of the light modulation control method, the light modulation control program, the light modulation control device 30, and the laser light irradiation device 1A according to the present embodiment will be described.

図1〜図3に示した光変調制御方法、制御プログラム、及び制御装置30においては、空間光変調器20を用いた集光点へのレーザ光の集光照射について、レーザ光の入射パターン、及び伝搬経路上の第1、第2伝搬媒質に関する屈折率を含む情報を取得するとともに、レーザ光の集光点の個数s、及び各集光点での集光位置、集光強度を含む集光条件を設定する。そして、収差条件導出部33において、屈折率が異なる第1、第2伝搬媒質がレーザ光の伝搬経路上にあることによって生じる収差条件を導出するとともに、変調パターン設計部34において、その収差条件を考慮して、空間光変調器20に呈示する変調パターンを設計する。これにより、集光条件設定部32において設定された単一または複数の集光点に対し、各集光点でのレーザ光の集光状態において、第1、第2伝搬媒質による収差の影響を低減することができる。 In the light modulation control method, the control program, and the control device 30 illustrated in FIGS. 1 to 3, with regard to the focused irradiation of the laser light onto the condensing point using the spatial light modulator 20, the incident pattern of the laser light, And information including the refractive indexes of the first and second propagation media on the propagation path, and the number of condensing points s t of the laser light, and the condensing position and condensing intensity at each condensing point are included. Set the light collection conditions. Then, the aberration condition deriving unit 33 derives an aberration condition caused when the first and second propagation media having different refractive indexes are on the propagation path of the laser light, and the modulation pattern design unit 34 determines the aberration condition. Considering this, a modulation pattern to be presented to the spatial light modulator 20 is designed. Thereby, with respect to the single or plural condensing points set in the condensing condition setting unit 32, in the condensing state of the laser light at each condensing point, the influence of the aberration due to the first and second propagation media is reduced. Can be reduced.

さらに、このような構成での変調パターンの設計について、具体的に、空間光変調器20において、2次元配列された複数の画素による画素構造を想定する。そして、変調パターンの1画素での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目した設計方法を用いるとともに、集光点での集光状態の評価において、伝搬媒質が均質な状態での自由伝搬を仮定した場合の波動伝搬関数φjsを用いるのではなく、収差条件が考慮された伝搬関数φjs’に変換した上で集光状態を評価している。このような構成によれば、集光点におけるレーザ光の集光状態を好適かつ確実に評価、制御することが可能となる。 Further, regarding the design of the modulation pattern in such a configuration, specifically, a pixel structure including a plurality of pixels arranged two-dimensionally in the spatial light modulator 20 is assumed. Then, a design method that focuses on the influence of the change of the phase value at one pixel of the modulation pattern on the condensing state of the laser beam at the condensing point is used, and in the evaluation of the condensing state at the condensing point, the propagation medium Instead of using the wave propagation function φ js when assuming free propagation in a homogeneous state, the condensing state is evaluated after conversion to the propagation function φ js ′ in which the aberration conditions are considered. According to such a configuration, it is possible to appropriately and reliably evaluate and control the condensing state of the laser light at the condensing point.

なお、空間光変調器20において想定される画素構造については、空間光変調器20として、2次元配列された複数の画素を有する空間光変調器を用いる場合には、その画素構造をそのまま変調パターンの設計に適用することができる。また、自由伝搬については、ここでは、真空ないしは大気中における伝搬のみではなく、上記したように一般に、伝搬媒質が均質な状態での伝搬、例えば、第2伝搬媒質が存在せず、第1伝搬媒質のみが均質に存在する場合における伝搬を含むものとする。   As for the pixel structure assumed in the spatial light modulator 20, when a spatial light modulator having a plurality of two-dimensionally arranged pixels is used as the spatial light modulator 20, the pixel structure is directly used as a modulation pattern. Can be applied to any design. As for free propagation, here, not only propagation in a vacuum or in the atmosphere, but generally propagation in a state where the propagation medium is homogeneous as described above, for example, there is no second propagation medium, and there is no first propagation. It includes propagation when only the medium exists uniformly.

また、図1に示したレーザ光照射装置1Aでは、レーザ光源10と、位相変調型の空間光変調器20と、上記構成の光変調制御装置30とを用いてレーザ光照射装置1Aを構成している。このような構成によれば、制御装置30によって、集光点におけるレーザ光の集光状態を好適かつ確実に制御して、照射対象物15において設定された単一または複数の集光点に対するレーザ光の集光照射、及びそれによる対象物の加工、観察等の操作を好適に実現することが可能となる。また、このようなレーザ光照射装置は、例えばレーザ加工装置、レーザ顕微鏡などとして用いることができる。   In the laser beam irradiation apparatus 1A shown in FIG. 1, the laser beam irradiation apparatus 1A is configured by using the laser light source 10, the phase modulation type spatial light modulator 20, and the light modulation control apparatus 30 having the above configuration. ing. According to such a configuration, the control device 30 suitably and surely controls the condensing state of the laser light at the condensing point, and the laser for the single condensing point or the plurality of condensing points set in the irradiation object 15. It is possible to suitably realize operations such as focused irradiation of light and processing and observation of an object by the light. Moreover, such a laser beam irradiation apparatus can be used as a laser processing apparatus, a laser microscope, etc., for example.

ここで、導出部33での収差条件の導出については、空間光変調器20の複数の画素のうちで画素jから、設定された集光点sへの光の伝搬を考えたときに、光の伝搬についての収差条件として、その伝搬での光路長差OPDを与える位相Φj−OPDを求めることが好ましい。また、この場合、設計部34での変調パターンの設計については、上記のように導出された収差条件の位相Φj−OPDを用いて、変換式
φjs’=φjs+Φj−OPD
によって、収差条件が考慮された伝搬関数φjs’を求めることが好ましい。このような構成によれば、自由伝搬の伝搬関数φjsを、収差条件が考慮された伝搬関数φjs’に好適に変換することができる。
Here, with regard to the derivation of the aberration condition in the derivation unit 33, when light propagation from the pixel j to the set condensing point s among the plurality of pixels of the spatial light modulator 20 is considered, It is preferable to obtain a phase Φ j-OPD that gives an optical path length difference OPD in the propagation as an aberration condition for the propagation of. In this case, the design of the modulation pattern in the design unit 34 uses the phase Φ j-OPD of the aberration condition derived as described above, and the conversion formula φ js ′ = φ js + Φ j-OPD
Thus, it is preferable to obtain the propagation function φ js ′ in consideration of the aberration condition. According to such a configuration, the propagation function φ js of free propagation can be suitably converted into a propagation function φ js ′ in which the aberration condition is considered.

また、設計部34での変調パターンの設計については、空間光変調器20の画素jへのレーザ光の入射振幅をAj−in、画素jでの位相値をφとして、下記式
=Aexp(iφ
=Σj−inexp(iφjs’)exp(iφ
によって、集光点sにおける集光状態を示す複素振幅Uを求めることが好ましい。あるいはさらに、空間光変調器20の画素jへのレーザ光の入射振幅をAj−in、入射位相をφj−in、画素jでの位相値をφとして、下記式
=Aexp(iφ
=Σj−inexp(iφjs’)exp(i(φ+φj−in))
によって、集光点sにおける集光状態を示す複素振幅Uを求めることが好ましい。これにより、集光点におけるレーザ光の集光状態を好適に評価することができる。
In addition, regarding the design of the modulation pattern in the design unit 34, the following equation U s is set, where A j-in is the amplitude of laser light incident on the pixel j of the spatial light modulator 20, and φ j is the phase value at the pixel j. = A s exp (iφ s )
= Σ j A j-in exp (iφ js ') exp (iφ j )
Thus, it is preferable to obtain the complex amplitude U s indicating the condensing state at the condensing point s. Or further, the incident amplitude of the laser light to the pixel j of the spatial light modulator 20 A j-in, the injection phase phi j-in, the phase value of the pixel j as phi j, the following equation U s = A s exp (iφ s )
= Σ j A j-in exp (iφ js ') exp (i (φ j + φ j-in ))
Thus, it is preferable to obtain the complex amplitude U s indicating the condensing state at the condensing point s. Thereby, the condensing state of the laser beam in a condensing point can be evaluated suitably.

ここで、画素jへのレーザ光の入射振幅Aj−inは、入射強度Ij−inに対して、
j−in=|Aj−in
の関係にある。また、複素振幅Uにおいて、Aは振幅、φは位相である。また、入射レーザ光が平面波の場合には、その入射位相φj−inは無視することができる。
Here, the incident amplitude A j-in of the laser beam to the pixel j is equal to the incident intensity I j-in .
I j-in = | A j-in | 2
Are in a relationship. Further, the complex amplitude U s, A s is the amplitude, phi s phase. Further, when the incident laser beam is a plane wave, the incident phase φ j-in can be ignored.

変調パターンの設計の具体的な構成については、変調パターンの画素jでの位相値の変更において、集光点sにおける集光状態を示す複素振幅の位相φ、収差条件が考慮された伝搬関数φjs’、及び画素jでの変更前の位相値φに基づいて解析的に求められた値によって、位相値を変更する構成を用いることができる。このように解析的に位相値を更新する方法としては、例えばORA(Optimal Rotation Angle)法がある。 As for the specific configuration of the modulation pattern design, in the change of the phase value at the pixel j of the modulation pattern, the propagation function considering the phase φ s of the complex amplitude indicating the condensing state at the condensing point s and the aberration condition A configuration in which the phase value is changed based on φ js ′ and a value analytically obtained based on the phase value φ j before the change at the pixel j can be used. As a method of updating the phase value analytically in this way, for example, there is an ORA (Optimal Rotation Angle) method.

あるいは、変調パターンの画素jでの位相値の変更において、山登り法、焼きなまし法、または遺伝的アルゴリズムのいずれかの方法を用いて探索で求められた値によって、位相値を変更しても良い。ここで、遺伝的アルゴリズムでは、ある1画素を選んでその画素の値を変更する突然変異、また、2画素を選んでその画素の値を交換する交叉などの操作が行われるが、上記した変調パターンの1画素での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目した設計方法は、このような操作を行う方法を含むものとする。なお、変調パターンの設計手法については、具体的には後述する。   Alternatively, in changing the phase value at the pixel j of the modulation pattern, the phase value may be changed by a value obtained by searching using any one of the hill-climbing method, the annealing method, and the genetic algorithm. Here, in the genetic algorithm, operations such as a mutation for selecting one pixel and changing the value of the pixel, and a crossover operation for selecting two pixels and exchanging the value of the pixel are performed. The design method that focuses on the influence of the change in the phase value of one pixel of the pattern on the condensing state of the laser beam at the condensing point includes a method for performing such an operation. The modulation pattern design method will be specifically described later.

レーザ光の伝搬経路上にある屈折率が異なる第1、第2伝搬媒質については、図2においては、集光点側の第2伝搬媒質が、集光点が内部に設定される照射対象物15であり、光学系側の第1伝搬媒質が、空間光変調器20と照射対象物15との間(対物レンズ25と対象物15との間)にある雰囲気媒質である構成を例示している。この場合、雰囲気媒質については、空気などの他、水、オイル等を雰囲気媒質としても良い。   Regarding the first and second propagation media having different refractive indexes on the propagation path of the laser beam, in FIG. 2, the second propagation medium on the condensing point side is an irradiation object whose condensing point is set inside. 15 and the first propagation medium on the optical system side is an atmospheric medium between the spatial light modulator 20 and the irradiation object 15 (between the objective lens 25 and the object 15). Yes. In this case, the atmosphere medium may be water, oil, or the like in addition to air.

また、空間光変調器と集光点との間の伝搬経路上に3つ以上の媒質があっても良い。そのような構成としては、例えば、レーザ光が、雰囲気媒質とは屈折率が異なる媒体を通過し、その通過後にレーザ光を集光させる構成が考えられる。また、例えば、屈折率が異なる複数種類のガラス同士が張り合わされている構成、シリコンの上にガラスが張り合わされている構成、また、顕微鏡での生体試料や細胞内部の観察においてカバーガラスが伝搬経路上に存在する構成など、レーザ光の伝搬経路上の媒質については様々な構成が考えられる。また、複数の媒体に対して、同時にレーザ光の集光照射を行う構成も考えられる。このような場合においても、上記と同様に、収差条件の導出、及び変調パターンの設計を実行することが可能である。   Further, there may be three or more media on the propagation path between the spatial light modulator and the condensing point. As such a configuration, for example, a configuration in which the laser beam passes through a medium having a refractive index different from that of the atmospheric medium, and the laser beam is condensed after passing through the medium is considered. In addition, for example, a configuration in which a plurality of types of glasses having different refractive indexes are laminated, a configuration in which glass is laminated on silicon, and a cover glass is a propagation path for observation of a biological sample or a cell inside a microscope. Various configurations of the medium on the laser light propagation path, such as the configuration existing above, are conceivable. Further, a configuration in which a plurality of media are simultaneously focused and irradiated with laser light is also conceivable. Even in such a case, it is possible to derive the aberration condition and design the modulation pattern in the same manner as described above.

また、図3に示した光変調制御装置30においては、変調パターンを設計するための構成に加えて、空間光変調器20を駆動制御して、設計部34によって設計された変調パターンを空間光変調器20に呈示する光変調器駆動制御部35を設けている。このような構成は、図1に示したように、制御装置30をレーザ光照射装置1Aに組み込んだ形で用いる場合に有効である。また、このような駆動制御部35については、光変調制御装置30とは別装置として設けられる構成としても良い。   Further, in the light modulation control device 30 shown in FIG. 3, in addition to the configuration for designing the modulation pattern, the spatial light modulator 20 is driven and controlled, and the modulation pattern designed by the design unit 34 is converted to the spatial light. An optical modulator drive control unit 35 to be presented to the modulator 20 is provided. Such a configuration is effective when the control device 30 is incorporated in the laser light irradiation device 1A as shown in FIG. Further, such a drive control unit 35 may be provided as a separate device from the light modulation control device 30.

また、例えばレーザ光照射によってガラス媒体を加工して光集積回路を作製するような場合には、1回または複数回のレーザ光照射の後に新たな1枚または複数枚のCGHの設計を行って、空間光変調器20に呈示する変調パターンを切り換えても良い。あるいは、作製したい光集積回路の形状が決まっている場合には、レーザ加工に必要な複数の変調パターンをあらかじめ設計しておいても良い。   For example, when an optical integrated circuit is manufactured by processing a glass medium by laser light irradiation, one or more new CGHs are designed after one or more times of laser light irradiation. The modulation pattern presented to the spatial light modulator 20 may be switched. Alternatively, when the shape of the optical integrated circuit to be manufactured is determined, a plurality of modulation patterns necessary for laser processing may be designed in advance.

また、DOEを単独に用いる場合には、DOEは静的なパターンであるので、駆動装置は無くても良い。また、複数個のDOEを用いて、動的にパターンの切り替えを行う場合には、駆動装置の代わりに切替装置が用いられる。   In addition, when the DOE is used alone, the DOE is a static pattern, so that there is no need for a driving device. In addition, when a pattern is dynamically switched using a plurality of DOEs, a switching device is used instead of the driving device.

図1、図3に示したレーザ光照射装置1A及び光変調制御装置30において実行される光変調制御方法、及び変調パターンの設計方法について、その具体例とともにさらに説明する。図4は、図3に示した光変調制御装置30において実行される光変調制御方法の一例を示すフローチャートである。   A light modulation control method and a modulation pattern design method executed in the laser light irradiation apparatus 1A and the light modulation control apparatus 30 shown in FIGS. 1 and 3 will be further described along with specific examples thereof. FIG. 4 is a flowchart showing an example of an optical modulation control method executed in the optical modulation control apparatus 30 shown in FIG.

図4に示す制御方法では、まず、レーザ光源10から供給されるレーザ光の照射対象物15への照射条件についての情報を取得する(ステップS101)。具体的には、空間光変調器20から集光点sへのレーザ光の伝搬経路について、伝搬経路上にある第1伝搬媒質(例えば雰囲気媒質)の第1屈折率nと、第2伝搬媒質(例えば照射対象物)の第2屈折率nとを取得する(S102)。また、ここでは、必要であれば、第1、第2伝搬媒質の屈折率以外の情報、例えば媒質の厚さ、形状、位置等についての情報も取得する。また、伝搬媒質以外にも、例えば対物レンズ25のNA、焦点距離f等、収差条件の導出において必要な情報があれば、伝搬媒質の情報に加えて取得しておく。 In the control method shown in FIG. 4, first, information about the irradiation condition to the irradiation target 15 of the laser light supplied from the laser light source 10 is acquired (step S101). Specifically, for the propagation path of the laser light from the spatial light modulator 20 to the condensing point s, the first refractive index n 1 of the first propagation medium (for example, atmospheric medium) on the propagation path and the second propagation medium (e.g., irradiation target) to obtain a second refractive index n 2 of the (S102). Here, if necessary, information other than the refractive indexes of the first and second propagation media, for example, information on the thickness, shape, position, etc. of the media is also acquired. In addition to the propagation medium, if there is information necessary for deriving aberration conditions, such as the NA of the objective lens 25 and the focal length f, it is acquired in addition to the propagation medium information.

また、レーザ光源10から供給されるレーザ光の空間光変調器20への入射パターンを取得する(S103)。このレーザ光の入射パターンは、空間光変調器20の2次元配列された複数の画素での位置(x,y)の画素jに対する入射レーザ光強度
in(x,y)=Ij−in
による入射光強度分布として与えられる。あるいは、振幅Aj−inによる入射光振幅分布として、レーザ光の入射パターンを取得しても良い。また、必要な場合には、レーザ光の入射位相φj−inについても取得する構成としても良い。
Further, an incident pattern of the laser light supplied from the laser light source 10 to the spatial light modulator 20 is acquired (S103). The incident pattern of this laser beam is the incident laser beam intensity I in (x j , y j ) = for the pixel j at the position (x j , y j ) in the two-dimensionally arrayed pixels of the spatial light modulator 20 = I j-in
Is given as the incident light intensity distribution. Or you may acquire the incident pattern of a laser beam as incident light amplitude distribution by amplitude Aj-in . In addition, if necessary, the configuration may be such that the incident phase φ j-in of the laser light is also acquired.

次に、照射対象物15に対するレーザ光の集光条件を設定する(S104)。まず、空間光変調器20で位相変調されたレーザ光を照射対象物15に対して集光照射する単一または複数の集光点の個数sを設定する(S105)。ここで、上記構成によるレーザ光照射装置1Aでは、空間光変調器20に呈示する変調パターンにより、必要に応じて複数の集光点を得ることが可能である。 Next, a laser beam condensing condition for the irradiation object 15 is set (S104). First, it sets the number s t of single or multiple focal point for irradiating light collecting a laser light phase-modulated by the spatial light modulator 20 to the irradiation object 15 (S105). Here, in the laser beam irradiation apparatus 1 </ b> A having the above-described configuration, it is possible to obtain a plurality of condensing points as required by the modulation pattern presented to the spatial light modulator 20.

また、対象物15に対するs個の集光点s=1〜sのそれぞれについて、レーザ光の集光位置γ=(u,v,z)、及び所望の集光強度Is−desを設定する(S106)。なお、各集光点へのレーザ光の集光強度については、強度の絶対値による設定に限らず、例えば強度の相対的な比率によって設定しても良い。 Also, for each of s t number of converging point s = 1 to s t with respect to the object 15, the condensing position of the laser beam γ s = (u s, v s, z s), and desired condensing intensity I s-des is set (S106). In addition, about the condensing intensity | strength of the laser beam to each condensing point, you may set not only the setting by the absolute value of an intensity | strength but the relative ratio of an intensity | strength, for example.

続いて、空間光変調器20から集光点sへのレーザ光の伝搬において、屈折率が異なる第1、第2伝搬媒質によって生じる収差条件を導出する(S107)。そして、ステップS107で導出された収差条件を考慮し、ステップS101、S104で取得、設定されたレーザ光の照射条件、集光条件を参照して、空間光変調器20の複数の画素に呈示する変調パターンとなるCGHを設計する(S108)。   Subsequently, in the propagation of laser light from the spatial light modulator 20 to the condensing point s, aberration conditions caused by the first and second propagation media having different refractive indexes are derived (S107). Then, in consideration of the aberration condition derived in step S107, the laser light irradiation condition and the light collection condition acquired and set in steps S101 and S104 are referred to and presented to a plurality of pixels of the spatial light modulator 20. A CGH to be a modulation pattern is designed (S108).

図4のフローチャートのステップS107において実行される収差条件の導出方法について、具体的に説明する。図1に示した構成において空間光変調器20をミラーに置き換えると、レーザ光源10から供給されたレーザ光に位相変調が施されないために、理想的には平行光が対物レンズ25に入射し、対物レンズ25によって球面波に変換される。レーザ光の伝搬経路(集光経路)に収差物体が存在しない場合には、対物レンズ25からの光は、焦点距離fと等しい集光深さに1点で集光される。   The method for deriving the aberration condition executed in step S107 in the flowchart of FIG. 4 will be specifically described. When the spatial light modulator 20 is replaced with a mirror in the configuration shown in FIG. 1, since the phase modulation is not performed on the laser light supplied from the laser light source 10, ideally parallel light enters the objective lens 25, It is converted into a spherical wave by the objective lens 25. When there is no aberration object in the laser light propagation path (condensing path), the light from the objective lens 25 is collected at one point at a condensing depth equal to the focal length f.

一方、伝搬経路に屈折率が異なる第1、第2伝搬媒質が存在すると、屈折角の変化によって収差が発生し、対物レンズ25からの光は1点には集光しない。これに対して、空間光変調器20に呈示される変調パターンを適切に設計し、対物レンズ25に伝搬される光の波面を変形することにより、設定された集光点sに対して収差の影響無く、レーザ光を集光させることができる。   On the other hand, when the first and second propagation media having different refractive indexes are present in the propagation path, an aberration is generated due to a change in the refraction angle, and the light from the objective lens 25 is not condensed at one point. On the other hand, by appropriately designing the modulation pattern presented to the spatial light modulator 20 and deforming the wavefront of the light propagated to the objective lens 25, the aberration of the set condensing point s is reduced. Laser light can be collected without any influence.

所望の集光点にレーザ光を集光させるための波面の導出には、例えば、所望の集光位置からの逆光線追跡による導出方法を用いることができる。以下においては、平行平面基板の内部で光軸上にある集光点に、収差の影響無く集光するための波面の導出方法を例として説明する(特許文献2参照)。なお、波面の導出、及びそれによる収差条件(例えば、後述する収差条件を表す位相Φj−OPD)の導出については、逆光線追跡による方法以外にも、例えば最適化補正方法(非特許文献5)、近軸光線における収差の解析法(非特許文献7)など、具体的には様々な方法を用いることができる。 For derivation of the wavefront for condensing the laser beam at a desired condensing point, for example, a derivation method based on back ray tracing from a desired condensing position can be used. In the following, a wavefront derivation method for condensing light at a condensing point on the optical axis inside a parallel flat substrate without being affected by aberration will be described as an example (see Patent Document 2). For derivation of the wavefront and derivation of an aberration condition (for example, phase Φ j-OPD representing an aberration condition described later), for example, an optimization correction method (Non-Patent Document 5) other than the method using reverse ray tracing. Specifically, various methods such as an analysis method for aberrations in paraxial rays (Non-Patent Document 7) can be used.

図5は、レーザ光の伝搬において生じる収差条件の導出について示す図である。まず、雰囲気媒質の屈折率nと、照射対象物15の屈折率nとが等しい場合を考える。対象物15の端面P上の位置に光が集光するときの対物レンズ25の位置を基準とし、対物レンズ25を距離dだけ対象物15側へ移動させると、光は端面Pから距離dだけ離れた位置の点Oに集光する。理想的な平面波として入射する光は、対物レンズ25にて変換された直後には球面波となり、その球面波における点Rからの光線は、図5に実線で示す光路をとって点Oに到達する。このとき、点Rから点Oまでの光路長はfであり、どの光軸高さでも同じ光路長となる。 FIG. 5 is a diagram showing the derivation of the aberration condition that occurs in the propagation of the laser beam. First, consider a case where the refractive index n 1 of the atmospheric medium is equal to the refractive index n 2 of the irradiation object 15. When the objective lens 25 is moved to the object 15 side by a distance d on the basis of the position of the objective lens 25 when the light is focused on the position on the end face P of the object 15, the light is only a distance d from the end face P. Condensed to a point O at a distant position. The light incident as an ideal plane wave becomes a spherical wave immediately after being converted by the objective lens 25, and the light beam from the point R in the spherical wave takes the optical path shown by the solid line in FIG. To do. At this time, the optical path length from the point R to the point O is f, and the same optical path length is obtained at any optical axis height.

一方、屈折率n、nが異なる場合には、対物レンズ25からの光は点Oには集光しない。そこで、対物レンズ25の移動量は同じ距離dであるが、レーザ光の波面を空間光変調器20で変調することにより、端面Pからz離れた位置の点O’に集光するようにする。この場合、点O’からの光線は、対象物15と雰囲気媒質との境界面上の点Qを経て点Rに到達することになり、O’QとQRとの合計が光路長となる。このような光路長(OPL:Optical Path Length)を光軸高さh毎に導出する。 On the other hand, when the refractive indexes n 1 and n 2 are different, the light from the objective lens 25 is not condensed at the point O. Therefore, although the moving amount of the objective lens 25 is the same distance d, the wavefront of the laser light is modulated by the spatial light modulator 20 so as to be condensed at a point O ′ at a position z s away from the end face P. To do. In this case, the light beam from the point O ′ reaches the point R via the point Q on the boundary surface between the object 15 and the atmospheric medium, and the sum of O′Q and QR becomes the optical path length. Such an optical path length (OPL) is derived for each optical axis height h.

まず、図5に示すように、波面補正前の光線の対象物15への入射角をθ、波面補正後の光線の対象物15への入射角をθ、屈折角をθとすると、光軸高さh、h、hはそれぞれ下記の式(1)、(2)、(3)によって表される。


First, as shown in FIG. 5, when the incident angle of the light beam before wavefront correction to the object 15 is θ, the incident angle of the light beam after wavefront correction to the object 15 is θ 1 , and the refraction angle is θ 2 , The optical axis heights h 1 , h 2 and h are represented by the following formulas (1), (2) and (3), respectively.


ここで、入射角θと屈折角θとは、スネルの法則によって一意に関係付けられる。また、関係式h=h+hと、上記の式(1)〜(3)により、角度θ、θ、θが一意的に関係付けられる。例えば、ある特定のθまたはθが与えられた場合には、上記式(1)、(2)を関係式h=h+hに代入し、式(3)を解くことで容易にθを決定することができる。 Here, the incident angle θ 1 and the refraction angle θ 2 are uniquely related by Snell's law. Further, the angles θ, θ 1 , and θ 2 are uniquely related by the relational expression h = h 1 + h 2 and the above expressions (1) to (3). For example, when a specific θ 1 or θ 2 is given, the above formulas (1) and (2) are substituted into the relational expression h = h 1 + h 2 to easily solve the formula (3). θ can be determined.

ただし、逆にある特定のθが与えられた場合に、θ及びθを解析的に求めることは困難である。特定の角度θについて対応するθ、θを求める際には、探索を行う。例えば、θあるいはθの値を徐々に変化させて、その都度θの値を求める。そして、θが所望の値となるθ、θが得られるまで、θあるいはθを変化させることで、その探索及び角度の導出を行う。 However, it is difficult to analytically obtain θ 1 and θ 2 when a specific θ is given. A search is performed when obtaining θ 1 and θ 2 corresponding to a specific angle θ. For example, the value of θ 1 or θ 2 is gradually changed, and the value of θ is obtained each time. Then, until θ 1 and θ 2 at which θ becomes a desired value are obtained, θ 1 or θ 2 is changed to search and derive an angle.

上記したように、式(1)〜(3)により、所望のθに対応するθ、θを求める。そして、入射角θ毎に、照射対象物15によって生じる光の伝搬の光路長OPLを下記の式(4)によって求める。

なお、この式(4)中の「−f−(n−n)×d」は定数項であり、OPLの値が大きくなり過ぎるのを防ぐために付加した項である。
As described above, θ 1 and θ 2 corresponding to the desired θ are obtained by the equations (1) to (3). Then, for each incident angle θ, an optical path length OPL of light propagation generated by the irradiation object 15 is obtained by the following equation (4).

Note that “−f− (n 2 −n 1 ) × d” in the equation (4) is a constant term, which is a term added to prevent the value of OPL from becoming too large.

この式(4)は、入射角θ毎の光路長を示しているが、式(3)及び式(4)より、光軸高さh毎の光路長として、下記の式(5)のように表すこともできる。

これにより、光軸高さhに対応するOPLを求めることができる。
This formula (4) shows the optical path length for each incident angle θ. From formula (3) and formula (4), the optical path length for each optical axis height h is as shown in the following formula (5). It can also be expressed as

Thereby, the OPL corresponding to the optical axis height h can be obtained.

このOPLの差、すなわち光路長差(OPD:Optical PathDifference)を与える位相ΦOPDを空間光変調器(SLM)20で与えることにより、対象物15の内部における所望の位置にレーザ光を集光することができる。この位相ΦOPDは、式(5)から

によって求めることができる。この位相ΦOPDを、3次元多点照射のために距離dを固定した状態で、z毎に導出する。なお、光軸高さhの範囲は、0〜hmaxまでである。また、hmaxは0〜NA×fまでの範囲であり、すなわち、対物レンズ25の開口が光軸高さのhmaxの最大である。
The spatial light modulator (SLM) 20 gives this OPL difference, that is, a phase Φ OPD that gives an optical path length difference (OPD: Optical Path Difference), thereby condensing the laser light at a desired position inside the object 15. be able to. This phase Φ OPD is given by equation (5)

Can be obtained. This phase Φ OPD is derived for each z s with the distance d fixed for three-dimensional multipoint irradiation. The range of the optical axis height h is from 0 to h max . Further, h max is in the range of 0 to NA × f, that is, the opening of the objective lens 25 is the maximum of h max of the optical axis height.

また、上記した光軸高さhと、SLM20の画素jの位置(x,y)とは次のような関係がある。SLM20と対物レンズ25とが、図1に示した光学系のように4f光学系で結像されている場合には、対物レンズの瞳の波面がSLMに伝搬される。このとき、4f光学系のレンズ21の焦点距離をf1、レンズ22の焦点距離をf2とすると、横倍率MはM=f2/f1となる。したがって、対物レンズの射出瞳からの光は、SLM上において光軸高さがh=0〜hmax/Mとなる。 The optical axis height h and the position (x j , y j ) of the pixel j of the SLM 20 have the following relationship. When the SLM 20 and the objective lens 25 are imaged by a 4f optical system like the optical system shown in FIG. 1, the wavefront of the objective lens pupil is propagated to the SLM. At this time, when the focal length of the lens 21 of the 4f optical system is f1, and the focal length of the lens 22 is f2, the lateral magnification M is M = f2 / f1. Therefore, the light from the exit pupil of the objective lens has an optical axis height of h = 0 to h max / M on the SLM.

また、対物レンズ25の射出瞳からの光の中心位置が、SLM上で座標(x,y)にあることがわかれば、下記の式(7)

によって、光軸高さhと、SLMの画素座標(x,y)とを変換することができる。これにより、座標(x,y)の画素j毎の収差条件となる位相Φj−OPDを求めることができる。
Further, if it is found that the center position of the light from the exit pupil of the objective lens 25 is at the coordinates (x c , y c ) on the SLM, the following equation (7)

Thus, the optical axis height h and the pixel coordinates (x j , y j ) of the SLM can be converted. Thereby, the phase Φ j-OPD serving as an aberration condition for each pixel j of the coordinates (x j , y j ) can be obtained.

次に、図4のフローチャートのステップS108において実行される変調パターンの設計方法について、具体的に説明する。以下においては、SLM20に呈示される変調パターンの1画素での位相値の影響に着目した設計方法の例として、ORA法を用いた設計方法について説明する(特許文献3、非特許文献1、2参照)。   Next, the modulation pattern design method executed in step S108 of the flowchart of FIG. 4 will be specifically described. In the following, a design method using the ORA method will be described as an example of a design method focusing on the influence of the phase value of one pixel of the modulation pattern presented to the SLM 20 (Patent Document 3, Non-Patent Documents 1 and 2). reference).

ここで、一般に、SLMでの変調パターンとして用いられるCGHの設計方法は、複数あり、例えば反復フーリエ法などが挙げられる。まず、反復フーリエ変換法は、SLM面と回折面との2つの面を用意し、各面の間をフーリエ変換及び逆フーリエ変換にて伝搬させる。そして、伝搬ごとに各面の振幅情報を置き換え、最終的に位相分布を取得する方法である。   Here, in general, there are a plurality of CGH design methods used as modulation patterns in the SLM, such as an iterative Fourier method. First, the iterative Fourier transform method prepares two surfaces, an SLM surface and a diffraction surface, and propagates between each surface by Fourier transform and inverse Fourier transform. Then, the amplitude information of each surface is replaced for each propagation, and finally the phase distribution is acquired.

一方、別のCGH設計法としては、光線追跡法及び1画素の影響に着目した設計方法の2つが挙げられる。光線追跡法としては、レンズの重ね合わせ法(S法:Superposition of Lens)がある。この方法は、集光点からの波面の重なりが少ない場合には有効であるが、波面の重なりが増えると、SLMに入射するレーザ光強度のうちで集光点に伝搬する光の強度が著しく低下し、あるいは制御できなくなる場合がある。そのために、S法を改良した反復S法がある。   On the other hand, as another CGH design method, there are two methods, a ray tracing method and a design method focusing on the influence of one pixel. As a ray tracing method, there is a lens superposition method (S method: Superposition of Lens). This method is effective when there is little wavefront overlap from the condensing point, but when the wavefront overlap increases, the intensity of light propagating to the condensing point out of the laser light intensity incident on the SLM becomes remarkably high. It may decrease or become uncontrollable. For this purpose, there is an iterative S method that is an improvement of the S method.

一方、CGHの1画素の影響に着目する設計法は、CGHの1画素を適宜選択し、1画素毎に位相値を変更してCGHの設計を行っていく方法であり、1画素の位相の決定方法によって探索型の方法と解析型の方法とがある。   On the other hand, a design method that focuses on the influence of one pixel of CGH is a method in which one pixel of CGH is appropriately selected and the phase value is changed for each pixel to design CGH. Depending on the determination method, there are a search type method and an analysis type method.

この設計法では、CGHのある1画素の位相値をパラメータとして変更し、フレネル回折等による波動伝搬関数を用いて変調レーザ光を伝搬させ、所望の集光点における集光状態を示す値(例えば振幅、強度、複素振幅の値)がどのように変化するかを調べる。そして、集光点での集光状態が所望の結果に近づくような位相値を採用する。このような操作を1画素ずつ、少なくとも光が入射する全ての画素で行う。   In this design method, the phase value of one pixel with CGH is changed as a parameter, the modulated laser light is propagated using a wave propagation function by Fresnel diffraction or the like, and a value indicating a condensing state at a desired condensing point (for example, Examine how the amplitude, intensity, and complex amplitude values change. Then, a phase value is adopted such that the condensing state at the condensing point approaches a desired result. Such an operation is performed pixel by pixel on at least all the pixels on which light is incident.

全ての画素で操作が終わった後に、解析型の方法では、全ての画素を位相変調した結果で、所望の位置の位相がどのように変化するか確認した後に、はじめの1画素目に戻って所望の位置の位相を用いて、1画素ずつ位相の変更を行う。また、探索型の方法では、確認は行わずにはじめの1画素目に戻る。探索型の方法としては、例えば、山登り法、焼きなまし法(SA:Simulated Annealing)、遺伝的アルゴリズム(GA:GeneticAlgorithm)などがある(非特許文献3、4参照)。   After the operation is completed for all the pixels, the analysis type method returns to the first pixel after confirming how the phase at the desired position changes as a result of the phase modulation of all the pixels. Using the phase at the desired position, the phase is changed pixel by pixel. Further, in the search method, the first pixel is returned without performing confirmation. Examples of the search-type method include a hill-climbing method, an annealing method (SA: Simulated Annealing), and a genetic algorithm (GA: Genetic Algorithm) (see Non-Patent Documents 3 and 4).

以下に説明するORA(Optimal Rotation Angle)法は、解析型の方法を用いた最適化アルゴリズムである。この方法では、変調パターンの各画素における位相値の変更、調整は、集光点sにおける集光状態を示す複素振幅の位相φ、伝搬関数の位相φjs、及び画素jでの変更前の位相値φに基づいて解析的に求められた値によって行われる。特に、本実施形態における設計方法では、伝搬関数として、φjsに代えて、第1、第2伝搬媒質による収差条件が考慮された伝搬関数φjs’が用いられる。 The ORA (Optimal Rotation Angle) method described below is an optimization algorithm using an analytical method. In this method, the change and adjustment of the phase value in each pixel of the modulation pattern are performed before the change in the phase φ s of the complex amplitude indicating the condensing state at the condensing point s , the phase φ js of the propagation function, and the pixel j. This is performed by a value obtained analytically based on the phase value φ j . In particular, in the design method of this embodiment, as the propagation function, instead of phi js, first, aberration condition by the second propagation medium by propagation function phi js' consideration is used.

図6は、図3に示した光変調制御装置30において実行される変調パターンの設計方法の一例を示すフローチャートである。まず、空間光変調器20を介して行われる照射対象物15へのレーザ光の集光照射について、設定された集光条件の情報を取得する(ステップS201)。ここで取得される集光条件としては、集光点の個数s、各集光点sの集光位置γ=(u,v,z)、及び所望の集光強度Is−desがある。 FIG. 6 is a flowchart showing an example of a modulation pattern design method executed in the light modulation control device 30 shown in FIG. First, the information of the set condensing condition is acquired about the condensing irradiation of the laser beam to the irradiation target 15 performed via the spatial light modulator 20 (step S201). The condensing conditions acquired here include the number of condensing points s t , the condensing position γ s of each condensing point s = (u s , v s , z s ), and the desired condensing intensity I s. There is -des .

次に、SLM20に呈示する変調パターンとして用いられるCGHの設計の初期条件となる位相パターンを作成する(S202)。この位相パターンは、例えば、CGHの画素jにおける位相値φをランダム位相パターンとする方法によって作成される。この方法は、ORAによるCGH設計が最適化手法であるため、ランダム位相によって特定の極小解に陥ることを防ぐ目的で用いられる。なお、特定の極小解に陥る可能性を無視しても良い場合には、例えば均一な位相パターン等に設定しても良い。 Next, a phase pattern serving as an initial condition for designing a CGH used as a modulation pattern presented to the SLM 20 is created (S202). This phase pattern is created by, for example, a method in which the phase value φ j at the pixel j of the CGH is a random phase pattern. This method is used for the purpose of preventing falling into a specific minimum solution due to a random phase because CGH design by ORA is an optimization method. If the possibility of falling into a specific minimum solution can be ignored, a uniform phase pattern or the like may be set, for example.

続いて、集光点の個数が複数(s≧2)に設定されている場合、それらの集光点s=1〜s間の集光強度比を調整するためのパラメータであるウエイトwを、その初期条件としてw=1に設定する(S203)。なお、このウエイトwは、1×sの配列となる。また、集光点が単一(s=1)の場合には、ウエイトの設定は不要である。 Subsequently, when the number of the focal point is set to a plurality (s t ≧ 2), is a parameter for adjusting a condensing intensity ratio between their converging point s = 1 to s t weights w s is set to w s = 1 as the initial condition (S203). In addition, the weight w s is a sequence of 1 × s t. In addition, when there is a single condensing point (s t = 1), setting of the weight is unnecessary.

CGHの位相パターンφ、及びウエイトwの設定を終了したら、集光点sにおけるレーザ光の集光状態を示す複素振幅Uを算出する(S204)。具体的には、光波伝搬を表す下記の式(8)

によって、複素振幅U=Aexp(iφ)を求める。ここで、Aj−inはSLM20の画素jへのレーザ光の入射振幅であり、φは画素jでの位相値である。また、φj−inは画素jに入射するレーザ光の位相である。
When the setting of the phase pattern φ j of the CGH and the weight w s is completed, a complex amplitude U s indicating the condensing state of the laser light at the condensing point s is calculated (S204). Specifically, the following equation (8) representing the light wave propagation

To obtain the complex amplitude U s = A s exp (iφ s ). Here, A j-in is the incident amplitude of the laser beam to the pixel j of the SLM 20, and φ j is the phase value at the pixel j. Φ j-in is the phase of the laser light incident on the pixel j.

また、式(8)において、φjs’は、第1、第2伝搬媒質(図5に示した例では雰囲気媒質、照射対象物15)による収差条件が考慮された伝搬関数であり、

によって求められる。この式(9)において、Φj−OPDは、式(6)に示した画素jに対する収差条件の位相である。
In Equation (8), φ js ′ is a propagation function that takes into account aberration conditions due to the first and second propagation media (atmosphere medium, irradiation object 15 in the example shown in FIG. 5),

Sought by. In this equation (9), Φ j-OPD is the phase of the aberration condition for the pixel j shown in equation (6).

このように、収差条件が考慮された伝搬関数φjs’を用いることにより、zが異なるどの集光点においても、所望の結果を与えることが可能なCGHを得ることができる。また、φjsは、自由伝搬を仮定した場合の有限遠領域での伝搬関数である。この伝搬関数φjsとしては、例えば下記の式(10)

で与えられる波動伝搬関数の近似式であるフレネル回折を用いることができる。ここで、上記の式(10)において、kは波数である。
As described above, by using the propagation function φ js ′ in which the aberration condition is taken into consideration, it is possible to obtain CGH capable of giving a desired result at any condensing point where z s is different. Φ js is a propagation function in a finite region when free propagation is assumed. As this propagation function φ js , for example, the following equation (10)

Fresnel diffraction, which is an approximate expression of the wave propagation function given by Here, in the above equation (10), k is a wave number.

なお、自由伝搬の伝搬関数φjsとしては、例えば、上記したフレネル回折の近似式やフラウンホーファー回折の近似式、あるいはヘルムホルツ方程式の解など、様々な派生式を用いることができる。また、上記した式(8)、(9)において、収差条件の位相を、Φj−OPD=0とすれば、伝搬関数はφjs’=φjsとなって、従来のORA法で用いられている、収差が考慮されない複素振幅の算出式が得られる。 As the free propagation propagation function φ js , for example, various derived equations such as the above-described Fresnel diffraction approximation, Fraunhofer diffraction approximation, or the Helmholtz equation can be used. In the above equations (8) and (9), if the phase of the aberration condition is Φ j−OPD = 0, the propagation function is φ js ′ = φ js and is used in the conventional ORA method. The calculation formula of the complex amplitude which does not consider the aberration is obtained.

また、式(10)の伝搬関数を用いてORA法によるCGH設計を行うと、対物レンズの焦点距離fのレンズ効果も付加されたCGHが設計される。ただし、通常、SLMでの画素サイズが大きいため、その対物レンズのレンズ効果を表現することができない。このため、実際には、焦点距離fではなく、焦点距離L(例えば、浜松ホトニクス製LCOS−SLM X10468であればL=1m程度)という値を用いている。   Further, when the CGH design by the ORA method is performed using the propagation function of Expression (10), the CGH to which the lens effect of the focal length f of the objective lens is added is designed. However, since the pixel size in SLM is usually large, the lens effect of the objective lens cannot be expressed. For this reason, actually, a value of the focal length L (for example, L = 1m in the case of LCOS-SLM X10468 manufactured by Hamamatsu Photonics) is used instead of the focal length f.

続いて、上記方法によるCGHの設計において、所望の結果が得られているかどうかを判定する(S205)。この場合の判定方法としては、例えば、各集光点sで得られた集光強度I=|Aと、所望の強度Is−desとを、下記の式(11)

によって比較し、全ての集光点sにおいて、強度比が所定の値ε以下となっているかによって判定する方法を用いることができる。また、集光強度Iではなく、振幅A、複素振幅U等によって判定を行っても良い。
Subsequently, it is determined whether a desired result is obtained in the design of the CGH by the above method (S205). As a determination method in this case, for example, the condensing intensity I s = | A s | 2 obtained at each condensing point s and the desired intensity I s-des are expressed by the following equation (11).

And a method of determining whether the intensity ratio is equal to or less than a predetermined value ε at all the condensing points s can be used. Also, rather than collecting light intensity I s, the amplitude A s, determination may be performed by complex amplitude U s like.

あるいは、図6のフローチャートにおいて、位相値の変更、及び複素振幅の算出等のループが規定の回数行われたかどうか、などの条件によって判定する方法を用いても良い。設定された集光条件に対し、設計されたCGHが必要な条件を満たしていると判定された場合には、ORAによるCGHの設計アルゴリズムを終了する。また、条件を満たしていない場合には、次のステップS206に進む。   Alternatively, in the flowchart of FIG. 6, a method may be used in which a determination is made based on conditions such as whether a loop such as a change in phase value and calculation of complex amplitude has been performed a prescribed number of times. If it is determined that the designed CGH satisfies the necessary conditions for the set light collection condition, the CGH design algorithm by ORA is terminated. If the condition is not satisfied, the process proceeds to the next step S206.

設計終了に必要な条件を満たしていないと判定された場合、まず、集光点s間の集光強度比を調整するためのウエイトwの値を下記の式(12)

によって変更する(S206)。ここで、式(12)においてウエイトwの更新に用いられているパラメータηは、ORAアルゴリズムが不安定になるのを防ぐために、通常、慣習的にη=0.25〜0.35程度の値が用いられている。
When it is determined that the condition necessary for the end of the design is not satisfied, first, the value of the weight w s for adjusting the light collection intensity ratio between the light collection points s is expressed by the following equation (12).

(S206). Here, the parameter η used for updating the weight w s in the equation (12) is usually customarily about η = 0.25 to 0.35 in order to prevent the ORA algorithm from becoming unstable. Value is used.

次に、集光点sにおけるレーザ光の集光状態が所望の状態に近づくように、CGHの画素毎に位相値の変更操作を行う(S207)。解析型のORA法では、集光状態を所望の状態に近づけるために画素jの位相値φに加える位相の変化量Δφを、式(8)で得られた複素振幅の位相φ、収差条件Φj−OPDを考慮した伝搬関数の位相φjs’、及び更新前の位相値φを用いて、下記の式(13)

と判定とによって解析的に求める。ここで、



である。このように解析的に位相値φを求める方法では、探索によって位相値を求める山登り法等の方法に比べて、演算に要する時間が短くなるという利点がある。
Next, a phase value changing operation is performed for each pixel of the CGH so that the condensing state of the laser light at the condensing point s approaches a desired state (S207). In the analysis-type ORA method, the phase change amount Δφ j to be added to the phase value φ j of the pixel j in order to bring the condensed state closer to a desired state is obtained by using the complex amplitude phase φ s obtained by the equation (8), Using the phase φ js ′ of the propagation function considering the aberration condition Φ j-OPD and the phase value φ j before the update, the following equation (13)

And determined analytically. here,



It is. In this way, the method for analytically obtaining the phase value φ j has an advantage that the time required for the calculation is shortened compared with a method such as a hill-climbing method for obtaining the phase value by searching.

なお、位相の変化量Δφの決定に用いられるΦjsについては、通常のORA法では、下記の式(17)

が用いられるが、ここで説明する改良ORA法では、上記した伝搬関数の変更に加えて、位相値の更新におけるこのΦjsの算出においても、収差条件の位相Φj−OPDを加味した式(16)を用いている。
As for Φ js used for determining the phase change amount Δφ j , the following equation (17) is used in the normal ORA method.

However, in the improved ORA method described here, in addition to the change of the propagation function described above, in the calculation of Φ js in the update of the phase value, an equation that takes into account the phase Φ j-OPD of the aberration condition ( 16) is used.

上記のように、位相の変化量Δφが求められたら、下記の式(18)

によって、CGHのj番目の画素における位相値φを変更、更新する。そして、位相値の変更操作が全ての画素で行われたかどうかを確認し(S208)、変更操作が終了していなければ、j=j+1として、次の画素について位相値の変更操作を実行する。一方、全ての画素について変更操作が終了していれば、ステップS204に戻って複素振幅Uの算出、及びそれによる集光状態の評価を行う。このような操作を繰り返して実行することにより、設定された集光条件に対応する変調パターンのCGHが作成される。
When the phase change amount Δφ j is obtained as described above, the following equation (18) is obtained.

By changing the phase value phi j in the j-th pixel of the CGH, and updates. Then, it is confirmed whether or not the phase value changing operation has been performed on all the pixels (S208). If the changing operation has not ended, j = j + 1 is set, and the phase value changing operation is executed for the next pixel. On the other hand, if the change operation for all the pixels is completed, it performs the calculation of the complex amplitude U s, and the evaluation of the condensed state by it back to the step S204. By repeatedly executing such an operation, a CGH having a modulation pattern corresponding to the set condensing condition is created.

以上の方法によって設計されるCGHには、上記したように、対物レンズの焦点距離fのレンズ効果が付与されている。したがって、焦点距離fの対物レンズを使用する場合には、ORA法による設計結果として得られたCGHの位相値φj−resに対し、

を行えば良い。ただし、

である。なお、fobjの代わりに上述した焦点距離Lを用いた場合には、式(20)についてもfobjからLに変更する。
As described above, the lens effect of the focal length f of the objective lens is given to the CGH designed by the above method. Therefore, when an objective lens having a focal length f is used, with respect to the phase value φ j-res of CGH obtained as a design result by the ORA method,

Just do it. However,

It is. When the focal length L described above is used instead of f obj , the expression (20) is also changed from f obj to L.

ここで、屈折率が異なる媒質が伝搬経路上に存在する場合の収差の補正では、従来、収差補正用のパターンを求めて、設計されたCGHの変調パターンに補正パターンを足し合わせる方法が用いられている(例えば、非特許文献5参照)。この場合の補正パターンの導出方法としては、例えば最適化補正法、近軸近似を用いた解析法、逆光線追跡を用いた解析法がある。これらの手法から導出した収差条件の逆の位相が、収差補正用のパターンとなる。しかしながら、このようなパターンの足し合わせによる方法は、下記のように適切に機能しない場合がある。   Here, in the correction of aberration when a medium having a different refractive index exists on the propagation path, conventionally, a method for obtaining a correction pattern for aberration and adding the correction pattern to the designed modulation pattern of CGH is used. (For example, refer nonpatent literature 5). As a method for deriving a correction pattern in this case, for example, there are an optimization correction method, an analysis method using paraxial approximation, and an analysis method using reverse ray tracing. The phase opposite to the aberration condition derived from these methods is the aberration correction pattern. However, such a pattern addition method may not function properly as described below.

すなわち、上記したORA法などのCGHの1画素の影響に着目する設計法では、1枚のCGHによって、複数の集光点によるレーザ光の3次元多点照射を行うことができる。このようなCGHに対して従来のように補正パターンを足し合わせた場合、CGHによって再生される全ての集光点において、同一の収差補正パターンの効果が与えられる。しかしながら、実際には、設定される複数の集光点は、光軸方向の位置(光軸深さ)が異なる場合がある。この場合、収差の影響は光軸深さによって異なることから、集光点毎に異なる収差補正パターンの効果を与える必要がある。すなわち、補正パターンをCGHに足し合わせる方法では、単一の光軸深さでの収差補正しか加えることができず、光軸深さが異なる収差の補正が不充分になる恐れがある。   That is, in the above-described design method focusing on the influence of one pixel of CGH such as the ORA method, it is possible to perform three-dimensional multi-point irradiation of laser light from a plurality of condensing points with one CGH. When a correction pattern is added to such a CGH as in the prior art, the same aberration correction pattern effect is given to all the condensing points reproduced by the CGH. However, in practice, a plurality of set condensing points may have different positions in the optical axis direction (optical axis depth). In this case, since the influence of the aberration varies depending on the optical axis depth, it is necessary to provide an effect of a different aberration correction pattern for each focal point. That is, in the method of adding the correction pattern to the CGH, only aberration correction at a single optical axis depth can be applied, and there is a possibility that correction of aberrations having different optical axis depths may be insufficient.

一方、非特許文献6には、反復フーリエ法を用いた設計法が開示されている。このような方法では、3次元多点照射のためには、CGH設計に追加の処理を行う必要がある。通常の反復フーリエ法にて設計されたCGHを再生するためには、SLMの後段にレンズが必要となる。これは、設計の段階では伝搬距離は無限遠であり、光軸深さ(光軸方向の集光位置)毎の制御ができないためである。   On the other hand, Non-Patent Document 6 discloses a design method using an iterative Fourier method. In such a method, it is necessary to perform an additional process for the CGH design for the three-dimensional multipoint irradiation. In order to reproduce the CGH designed by the usual iterative Fourier method, a lens is required after the SLM. This is because the propagation distance is infinite at the design stage, and control for each optical axis depth (condensing position in the optical axis direction) is not possible.

この方法では、光軸深さを変えるには、反復フーリエ法で設計されたCGHにフレネルレンズパターンを別途加える必要がある。さらに、3次元多点照射を実現するためには、まず集光点が設定された集光面(回折面)毎に反復フーリエ法にてCGHを求め、それぞれのCGHに深さ方向を制御するフレネルレンズパターンの位相を加える。そして、その後、複数の集光面のCGHを複素振幅の形で足し合わせて、位相のみを取り出し、この操作によって3次元多点照射のためのCGHが設計される。   In this method, in order to change the optical axis depth, it is necessary to separately add a Fresnel lens pattern to the CGH designed by the iterative Fourier method. Further, in order to realize three-dimensional multi-point irradiation, first, CGH is obtained by the iterative Fourier method for each condensing surface (diffraction surface) on which the condensing point is set, and the depth direction is controlled for each CGH. Add the phase of the Fresnel lens pattern. Thereafter, the CGHs of the plurality of light converging surfaces are added together in the form of complex amplitude, and only the phase is extracted. By this operation, the CGH for three-dimensional multipoint irradiation is designed.

また、各集光面用のCGHにフレネルレンズパターンを加える際に、伝搬経路上の媒体による影響を補正する収差補正パターンをも加えることで、集光面毎の球面収差補正が可能となる。しかしながら、このような方法では、複素振幅演算を行った後に、位相のみを取り出すために、振幅分布情報が欠落し、各集光点への振幅の分配が極めて難しいという問題がある。   In addition, when adding a Fresnel lens pattern to the CGH for each condensing surface, by adding an aberration correction pattern for correcting the influence of the medium on the propagation path, it is possible to correct spherical aberration for each condensing surface. However, in such a method, since only the phase is extracted after performing the complex amplitude calculation, there is a problem that the amplitude distribution information is lost and it is extremely difficult to distribute the amplitude to each condensing point.

これに対して、上記したCGHの設計方法によれば、このような収差補正、及び各集光点への振幅の分配を好適に実現することができる。また、このような設計方法では、例えば、雰囲気媒質である空気(あるいは水、オイル等)と屈折率が異なる媒体が伝搬経路上に存在する影響の補正、3次元多点照射、及び複数の集光点の間での強度調整の3つを同時に実現するCGHを設計することが可能である。   On the other hand, according to the above-described CGH design method, it is possible to suitably realize such aberration correction and amplitude distribution to each condensing point. In addition, in such a design method, for example, correction of the influence of a medium having a refractive index different from that of air (or water, oil, etc.), which is an atmospheric medium, on the propagation path, three-dimensional multipoint irradiation, and multiple collections It is possible to design a CGH that simultaneously realizes three intensity adjustments between light spots.

上記実施形態の光変調制御装置30、及びレーザ光照射装置1Aによる収差補正等の効果について、その具体例とともに説明する。図7〜図9は、それぞれ、レーザ光照射装置1Aによるレーザ光の照射パターンの例(CGHの再生像の例)を示す図である。ここでは、レーザ光をスペイシャルフィルタによって広げ、空間光変調器20であるLCOS−SLMにて位相変調を行った光を、f=800mmのレンズで集光する。このとき、集光レンズから700mm離れた位置にf=200mmのシリンドリカルレンズが配置されている。この例では、シリンドリカルレンズが集光光学系に挿入された収差物体である。   Effects of aberration correction and the like by the light modulation control device 30 and the laser light irradiation device 1A of the above embodiment will be described together with specific examples thereof. 7 to 9 are diagrams showing examples of laser light irradiation patterns (examples of reproduced images of CGH) by the laser light irradiation apparatus 1A. Here, the laser light is spread by a spatial filter, and the light subjected to phase modulation by the LCOS-SLM that is the spatial light modulator 20 is collected by a lens of f = 800 mm. At this time, a cylindrical lens of f = 200 mm is disposed at a position 700 mm away from the condenser lens. In this example, the cylindrical lens is an aberration object inserted into the condensing optical system.

収差物体についての補正を行わない変調パターンを用いた場合、図7に示すように、シリンドリカルレンズの収差の影響によってCGHが正しく表示されない。一方、上記したCGHの設計方法によって収差物体についての補正を行うと、図8に示すように、集光レンズからz=850mmの位置で、収差が補正された像が観察される。 When a modulation pattern that does not perform correction for an aberration object is used, CGH is not correctly displayed due to the influence of the aberration of the cylindrical lens, as shown in FIG. On the other hand, when an aberration object is corrected by the above-described CGH design method, an aberration-corrected image is observed at a position of z s = 850 mm from the condenser lens, as shown in FIG.

なお、シリンドリカルレンズについての収差補正は、上記した平行平面基板の場合とはOPDの導出方法等が若干異なる。すなわち、平行平面基板の場合には、軸対称であるため、2次元の計算を用いることができる。一方、シリンドリカルレンズの場合、あるいは対象物に傾きが存在する場合などには、それに対応した適切なOPDの導出方法を行うことが必要となる。   The aberration correction for the cylindrical lens is slightly different from the above-described parallel plane substrate in the OPD derivation method and the like. That is, in the case of a parallel plane substrate, since it is axially symmetric, two-dimensional calculation can be used. On the other hand, in the case of a cylindrical lens or when an object has an inclination, it is necessary to perform an appropriate OPD deriving method corresponding thereto.

また、上記したCGHの設計方法では、光軸深さを含む集光位置、屈折率、空間光変調器での画素ピッチなどの情報を正確に持っているため、所望の位置に対してレーザ光の集光照射、レーザ加工等を行うことができる。ここで、図9は、通常の反復フーリエ法で設計した「HPK」パターンを再生するCGHを、伝搬経路に対象物が存在しないときに再生させた結果を示している。一方、図8は、光軸上の(0,0,z)の位置に集光するようにORA法で設計したCGHと、「HPK」パターンのCGHとを足し合わせたものを再生、表示させた結果である。 In addition, since the CGH design method described above has accurate information such as the condensing position including the optical axis depth, the refractive index, and the pixel pitch in the spatial light modulator, the laser beam can be applied to the desired position. Condensation irradiation, laser processing, etc. can be performed. Here, FIG. 9 shows a result of reproducing the CGH for reproducing the “HPK” pattern designed by the normal iterative Fourier method when no object is present in the propagation path. On the other hand, FIG. 8 reproduces and displays a combination of the CGH designed by the ORA method so as to collect light at the position (0, 0, z s ) on the optical axis and the CGH of the “HPK” pattern. This is the result.

図8、図9を比較すると、紙面横方向の再生位置が異なることがわかる。集光点の形状は良好となっているが、図8で変調パターンとして用いたCGHは、シリンドリカルレンズによって屈折した横方向の回折についての補正がなされていない。これに対して、横方向の回折も改善するためには、次の2つの方法がある。   Comparing FIG. 8 and FIG. 9, it can be seen that the reproduction position in the horizontal direction of the drawing is different. Although the shape of the condensing point is good, the CGH used as the modulation pattern in FIG. 8 is not corrected for the lateral diffraction refracted by the cylindrical lens. On the other hand, there are the following two methods for improving the lateral diffraction.

すなわち、第1の方法は、再生点の1点1点について、光軸方向に対して垂直な面の位置も含めて、それぞれOPDを導出する方法である。この場合には、Φj−OPDに点sの位置情報が含まれるために、φjsが全ての点sについて共通であり、Φj−OPDが点の位置ごとに異なる。 In other words, the first method is a method of deriving OPD for each reproduction point, including the position of the surface perpendicular to the optical axis direction. In this case, since the position information of the point s is included in Φ j-OPD , φ js is common to all the points s, and Φ j-OPD is different for each position of the point.

第2の方法は、光軸方向に対して垂直な面の位置は含めず、光軸深さによって異なるOPDを導出する方法である。この場合には、Φj−OPDには点sの位置情報が含まれないため、φjsが光軸方向に対して垂直な面の位置の調整を行う、つまり、φjsが点の位置ごとに異なる。 The second method is a method of deriving an OPD that differs depending on the optical axis depth without including the position of the surface perpendicular to the optical axis direction. In this case, since the position information of the point s is not included in Φ j-OPD , φ js adjusts the position of the plane perpendicular to the optical axis direction, that is, φ js corresponds to the position of each point. Different.

なお、後者の方法を適用し、かつ、上述したように実際の焦点距離fではなく、焦点距離Lを用いる場合には、(u,v)を変更する必要がある。なお、fを用いた場合でもLを用いた場合でも、最終的にはレンズ効果を除去するため、(u,v)の設計を正しく行っていれば問題はない。そこで、焦点距離Lを用いる場合には、変更後の(u’,v’)は、(u’,v’)=(βu,βv)とする。なお、βはレンズの焦点距離を変更したことを補正するパラメータであり、光軸と(u,v)との距離が短い場合には、β=L/fとなる。 When the latter method is applied and the focal length L is used instead of the actual focal length f as described above, it is necessary to change (u s , v s ). Even if f is used or L is used, there is no problem if (u s , v s ) is designed correctly in order to finally remove the lens effect. Therefore, when the focal length L is used, (u s ′, v s ′) after the change is set to (u s ′, v s ′) = (βu s , βv s ). Note that β is a parameter for correcting that the focal length of the lens has been changed. When the distance between the optical axis and (u s , v s ) is short, β = L / f.

これらの方法を用いてCGHの設計を行う。そうすることにより、各集光点をそれぞれ所定の位置に再生することができる。   The CGH is designed using these methods. By doing so, each condensing point can be reproduced at a predetermined position.

このように、収差量を正しく導出してCGHを設計することは、レーザ光の照射位置精度に大きな影響を及ぼす。なお、媒体の屈折率がわからない場合のレーザ光照射などにおいては、まずレーザ光照射を行い、その集光位置(例えば加工位置)を確認してから、屈折率を変えてフィードバックを行う方法も考えられる。   Thus, correctly deriving the aberration amount and designing the CGH has a great effect on the laser beam irradiation position accuracy. In laser light irradiation when the refractive index of the medium is unknown, a method of performing laser light irradiation, confirming the condensing position (for example, processing position), and then performing feedback by changing the refractive index is also considered. It is done.

図4のフローチャートのステップS108において実行される変調パターンの設計方法について、さらに説明する。図6のフローチャートでは、CGHの1画素の影響に着目した設計法の例として、解析型のORA法を用いた設計方法を示した。これに対して、変調パターンの設計方法としては、上述したように、山登り法、焼きなまし法、遺伝的アルゴリズムなどの探索型の設計方法を用いることも可能である。   The modulation pattern design method executed in step S108 in the flowchart of FIG. 4 will be further described. In the flowchart of FIG. 6, a design method using the analytic ORA method is shown as an example of a design method focusing on the influence of one pixel of CGH. On the other hand, as a modulation pattern design method, as described above, a search-type design method such as a hill climbing method, an annealing method, or a genetic algorithm can be used.

図10は、図3に示した光変調制御装置30において実行される変調パターンの設計方法の他の例を示すフローチャートである。このフローチャートでは、探索型の設計方法の例として、山登り法を用いた場合の設計方法を示している。この方法では、まず、ORA法と同様に、SLM20を介して行われる照射対象物15へのレーザ光の集光照射について、設定された集光条件の情報を取得する(ステップS301)。次に、SLM20に呈示するCGH設計の初期条件の位相パターンφを、例えばランダム位相パターンとして作成する(S302)。 FIG. 10 is a flowchart showing another example of a modulation pattern design method executed in the light modulation control device 30 shown in FIG. In this flowchart, as an example of a search type design method, a design method in the case of using a hill-climbing method is shown. In this method, first, as in the ORA method, information on the set condensing condition is acquired for the condensing irradiation of the laser beam to the irradiation object 15 performed via the SLM 20 (step S301). Next, the phase pattern φ j of the initial condition of the CGH design presented to the SLM 20 is created as a random phase pattern, for example (S302).

続いて、CGHの1画素の位相値φの変更操作を行う(S303)。さらに、収差条件が考慮された伝搬関数φjs’を含む式(8)を用いて、集光点sにおけるレーザ光の集光状態を示す複素振幅U=Aexp(iφ)を算出する(S304)。複素振幅を算出したら、得られた集光状態について判定を行う(S305)。 Subsequently, the operation of changing the phase value phi j of one pixel of the CGH (S303). Further, the complex amplitude U s = A s exp (iφ s ) indicating the condensing state of the laser light at the condensing point s is calculated using the equation (8) including the propagation function φ js ′ in which the aberration condition is considered. (S304). After the complex amplitude is calculated, the obtained condensing state is determined (S305).

ここでは、1画素の位相値φの切換えにより、振幅A、強度I=|A、または複素振幅Uが所望の値に近づいていれば、そのときの位相値を採用する。山登り法では、例えば、CGHの1画素毎の位相値を0.1π(rad)ずつ0π(rad)から所定の位相値まで、例えば2π(rad)まで切り換えて、切り換えたごとに式(8)を用いて、伝搬を行う。そして、集光点sの強度が最も増加する位相値を探索にて求める。 Here, if the amplitude A s , intensity I s = | A s | 2 , or complex amplitude U s approaches a desired value by switching the phase value φ j of one pixel, the phase value at that time is adopted. To do. In the hill-climbing method, for example, the phase value for each pixel of CGH is switched from 0π (rad) to a predetermined phase value by 0.1π (rad), for example, 2π (rad), and each time the switching is performed, equation (8) Propagation is performed using Then, the phase value at which the intensity of the condensing point s increases most is obtained by searching.

続いて、1画素の位相値φの切換えを全ての条件で確認したかどうかを判定し(S306)、行っていなければステップS303に戻る。さらに、1画素の位相値の変更、及び集光状態の判定等の操作を全ての画素で行ったかどうかを判定し(S307)、行っていなければ画素番号をj=j+1としてステップS303に戻り、次の画素について必要な操作を行う。 Subsequently, the switching of the phase values phi j of one pixel is determined whether the confirmed under all conditions (S306), if not go back to step S303. Further, it is determined whether or not an operation such as changing the phase value of one pixel and determining the condensing state has been performed on all pixels (S307). If not, the pixel number is set to j = j + 1 and the process returns to step S303. Necessary operations are performed on the next pixel.

全ての画素について必要な操作を終了していれば、CGHの設計において、所望の結果が得られているかどうかを判定する(S308)。この場合の判定方法としては、ORA法の場合と同様に、例えば、各集光点で得られた集光強度、振幅、複素振幅等の値が許容範囲内に収まっているかどうかによって判定する方法を用いることができる。あるいは、図10のフローチャートにおいて、位相値の変更、及び集光状態の判定等のループが規定の回数行われたかどうか、などの条件によって判定する方法を用いても良い。必要な条件を満たしている場合には、CGHの設計アルゴリズムを終了する。条件を満たしていない場合には、ステップS303に戻って1画素目から探索を繰り返す。   If necessary operations have been completed for all the pixels, it is determined whether or not a desired result has been obtained in the CGH design (S308). As a determination method in this case, as in the case of the ORA method, for example, a determination method is performed based on whether or not the values of the light collection intensity, amplitude, complex amplitude, and the like obtained at each light collection point are within an allowable range. Can be used. Alternatively, in the flowchart of FIG. 10, a method may be used in which a determination is made based on conditions such as whether or not a loop such as a change in phase value and determination of a focused state has been performed a prescribed number of times. If the necessary conditions are satisfied, the CGH design algorithm is terminated. If the condition is not satisfied, the process returns to step S303 and the search is repeated from the first pixel.

ここで、上述した変調パターンの設計方法の例では、いずれも照射対象物15を平行平面基板とした場合について説明したが、実際には、対象物15などの光の伝搬経路上の媒体が光軸に対して角度αの傾きを持つ場合も考えられる。この傾きαが大きい場合には、球面収差に加えて非点収差が発生する。そのような場合には、対物レンズのNA、焦点距離f、雰囲気媒質の屈折率n、照射対象物15の屈折率n、及びSLMに対するレーザ光の入射光強度分布Ij−inに加えて、対象物15の傾きαを求める。 Here, in the examples of the modulation pattern design method described above, the case where the irradiation target 15 is a parallel plane substrate has been described, but in reality, the medium on the light propagation path such as the target 15 is light. It is also conceivable to have an angle α with respect to the axis. When this inclination α is large, astigmatism occurs in addition to spherical aberration. In such a case, the objective lens NA, in addition to the focal length f, the refractive index n 1 of the ambient medium, the incident light intensity of the refractive index n 2, and the laser light with respect to SLM irradiation object 15 distribution I j-in Thus, the inclination α of the object 15 is obtained.

上記した設計例では、逆光線追跡を用いた解析手法で、2次元での収差条件の導出を行ったが、これは、球面収差が軸対称な収差のためである。これに対して、媒体の傾きαなどによって非点収差が発生して収差が軸対称ではなくなる等の場合には、それに対応した適切な方法で収差条件の導出を行い、得られた収差条件φOPDを用いてCGHの設計を行えば良い。 In the design example described above, the two-dimensional aberration condition is derived by an analysis method using reverse ray tracing, because spherical aberration is an axially symmetric aberration. On the other hand, when astigmatism occurs due to the inclination α of the medium and the aberration is not axially symmetric, the aberration condition is derived by an appropriate method corresponding to the aberration condition φ The CGH may be designed using OPD .

また、集光点として任意の位置にレーザ光を集光させるため、レーザ光ビームが光軸とは異なる位置に集光する場合も考えられる。ビームの回折角が小さい場合は問題ないが、大きい場合には、球面収差に加えて非点収差が発生する。このような場合には、ビームの傾きβを求め、上記と同様にそれに対応した適切な方法で収差条件の導出を行い、得られた収差条件φOPDを用いてCGHの設計を行えば良い。 Further, in order to condense the laser light at an arbitrary position as a condensing point, it may be considered that the laser light beam is condensed at a position different from the optical axis. There is no problem when the diffraction angle of the beam is small, but astigmatism occurs in addition to spherical aberration when it is large. In such a case, the beam inclination β is obtained, the aberration condition is derived by an appropriate method corresponding to the above, and the CGH is designed using the obtained aberration condition φ OPD .

各集光点sでのレーザ光の所望の集光強度Is−desについては、照射対象物15等での材質の光の透過率を考慮し、照射深さに応じて強度Is−desを調整、すなわち、照射深さzに応じて強度Is−desを変えて、CGHの設計を行っても良い。 About the desired condensing intensity I s-des of the laser light at each condensing point s, the light intensity of the material at the irradiation object 15 or the like is taken into consideration, and the intensity I s-des according to the irradiation depth. an adjustment, i.e., by changing the intensity I s-des in accordance with the irradiation depth z s, may be performed CGH design.

また、SLMは周期的な画素構造を有しているために、その複数の画素に表示するCGHが空間周波数によって回折した光の強度が異なる。したがって、このような回折強度を考慮し、照射位置(u,v)、照射深さzに応じて強度Is−desを変えて、CGHの設計を行っても良い。 In addition, since the SLM has a periodic pixel structure, the intensity of light diffracted by the spatial frequency of the CGH displayed on the plurality of pixels differs. Therefore, considering such a diffraction intensity, the irradiation position (u s, v s), by changing the intensity I s-des in accordance with the irradiation depth z s, may be performed CGH design.

また、上記のように強度Is−desの調整を行っても、なお強度にバラツキが生じる場合も考えられる。このような場合には、レーザ光の照射結果、例えば照射部位において発生した屈折率変化量などの加工結果を観察し、その観察結果を参照してフィードバックによって強度Is−desを変えて、CGHの設計を行っても良い。 Further, even when the intensity Is -des is adjusted as described above, there may be a case where the intensity still varies. In such a case, the laser beam irradiation result, for example, the processing result such as the amount of change in the refractive index generated at the irradiation site is observed, the intensity Is -des is changed by feedback with reference to the observation result, and the CGH May be designed.

また、レーザ光の集光照射によって、その集光点において照射対象物15の加工を行う場合、上記ではガラスの内部加工による光集積回路の作製を例示したが、レーザ加工を行う場合の加工対象物15の材質については、ガラス媒体に限らず、例えばシリコン内部やSiCなど様々な材質を加工対象とすることが可能である。   In addition, in the case where the irradiation object 15 is processed at the condensing point by the focused irradiation of the laser light, the above example illustrates the production of the optical integrated circuit by the internal processing of the glass, but the processing target in the case of performing the laser processing The material of the object 15 is not limited to the glass medium, and various materials such as silicon inside and SiC can be processed.

また、上記実施形態では、主に照射対象物15に対するレーザ光の集光照射による対象物15の内部のレーザ加工を想定して説明しているが、上記した光変調制御装置、及び変調パターンの設計方法を用いたレーザ光照射装置は、レーザ加工装置以外にも、例えば細胞観察用のレーザスキャニング顕微鏡等のレーザ顕微鏡など、様々な装置に適用することが可能である。   Further, in the above embodiment, the laser processing inside the object 15 mainly by the focused irradiation of the laser beam to the irradiation object 15 is described, but the above-described light modulation control device and the modulation pattern are described. The laser beam irradiation apparatus using the design method can be applied to various apparatuses such as a laser microscope such as a laser scanning microscope for cell observation, in addition to the laser processing apparatus.

図11は、本発明による光変調制御装置を含むレーザ光照射装置の他の実施形態の構成を示す図である。本実施形態によるレーザ光照射装置1Bは、レーザ光源10、可動ステージ18、空間光変調器20、駆動装置28、及び光変調制御装置30を含む図1に示した構成と同様の構成を有しているが、それらに加えて、検出部40と、レンズ41と、ダイクロイックミラー42とをさらに備えている。   FIG. 11 is a diagram showing a configuration of another embodiment of a laser beam irradiation apparatus including a light modulation control apparatus according to the present invention. The laser beam irradiation apparatus 1B according to the present embodiment has the same configuration as that shown in FIG. 1 including the laser light source 10, the movable stage 18, the spatial light modulator 20, the drive device 28, and the light modulation control device 30. However, in addition to these, a detection unit 40, a lens 41, and a dichroic mirror 42 are further provided.

ダイクロイックミラー42は、レーザ光照射光学系において、4f光学系を構成しているレンズ22と、対物レンズ25との間に設けられている。また、ダイクロイックミラー42で反射された照射対象物15からの光は、レンズ41を介して検出部40に入射する構成となっている。   The dichroic mirror 42 is provided between the lens 22 constituting the 4f optical system and the objective lens 25 in the laser light irradiation optical system. The light from the irradiation target 15 reflected by the dichroic mirror 42 is configured to enter the detection unit 40 via the lens 41.

これにより、図11のレーザ光照射装置1Bは、照射対象物である観察試料15にレーザ光を照射し、検出部40によって試料15からの反射光、散乱光、あるいは蛍光等の観察を行うレーザスキャニング顕微鏡として構成されている。なお、試料15に対するレーザスキャンについては、図11では可動ステージ18によって試料15を移動させる構成としているが、光学系側に可動機構、ガルバノミラー等を設ける構成としても良い。   As a result, the laser beam irradiation apparatus 1B in FIG. 11 irradiates the observation sample 15 that is the irradiation target with the laser beam, and the detection unit 40 observes the reflected light, scattered light, or fluorescence from the sample 15. It is configured as a scanning microscope. As for the laser scan on the sample 15, in FIG. 11, the sample 15 is moved by the movable stage 18, but a movable mechanism, a galvanometer mirror, or the like may be provided on the optical system side.

図12は、図11に示したレーザ光照射装置1Bにおける照射対象物(観察試料)15へのレーザ光の集光照射の一例について示す図である。例えば、細胞を試料15とする細胞観察等においては、図12に示すように、観察位置によって細胞の形状が異なることも考えられる。このような場合には、それぞれの形状に応じた収差条件の位相φOPDを求める必要がある。 FIG. 12 is a diagram illustrating an example of focused irradiation of laser light onto the irradiation target (observation sample) 15 in the laser light irradiation apparatus 1B illustrated in FIG. For example, in cell observation using a cell as the sample 15, as shown in FIG. 12, the shape of the cell may differ depending on the observation position. In such a case, it is necessary to obtain the phase φ OPD of the aberration condition corresponding to each shape.

また、レーザスキャニング顕微鏡においては、レーザ光の収束過程だけでなく、観察時には発散過程でも屈折率ミスマッチングが発生する。この場合、発散過程を考慮して収差条件φOPDを導出してCGHの設計を行い、さらに別のSLMを用いて反射光、散乱光、蛍光等の補正を行うことも考えられる。これにより、例えばコンフォーカル顕微鏡などにおいて、試料観察の精度の向上が期待できる。 Further, in a laser scanning microscope, refractive index mismatching occurs not only during the convergence process of laser light but also during the divergence process during observation. In this case, it is conceivable that the CGH is designed by deriving the aberration condition φ OPD in consideration of the divergence process, and correction of reflected light, scattered light, fluorescence, etc. is performed using another SLM. Thereby, for example, in a confocal microscope, an improvement in the accuracy of sample observation can be expected.

また、上記実施形態では、単一波長のレーザ光の位相変調についての実施形態を説明しているが、SLMに波長の異なる複数の光源からの複数のレーザ光成分を入射させ、SLMに波長の異なる複数の光成分を変調させる変調パターンを表示して、それぞれの位相を変調させてもよい。波長の異なる複数の光成分を同時に変調する変調パターンの設計方法については、例えば非特許文献8に記載がある。   Moreover, although the said embodiment demonstrated embodiment about the phase modulation of a single wavelength laser beam, the several laser beam component from the several light source from which a wavelength differs is made to inject into SLM, and wavelength of SLM is made into SLM. A modulation pattern for modulating a plurality of different light components may be displayed to modulate each phase. For example, Non-Patent Document 8 describes a modulation pattern design method for simultaneously modulating a plurality of light components having different wavelengths.

上記実施形態の構成を用いて、複数波長の制御をする場合について具体的に説明する。集光条件情報を取得する際に、点sの集光位置と集光させる波長の情報とを取得する。そして、点sごとに収差条件φOPDを求め、波長と位置によって異なる伝搬関数φjsを、φjs’に変換して用いればよい。 A case where a plurality of wavelengths are controlled using the configuration of the above embodiment will be specifically described. When acquiring the condensing condition information, the condensing position of the point s and the information on the wavelength to be condensed are acquired. Then, the aberration condition φ OPD is obtained for each point s, and the propagation function φ js that varies depending on the wavelength and position is converted into φ js ′ and used.

本発明による光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置は、上記実施形態及び構成例に限られるものではなく、様々な変形が可能である。例えば、レーザ光源、及び空間光変調器を含む光学系の構成については、図1、図11に示した構成例に限らず、具体的には様々な構成を用いて良い。   The light modulation control method, the control program, the control device, and the laser light irradiation device according to the present invention are not limited to the above-described embodiments and configuration examples, and various modifications are possible. For example, the configuration of the optical system including the laser light source and the spatial light modulator is not limited to the configuration examples shown in FIGS. 1 and 11, and various configurations may be used specifically.

また、空間光変調器に呈示する変調パターン(CGH)の設計についても、具体的には上記した例以外にも様々な方法を用いて良い。一般には、変調パターンの設計において、変調パターンの1画素での位相値の変更が集光点におけるレーザ光の集光状態に与える影響に着目して、その集光状態が所望の状態に近づくように位相値を変更し、そのような位相値の変更操作を変調パターンの全ての画素について行うことで変調パターンを設計するとともに、集光点での集光状態を評価する際に、空間光変調器の変調パターンでの画素jから集光点sへの光の伝搬について、自由伝搬の波動伝搬関数φjsに収差条件を加えて変換した伝搬関数φjs’を用いていれば良い。 In addition, regarding the design of the modulation pattern (CGH) presented to the spatial light modulator, specifically, various methods other than the above-described examples may be used. In general, in designing a modulation pattern, paying attention to the influence of the change of the phase value at one pixel of the modulation pattern on the condensing state of the laser light at the condensing point, the condensing state approaches the desired state. When designing the modulation pattern by changing the phase value to all the pixels of the modulation pattern and performing the phase value change operation, and evaluating the light collection state at the condensing point, spatial light modulation For the propagation of light from the pixel j to the condensing point s in the modulator modulation pattern, a propagation function φ js ′ converted by adding an aberration condition to the wave propagation function φ js of free propagation may be used.

本発明は、集光点におけるレーザ光の集光状態を好適に制御することが可能な光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置として利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as a light modulation control method, a control program, a control device, and a laser light irradiation device that can suitably control the condensing state of laser light at a condensing point.

1A、1B…レーザ光照射装置、10…レーザ光源、11…ビームエキスパンダ、12…反射ミラー、13…反射ミラー、15…照射対象物、18…可動ステージ、20…空間光変調器、21…4f光学系レンズ、22…4f光学系レンズ、25…対物レンズ、28…光変調器駆動装置、40…検出部、41…レンズ、42…ダイクロイックミラー、
30…光変調制御装置、31…照射条件取得部、32…集光条件設定部、33…収差条件導出部、34…変調パターン設計部、35…光変調器駆動制御部、37…入力装置、38…表示装置。
DESCRIPTION OF SYMBOLS 1A, 1B ... Laser beam irradiation apparatus, 10 ... Laser light source, 11 ... Beam expander, 12 ... Reflection mirror, 13 ... Reflection mirror, 15 ... Irradiation target, 18 ... Movable stage, 20 ... Spatial light modulator, 21 ... 4f optical system lens, 22 ... 4f optical system lens, 25 ... objective lens, 28 ... light modulator driving device, 40 ... detection unit, 41 ... lens, 42 ... dichroic mirror,
DESCRIPTION OF SYMBOLS 30 ... Light modulation control apparatus, 31 ... Irradiation condition acquisition part, 32 ... Condensing condition setting part, 33 ... Aberration condition derivation part, 34 ... Modulation pattern design part, 35 ... Light modulator drive control part, 37 ... Input device, 38. Display device.

Claims (17)

レーザ光を入力し、前記レーザ光の位相を変調して、位相変調後のレーザ光を出力する位相変調型の空間光変調器を用い、前記空間光変調器に呈示する変調パターンによって、設定された集光点への前記レーザ光の集光照射を制御する光変調制御方法であって、
前記レーザ光の照射条件として、前記空間光変調器への前記レーザ光の入射パターン、前記空間光変調器から前記集光点への前記レーザ光の伝搬経路上にある第1伝搬媒質の第1屈折率n、及び前記第1伝搬媒質よりも前記集光点側にある第2伝搬媒質の前記第1屈折率とは異なる第2屈折率nを取得する照射条件取得ステップと、
前記レーザ光の集光条件として、前記空間光変調器からの前記レーザ光を集光照射する前記集光点の個数s(s以上の整数)、及びs個の集光点sのそれぞれについての集光位置、集光強度を設定する集光条件設定ステップと、
前記空間光変調器から前記集光点sへの前記レーザ光の伝搬において、互いに屈折率が異なる前記第1伝搬媒質、及び前記第2伝搬媒質によって生じる収差条件を導出する収差条件導出ステップと、
前記収差条件導出ステップで導出された前記収差条件を考慮して、前記空間光変調器に呈示する前記変調パターンを設計する変調パターン設計ステップと
を備え、
前記変調パターン設計ステップは、前記空間光変調器において2次元配列された複数の画素を想定し、前記複数の画素に呈示する前記変調パターンの1画素での位相値の変更が前記集光点における前記レーザ光の集光状態に与える影響に着目して、その集光状態が所望の状態に近づくように前記位相値を変更し、そのような位相値の変更操作を前記変調パターンの全ての画素について行うことで前記変調パターンを設計するとともに、
前記集光点での前記集光状態を評価する際に、前記空間光変調器の前記変調パターンにおける画素jから前記集光点sへの光の伝搬について、伝搬媒質が均質な状態の自由伝搬の波動伝搬関数φjsに前記収差条件を加えて変換した伝搬関数φjs’を用い
前記収差条件導出ステップは、前記画素jから前記集光点sへの光の伝搬についての前記収差条件として、その伝搬での光路長差を与える位相Φ j−OPD を求め、
前記変調パターン設計ステップは、変換式
φ js ’=φ js +Φ j−OPD
によって、前記収差条件が考慮された前記伝搬関数φ js ’を求めることを特徴とする光変調制御方法。
A phase modulation type spatial light modulator that inputs laser light, modulates the phase of the laser light, and outputs the laser light after phase modulation is set by the modulation pattern presented to the spatial light modulator. A light modulation control method for controlling the focused irradiation of the laser beam to a focused point,
As the irradiation condition of the laser light, the incident pattern of the laser light to the spatial light modulator, the first propagation medium on the propagation path of the laser light from the spatial light modulator to the condensing point an irradiation condition acquiring step of acquiring a different second refractive index n 2 than the first refractive index of the second propagation medium in the focal point side than the refractive index n 1, and the first propagation medium,
As the condensing condition of the laser light, the number s t (s t is an integer of 2 or more) of the condensing points for condensing and irradiating the laser light from the spatial light modulator, and s t condensing points. a light collection condition setting step for setting a light collection position and a light collection intensity for each of s;
An aberration condition deriving step for deriving an aberration condition caused by the first propagation medium and the second propagation medium having different refractive indexes in the propagation of the laser light from the spatial light modulator to the condensing point s;
A modulation pattern design step for designing the modulation pattern to be presented to the spatial light modulator in consideration of the aberration condition derived in the aberration condition derivation step;
The modulation pattern design step assumes a plurality of pixels that are two-dimensionally arranged in the spatial light modulator, and a change in phase value at one pixel of the modulation pattern presented to the plurality of pixels is performed at the condensing point. Focusing on the influence of the laser beam on the condensing state, the phase value is changed so that the condensing state approaches a desired state, and such a change operation of the phase value is performed on all the pixels of the modulation pattern. Designing the modulation pattern by performing
When evaluating the condensing state at the condensing point, free propagation in a state where the propagation medium is homogeneous with respect to the light propagation from the pixel j to the condensing point s in the modulation pattern of the spatial light modulator. using the wave propagation function phi js was converted by the addition of the aberration condition transfer function phi js',
The aberration condition deriving step obtains a phase Φ j-OPD that gives an optical path length difference in the propagation as the aberration condition for the light propagation from the pixel j to the condensing point s ,
The modulation pattern design step includes a conversion formula
φ js ' = φ js + Φ j-OPD
Accordingly, the light modulation control method comprising Rukoto determined the propagation function phi js' that the aberration condition is considered.
前記変調パターン設計ステップは、前記空間光変調器の前記画素jへの前記レーザ光の入射振幅をAj−in、位相をφj−in、前記画素jでの位相値をφとして、下記式
=Aexp(iφ
=Σj−inexp(iφjs’)exp(i(φ+φj−in))
によって、前記集光点sにおける前記集光状態を示す複素振幅Uを求めることを特徴とする請求項1記載の光変調制御方法。
In the modulation pattern design step, the incident amplitude of the laser beam to the pixel j of the spatial light modulator is A j-in , the phase is φ j-in , and the phase value at the pixel j is φ j , Expression U s = A s exp (iφ s )
= Σ j A j-in exp (iφ js ') exp (i (φ j + φ j-in ))
Accordingly, the light modulation control method according to claim 1 Symbol placement and obtaining the complex amplitude U s indicating the condensing state at the condensing point s.
前記変調パターン設計ステップは、前記変調パターンの前記画素jでの前記位相値の変更において、前記集光点sにおける前記集光状態を示す複素振幅の位相φ、前記収差条件が考慮された前記伝搬関数φjs’、及び前記画素jでの変更前の位相値φに基づいて解析的に求められた値によって、前記位相値を変更することを特徴とする請求項1または2記載の光変調制御方法。 In the modulation pattern design step, in the change of the phase value at the pixel j of the modulation pattern, the phase φ s of complex amplitude indicating the condensing state at the condensing point s and the aberration condition are considered. 3. The light according to claim 1, wherein the phase value is changed according to a value obtained analytically based on a propagation function φ js ′ and a phase value φ j before the change at the pixel j. Modulation control method. 前記変調パターン設計ステップは、前記変調パターンの前記画素jでの前記位相値の変更において、山登り法、焼きなまし法、または遺伝的アルゴリズムのいずれかの方法を用いて探索で求められた値によって、前記位相値を変更することを特徴とする請求項1または2記載の光変調制御方法。 In the modulation pattern design step, in the change of the phase value at the pixel j of the modulation pattern, the value obtained by the search using any one of a hill-climbing method, an annealing method, or a genetic algorithm is used. 3. The light modulation control method according to claim 1, wherein the phase value is changed. 前記第2伝搬媒質は、前記集光点が内部に設定される照射対象物であり、前記第1伝搬媒質は、前記空間光変調器と前記照射対象物との間にある雰囲気媒質であることを特徴とする請求項1〜のいずれか一項記載の光変調制御方法。 The second propagation medium is an irradiation object in which the condensing point is set inside, and the first propagation medium is an atmospheric medium between the spatial light modulator and the irradiation object. light modulation control method of any one of claims 1-4, characterized in. レーザ光を入力し、前記レーザ光の位相を変調して、位相変調後のレーザ光を出力する位相変調型の空間光変調器を用い、前記空間光変調器に呈示する変調パターンによって、設定された集光点への前記レーザ光の集光照射を制御する光変調制御をコンピュータに実行させるためのプログラムであって、
前記レーザ光の照射条件として、前記空間光変調器への前記レーザ光の入射パターン、前記空間光変調器から前記集光点への前記レーザ光の伝搬経路上にある第1伝搬媒質の第1屈折率n、及び前記第1伝搬媒質よりも前記集光点側にある第2伝搬媒質の前記第1屈折率とは異なる第2屈折率nを取得する照射条件取得処理と、
前記レーザ光の集光条件として、前記空間光変調器からの前記レーザ光を集光照射する前記集光点の個数s(s以上の整数)、及びs個の集光点sのそれぞれについての集光位置、集光強度を設定する集光条件設定処理と、
前記空間光変調器から前記集光点sへの前記レーザ光の伝搬において、互いに屈折率が異なる前記第1伝搬媒質、及び前記第2伝搬媒質によって生じる収差条件を導出する収差条件導出処理と、
前記収差条件導出処理で導出された前記収差条件を考慮して、前記空間光変調器に呈示する前記変調パターンを設計する変調パターン設計処理と
をコンピュータに実行させ、
前記変調パターン設計処理は、前記空間光変調器において2次元配列された複数の画素を想定し、前記複数の画素に呈示する前記変調パターンの1画素での位相値の変更が前記集光点における前記レーザ光の集光状態に与える影響に着目して、その集光状態が所望の状態に近づくように前記位相値を変更し、そのような位相値の変更操作を前記変調パターンの全ての画素について行うことで前記変調パターンを設計するとともに、
前記集光点での前記集光状態を評価する際に、前記空間光変調器の前記変調パターンにおける画素jから前記集光点sへの光の伝搬について、伝搬媒質が均質な状態の自由伝搬の波動伝搬関数φjsに前記収差条件を加えて変換した伝搬関数φjs’を用い
前記収差条件導出処理は、前記画素jから前記集光点sへの光の伝搬についての前記収差条件として、その伝搬での光路長差を与える位相Φ j−OPD を求め、
前記変調パターン設計処理は、変換式
φ js ’=φ js +Φ j−OPD
によって、前記収差条件が考慮された前記伝搬関数φ js ’を求めることを特徴とする光変調制御プログラム。
A phase modulation type spatial light modulator that inputs laser light, modulates the phase of the laser light, and outputs the laser light after phase modulation is set by the modulation pattern presented to the spatial light modulator. A program for causing a computer to execute light modulation control for controlling the focused irradiation of the laser beam to the focused point,
As the irradiation condition of the laser light, the incident pattern of the laser light to the spatial light modulator, the first propagation medium on the propagation path of the laser light from the spatial light modulator to the condensing point and irradiation conditions and acquires a different second refractive index n 2 than the first refractive index of the second propagation medium in the focal point side than the refractive index n 1, and the first propagation medium,
As the condensing condition of the laser light, the number s t (s t is an integer of 2 or more) of the condensing points for condensing and irradiating the laser light from the spatial light modulator, and s t condensing points. a condensing condition setting process for setting a condensing position and a condensing intensity for each of s;
An aberration condition deriving process for deriving an aberration condition caused by the first propagation medium and the second propagation medium having different refractive indexes in the propagation of the laser light from the spatial light modulator to the condensing point s;
Considering the aberration condition derived in the aberration condition derivation process, causing the computer to execute a modulation pattern design process for designing the modulation pattern to be presented to the spatial light modulator,
The modulation pattern design process assumes a plurality of pixels that are two-dimensionally arrayed in the spatial light modulator, and a change in phase value at one pixel of the modulation pattern presented to the plurality of pixels is performed at the condensing point. Focusing on the influence of the laser beam on the condensing state, the phase value is changed so that the condensing state approaches a desired state, and such a change operation of the phase value is performed on all the pixels of the modulation pattern. Designing the modulation pattern by performing
When evaluating the condensing state at the condensing point, free propagation in a state where the propagation medium is homogeneous with respect to the light propagation from the pixel j to the condensing point s in the modulation pattern of the spatial light modulator. using the wave propagation function phi js was converted by the addition of the aberration condition transfer function phi js',
The aberration condition derivation process obtains a phase Φ j-OPD that gives an optical path length difference in the propagation as the aberration condition for the propagation of light from the pixel j to the condensing point s ,
The modulation pattern design process is a conversion formula
φ js ' = φ js + Φ j-OPD
Accordingly, the light modulation control program characterized Rukoto determined the aberration condition is considered the propagation function phi js'.
前記変調パターン設計処理は、前記空間光変調器の前記画素jへの前記レーザ光の入射振幅をAj−in、位相をφj−in、前記画素jでの位相値をφとして、下記式
=Aexp(iφ
=Σj−inexp(iφjs’)exp(i(φ+φj−in))
によって、前記集光点sにおける前記集光状態を示す複素振幅Uを求めることを特徴とする請求項記載の光変調制御プログラム。
In the modulation pattern design process, the incident amplitude of the laser beam to the pixel j of the spatial light modulator is A j-in , the phase is φ j-in , and the phase value at the pixel j is φ j . Expression U s = A s exp (iφ s )
= Σ j A j-in exp (iφ js ') exp (i (φ j + φ j-in ))
The light modulation control program according to claim 6 , wherein a complex amplitude U s indicating the condensing state at the condensing point s is obtained by:
前記変調パターン設計処理は、前記変調パターンの前記画素jでの前記位相値の変更において、前記集光点sにおける前記集光状態を示す複素振幅の位相φ、前記収差条件が考慮された前記伝搬関数φjs’、及び前記画素jでの変更前の位相値φに基づいて解析的に求められた値によって、前記位相値を変更することを特徴とする請求項6または7記載の光変調制御プログラム。 In the modulation pattern design process, in the change of the phase value at the pixel j of the modulation pattern, the phase φ s of complex amplitude indicating the condensing state at the condensing point s and the aberration condition are considered. 8. The light according to claim 6 , wherein the phase value is changed according to a value obtained analytically based on a propagation function φ js ′ and a phase value φ j before the change at the pixel j. Modulation control program. 前記変調パターン設計処理は、前記変調パターンの前記画素jでの前記位相値の変更において、山登り法、焼きなまし法、または遺伝的アルゴリズムのいずれかの方法を用いて探索で求められた値によって、前記位相値を変更することを特徴とする請求項6または7記載の光変調制御プログラム。 In the modulation pattern design process, in the change of the phase value at the pixel j of the modulation pattern, the value obtained by the search using any one of the hill-climbing method, the annealing method, or the genetic algorithm is used. 8. The optical modulation control program according to claim 6, wherein the phase value is changed. 前記第2伝搬媒質は、前記集光点が内部に設定される照射対象物であり、前記第1伝搬媒質は、前記空間光変調器と前記照射対象物との間にある雰囲気媒質であることを特徴とする請求項6〜9のいずれか一項記載の光変調制御プログラム。 The second propagation medium is an irradiation object in which the condensing point is set inside, and the first propagation medium is an atmospheric medium between the spatial light modulator and the irradiation object. An optical modulation control program according to any one of claims 6 to 9 . レーザ光を入力し、前記レーザ光の位相を変調して、位相変調後のレーザ光を出力する位相変調型の空間光変調器を用い、前記空間光変調器に呈示する変調パターンによって、設定された集光点への前記レーザ光の集光照射を制御する光変調制御装置であって、
前記レーザ光の照射条件として、前記空間光変調器への前記レーザ光の入射パターン、前記空間光変調器から前記集光点への前記レーザ光の伝搬経路上にある第1伝搬媒質の第1屈折率n、及び前記第1伝搬媒質よりも前記集光点側にある第2伝搬媒質の前記第1屈折率とは異なる第2屈折率nを取得する照射条件取得手段と、
前記レーザ光の集光条件として、前記空間光変調器からの前記レーザ光を集光照射する前記集光点の個数s(s以上の整数)、及びs個の集光点sのそれぞれについての集光位置、集光強度を設定する集光条件設定手段と、
前記空間光変調器から前記集光点sへの前記レーザ光の伝搬において、互いに屈折率が異なる前記第1伝搬媒質、及び前記第2伝搬媒質によって生じる収差条件を導出する収差条件導出手段と、
前記収差条件導出手段で導出された前記収差条件を考慮して、前記空間光変調器に呈示する前記変調パターンを設計する変調パターン設計手段と
を備え、
前記変調パターン設計手段は、前記空間光変調器において2次元配列された複数の画素を想定し、前記複数の画素に呈示する前記変調パターンの1画素での位相値の変更が前記集光点における前記レーザ光の集光状態に与える影響に着目して、その集光状態が所望の状態に近づくように前記位相値を変更し、そのような位相値の変更操作を前記変調パターンの全ての画素について行うことで前記変調パターンを設計するとともに、
前記集光点での前記集光状態を評価する際に、前記空間光変調器の前記変調パターンにおける画素jから前記集光点sへの光の伝搬について、伝搬媒質が均質な状態の自由伝搬の波動伝搬関数φjsに前記収差条件を加えて変換した伝搬関数φjs’を用い
前記収差条件導出手段は、前記画素jから前記集光点sへの光の伝搬についての前記収差条件として、その伝搬での光路長差を与える位相Φ j−OPD を求め、
前記変調パターン設計手段は、変換式
φ js ’=φ js +Φ j−OPD
によって、前記収差条件が考慮された前記伝搬関数φ js ’を求めることを特徴とする光変調制御装置。
A phase modulation type spatial light modulator that inputs laser light, modulates the phase of the laser light, and outputs the laser light after phase modulation is set by the modulation pattern presented to the spatial light modulator. A light modulation control device for controlling the focused irradiation of the laser beam to the focused point,
As the irradiation condition of the laser light, the incident pattern of the laser light to the spatial light modulator, the first propagation medium on the propagation path of the laser light from the spatial light modulator to the condensing point an irradiation condition acquiring means for acquiring a different second refractive index n 2 than the first refractive index of the second propagation medium in the focal point side than the refractive index n 1, and the first propagation medium,
As the condensing condition of the laser light, the number s t (s t is an integer of 2 or more) of the condensing points for condensing and irradiating the laser light from the spatial light modulator, and s t condensing points. a condensing condition setting means for setting a condensing position and a condensing intensity for each of s;
An aberration condition deriving unit for deriving an aberration condition caused by the first propagation medium and the second propagation medium having different refractive indexes in the propagation of the laser light from the spatial light modulator to the condensing point s;
Considering the aberration condition derived by the aberration condition deriving means, the modulation pattern design means for designing the modulation pattern to be presented to the spatial light modulator,
The modulation pattern design means assumes a plurality of pixels arranged in a two-dimensional manner in the spatial light modulator, and a change in phase value at one pixel of the modulation pattern presented to the plurality of pixels is performed at the condensing point. Focusing on the influence of the laser beam on the condensing state, the phase value is changed so that the condensing state approaches a desired state, and such a change operation of the phase value is performed on all the pixels of the modulation pattern. Designing the modulation pattern by performing
When evaluating the condensing state at the condensing point, free propagation in a state where the propagation medium is homogeneous with respect to the light propagation from the pixel j to the condensing point s in the modulation pattern of the spatial light modulator. using the wave propagation function phi js was converted by the addition of the aberration condition transfer function phi js',
The aberration condition deriving unit obtains a phase Φ j-OPD that gives an optical path length difference in the propagation as the aberration condition for the light propagation from the pixel j to the condensing point s ,
The modulation pattern design means is a conversion formula
φ js ' = φ js + Φ j-OPD
Accordingly, the light modulation control device according to claim Rukoto determined the aberration condition is considered the propagation function phi js'.
前記変調パターン設計手段は、前記空間光変調器の前記画素jへの前記レーザ光の入射振幅をAj−in、位相をφj−in、前記画素jでの位相値をφとして、下記式
=Aexp(iφ
=Σj−inexp(iφjs’)exp(i(φ+φj−in))
によって、前記集光点sにおける前記集光状態を示す複素振幅Uを求めることを特徴とする請求項11記載の光変調制御装置。
The modulation pattern design unit is configured such that the incident amplitude of the laser beam to the pixel j of the spatial light modulator is A j-in , the phase is φ j-in , and the phase value at the pixel j is φ j . Expression U s = A s exp (iφ s )
= Σ j A j-in exp (iφ js ') exp (i (φ j + φ j-in ))
The light modulation control device according to claim 11 , wherein a complex amplitude U s indicating the light condensing state at the light condensing point s is obtained by:
前記変調パターン設計手段は、前記変調パターンの前記画素jでの前記位相値の変更において、前記集光点sにおける前記集光状態を示す複素振幅の位相φ、前記収差条件が考慮された前記伝搬関数φjs’、及び前記画素jでの変更前の位相値φに基づいて解析的に求められた値によって、前記位相値を変更することを特徴とする請求項11または12記載の光変調制御装置。 The modulation pattern design means takes into account the phase φ s of the complex amplitude indicating the condensing state at the condensing point s and the aberration condition in changing the phase value at the pixel j of the modulation pattern. 13. The light according to claim 11 , wherein the phase value is changed according to a value obtained analytically based on a propagation function φ js ′ and a phase value φ j before the change at the pixel j. Modulation control device. 前記変調パターン設計手段は、前記変調パターンの前記画素jでの前記位相値の変更において、山登り法、焼きなまし法、または遺伝的アルゴリズムのいずれかの方法を用いて探索で求められた値によって、前記位相値を変更することを特徴とする請求項11または12記載の光変調制御装置。 In the change of the phase value at the pixel j of the modulation pattern, the modulation pattern design unit is configured to perform the search according to a value obtained by searching using any one of a hill-climbing method, an annealing method, or a genetic algorithm. 13. The light modulation control apparatus according to claim 11, wherein the phase value is changed. 前記第2伝搬媒質は、前記集光点が内部に設定される照射対象物であり、前記第1伝搬媒質は、前記空間光変調器と前記照射対象物との間にある雰囲気媒質であることを特徴とする請求項11〜14のいずれか一項記載の光変調制御装置。 The second propagation medium is an irradiation object in which the condensing point is set inside, and the first propagation medium is an atmospheric medium between the spatial light modulator and the irradiation object. The light modulation control device according to claim 11 , wherein: 前記空間光変調器を駆動制御して、前記変調パターン設計手段によって設計された前記変調パターンを前記空間光変調器に呈示する光変調器駆動制御手段を備えることを特徴とする請求項11〜15のいずれか一項記載の光変調制御装置。 And driving and controlling the spatial light modulator according to claim, characterized in that it comprises a light modulator drive control means for presenting said modulated pattern designed to said spatial light modulator by said modulation pattern designing means 11-15 The light modulation control device according to claim 1. レーザ光を供給するレーザ光源と、
前記レーザ光を入力し、前記レーザ光の位相を変調して、位相変調後のレーザ光を出力する位相変調型の空間光変調器と、
前記空間光変調器に呈示する変調パターンによって、設定された集光点への前記レーザ光の集光照射を制御する請求項11〜16のいずれか一項記載の光変調制御装置と
を備えることを特徴とするレーザ光照射装置。
A laser light source for supplying laser light;
A phase modulation type spatial light modulator that inputs the laser beam, modulates the phase of the laser beam, and outputs the phase-modulated laser beam;
By the modulation pattern to be presented to the spatial light modulator, comprise an optical modulator control device of any one of claims 11 to 16 for controlling the condensing irradiation of the laser light to set the focal point The laser beam irradiation apparatus characterized by this.
JP2011096268A 2011-04-22 2011-04-22 Light modulation control method, control program, control device, and laser light irradiation device Active JP5749553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096268A JP5749553B2 (en) 2011-04-22 2011-04-22 Light modulation control method, control program, control device, and laser light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096268A JP5749553B2 (en) 2011-04-22 2011-04-22 Light modulation control method, control program, control device, and laser light irradiation device

Publications (2)

Publication Number Publication Date
JP2012226268A JP2012226268A (en) 2012-11-15
JP5749553B2 true JP5749553B2 (en) 2015-07-15

Family

ID=47276468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096268A Active JP5749553B2 (en) 2011-04-22 2011-04-22 Light modulation control method, control program, control device, and laser light irradiation device

Country Status (1)

Country Link
JP (1) JP5749553B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802110B2 (en) * 2011-10-26 2015-10-28 浜松ホトニクス株式会社 Light modulation control method, control program, control device, and laser light irradiation device
JP5802109B2 (en) * 2011-10-26 2015-10-28 浜松ホトニクス株式会社 Light modulation control method, control program, control device, and laser light irradiation device
CN104620163B (en) 2012-09-13 2018-03-27 浜松光子学株式会社 Light modulation control method, control program, control device and laser irradiation device
WO2014097467A1 (en) * 2012-12-21 2014-06-26 株式会社日立製作所 Optical recording device, optical recording method, and information recording medium
JP2016024444A (en) * 2014-07-24 2016-02-08 日本電信電話株式会社 Pixel voltage creation method and optical signal processing device
JP6539052B2 (en) 2015-01-20 2019-07-03 浜松ホトニクス株式会社 Image acquisition apparatus and image acquisition method
JP6300739B2 (en) 2015-01-20 2018-03-28 浜松ホトニクス株式会社 Image acquisition apparatus and image acquisition method
GB2593500B (en) * 2020-03-25 2022-05-18 Dualitas Ltd Projection
CN113534503B (en) * 2021-04-27 2023-05-12 西安交通大学 Wavefront shaping method based on light intensity dependence

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990534B2 (en) * 2000-01-19 2007-10-17 浜松ホトニクス株式会社 Laser processing equipment
US8324529B2 (en) * 2007-11-14 2012-12-04 Hamamatsu Photonics K.K. Laser machining device with a converged laser beam and laser machining method
JP5692969B2 (en) * 2008-09-01 2015-04-01 浜松ホトニクス株式会社 Aberration correction method, laser processing method using this aberration correction method, laser irradiation method using this aberration correction method, aberration correction apparatus, and aberration correction program

Also Published As

Publication number Publication date
JP2012226268A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2014041660A1 (en) Optical modulation control method, control program, control device, and laser light irradiation device
JP5749553B2 (en) Light modulation control method, control program, control device, and laser light irradiation device
JP5802109B2 (en) Light modulation control method, control program, control device, and laser light irradiation device
JP5802110B2 (en) Light modulation control method, control program, control device, and laser light irradiation device
JP4104599B2 (en) Optical accelerator and general-purpose optical spiral
US9740166B2 (en) Fluorescence receiving apparatus and fluorescence receiving method
JP5980471B2 (en) Aberration correction method, microscope observation method using this aberration correction method, laser irradiation method using this aberration correction method, aberration correction apparatus, and aberration correction program
JP6302403B2 (en) Beam shaping device
JP2014026083A (en) Light modulation method, light modulation program, light modulation device, and light irradiation device
JP5368033B2 (en) Laser light irradiation apparatus and laser light irradiation method
Mikhaylov et al. High accuracy beam splitting using spatial light modulator combined with machine learning algorithms
WO2013153371A1 (en) Laser focusing method and apparatus with control system for correction of the optical aberration
Hering et al. Automated aberration correction of arbitrary laser modes in high numerical aperture systems
GB2581172A (en) Laser machining inside materials
CN111580271B (en) Self-adaptive aberration correction method and light sheet microscopic imaging device based on same
Houzet et al. Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing
TWI606880B (en) Optical modulation control method, control program, control device, and laser light irradiation device
CN114556182A (en) Method and device for aberration correction in fluorescence microscopy
US20230168487A1 (en) Multi-ring mask, light irradiation device, optical microscope, and photoacoustic microscope
Ren Aberration-Free 3-D Scanning Based on Digital Holography for Advanced Imaging and Nanofabrication Applications
JP6030180B2 (en) Aberration correction method, microscope observation method using this aberration correction method, laser irradiation method using this aberration correction method, aberration correction apparatus, and aberration correction program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250