JP5749068B2 - Manufacturing method of optical waveguide having optical path conversion function - Google Patents

Manufacturing method of optical waveguide having optical path conversion function Download PDF

Info

Publication number
JP5749068B2
JP5749068B2 JP2011104851A JP2011104851A JP5749068B2 JP 5749068 B2 JP5749068 B2 JP 5749068B2 JP 2011104851 A JP2011104851 A JP 2011104851A JP 2011104851 A JP2011104851 A JP 2011104851A JP 5749068 B2 JP5749068 B2 JP 5749068B2
Authority
JP
Japan
Prior art keywords
photosensitive resin
optical waveguide
optical path
positive photosensitive
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011104851A
Other languages
Japanese (ja)
Other versions
JP2012237778A (en
Inventor
斎藤 誠一
誠一 斎藤
佳寛 石川
佳寛 石川
智幸 岩島
智幸 岩島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2011104851A priority Critical patent/JP5749068B2/en
Publication of JP2012237778A publication Critical patent/JP2012237778A/en
Application granted granted Critical
Publication of JP5749068B2 publication Critical patent/JP5749068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

本発明は、光通信、光情報処理等で用いられる光路変換機能を有する光導波路の製造方法に関する。   The present invention relates to a method for manufacturing an optical waveguide having an optical path conversion function used in optical communication, optical information processing, and the like.

光導波路は、光導波路デバイス、光集積回路、光配線基板等の光デバイスに組み込まれ、光通信、光情報処理等の分野で広く用いられており、光硬化性樹脂やポジ型感光性樹脂等の高分子樹脂材料を使用したポリマー光導波路の開発も盛んに行われている。
これは、高分子材料が、スピンコート法やディップ法等により薄膜形成が容易であり、大面積の光学部品の作製が容易であること、成膜に際して高温での熱処理工程が不要であり、半導体基板やプラスチック基板等の、高温での熱処理が困難な基板上に、光導波路の作製が可能であること、高分子の柔軟性や強靱性を生かしたフレキシブルな光導波路の作製が可能であること等の利点によるものである(例えば、特許文献1参照)。
Optical waveguides are incorporated in optical devices such as optical waveguide devices, optical integrated circuits, and optical wiring boards, and are widely used in fields such as optical communication and optical information processing. Development of polymer optical waveguides using these polymer resin materials has been actively conducted.
This is because the polymer material can be easily formed into a thin film by a spin coating method, a dip method, etc., and it is easy to produce a large-area optical component. It is possible to produce optical waveguides on substrates that are difficult to heat-treat at high temperatures, such as substrates and plastic substrates, and to produce flexible optical waveguides that take advantage of the flexibility and toughness of polymers. (For example, refer patent document 1).

光インターコネクションをはじめとする種々の光通信用光源として、コスト、性能の点から、面発光レーザー(VCSEL)が注目されているが、面発光レーザーからのレーザー光は基板面に対し垂直方向に出射されるため、これを基板面に対し水平に配置された光導波路に入射するには、約90°の光路変換が必要となる。   A surface emitting laser (VCSEL) is attracting attention as a light source for various optical communication including optical interconnection from the viewpoint of cost and performance, but the laser light from the surface emitting laser is perpendicular to the substrate surface. Since the light is emitted, in order to make it incident on the optical waveguide arranged horizontally with respect to the substrate surface, an optical path change of about 90 ° is required.

光路変換の方法としては、光路変換用素子を用いる方法が挙げられるが、光デバイスを製造する場合に、光通信用光源、光導波路及び光路変換用素子を正確に位置決めし接着しなければならず煩雑であることから、光導波路自体に光変換ミラー面を設ける方法が提案されている。   Examples of the optical path changing method include a method using an optical path changing element. When an optical device is manufactured, the optical communication light source, the optical waveguide, and the optical path changing element must be accurately positioned and bonded. Since it is complicated, a method of providing a light conversion mirror surface on the optical waveguide itself has been proposed.

光導波路自体に光変換ミラー面を設ける方法としては、例えば、傾斜角を有するブレードによる切削加工によって生成した研削面を光路変換ミラー面とする方法(例えば、特許文献2参照)、レーザー光で光導波路板に斜め方向の貫通孔を設け、その貫通孔の壁面を光路変換ミラー面とする方法等のレーザーアブレーションによる加工方法(例えば、特許文献3参照)、プレス成形により下部クラッド部分に傾斜面を形成し光路変換ミラー面とする方法(例えば、特許文献4参照)等が挙げられる。   As a method of providing the light conversion mirror surface on the optical waveguide itself, for example, a method in which a ground surface generated by cutting with a blade having an inclination angle is used as an optical path conversion mirror surface (for example, see Patent Document 2). A processing method by laser ablation such as a method in which an oblique through hole is provided in a waveguide plate and the wall surface of the through hole is an optical path conversion mirror surface (see, for example, Patent Document 3), and an inclined surface is formed in a lower cladding portion by press molding. For example, a method of forming an optical path conversion mirror surface (see, for example, Patent Document 4) may be used.

特開2005−128302号公報JP-A-2005-128302 特開平10−300961号公報Japanese Patent Laid-Open No. 10-300961 特開2000−347052号公報JP 2000-347052 A 特開2003−57466号公報JP 2003-57466 A

しかしながら、特許文献1に記載されているような、ブレードを用いた方法では、必要な部分以外にも溝が形成されたり、低損失なミラーを作製する条件が切削条件や材料に大きく依存したりするという課題があり、また光回路基板の微細化、高密度化が困難であるという課題があった。
また、特許文献2に記載されているような、レーザーアブレーションによる加工方法では、平滑な加工面を形成することができる材料に制限があり、加工中の除去物による壁面ダメージが発生して平滑面を確保することが難しいという課題があった。
また、特許文献2〜4に記載された方法は、何れも、光導波路を製造してから光路変換ミラー面を形成するため、光路変換機能を有する光導波路を基板上に直接、形成することができず、工程が煩雑になるという課題があった。
このため、微細な加工が可能で、面精度が高い、光路変換機能を有する光導波路を、簡略な工程で基板上に直接形成できる製造方法が求められていた。
However, in the method using a blade as described in Patent Document 1, grooves other than necessary portions are formed, or conditions for producing a low-loss mirror greatly depend on cutting conditions and materials. There is a problem that the optical circuit board is difficult to be miniaturized and densified.
Moreover, in the processing method by laser ablation as described in Patent Document 2, there is a limit to the material that can form a smooth processed surface, and the wall surface damage due to the removed material during processing occurs, resulting in a smooth surface. There was a problem that it was difficult to ensure.
In any of the methods described in Patent Documents 2 to 4, since the optical path conversion mirror surface is formed after the optical waveguide is manufactured, an optical waveguide having an optical path conversion function can be directly formed on the substrate. There was a problem that the process was complicated.
For this reason, there has been a demand for a manufacturing method capable of directly forming an optical waveguide capable of fine processing, having high surface accuracy, and having an optical path conversion function on a substrate in a simple process.

一方、ポジ型感光性樹脂を使用してポリマー光導波路を製造する場合には、パターン化された光を照射した後、現像液を用いて不要部分を溶解除去しパターンを形成する。
ポジ型感光性樹脂は、初期状態では現像液に対して難溶解性であるが、紫外線等のエネルギー線に露光されることにより現像液への溶解性が向上し、このような露光部分と非露光部分との現像液への溶解速度の差を利用してパターニングが行われる。
この現像工程では、現像液と長く接触することによりパターンの表面及びパターンの側面が溶解する「膜減り」と呼ばれる現象が起こることが知られている。
On the other hand, when a polymer optical waveguide is manufactured using a positive photosensitive resin, after irradiation with patterned light, unnecessary portions are dissolved and removed using a developer to form a pattern.
A positive photosensitive resin is hardly soluble in a developer in an initial state, but exposure to energy rays such as ultraviolet rays improves the solubility in the developer. Patterning is performed using the difference in dissolution rate in the developer with the exposed portion.
In this development step, it is known that a phenomenon called “film reduction” occurs in which the surface of the pattern and the side surface of the pattern are dissolved by long contact with the developer.

例えば、ポジ型感光性樹脂を用いてフォトリソグラフィによりパターンを形成する場合には、通常、溶剤等で希釈されたポジ型感光性樹脂を対象材料に塗布する工程(塗布工程)、ポジ型感光性樹脂の層にパターン化された光を照射し、光が照射された部分(露光部分)の現像液への溶解性を向上させる工程(露光工程)、露光部分を現像液で溶解除去して非露光部分のパターンを残す工程(現像工程)、残された非露光部分を硬化させる工程(硬化工程)により、パターンが形成される。   For example, when a pattern is formed by photolithography using a positive photosensitive resin, a process of applying a positive photosensitive resin diluted with a solvent or the like to a target material (application process), positive photosensitive A step of irradiating the resin layer with patterned light to improve the solubility of the irradiated portion (exposed portion) in the developer (exposure step), and removing the exposed portion by dissolving with the developer. A pattern is formed by the process of leaving the pattern of the exposed part (developing process) and the process of curing the remaining non-exposed part (curing process).

ポジ型感光性樹脂は、現像液に対して難溶解性ではあるが不溶性ではないため、ポジ型感光性樹脂の層を用いたパターニングの現像工程では、露光部分ほどではないが非露光部分でも、現像液による溶解が徐々に起こる。
このような現像工程における非露光部分が溶解する現象は、「膜減り」と呼ばれているが、このような非露光部分の溶解は、非露光部分の上面だけでなく、露光部分の溶解除去により露出した非露光部分の側面でも起こる。
このため、非露光部の現像後の層の厚さが現像前よりも薄くなるだけでなく、現像後の非露光部の上部は下部よりもパターン幅が狭くなることとなる。
Since the positive photosensitive resin is hardly soluble but not insoluble in the developer, in the patterning development process using the layer of the positive photosensitive resin, even in the non-exposed part, although not as much as the exposed part, Dissolution by the developer occurs gradually.
Such a phenomenon that the non-exposed part dissolves in the development process is called “film reduction”. However, the dissolution of the non-exposed part is not only the upper surface of the non-exposed part but also the removal of the exposed part. It also occurs on the side of the unexposed part exposed by.
For this reason, not only the thickness of the non-exposed portion after development becomes thinner than before development, but also the upper portion of the non-exposed portion after development becomes narrower than the lower portion.

「膜減り」は、フォトレジストの分野では微細なパターンを形成する上での障害となることから「膜減り」の少ない樹脂組成物の開発や現像方法の検討は盛んに行われているが、「膜減り」を積極的に利用したパターンの形成方法は知られていない。
また、フォトレジストを使用した光導波路の製造では、コア部分をパターン形成で製造する場合が多く、クラッド部分をパターン形成で製造する場合は少ない。
“Film reduction” is an obstacle to the formation of fine patterns in the field of photoresist, so development of resin compositions with little “film reduction” and examination of development methods are being actively conducted. There is no known pattern formation method that positively utilizes “film reduction”.
In the production of an optical waveguide using a photoresist, the core part is often produced by pattern formation, and the clad part is produced by pattern formation.

従って、本発明の目的は、微細な加工が可能で、面精度が高い、光路変換機能を有する光導波路を、簡略な工程で直接基板上に直接形成できる製造方法及び該製造方法により製造した光導波路を提供することにある。   Accordingly, an object of the present invention is to provide a manufacturing method capable of directly forming an optical waveguide having an optical path conversion function directly on a substrate in a simple process, capable of fine processing, having high surface accuracy, and an optical device manufactured by the manufacturing method. It is to provide a waveguide.

本発明者は、上記課題を解決すべく鋭意検討した結果、光導波路を製造してから光路変換ミラー面を形成するのではなく、光導波路を製造する際に、光変換ミラー面を形成することができれば、光路変換機能を有する光導波路が、基板上に直接、簡略な工程で、また大量に製造することが可能となる、即ち、ポジ型感光性樹脂を使用してポリマー光導波路を製造する場合、基板上に、ポジ型感光性樹脂の層を形成させ、パターンの現像工程において光導波路の光路変換ミラー面を形成できれば、安価な方法で、多数の光路変換ミラー面が一度に形成できるようになるという着想に至った。   As a result of intensive studies to solve the above problems, the present inventor does not form the optical path conversion mirror surface after manufacturing the optical waveguide, but forms the optical conversion mirror surface when manufacturing the optical waveguide. If possible, an optical waveguide having an optical path conversion function can be directly manufactured on a substrate in a simple process and in a large amount, that is, a polymer optical waveguide is manufactured using a positive photosensitive resin. In this case, if a positive photosensitive resin layer is formed on the substrate and the optical path conversion mirror surface of the optical waveguide can be formed in the pattern development process, a large number of optical path conversion mirror surfaces can be formed at a low cost by using an inexpensive method. I came up with the idea of becoming.

本発明者は、この着想に基づき、更に検討を重ねた結果、クラッド部分をポジ型感光性樹脂により形成する場合に、従来は、微細なパターンを形成する上での障害であった、現像工程において発生する「膜減り」によって形成されるパターンの側面の傾斜面が光路変換ミラー面として利用できることを見出し、本発明を完成するに至った。   As a result of further investigation based on this idea, the present inventor has developed a development process, which has conventionally been an obstacle to forming a fine pattern when the clad portion is formed of a positive photosensitive resin. The present inventors have found that the inclined surface of the side surface of the pattern formed by the “film reduction” generated in FIG.

すなわち本発明は、クラッド部分をポジ型感光性樹脂により形成する光導波路の製造方法において、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とすることを特徴とする、光路変換機能を有する光導波路の製造方法を提供するものである。   That is, according to the present invention, in an optical waveguide manufacturing method in which a clad portion is formed of a positive photosensitive resin, an inclined surface formed by film reduction in the developing process of the positive photosensitive resin is used as an optical path conversion mirror surface. The present invention provides a method for manufacturing an optical waveguide having an optical path conversion function.

また、本発明は、クラッド部分がポジ型感光性樹脂により形成され、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とする、光路変換機能を有する光導波路を提供するものである。   Further, the present invention provides a light guide having an optical path conversion function in which a clad portion is formed of a positive photosensitive resin, and an inclined surface formed by film reduction in the developing process of the positive photosensitive resin is used as an optical path conversion mirror surface. A waveguide is provided.

本発明によれば、光路変換機能を有する光導波路が、基板上に直接、簡略な工程で製造できる。   According to the present invention, an optical waveguide having an optical path conversion function can be manufactured directly on a substrate by a simple process.

図1(a)は、基板上にクラッド部分形成用ポジ型感光性樹脂の層が形成されたことを示す概略図である。図1(b)は、上記クラッド部分形成用ポジ型感光性樹脂の層が硬化してクラッド部分が形成されことを示す概略図である。図1(c)は、上記クラッド部分上に更にクラッド部分形成用ポジ型感光性樹脂の層が形成されたことを示す概略図である。図1(d)は、パターンマスクを使用した露光により、上記クラッド部分形成用ポジ型感光性樹脂の層の露光部分の現像液に対する溶解性が向上したことを示す概略図である。また図1(a’)〜(d’)は、それぞれ図1(a)〜(d)の中央部分の断面図である。FIG. 1A is a schematic view showing that a positive photosensitive resin layer for forming a cladding portion is formed on a substrate. FIG. 1B is a schematic view showing that the clad portion is formed by curing the layer of the positive photosensitive resin for forming the clad portion. FIG. 1C is a schematic view showing that a layer of a positive photosensitive resin for forming a cladding part is further formed on the cladding part. FIG. 1D is a schematic view showing that the exposure to the developer in the exposed portion of the positive photosensitive resin layer for forming a cladding portion is improved by exposure using a pattern mask. FIGS. 1A to 1D are cross-sectional views of central portions of FIGS. 1A to 1D, respectively. 図2(e)は、上記露光部分が現像液に溶解するとともに、非露光部分も徐々に溶解し、該非露光部分に「膜減り」による傾斜面(光路変換ミラー面)が形成されつつあることを示す概略図である。図2(f)は、露光部分の溶解が進み、非露光部分の傾斜面がクラッド部分に達したことを示す概略図である。図2(g)は、上記クラッド部分形成用ポジ型感光性樹脂の層の非露光部分が硬化してクラッド部分が形成されことを示す概略図である。また図2(e’)〜(g’)は、それぞれ図2(e)〜(g)の中央部分の断面図である。FIG. 2E shows that the exposed portion dissolves in the developer and the non-exposed portion gradually dissolves, and an inclined surface (optical path conversion mirror surface) due to “film reduction” is being formed in the non-exposed portion. FIG. FIG. 2F is a schematic diagram showing that the dissolution of the exposed portion has progressed and the inclined surface of the non-exposed portion has reached the cladding portion. FIG. 2G is a schematic view showing that a non-exposed portion of the positive photosensitive resin layer for forming a cladding portion is cured to form a cladding portion. 2 (e ') to (g') are cross-sectional views of the central portion of FIGS. 2 (e) to (g), respectively. 図3(h)は、上記クラッド部分にコア部分形成用ネガ型感光性樹脂の層が形成されたことを示す概略図である。図3(i)は、パターンマスクを使用した露光により、上記コア部分形成用ネガ型感光性樹脂の層の露光部分が硬化して現像液に対して難溶性となった(コア部分が形成された)ことを示す概略図である。図3(j)は、上記コア部分形成用ネガ型感光性樹脂の層の非露光部分が現像液に溶解し、露光部分(コア部分)が残ったことを示す概略図である。図3(k)は、上記コア部分上にクラッド部分形成用ポジ型感光性樹脂の層が形成されたことを示す概略図である。また図3(h’)〜(k’)は、それぞれ図3(h)〜(k)の中央部分の断面図である。FIG. 3H is a schematic view showing that a negative photosensitive resin layer for forming a core part is formed on the clad part. FIG. 3 (i) shows that the exposed part of the negative photosensitive resin layer for forming the core part is cured by the exposure using the pattern mask and becomes insoluble in the developer (the core part is formed). It is the schematic which shows that. FIG. 3J is a schematic view showing that the non-exposed portion of the core-forming negative photosensitive resin layer is dissolved in the developer and the exposed portion (core portion) remains. FIG. 3K is a schematic view showing that a layer of a positive photosensitive resin for forming a clad portion is formed on the core portion. 3 (h ') to 3 (k') are cross-sectional views of the central portions of FIGS. 3 (h) to 3 (k), respectively. 図4(l)は、光導波路の光路を確保するための、パターンマスクを使用した露光により、上記傾斜面上のクラッド部分形成用ポジ型感光性樹脂の層の現像液に対する溶解性が向上したことを示す概略図である。図4(m)は、上記傾斜面上のクラッド部分形成用ポジ型感光性樹脂の層が現像液に溶解されて光路となる空洞部分が形成されたことを示す概略図である。図4(n)は、上記クラッド部分形成用ポジ型感光性樹脂の層が硬化してコア部分上にクラッド部分が形成されたことを示す概略図である。図4(o)は、上記光路となる空洞部分にコア部分形成用ネガ型感光性樹脂の層が形成されたことを示す概略図である。図4(p)は、上記コア部分形成用ネガ型感光性樹脂の層が硬化して上記空洞部分にコア部分が形成されたことを示す概略図である。また図4(l’)〜(p’)は、それぞれ図4(l)〜(p)の中央部分の断面図である。In FIG. 4 (l), the exposure to the developer of the positive photosensitive resin layer for forming the cladding portion on the inclined surface is improved by the exposure using the pattern mask for securing the optical path of the optical waveguide. It is the schematic which shows this. FIG. 4 (m) is a schematic view showing that a cavity portion serving as an optical path is formed by dissolving the clad portion forming positive photosensitive resin layer on the inclined surface in a developing solution. FIG. 4 (n) is a schematic view showing that the clad portion forming positive photosensitive resin layer is cured and a clad portion is formed on the core portion. FIG. 4 (o) is a schematic view showing that a layer of a negative photosensitive resin for forming a core part is formed in the hollow part serving as the optical path. FIG. 4 (p) is a schematic view showing that the core part forming negative photosensitive resin layer is cured and a core part is formed in the hollow part. 4 (l ′) to (p ′) are cross-sectional views of the central portion of FIGS. 4 (l) to (p), respectively. 図5(A)は光路変換ミラー面を2つ有する光導波路における光の進行方向を示す概略図であり、図5(B)は光路変換ミラー面を1つ有する光導波路における光の進行方向を示す概略図である。FIG. 5A is a schematic diagram showing the traveling direction of light in an optical waveguide having two optical path conversion mirror surfaces, and FIG. 5B shows the traveling direction of light in an optical waveguide having one optical path conversion mirror surface. FIG.

以下、本発明について好ましい実施形態に基づき詳細に説明する。
本発明の製造方法が適用される光導波路は、光路となる芯状のコア部分の一部又は全部をクラッド部分で取り囲んだもので、コア部分は、通常、シート状又は板状である。光導波路は、コア部分及びクラッド部分の構造により、スラブ型、埋め込み型、半埋め込み型、リッジ型等に分類されるが、本発明の光導波路の製造方法ではいずれの構造の光導波路へも応用が可能である。
以下、本発明の光導波路の製造方法が好ましく使用される埋め込み型光導波路について説明するが、本発明は埋め込み型光導波路に限定されるものではない。
Hereinafter, the present invention will be described in detail based on preferred embodiments.
An optical waveguide to which the manufacturing method of the present invention is applied is obtained by surrounding a part or all of a core-shaped core part serving as an optical path with a clad part, and the core part is usually in the form of a sheet or a plate. Optical waveguides are classified into slab type, embedded type, semi-embedded type, ridge type, etc., depending on the structure of the core part and the cladding part, but the optical waveguide manufacturing method of the present invention can be applied to optical waveguides of any structure. Is possible.
Hereinafter, the embedded optical waveguide in which the method for manufacturing an optical waveguide of the present invention is preferably used will be described, but the present invention is not limited to the embedded optical waveguide.

本願発明の光導波路の製造方法において、光導波路の光路変換ミラー面となる傾斜面を形成する「膜減り」は、本願明細書の「発明が解決しようとする課題」の項で説明したように、ポジ型感光性樹脂の現像工程おいて、非露光部分が現像液に長時間接触することにより、非露光部分の溶解が起こるという現象をいう。
このような溶解は、非露光部分の上面だけでなく、露光部分の溶解により露出した非露光部分の側面でも発生する。
このため、非露光部分は下部に比べて上部の幅が狭くなり、非露光部分の側面は上面又は側面に対して垂直ではなく、側面と上面とのなす角が鈍角であり側面と底面とのなす角が鋭角であるような傾斜を有する。
本発明は、現像時に形成されるこのような非露光部分の側面の傾斜を光導波路の光路変換に利用したものであり、更に詳しくは、クラッド部分をポジ型感光性樹脂により形成する光導波路の製造方法において、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とするものである。
In the optical waveguide manufacturing method of the present invention, the “film reduction” for forming the inclined surface that becomes the optical path conversion mirror surface of the optical waveguide is as described in the section “Problems to be solved by the invention” in the present specification. In the development process of the positive photosensitive resin, it means a phenomenon that the non-exposed portion is dissolved by the non-exposed portion being in contact with the developer for a long time.
Such dissolution occurs not only on the upper surface of the non-exposed portion, but also on the side surface of the non-exposed portion exposed by dissolution of the exposed portion.
For this reason, the width of the upper part of the non-exposed part is narrower than that of the lower part, the side surface of the non-exposed part is not perpendicular to the upper surface or the side surface, The inclination is such that the angle formed is an acute angle.
The present invention utilizes the inclination of the side surface of such an unexposed portion formed during development for optical path conversion of the optical waveguide. More specifically, the optical waveguide in which the cladding portion is formed of a positive photosensitive resin is used. In the manufacturing method, an inclined surface formed by film reduction in the developing process of the positive photosensitive resin is used as an optical path conversion mirror surface.

上記光路変換ミラー面となる傾斜面の角度は、特に限定されないが、光路が90°に変換されることが好ましいことから、非露光部分の側面と底面とのなす角が40〜50°又は非露光部分の側面と上面とのなす角が130〜140°であることが好ましく、上記側面と底面とのなす角が43〜47°又は側面と上面とのなす角が133〜137°であることが更に好ましく、上記側面と底面とのなす角が44〜46°又は側面と上面とのなす角が134〜136°であることが最も好ましい。   The angle of the inclined surface serving as the optical path conversion mirror surface is not particularly limited, but since the optical path is preferably converted to 90 °, the angle formed between the side surface and the bottom surface of the non-exposed portion is 40 to 50 ° or non- The angle formed between the side surface and the top surface of the exposed portion is preferably 130 to 140 °, the angle formed between the side surface and the bottom surface is 43 to 47 °, or the angle formed between the side surface and the top surface is 133 to 137 °. Is more preferable, and the angle formed by the side surface and the bottom surface is 44 to 46 °, or the angle formed by the side surface and the top surface is most preferably 134 to 136 °.

以下、本発明の光路変換機能を有する光導波路の製造方法を、図1(a)〜図4(p)及び図1(a’)〜図4(p’)の概略図を用いて具体的に説明する。図1(a)〜図4(p)は、本発明の光導波路の製造工程を示す概略図であり、図1(a’)〜図4(p’)は、それぞれ図1(a)〜図4(p)の中央部分の断面図である。   Hereinafter, a method for manufacturing an optical waveguide having an optical path conversion function according to the present invention will be described in detail with reference to the schematic diagrams of FIGS. 1 (a) to 4 (p) and FIGS. Explained. 1 (a) to 4 (p) are schematic views showing the manufacturing process of the optical waveguide of the present invention, and FIGS. 1 (a ′) to 4 (p ′) are respectively FIGS. It is sectional drawing of the center part of FIG.4 (p).

図1(a)及び(a’)から図2(g)及び(g’)は、光導波路のクラッド部分3に傾斜面が形成されるまでの工程を示す。図1(a)及び(a’)に示すように、基板1上にクラッド部分形成用ポジ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、クラッド部分形成用ポジ型感光性樹脂の層2が形成される。このクラッド部分形成用ポジ型感光性樹脂の層2を常法により硬化させて、図1(b)及び(b’)に示すように、クラッド部分3(下部クラッド層)が形成される。傾斜面を形成するために、図1(c)及び(c’)に示すように、クラッド部分3上に、更にクラッド部分形成用のポジ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、クラッド部分形成用ポジ型感光性樹脂の層2が形成される。   FIGS. 1 (a) and (a ') to FIGS. 2 (g) and (g') show steps until an inclined surface is formed in the cladding portion 3 of the optical waveguide. As shown in FIGS. 1 (a) and (a '), a positive photosensitive resin for forming a cladding portion is applied on a substrate 1, and dried by heating if necessary, so that a positive photosensitive resin for forming a cladding portion is obtained. Layer 2 is formed. The clad portion forming positive photosensitive resin layer 2 is cured by a conventional method to form a clad portion 3 (lower clad layer) as shown in FIGS. In order to form an inclined surface, as shown in FIGS. 1C and 1C ′, a positive photosensitive resin for forming the cladding portion is further applied on the cladding portion 3, and heat drying is performed as necessary. Thus, the positive photosensitive resin layer 2 for forming the cladding portion is formed.

コア部分を形成させる溝を形成するために、図1(d)及び(d’)に示すように、パターンマスク4を通して、クラッド部分形成用ポジ型感光性樹脂の層2に紫外線5を照射し、クラッド部分形成用ポジ型感光性樹脂の層2の露光部分の、現像液に対する溶解性を向上させる(露光により現像液への溶解性が向上したクラッド部分形成用ポジ型感光性樹脂の層6)。この後、露光部分を現像液で溶解すると、現像液に対する溶解性が向上した露光部分だけでなく、図2(e)及び(e’)に示すように、露光部分の溶解により露出した非露光部分の側面でも徐々に溶解が起こり、該非露光部分の側面には、「膜減り」により傾斜面が形成され始め、図2(f)及び(f’)に示すように、この傾斜面は、クラッド部分3に達し、クラッド部分形成用ポジ型感光性樹脂の層2には傾斜面を有する溝が形成される。クラッド部分形成用ポジ型感光性樹脂の層2を常法により硬化させることにより、図2(g)及び(g’)に示すように、傾斜面を有する溝のあるクラッド部分3が形成される。   In order to form a groove for forming the core portion, as shown in FIGS. 1D and 1D ′, the layer 5 of the positive photosensitive resin for forming the cladding portion is irradiated with ultraviolet rays 5 through the pattern mask 4. And improving the solubility in the developer of the exposed portion of the positive photosensitive resin layer 2 for forming the cladding portion (the positive photosensitive resin layer 6 for forming the cladding portion having improved solubility in the developer due to the exposure). ). Thereafter, when the exposed portion is dissolved with a developing solution, not only the exposed portion having improved solubility in the developing solution, but also the non-exposed portion exposed by dissolution of the exposed portion as shown in FIGS. 2 (e) and (e ′). Dissolution gradually occurs on the side surface of the portion, and an inclined surface starts to be formed on the side surface of the non-exposed portion by “film reduction”. As shown in FIGS. 2 (f) and (f ′), this inclined surface is The clad portion 3 is reached, and a groove having an inclined surface is formed in the clad portion forming positive photosensitive resin layer 2. The clad portion forming positive photosensitive resin layer 2 is cured by a conventional method to form a clad portion 3 having a groove having an inclined surface as shown in FIGS. 2 (g) and (g ′). .

図3(h)及び(h’)から図3(j)及び(j’)は、光導波路のコア部分8と光路変換ミラー面9が形成されるまでの工程を示す。尚、本発明の製造方法において、コア部分形成用の樹脂は、ポジ型感光性樹脂、ネガ型感光性樹脂の何れでもよいが、「膜減り」が少ないことからネガ型感光性樹脂が好ましい。以下では、コア部分8をネガ型感光性樹脂により形成する場合について説明するが、コア部分8をポジ型感光性樹脂で形成しても、本発明の光路変換ミラー面9を有する光導波路が製造できる。   3 (h) and (h ') to FIGS. 3 (j) and (j') show steps until the core portion 8 of the optical waveguide and the optical path conversion mirror surface 9 are formed. In the production method of the present invention, the resin for forming the core portion may be either a positive photosensitive resin or a negative photosensitive resin, but a negative photosensitive resin is preferred because “film reduction” is small. Hereinafter, the case where the core portion 8 is formed of a negative photosensitive resin will be described. However, even if the core portion 8 is formed of a positive photosensitive resin, an optical waveguide having the optical path conversion mirror surface 9 of the present invention is manufactured. it can.

傾斜面を有する溝のあるクラッド部分3にコア部分形成用ネガ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、図3(h)及び(h’)に示すように、コア部分形成用ネガ型感光性樹脂の層7が形成される。図3(i)及び(i’)に示すように、パターンマスク4を通して、コア部分形成用ネガ型感光性樹脂の層7の中央部分のみに紫外線5を照射して硬化させ、未硬化部分を現像液で溶解除去することで、図3(j)及び(j’)に示すようにコア部分8が形成される。コア部分8は、両端のクラッド部分との境界に傾斜面を有しており、この傾斜面が光路変換ミラー面9となる。   As shown in FIGS. 3 (h) and 3 (h '), a negative photosensitive resin for forming a core portion is applied to the clad portion 3 having a groove having an inclined surface, and is heated and dried as necessary. A negative photosensitive resin layer 7 for forming is formed. As shown in FIGS. 3 (i) and (i ′), only the central part of the negative photosensitive resin layer 7 for forming the core part is irradiated with ultraviolet rays 5 through the pattern mask 4 to cure the uncured part. By dissolving and removing with a developer, the core portion 8 is formed as shown in FIGS. 3 (j) and (j ′). The core portion 8 has an inclined surface at the boundary with the clad portions at both ends, and this inclined surface becomes the optical path conversion mirror surface 9.

図3(k)及び(k’)から図4(n)及び(n’)は、光導波路の光路が確保されると共にクラッド部分3が形成される工程を示す。コア部分8上に、クラッド部分3を形成するために、図3(k)及び(k’)に示すように、コア部分8上にクラッド部分形成用ポジ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、クラッド部分形成用ポジ型感光性樹脂の層2が形成される。光導波路の光路を確保するために、図4(l)及び(l’)に示すように、パターンマスク4を通して、光路変換ミラー面9の上部のクラッド部分形成用ポジ型感光性樹脂の層2に選択的に紫外線5を照射して現像液に対する溶解性を向上させた後、現像液により溶解除去して、図4(m)及び(m’)に示すように、光路変換ミラー面9の上部に光路となる空洞部分を形成する。残ったクラッド部分形成用ポジ型感光性樹脂の層2を、図4(n)及び(n’)に示すように、常法により硬化させて、コア部分8上にクラッド部分3(上部クラッド層)が形成される。図4(n)及び(n’)のように、光路変換ミラー面9の上部に空洞部分を有したままでも、光路変換機能を有する光導波路として使用できるが、空洞部分への埃の侵入の防止や、形成した光導波路の信頼性向上の点から、この空洞部分にもコア部分8を形成することが好ましい。   FIGS. 3 (k) and (k ′) to FIGS. 4 (n) and (n ′) show the steps in which the optical path of the optical waveguide is secured and the cladding portion 3 is formed. In order to form the clad part 3 on the core part 8, as shown in FIGS. 3 (k) and (k ′), a positive photosensitive resin for clad part formation is applied on the core part 8 and necessary. Accordingly, the layer 2 of the positive photosensitive resin for forming the cladding portion is formed by heating and drying. In order to secure the optical path of the optical waveguide, as shown in FIGS. 4 (l) and (l ′), the positive photosensitive resin layer 2 for forming the cladding part on the upper part of the optical path conversion mirror surface 9 is passed through the pattern mask 4. 4 is irradiated with ultraviolet rays 5 to improve the solubility in the developer, and then dissolved and removed by the developer. As shown in FIGS. 4 (m) and (m ′), the optical path conversion mirror surface 9 A hollow portion serving as an optical path is formed at the top. The remaining layer 2 of the positive photosensitive resin for forming the cladding portion is cured by a conventional method as shown in FIGS. 4 (n) and (n ′), and the cladding portion 3 (upper cladding layer) is formed on the core portion 8. ) Is formed. As shown in FIGS. 4 (n) and (n ′), the optical path conversion mirror surface 9 can be used as an optical waveguide having an optical path conversion function even though it has a hollow portion. From the viewpoint of prevention and improvement of the reliability of the formed optical waveguide, it is preferable to form the core portion 8 also in this hollow portion.

図4(o)及び(o’)から図4(p)及び(p’)は、光路変換ミラー面9の上部の空洞部分にコア部分8が形成される工程を示す。光路変換ミラー面9の上部の空洞部分に、図4(o)及び(o’)に示すように、コア部分形成用ネガ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、コア部分形成用ネガ型感光性樹脂の層7が形成される。図4(p)及び(p’)に示すように、コア部分形成用ネガ型感光性樹脂の層7を、常法により硬化させて、上記空洞部分にコア部分8が形成されることにより、光路変換機能を有する光導波路が完成する。   4 (o) and 4 (o ') to 4 (p) and 4 (p') show a process in which the core portion 8 is formed in the upper cavity portion of the optical path conversion mirror surface 9. As shown in FIGS. 4 (o) and (o ′), a negative photosensitive resin for forming a core part is applied to the hollow part of the optical path conversion mirror surface 9 and dried by heating as necessary. A layer 7 of a negative type photosensitive resin for partial formation is formed. As shown in FIGS. 4 (p) and (p ′), the core part-forming negative photosensitive resin layer 7 is cured by a conventional method to form the core part 8 in the hollow part. An optical waveguide having an optical path conversion function is completed.

図5(A)及び図5(B)は、本発明の製造方法により得られた光導波路の光の進路を示す概略図である。図5(A)に示すように、本発明の製造方法により得られた光導波路内の2つの光路変換ミラー面9により、入射光を約180°に光路変換することができる。入射光を約90°に光路変換する場合には、2つの光路変換ミラー面9を有する光導波路を切断して、図5(B)のように光路変換ミラー面を1つにすればよい。   5 (A) and 5 (B) are schematic views showing the light path of the optical waveguide obtained by the manufacturing method of the present invention. As shown in FIG. 5A, incident light can be optically converted to about 180 ° by the two optical path conversion mirror surfaces 9 in the optical waveguide obtained by the manufacturing method of the present invention. In the case of changing the optical path of incident light to about 90 °, the optical waveguide having the two optical path conversion mirror surfaces 9 may be cut to form one optical path conversion mirror surface as shown in FIG.

これまでの図を用いた説明では、光導波路を基板上に直接形成する場合について説明したが、光導波路は、基板上に直接形成される必要はなく、例えば、本発明の光導波路の製造方法により、PET(ポリエチレンテレフタレート)樹脂等のフィルム上に光導波路を形成し、その後、この光導波路を基板等に装着してもよい。   In the description using the drawings so far, the case where the optical waveguide is directly formed on the substrate has been described. However, the optical waveguide does not need to be formed directly on the substrate. For example, the optical waveguide manufacturing method of the present invention Thus, an optical waveguide may be formed on a film such as PET (polyethylene terephthalate) resin, and then the optical waveguide may be mounted on a substrate or the like.

上述したように、本発明の製造方法では、クラッド部分形成用ポジ型感光性樹脂の層2の、非感光部分と感光部分との現像液に対する溶解速度の差を利用している。非感光部分と感光部分との現像液に対する溶解速度の差が大きい場合には、「膜減り」が少ないために、非露光部分の底面と、非露光部分の「膜減り」による側面(傾斜面)との角度が大きくなり、逆に、溶解速度の差が小さい場合には、「膜減り」が多くなって、非露光部分の底面と、非露光部分の「膜減り」による側面(傾斜面)との角度が小さくなる。
本発明の光導波路の製造方法により得られる光路変換ミラー面9の角度は、上述したように、光路が約90°に変換される角度、即ち、光路に対して約45°であることが好ましいが、このような角度を得るためには、非感光部分と感光部分との現像液に対する溶解速度を適度な範囲に設定する必要がある。
As described above, in the production method of the present invention, the difference in the dissolution rate of the positive photosensitive resin layer 2 for forming the clad portion with respect to the developer between the non-photosensitive portion and the photosensitive portion is used. When there is a large difference in the dissolution rate between the non-photosensitive part and the photosensitive part in the developer, there is little “film reduction”. ) And the difference in dissolution rate is small, the “film reduction” increases, and the bottom surface of the non-exposed part and the side surface (inclined surface) of the non-exposed part due to “film reduction”. ) And the angle becomes smaller.
As described above, the angle of the optical path conversion mirror surface 9 obtained by the optical waveguide manufacturing method of the present invention is preferably an angle at which the optical path is converted to about 90 °, that is, about 45 ° with respect to the optical path. However, in order to obtain such an angle, it is necessary to set the dissolution rate of the non-photosensitive portion and the photosensitive portion in the developer to an appropriate range.

本発明の製造方法では、現像時にレジストの膨潤が少なく良好な光路変換ミラー面9を形成するために、クラッド部分3は、アルカリ現像が可能なポジ型感光性樹脂を用いて、アルカリ性水溶液により現像する。現像液に対するポジ型感光性樹脂の溶解速度に与える要因としては、ベース樹脂の種類、感光剤の種類と配合量、増感剤の種類と配合量、現像液の種類と現像温度等が挙げられる。非感光部分と感光部分との現像液に対する溶解速度の調整が容易であることから、感光剤の配合量により、このような溶解速度を調整することが好ましい。感光剤の配合量により、溶解速度を調整する場合、感光剤の配合量が多いほど、非感光部分と感光部分との現像液に対する溶解速度差が大きくなって、非露光部分の「膜減り」による傾斜面の傾斜角は大きくなり、逆に、感光剤の配合量が少ないほど、溶解速度差が小さくなって、非露光部分の「膜減り」による傾斜面の傾斜角は小さくなる。   In the production method of the present invention, the clad portion 3 is developed with an alkaline aqueous solution using a positive photosensitive resin capable of alkali development in order to form a good optical path conversion mirror surface 9 with little resist swelling during development. To do. Factors affecting the dissolution rate of the positive photosensitive resin in the developer include the type of base resin, the type and blending amount of the photosensitizer, the type and blending amount of the sensitizer, the type and developing temperature of the developer, and the like. . Since it is easy to adjust the dissolution rate of the non-photosensitive portion and the photosensitive portion in the developer, it is preferable to adjust such a dissolution rate depending on the amount of the photosensitive agent. When adjusting the dissolution rate depending on the blending amount of the photosensitizer, the greater the blending amount of the photosensitizer, the greater the difference in the dissolution rate of the non-photosensitive part and the photosensitive part with respect to the developer. In contrast, the inclination angle of the inclined surface is increased, and conversely, the smaller the blending amount of the photosensitive agent, the smaller the difference in dissolution rate, and the smaller the inclination angle of the inclined surface due to “film reduction” in the non-exposed portion.

溶解度を調整するために用いられる上記感光剤としては、感光性が高く、溶解速度の調整が容易であることから、ジアゾキノン化合物が好ましく、フェノール性水酸基を有する化合物の水素原子が下記式(1)で表される基で置換された化合物(4−ジアゾナフトキノンスルホン酸エステル)又は下記式(2)で表される基で置換された化合物(5−ジアゾナフトキノンスルホン酸エステル)が更に好ましい。   The photosensitizer used for adjusting the solubility is preferably a diazoquinone compound because of its high photosensitivity and easy adjustment of the dissolution rate, and the hydrogen atom of the compound having a phenolic hydroxyl group is represented by the following formula (1). A compound substituted with a group represented by the formula (4-diazonaphthoquinonesulfonic acid ester) or a compound substituted with a group represented by the following formula (2) (5-diazonaphthoquinonesulfonic acid ester) is more preferred.

Figure 0005749068
Figure 0005749068

このようなジアゾキノン化合物の、好ましい具体例としては、例えば、以下の式(3)〜(8)で表される化合物及びそれらの位置異性体等を例示することができる。   Preferable specific examples of such a diazoquinone compound include, for example, compounds represented by the following formulas (3) to (8) and their positional isomers.

Figure 0005749068
(式(3)〜(8)中、Qは上記式(1)若しくは式(2)で表される基又は水素原子である。但し、それぞれの式において、全てが水素原子であることはない。)
Figure 0005749068
(In formulas (3) to (8), Q is a group represented by the above formula (1) or formula (2) or a hydrogen atom. However, in each formula, not all are hydrogen atoms. .)

尚、式(5)で表される基はi線(波長365nm)領域に吸収を持つため、i線露光に適し、式(6)で表される基は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適していることから、露光する波長によって式(5)で表される基、式(6)で表される基の何れかを選択することが好ましい。   Since the group represented by the formula (5) has absorption in the i-line (wavelength 365 nm) region, it is suitable for i-line exposure, and the group represented by the formula (6) has absorption in a wide wavelength range. Therefore, since it is suitable for exposure in a wide range of wavelengths, it is preferable to select either the group represented by the formula (5) or the group represented by the formula (6) depending on the wavelength to be exposed.

本発明の製造方法によれば、光路変換機能を有する光導波路を直接基板上に形成することが可能である。このような基板では、光学素子等を実装する場合に、はんだが用いられることから、光導波路を形成する材料にも耐熱性が要求される。耐熱性の高い光導波路が形成できるポジ型感光性樹脂としては、ポリシロキサン系のポジ型感光性樹脂が挙げられ、中でも、特開2010−101957号公報に記載のポジ型感光性樹脂組成物が好ましく、原料の入手の容易さや、得られる光導波路の耐熱性の点から、(A)成分として、下記一般式(9)で表わされる環状シロキサン化合物と下記一般式(10)で表わされるアリールアルコキシシラン化合物とを反応させて得られるシリコーン樹脂、(B)成分として、グリシジル基を有するシロキサン化合物、(C)成分として、ジアゾナフトキノン類、特に、上記のフェノール性水酸基を有する化合物の水素原子が上記式(1)で表される基で置換された化合物(4−ジアゾナフトキノンスルホン酸エステル)又は上記式(2)で表される基で置換された化合物(5−ジアゾナフトキノンスルホン酸エステル)、及び(D)成分として、有機溶剤を含有するポジ型感光性組成物が更に好ましい。   According to the manufacturing method of the present invention, an optical waveguide having an optical path conversion function can be formed directly on a substrate. In such a substrate, since solder is used when mounting an optical element or the like, the material forming the optical waveguide is also required to have heat resistance. Examples of the positive photosensitive resin capable of forming an optical waveguide having high heat resistance include polysiloxane-based positive photosensitive resins. Among these, the positive photosensitive resin composition described in JP 2010-101957 A is used. Preferably, from the viewpoint of easy availability of raw materials and heat resistance of the obtained optical waveguide, as the component (A), a cyclic siloxane compound represented by the following general formula (9) and an arylalkoxy represented by the following general formula (10) A silicone resin obtained by reacting with a silane compound, a siloxane compound having a glycidyl group as the component (B), a diazonaphthoquinones as the component (C), particularly the hydrogen atom of the compound having a phenolic hydroxyl group described above A compound substituted with a group represented by the formula (1) (4-diazonaphthoquinonesulfonic acid ester) or the above formula (2) Compounds substituted with the group (5-diazonaphthoquinone sulfonic acid ester), and as component (D), the positive photosensitive composition containing an organic solvent is more preferable.

Figure 0005749068
(式中、R1は炭素数1〜3のアルキル基を表わし、m、n及びpは、m:n:p=1:0〜2:0.5〜3であり、m+n+p=3〜6となる数を表す。)
Figure 0005749068
(In the formula, R 1 represents an alkyl group having 1 to 3 carbon atoms, m, n and p are m: n: p = 1: 0 to 2: 0.5 to 3, and m + n + p = 3 to 6) Represents the number of

Figure 0005749068
(式中、R2及びR3は、それぞれ独立して炭素数1〜3のアルキル基を表わし、fは2〜3の数を表わす。)
Figure 0005749068
(In the formula, R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms, and f represents a number of 2 to 3).

上記(A)成分である、上記一般式(9)で表わされる環状シロキサン化合物と上記一般式(10)で表わされるアリールアルコキシシラン化合物とを反応させて得られるシリコーン樹脂は、下記一般式(9a)で表わされる環状シロキサン化合物と、上記一般式(10)で表わされるアリールアルコキシシラン化合物とを反応させた後、t−ブチルエステル基及びt−ブチルエーテル基を、特開2010−101957号公報に記載の方法により脱離することによっても得ることができる。   A silicone resin obtained by reacting the cyclic siloxane compound represented by the general formula (9) and the arylalkoxysilane compound represented by the general formula (10), which is the component (A), has the following general formula (9a). ) And the arylalkoxysilane compound represented by the general formula (10) are reacted, and then the t-butyl ester group and the t-butyl ether group are described in JP-A No. 2010-101957. It can also be obtained by desorption by the above method.

Figure 0005749068
(式中、m、n及びpは、上記一般式(9)と同義である。)
Figure 0005749068
(In the formula, m, n and p have the same meanings as in the general formula (9).)

上記(B)成分である、グリシジル基を有するシロキサン化合物としては、基板との密着性に優れることから、下記一般式(11)で表わされる、3−グリシドキシプロピル基を有する環状シロキサン化合物が好ましい。

Figure 0005749068
(式中、xは3〜6の数を表わす。) As the siloxane compound having a glycidyl group, which is the component (B), a cyclic siloxane compound having a 3-glycidoxypropyl group represented by the following general formula (11) is used because of its excellent adhesion to the substrate. preferable.
Figure 0005749068
(In the formula, x represents a number of 3 to 6.)

本発明の光導波路のコア部形成用樹脂としては、上述したように、現像液による「膜減り」が少ないことから、ネガ型感光性樹脂が好ましいが、光導波路の耐熱性の点から、ポリシロキサン系のネガ型感光性樹脂がより好ましく、中でも、特開2004−010849号公報記載のネガ型感光性樹脂や特開2007−238868号公報記載のネガ型感光性樹脂がより一層好ましい。   As described above, the resin for forming the core part of the optical waveguide of the present invention is preferably a negative photosensitive resin because of less “film reduction” due to the developer. However, from the viewpoint of the heat resistance of the optical waveguide, Siloxane-based negative photosensitive resins are more preferable, and negative photosensitive resins described in JP-A No. 2004-010849 and negative photosensitive resins described in JP-A No. 2007-238868 are more preferable.

本発明の製造方法により得られる光導波路は、光導波路デバイス、光集積回路、光配線基板等の光デバイス、特に、面発光レーザーを光源とする光デバイスに好適に利用できる。   The optical waveguide obtained by the production method of the present invention can be suitably used for an optical device such as an optical waveguide device, an optical integrated circuit, and an optical wiring board, particularly an optical device using a surface emitting laser as a light source.

以下に実施例を挙げ、本発明を更に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be further described with reference to examples below, but the present invention is not limited to these examples.

〔ベース樹脂Aの製造〕
特開2010−101957号公報の実施例の環状シロキサン化合物(a−1)の製造方法に準拠し、下記の式(12)の環状シロキサン化合物を得た。

Figure 0005749068
[Manufacture of base resin A]
In accordance with the method for producing a cyclic siloxane compound (a-1) in Examples of JP 2010-101957 A, a cyclic siloxane compound of the following formula (12) was obtained.
Figure 0005749068

撹拌器、温度計、及び還流器を有する反応容器に、上記一般式(9a)で表わされる環状シロキサン化合物として、上記式(12)で表わされる環状シロキサン化合物100質量部、上記一般式(10)で表わされるアリールアルコキシシラン化合物として、フェニルトリメトキシシラン40質量部、及び溶媒としてトルエン200質量部を加えて、10℃で氷冷攪拌しながら、5%シュウ酸水溶液50質量部を30分かけて滴下した。系内温度を10℃に保ったまま15時間攪拌の後、50℃、減圧下で還流脱水・脱アルコール処理し、50℃減圧下で溶媒のトルエンを1−メトキシ−2−プロパノールアセテート(以下PGMEAという)へと溶媒交換を行ない、生成物の25%PGMEA溶液とした。t−ブチル基を脱離するために、三フッ化ホウ素ジエチルエーテル錯体3質量部を加えて、80℃で3時間攪拌の後、減圧下で100質量部の脱溶媒処理をし、酸性物質の吸着剤(協和化学工業製、商品名:キョーワード500SH)を10質量部加えた後に、80℃で1時間攪拌したスラリー溶液について、濾過により固形物を除去し、ベース樹脂Aの30%PGMEA溶液を得た。ベース樹脂Aは、特開2010−101957号公報の実施例のシリコーン樹脂(a)に相当する化合物である。ベース樹脂Aのテトラヒドルフランを溶媒としたGPC分析によるポリスチレン換算の質量平均分子量は6400であり、特開2010−101957号公報記載の方法により測定したシラノール基含量は5.4質量%であった。   In a reaction vessel having a stirrer, a thermometer, and a refluxer, 100 parts by mass of the cyclic siloxane compound represented by the above formula (12) as the cyclic siloxane compound represented by the above general formula (9a), the above general formula (10) As an arylalkoxysilane compound represented by the formula, 40 parts by mass of phenyltrimethoxysilane and 200 parts by mass of toluene as a solvent are added, and 50 parts by mass of 5% oxalic acid aqueous solution is added over 30 minutes while stirring with ice cooling at 10 ° C. It was dripped. After stirring for 15 hours while maintaining the system temperature at 10 ° C., reflux dehydration / dealcoholation treatment was performed at 50 ° C. under reduced pressure. The solvent was exchanged to obtain a 25% PGMEA solution of the product. In order to remove the t-butyl group, 3 parts by mass of boron trifluoride diethyl ether complex was added, and after stirring at 80 ° C. for 3 hours, 100 parts by mass of the solvent was removed under reduced pressure. After adding 10 parts by mass of an adsorbent (manufactured by Kyowa Chemical Industry Co., Ltd., trade name: KYOWARD 500SH), the solid solution was removed from the slurry solution stirred at 80 ° C. for 1 hour by filtration, and a 30% PGMEA solution of base resin A Got. The base resin A is a compound corresponding to the silicone resin (a) in Examples of JP 2010-101957 A. The weight average molecular weight in terms of polystyrene as measured by GPC analysis using tetrahidolfuran as the base resin A was 6400, and the silanol group content measured by the method described in JP 2010-101957 A was 5.4% by mass. .

<45°の傾斜面を得るための感光剤の配合量の決定>
上記(A)成分として、上記ベース樹脂Aの30%PGMEA溶液、上記(B)成分として、2,4,6,8−テトラキス(3−グリシドキシプロピル)−2,4,6,8−テトラメチルシクロテトラシロキサン、上記(C)成分として、上記式(3)において全てのQが上記式(2)で表される基である化合物(ダイトーケミックス社製、商品名:PA−6)、及び上記(D)成分としてPGMEAを用いて、各成分が[表1]に示す割合になるように配合し、ポジ型感光性樹脂組成物である組成物1〜8を調製した。
<Determination of blending amount of photosensitive agent for obtaining a 45 ° inclined surface>
As the component (A), a 30% PGMEA solution of the base resin A, and as the component (B), 2,4,6,8-tetrakis (3-glycidoxypropyl) -2,4,6,8- Tetramethylcyclotetrasiloxane, as the component (C), a compound in which all Qs in the above formula (3) are groups represented by the above formula (2) (manufactured by Daito Chemix, trade name: PA-6), and Using PGMEA as the component (D), each component was blended so as to have a ratio shown in [Table 1] to prepare compositions 1 to 8 which are positive photosensitive resin compositions.

Figure 0005749068
Figure 0005749068

(試験片の調製方法)
縦25mm及び横25mmの正方形のガラス基板を試験片形成用基板に用いた。この試験片形成用基板に対し、上記のポジ型感光性樹脂組成物である組成物1〜8を、それぞれ乾燥後の層の厚さが10μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱処理し層中の溶剤を完全に除去した後、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させた。硬化面上に、硬化面と同一のポジ型感光性組成物を乾燥後の層の厚さ20μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱処理し層中の溶剤を完全に除去した。該層の上にスリット幅20μm、スリット長10mmのフォトマスクを設置し、超高圧水銀灯により70mJ/cm2(波長365nm露光換算)の紫外線を照射した。次に、この試験片を現像液である液温23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に、70秒浸漬した後、水洗し、風乾した。風乾した試験片に超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線を照射した後、大気雰囲気下150℃で60分間の加熱処理を行った。「膜減り」により形成された硬化物の傾斜面の、ガラス基板に対する角度を測定するために、試験片をパターンに対して垂直方向に切断し、走査型電子顕微鏡を用いて切断面を拡大し、ガラス基板と傾斜面との角度を測定した。結果を〔表1〕に示す。〔表1〕の結果から(C)成分の感光剤をベース樹脂A100質量部に対して、7質量部配合することにより、45°の傾斜角が得られることがわかった。このため、組成物4の配合をコア部形成用ポジ型感光性樹脂組成物として用いることとした。
(Method for preparing test piece)
A square glass substrate having a length of 25 mm and a width of 25 mm was used as a test piece forming substrate. On this test piece forming substrate, the compositions 1 to 8, which are the positive photosensitive resin composition, were applied by spin coating so that the thickness of the dried layer was 10 μm, respectively, and then the solvent was added. After volatilization and further heat treatment at 80 ° C. for 2 minutes to completely remove the solvent in the layer, irradiation with ultraviolet rays of 200 mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultra-high pressure mercury lamp, followed by 150 ° C. in an air atmosphere. It was cured by heat treatment for 60 minutes. On the cured surface, the same positive photosensitive composition as the cured surface was applied by spin coating so that the layer thickness after drying was 20 μm, and then the solvent was volatilized, followed by heat treatment at 80 ° C. for 2 minutes. The solvent in the layer was completely removed. A photomask having a slit width of 20 μm and a slit length of 10 mm was placed on the layer, and ultraviolet rays of 70 mJ / cm 2 (wavelength 365 nm equivalent) were irradiated by an ultrahigh pressure mercury lamp. Next, this test piece was immersed in a 2.38 mass% tetramethylammonium hydroxide aqueous solution having a liquid temperature of 23 ° C. as a developer for 70 seconds, then washed with water and air-dried. The air-dried test piece was irradiated with ultraviolet rays of 200 mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultra-high pressure mercury lamp, and then heat-treated at 150 ° C. for 60 minutes in an air atmosphere. In order to measure the angle of the inclined surface of the cured product formed by “film reduction” with respect to the glass substrate, the test piece is cut in a direction perpendicular to the pattern, and the cut surface is enlarged using a scanning electron microscope. The angle between the glass substrate and the inclined surface was measured. The results are shown in [Table 1]. From the results of [Table 1], it was found that an inclination angle of 45 ° can be obtained by blending 7 parts by mass of the photosensitive agent (C) with respect to 100 parts by mass of the base resin A. Therefore, the composition 4 was used as a positive photosensitive resin composition for forming a core part.

<ベース樹脂Bの製造>
特開2007−238868号公報の実施例の(A1)に準じて、ベース樹脂Bを合成した。即ち、撹拌器、温度計及び還流器を有する反応容器に、フェニルトリメトキシシラン178.5g(0.90mol)、3,4−エポキシシクロへキシルエチルトリメトキシシランを24.6g(0.10mol)、溶媒としてトルエン600gを仕込み、氷冷しながら0.032質量%のリン酸水溶液108gを5〜10℃を1時間かけて滴下した後、更に5時間撹拌した。2質量%の水酸化ナトリウム水溶液6.7gを加えた後、加熱してトルエンを還流させ、共沸により水を除去した。Si−OH基を封止するためにオルトギ酸トリエチル890g(6.0mol)を添加し、130℃で1時間加熱攪拌した。吸着剤(協和化学工業製 商品名:キョーワード600S)を45g加え、100℃で1時間加熱攪拌した。吸着剤を濾過して除去後、120℃、3mmHgにて揮発成分を除去し、トルエン45g、メタノール1000gを加えて2層分離して、下層を除去した。110℃、3mmHgにて揮発成分を除去し、エポキシ基を有するベース樹脂Bを得た。ベース樹脂Bのテトラヒドルフランを溶媒としたGPC分析によるポリスチレン換算の質量平均分子量は1800であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。また、電位差法により測定したエポキシ当量は、1428であった。
<Manufacture of base resin B>
Base resin B was synthesized according to Example (A1) of JP-A-2007-238868. That is, 178.5 g (0.90 mol) of phenyltrimethoxysilane and 24.6 g (0.10 mol) of 3,4-epoxycyclohexylethyltrimethoxysilane were added to a reaction vessel having a stirrer, a thermometer and a refluxer. Then, 600 g of toluene was charged as a solvent, and 108 g of a 0.032 mass% phosphoric acid aqueous solution was added dropwise over 5 hours while cooling with ice, followed by further stirring for 5 hours. After adding 6.7 g of a 2% by mass aqueous sodium hydroxide solution, the mixture was heated to reflux toluene, and water was removed azeotropically. To seal the Si—OH group, 890 g (6.0 mol) of triethyl orthoformate was added, and the mixture was heated and stirred at 130 ° C. for 1 hour. 45 g of an adsorbent (trade name: KYOWARD 600S manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was heated and stirred at 100 ° C. for 1 hour. After removing the adsorbent by filtration, volatile components were removed at 120 ° C. and 3 mmHg, 45 g of toluene and 1000 g of methanol were added to separate the two layers, and the lower layer was removed. Volatile components were removed at 110 ° C. and 3 mmHg to obtain a base resin B having an epoxy group. The polystyrene-reduced mass average molecular weight by GPC analysis using tetrahidolfuran of the base resin B as a solvent was 1800, and as a result of analysis by 1 H-NMR, silanol groups (Si—OH) were not detected. Moreover, the epoxy equivalent measured by the potentiometric method was 1428.

<コア部分形成用ネガ型感光性樹脂組成物の調製>
ベース樹脂B100質量部、2,2−ビス(3,4−エポキシシクロへキシル)プロパン80質量部、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート20質量部、触媒としてビス−[4−(ビス(4−ブトキシフェニル)スルホニオ)フェニル]スルフィドヘキサフルオロアンチモネート0.6質量部からなる組成物をコア部分形成用ネガ型感光性樹脂組成物として用いた。
<Preparation of negative photosensitive resin composition for core portion formation>
100 parts by weight of base resin B, 80 parts by weight of 2,2-bis (3,4-epoxycyclohexyl) propane, 20 parts by weight of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis- A composition comprising 0.6 parts by mass of [4- (bis (4-butoxyphenyl) sulfonio) phenyl] sulfide hexafluoroantimonate was used as a negative photosensitive resin composition for forming a core part.

〔光路変換部を持つ光導波路の形成〕
図1(a)及び(a’)に示すように、縦25mm及び横25mmの正方形のガラス基板1上に、クラッド部分形成用ポジ型感光性樹脂組成物として、上記組成物4を、乾燥後の層の厚さが30μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、クラッド部分形成用ポジ型感光性樹脂組成物の層2を形成した。
[Formation of optical waveguide with optical path changer]
As shown in FIGS. 1 (a) and (a ′), after drying the composition 4 as a positive photosensitive resin composition for forming a clad portion on a square glass substrate 1 having a length of 25 mm and a width of 25 mm, after drying. After coating by spin coating so that the thickness of the layer becomes 30 μm, the solvent is volatilized and further dried by heating at 80 ° C. for 2 minutes to completely remove the solvent in the layer, and positive type photosensitivity for forming a clad part A layer 2 of the resin composition was formed.

このクラッド部分形成用ポジ型感光性樹脂組成物の層2を、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線5を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させて、図1(b)及び(b’)に示すように、クラッド部分3(下部クラッド層)を形成した。 The layer 2 of the positive photosensitive resin composition for forming a clad portion was irradiated with ultraviolet rays 5 of 200 mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultra-high pressure mercury lamp, and then heat-treated at 150 ° C. for 60 minutes in an air atmosphere. As shown in FIGS. 1B and 1B ′, the clad portion 3 (lower clad layer) was formed.

図1(c)及び(c’)に示すように、クラッド部分3(下部クラッド層)上に、クラッド部分形成用ポジ型感光性樹脂組成物として、上記組成物4を、乾燥後の層の厚さが30μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、クラッド部分形成用ポジ型感光性樹脂組成物の層2を形成した。   As shown in FIGS. 1 (c) and (c ′), the above composition 4 as a positive photosensitive resin composition for forming a clad portion is formed on the clad portion 3 (lower clad layer). After coating by spin coating to a thickness of 30 μm, the solvent is volatilized, and further heated and dried at 80 ° C. for 2 minutes to completely remove the solvent in the layer, and a positive photosensitive resin composition for forming a clad part Layer 2 was formed.

図1(d)及び(d’)に示すように、クラッド部分形成用ポジ型感光性樹脂組成物の層2上にスリット幅30μm、スリット長10mmのフォトマスク(パターンマスク)4を設置し、超高圧水銀灯により70mJ/cm2(波長365nm露光換算)の紫外線5を照射することにより、クラッド部分形成用ポジ型感光性樹脂組成物の層2の露光部分の、現像液に対する溶解性を向上させた。 As shown in FIGS. 1D and 1D ′, a photomask (pattern mask) 4 having a slit width of 30 μm and a slit length of 10 mm is placed on the layer 2 of the positive photosensitive resin composition for forming a clad part. By irradiating ultraviolet ray 5 of 70 mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultra-high pressure mercury lamp, the solubility of the exposed portion of the layer 2 of the positive photosensitive resin composition for forming a cladding portion in the developer is improved. It was.

この後、現像液である液温23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に、70秒浸漬することにより、図2(e)及び(e’)に示すように、露光部分を現像液で溶解すると共に、露光部分の溶解により露出した非露光部分の側面を溶解させて、クラッド部分形成用ポジ型感光性樹脂組成物の層2に、図2(f)及び(f’)に示すような、膜減りによる傾斜面を有する溝を形成した。   Thereafter, the exposed portion is immersed in a 2.38 mass% tetramethylammonium hydroxide aqueous solution having a liquid temperature of 23 ° C. as a developer for 70 seconds, as shown in FIGS. 2 (e) and (e ′). 2 (f) and (f ') are dissolved in the layer 2 of the positive photosensitive resin composition for forming a clad part by dissolving with a developing solution and dissolving the side surface of the non-exposed part exposed by dissolving the exposed part. A groove having an inclined surface due to film reduction as shown in FIG.

ついで、傾斜面を有する溝が形成されたクラッド部分形成用ポジ型感光性組成物の層2に、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線5を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させることにより、図2(g)及び(g’)に示すように、傾斜面を有する溝が形成されたクラッド部分3を形成した。 Next, the layer 2 of the positive photosensitive composition for forming a clad part in which a groove having an inclined surface is formed is irradiated with ultraviolet rays 5 of 200 mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultra-high pressure mercury lamp, and then the atmospheric atmosphere. By performing a heat treatment at 150 ° C. for 60 minutes at a lower temperature to cure, as shown in FIGS. 2 (g) and 2 (g ′), a clad portion 3 having a groove having an inclined surface was formed.

クラッド部分3の傾斜面を有する溝に、上記で得られたコア部分形成用ネガ型感光性樹脂組成物を、乾燥後の層の厚さが30μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、図3(h)及び(h’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7を形成した。   After applying the negative photosensitive resin composition for core part formation obtained above to the groove having the inclined surface of the clad part 3 by spin coating so that the layer thickness after drying becomes 30 μm, the solvent Then, the solvent in the layer is completely removed by heating and drying at 80 ° C. for 2 minutes, and as shown in FIGS. 3 (h) and (h ′), the negative photosensitive resin composition for forming the core part is formed. Layer 7 was formed.

図3(i)及び(i’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7上に、スリット幅30μm、スリット長250μmのフォトマスク(パターンマスク)4を設置し、コア部分形成用ネガ型感光性樹脂組成物の層7の中央部分のみに、超高圧水銀灯により mJ/cm2(波長365nm露光換算)の紫外線5を照射して硬化させ、未硬化部分を、現像液であるアセトン100質量部とイソプロパノール100質量部の混合溶液で溶解除去することで、図3(j)及び(j’)に示すようにコア部分8を形成した。尚、コア部分8は、両端のクラッド部分との境界に傾斜面を有しており、この境界面が光路変換ミラー面9となる。 As shown in FIGS. 3 (i) and (i ′), a photomask (pattern mask) 4 having a slit width of 30 μm and a slit length of 250 μm is placed on the layer 7 of the negative photosensitive resin composition for core portion formation. Only the central part of the layer 7 of the negative photosensitive resin composition for forming the core part is irradiated with an ultraviolet ray 5 of mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultrahigh pressure mercury lamp and cured, and the uncured part is The core portion 8 was formed as shown in FIGS. 3 (j) and (j ′) by dissolving and removing with a mixed solution of 100 parts by mass of acetone and 100 parts by mass of isopropanol as a developer. The core portion 8 has an inclined surface at the boundary with the clad portions at both ends, and this boundary surface becomes the optical path conversion mirror surface 9.

図3(k)及び(k’)に示すように、コア部分8上に、クラッド部分形成用ポジ型感光性樹脂として、上記組成物4を、乾燥後の層の厚さが60μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、クラッド部分形成用ポジ型感光性樹脂組成物の層2を形成した。   As shown in FIGS. 3 (k) and 3 (k ′), the composition 4 as a positive photosensitive resin for forming a clad portion is formed on the core portion 8 so that the layer thickness after drying becomes 60 μm. After coating by spin coating, the solvent was volatilized and further dried by heating at 80 ° C. for 2 minutes to completely remove the solvent in the layer, thereby forming layer 2 of a positive photosensitive resin composition for forming a cladding part.

図4(l)及び(l’)に示すように、クラッド部分形成用ポジ型感光性樹脂組成物の層2上に、スリット幅 μm、スリット長 μmのフォトマスク(パターンマスク)4を設置し、光路変換ミラー面9の上部のクラッド部分形成用ポジ型感光性樹脂の層2に超高圧水銀灯により70mJ/cm2(波長365nm露光換算)の紫外線5を照射して現像液に対する溶解性を向上させた後、現像液である液温23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に、70秒浸漬することにより露光部分を除去して、図4(m)及び(m’)に示すように、光路変換ミラー面9の上部に光路となる空洞部分を形成した。残ったクラッド部分形成用ポジ型感光性樹脂の層2を、図4(n)及び(n’)に示すように、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線5を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させることにより、コア部分8上にクラッド部分3(上部クラッド層)を形成した。 As shown in FIGS. 4 (l) and (l ′), a photomask (pattern mask) 4 having a slit width of μm and a slit length of μm is placed on the layer 2 of the positive photosensitive resin composition for forming a cladding part. The positive photosensitive resin layer 2 for forming the cladding portion on the upper part of the optical path conversion mirror surface 9 is irradiated with ultraviolet rays 5 of 70 mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultrahigh pressure mercury lamp to improve the solubility in the developer. After that, the exposed portion was removed by immersing in a 2.38 mass% tetramethylammonium hydroxide aqueous solution having a liquid temperature of 23 ° C. as a developing solution for 70 seconds, as shown in FIGS. 4 (m) and (m ′). As shown, a hollow portion serving as an optical path was formed above the optical path conversion mirror surface 9. As shown in FIGS. 4 (n) and (n ′), the remaining layer 2 of the positive-type photosensitive resin for forming the cladding portion is irradiated with ultraviolet rays 5 of 200 mJ / cm 2 (wavelength 365 nm equivalent) by an ultrahigh pressure mercury lamp. After that, the clad portion 3 (upper clad layer) was formed on the core portion 8 by curing by performing a heat treatment at 150 ° C. for 60 minutes in an air atmosphere.

図4(o)及び(o’)に示すように、上記空洞部分に、上記で得られたコア部分形成用ネガ型感光性樹脂組成物を、乾燥後に、上記空洞部分が完全に埋まるようにスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、図3(h)及び(h’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7を形成した。
図4(p)及び(p’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7を、超高圧水銀灯により mJ/cm2(波長365nm露光換算)の紫外線5を照射して硬化させて、上記空洞部分にコア部分8を形成させて、光路変換機能を有する光導波路を完成した。
As shown in FIGS. 4 (o) and (o ′), the core part-forming negative photosensitive resin composition obtained above is filled in the cavity part so that the cavity part is completely filled after drying. After coating by spin coating, the solvent is volatilized and further dried by heating at 80 ° C. for 2 minutes to completely remove the solvent in the layer, and as shown in FIGS. 3 (h) and (h ′), the core portion is formed. A layer 7 of the negative photosensitive resin composition for use was formed.
As shown in FIGS. 4 (p) and (p ′), the layer 7 of the negative photosensitive resin composition for forming the core part is irradiated with ultraviolet rays 5 of mJ / cm 2 (wavelength 365 nm exposure conversion) with an ultrahigh pressure mercury lamp. Then, the core portion 8 was formed in the hollow portion and cured to complete an optical waveguide having an optical path conversion function.

得られた光導波路は、下部クラッド層の厚さ30μm、上部クラッド層の厚さ60μm、コア部の厚さ30μm、コア部の幅30μm、2つの光路変換面間の長さ10mm、導波路間間隔250μmの光変換部を有していた。   The obtained optical waveguide has a lower cladding layer thickness of 30 μm, an upper cladding layer thickness of 60 μm, a core portion thickness of 30 μm, a core portion width of 30 μm, a length between two optical path conversion surfaces of 10 mm, and between the waveguides. It had light conversion parts with an interval of 250 μm.

〔挿入損失測定〕
本発明の製造方法により得られた光導波路の光の挿入損失測定を評価するために、図5(A)に示すように光を挿入した場合の光の挿入損失を測定した。挿入損失測定はJPCA規格の「高分子光導波路の試験方法(JPCA-4PE02-05-1S-2008)」の挿入損失の測定方法に準拠した。なお、駿河精機社製の調芯機を用い、測定用光源としては、0.85μmのLED光源(アンリツ社製、型式:Stabirized Light Sоurce MG−93B)を使用した。50GIマルチモードファイバーで試験片の一方の端面(入射端)から光を入射し、試験片の他方の端面(出射端)から出射した光を200PCFファイバーで受光し、ファイバーで受けた光を光検出器(アンリツ社製、型式MU931422A)で計測した。測定の際、入射端、出射端にそれぞれ屈折率整合剤を使用した。
本発明の製造方法により得られた10本の光導波路の挿入損失の平均は3.5dBであり、優れた光路変換機能を有することが確認できた。
(Insertion loss measurement)
In order to evaluate the light insertion loss measurement of the optical waveguide obtained by the manufacturing method of the present invention, the light insertion loss was measured when light was inserted as shown in FIG. The insertion loss measurement conformed to the insertion loss measurement method of “Test method for polymer optical waveguide (JPCA-4PE02-05-1S-2008)” of the JPCA standard. In addition, an aligning machine manufactured by Suruga Seiki Co., Ltd. was used, and a 0.85 μm LED light source (manufactured by Anritsu, model: Stabilized Light Source MG-93B) was used as a measurement light source. Light is incident from one end face (incident end) of the test piece using a 50GI multimode fiber, light emitted from the other end face (exit end) of the test piece is received by the 200 PCF fiber, and light received by the fiber is detected. Measured with an instrument (manufactured by Anritsu, model MU931422A). In the measurement, a refractive index matching agent was used for each of the incident end and the exit end.
The average insertion loss of 10 optical waveguides obtained by the production method of the present invention was 3.5 dB, and it was confirmed that the optical waveguide had an excellent optical path conversion function.

1 基板
2 クラッド部分形成用ポジ型感光性樹脂の層
3 クラッド部分
4 パターンマスク
5 紫外線
6 露光により現像液への溶解性が向上したクラッド部分形成用ポジ型感光性樹脂の層
7 コア部分形成用ネガ型感光性樹脂の層
8 コア部分
9 光路変換ミラー面(傾斜面)
10 光の進路
DESCRIPTION OF SYMBOLS 1 Substrate 2 Positive photosensitive resin layer 3 for forming a clad part 3 Cladding part 4 Pattern mask 5 Ultraviolet ray 6 Positive photosensitive resin layer 7 for forming a clad part whose solubility in a developer is improved by exposure 7 For forming a core part Negative photosensitive resin layer 8 Core portion 9 Optical path conversion mirror surface (inclined surface)
10 Path of light

Claims (3)

クラッド部分をポジ型感光性樹脂により形成する光導波路の製造方法において、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とすることを特徴とする、光路変換機能を有する光導波路の製造方法(但し、上記膜減りは、ポジ型感光性樹脂の現像工程おいて、非露光部分が現像液に長時間接触することにより、非露光部分の溶解が起こる現象をいう。)。   In a method of manufacturing an optical waveguide in which a clad portion is formed of a positive photosensitive resin, an inclined surface formed by film reduction in the developing process of the positive photosensitive resin is used as an optical path conversion mirror surface. Manufacturing method of optical waveguide having conversion function (however, the above film reduction is a phenomenon in which the non-exposed portion is dissolved by the non-exposed portion being in contact with the developer for a long time in the development process of the positive photosensitive resin. ). 上記ポジ型感光性樹脂として、ポリシロキサン系のポジ型感光性樹脂を用いる請求項1に記載の、光路変換機能を有する光導波路の製造方法。   The method for producing an optical waveguide having an optical path conversion function according to claim 1, wherein a polysiloxane-based positive photosensitive resin is used as the positive photosensitive resin. 上記クラッド部分により取り囲まれたコア部分をネガ型感光性樹脂により形成する請求項1又は2に記載の、光路変換機能を有する光導波路の製造方法。   The method for manufacturing an optical waveguide having an optical path conversion function according to claim 1 or 2, wherein the core portion surrounded by the cladding portion is formed of a negative photosensitive resin.
JP2011104851A 2011-05-10 2011-05-10 Manufacturing method of optical waveguide having optical path conversion function Expired - Fee Related JP5749068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104851A JP5749068B2 (en) 2011-05-10 2011-05-10 Manufacturing method of optical waveguide having optical path conversion function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104851A JP5749068B2 (en) 2011-05-10 2011-05-10 Manufacturing method of optical waveguide having optical path conversion function

Publications (2)

Publication Number Publication Date
JP2012237778A JP2012237778A (en) 2012-12-06
JP5749068B2 true JP5749068B2 (en) 2015-07-15

Family

ID=47460747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104851A Expired - Fee Related JP5749068B2 (en) 2011-05-10 2011-05-10 Manufacturing method of optical waveguide having optical path conversion function

Country Status (1)

Country Link
JP (1) JP5749068B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201319170A (en) 2011-05-25 2013-05-16 Dow Corning Epoxy-functional radiation-curable composition containing an epoxy-functional siloxane oligomer for enhanced film retention and adhesion during solvent development

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534512A (en) * 1991-01-08 1993-02-12 Nec Corp Formation of grating pattern
TWI300516B (en) * 2001-07-24 2008-09-01 Jsr Corp
JP2005017429A (en) * 2003-06-24 2005-01-20 Nitto Denko Corp Manufacturing method of optical waveguide
JP2005128319A (en) * 2003-10-24 2005-05-19 Sharp Corp Optical functional element and its manufacturing method
JP4784283B2 (en) * 2004-11-26 2011-10-05 東レ株式会社 Positive photosensitive siloxane composition, cured film formed therefrom, and device having cured film
US7206472B2 (en) * 2005-03-15 2007-04-17 Fujitsu Ltd. Optical backplanes with integrated optical couplers and methods of making the same
JP2007041122A (en) * 2005-08-01 2007-02-15 Hitachi Cable Ltd Method of manufacturing polymer optical waveguide, polymer optical waveguide, and optical module using the same

Also Published As

Publication number Publication date
JP2012237778A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
KR101258036B1 (en) Optical waveguide and the production method thereof
KR101804344B1 (en) Epoxy-functional radiation-curable composition containing an epoxy-functional siloxane oligomer
TWI518391B (en) Methods for fabricating flexible waveguides using alkyl-functional silsesquioxane resins and planar optical waveguide assembly prepared therefrom
TWI619762B (en) A photosensitive epoxy resin composition for an optical waveguide, a curable thin film for forming an optical waveguide, and an optical waveguide and light using the same. Hybrid flexible printed wiring board for electric transmission, and method for manufacturing the same
JP2006053556A (en) Method of forming device having optical functionality
TWI653505B (en) Photocurable resin composition for optical waveguide, photocurable thin film for forming optical waveguide core layer, optical waveguide using the same, and hybrid flexible printed wiring board for photoelectric transmission
TWI691785B (en) Photosensitive resin composition for optical waveguide and photocurable film for forming optical waveguide core layer, optical waveguide using the same, and hybrid flexible printed wiring board for photoelectric transmission
JP5749068B2 (en) Manufacturing method of optical waveguide having optical path conversion function
TWI653286B (en) Photocurable resin composition for optical waveguide, photocurable thin film for forming optical waveguide core layer, optical waveguide using the same, and hybrid flexible printed wiring board for photoelectric transmission
TW201837078A (en) Polymer optical waveguide
JP7173852B2 (en) Epoxy resin photosensitive composition for optical waveguide, photosensitive film for optical waveguide, optical waveguide, and opto-electric hybrid board
US7995895B2 (en) Resin composition for optical waveguide, and optical waveguide produced by employing the resin composition
JP3903940B2 (en) Optical waveguide chip and method of manufacturing optical component including the same
US20100329616A1 (en) Photosensitive resin composition, method for control of refractive index, and optical waveguide and optical component using the same
TWI678567B (en) Photosensitive resin composition for optical waveguide, photocurable film for forming optical waveguide core layer, and hybrid flexible printed wiring board for optical waveguide and photoelectric transmission using the same
KR20050100592A (en) Method for producing a pattern formation mold
JP2005126497A (en) Photosensitive resin composition for optical waveguides and optical waveguide
TWI842791B (en) Epoxy resin photosensitive composition for optical waveguide, photosensitive film for optical waveguide, optical waveguide, and optoelectronic hybrid substrate
JP2011221226A (en) Method for manufacturing light guide
JP4458328B2 (en) Optical waveguide manufacturing method
JP2009198959A (en) Optical material, optical waveguide, optical component, and optoelectric hybrid substrate
JP2005114971A (en) Manufacturing method of planar optical waveguide, planar optical waveguide and electro-optical composite wiring substrate
KR20060048906A (en) Methods of forming devices having optical functionality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees