JP5743686B2 - Biogas purification equipment - Google Patents

Biogas purification equipment Download PDF

Info

Publication number
JP5743686B2
JP5743686B2 JP2011100063A JP2011100063A JP5743686B2 JP 5743686 B2 JP5743686 B2 JP 5743686B2 JP 2011100063 A JP2011100063 A JP 2011100063A JP 2011100063 A JP2011100063 A JP 2011100063A JP 5743686 B2 JP5743686 B2 JP 5743686B2
Authority
JP
Japan
Prior art keywords
biogas
digestive
liquid
digestive fluid
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011100063A
Other languages
Japanese (ja)
Other versions
JP2012229382A (en
Inventor
憲二 満留
憲二 満留
守生 益崎
守生 益崎
森 一樹
一樹 森
泰生 松島
泰生 松島
佐藤 大士
大士 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen Environment Engineering Corp
Original Assignee
Mitsui Zosen Environment Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen Environment Engineering Corp filed Critical Mitsui Zosen Environment Engineering Corp
Priority to JP2011100063A priority Critical patent/JP5743686B2/en
Publication of JP2012229382A publication Critical patent/JP2012229382A/en
Application granted granted Critical
Publication of JP5743686B2 publication Critical patent/JP5743686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明はバイオガス精製装置に関し、詳しくは、メタン発酵後の消化液中にバイオガスを散気して精製するバイオガス精製装置に関する。   The present invention relates to a biogas purification apparatus, and more particularly, to a biogas purification apparatus that diffuses and purifies biogas in digested liquid after methane fermentation.

近年のエネルギー問題と資源循環型社会への志向から、家畜糞尿や、地域から生み出される廃棄物等を発酵して、バイオガスとして利用可能なメタンを生成するメタン発酵が注目されている。   In recent years, attention has been focused on methane fermentation that produces methane that can be used as biogas by fermenting livestock manure and wastes generated from the region, in view of energy issues and a resource recycling society.

バイオガスは、不純物として二酸化炭素や発酵原料中の含硫黄成分に由来する硫化水素等を含む。二酸化炭素は不燃ガスであり、バイオガス中での濃度が上昇すると、相対的に燃料となるメタンの濃度が低下することになる。この結果、バイオガス中のメタン濃度は、通常55〜65%の範囲で変化し、時としてガスエンジンが失活する、あるいは、ガスボイラーが着火しない等の問題を生じ、燃料として信頼性を欠く。また、硫化水素はエネルギー変換装置内の駆動部で硫黄分となって析出し、エネルギー変換効率を低下させる恐れがある。   Biogas contains hydrogen sulfide derived from carbon dioxide and sulfur-containing components in the fermentation raw material as impurities. Carbon dioxide is an incombustible gas, and when the concentration in biogas increases, the concentration of methane, which is a relative fuel, decreases. As a result, the methane concentration in the biogas usually varies in the range of 55 to 65%, sometimes causing problems such as deactivation of the gas engine or non-ignition of the gas boiler, and lack of reliability as a fuel. . In addition, hydrogen sulfide is precipitated as a sulfur component in the drive unit in the energy conversion device, and there is a risk of reducing energy conversion efficiency.

従来、バイオガス中のメタン濃度を上昇させる技術として、特許文献1には、水や排水等の吸収液中にバイオガスをマイクロバブルやナノバブルとして散気して二酸化炭素や硫化水素を溶解吸収させて除去し、メタンを高純度に含有する精製バイオガスを得る技術が開示されている。   Conventionally, as a technique for increasing the concentration of methane in biogas, Patent Document 1 discloses that biogas is diffused as microbubbles and nanobubbles in an absorbing solution such as water and wastewater to dissolve and absorb carbon dioxide and hydrogen sulfide. A technique for obtaining purified biogas containing high purity methane is disclosed.

しかし、吸収液中への二酸化炭素や硫化水素の溶解性は早期に低下してしまうので、バイオガスの精製効率を保持するためには、吸収液を高速で置換しなければならず、ポンプ動力のコストが嵩む問題や、廃液量が増大して廃液処理のコストが嵩む問題が生じた。さらに、二酸化炭素や硫化水素の溶解性の変動により、精製バイオガス中のメタン濃度が変動し易い問題を生じた。   However, since the solubility of carbon dioxide and hydrogen sulfide in the absorbing solution decreases early, in order to maintain the biogas purification efficiency, the absorbing solution must be replaced at high speed, and the pump power There is a problem that the cost of the waste liquid increases and a problem that the amount of waste liquid increases and the cost of waste liquid treatment increases. Furthermore, due to fluctuations in the solubility of carbon dioxide and hydrogen sulfide, there was a problem that the methane concentration in the purified biogas was likely to fluctuate.

一方、特許文献2には、生物脱硫塔内において、あらかじめ二酸化炭素を加熱放散させた発酵液を上部から散液すると共に、バイオガスを下部から導入して、酸素が供給される状態で気液接触させることにより、バイオガス中の二酸化炭素を発酵液中に溶解吸収させ、且つ、好気性の硫黄酸化細菌による生物脱硫によって硫化水素を酸化させて硫酸として除去する技術が開示されている。   On the other hand, Patent Document 2 discloses that in a biological desulfurization tower, a fermentation liquid in which carbon dioxide has been heated and diffused in advance is sprinkled from the top, and biogas is introduced from the bottom to supply gas and liquid in a state where oxygen is supplied. A technique is disclosed in which carbon dioxide in biogas is dissolved and absorbed in a fermentation broth by contacting it, and hydrogen sulfide is oxidized and removed as sulfuric acid by biological desulfurization by an aerobic sulfur-oxidizing bacterium.

かかる特許文献2の技術は、バイオガスから二酸化炭素と硫化水素の除去を効率的に行うことを実現した。   The technology of Patent Document 2 has realized efficient removal of carbon dioxide and hydrogen sulfide from biogas.

しかるに、生物脱硫での酸素供給は、通常空気の導入によって行われており、空気中の窒素や過剰分の酸素がバイオガス中のメタン濃度を希釈してしまうことになる。バイオガス中の硫化水素濃度は一定でないため、希釈を防止するためには、変動する硫化水素濃度に合わせて必要最低限の空気を供給することが望ましいが、このような制御は困難であることから、更なる改良の余地が残されている。   However, oxygen supply in biological desulfurization is usually performed by introducing air, and nitrogen in the air and excess oxygen dilute the methane concentration in the biogas. Since the hydrogen sulfide concentration in biogas is not constant, it is desirable to supply the minimum amount of air according to the varying hydrogen sulfide concentration to prevent dilution, but such control is difficult. Therefore, there is room for further improvement.

特開2008−255209号公報JP 2008-255209 A 特開2008−13649号公報JP 2008-13649 A

特許文献1に記載の技術では、吸収液中への二酸化炭素や硫化水素の溶解性が早期に低下する問題があったが、この理由について、本発明者は以下のように考えている。   In the technique described in Patent Document 1, there is a problem that the solubility of carbon dioxide and hydrogen sulfide in the absorbing solution is lowered at an early stage. The inventor considers the reason as follows.

図4は、二酸化炭素(炭酸)の存在形態のpH依存性を示している。   FIG. 4 shows the pH dependence of the presence form of carbon dioxide (carbonic acid).

pH8以上では、溶解して、炭酸水素イオン(HCO )及び炭酸イオン(CO 2−)の状態となり、遊離二酸化炭素(ガス)はほぼ存在しないが、吸収液のpHが低下する程、遊離二酸化炭素(ガス)が安定化し、炭酸水素イオン(HCO )及び炭酸イオン(CO 2−)が減少して、pH4では、遊離二酸化炭素が100%を占める。このように、二酸化炭素の吸収液中への溶解性は、吸収液のpHに大きく依存する。 Above pH 8, it dissolves and becomes a state of hydrogen carbonate ions (HCO 3 ) and carbonate ions (CO 3 2− ), and there is almost no free carbon dioxide (gas), but as the pH of the absorbing solution decreases, Free carbon dioxide (gas) is stabilized, bicarbonate ions (HCO 3 ) and carbonate ions (CO 3 2− ) are reduced, and at pH 4, free carbon dioxide accounts for 100%. Thus, the solubility of carbon dioxide in the absorption liquid greatly depends on the pH of the absorption liquid.

硫化水素についても、吸収液中において、水硫化物イオン(HS)と水素イオン(H)に電離して弱い酸性を示すため、二酸化炭素と同様の挙動を示す。 Since hydrogen sulfide is ionized into hydrosulfide ions (HS ) and hydrogen ions (H + ) in the absorbing solution and shows weak acidity, it exhibits the same behavior as carbon dioxide.

したがって、特許文献1に記載の技術では、吸収液が二酸化炭素及び硫化水素を吸収することによりpHが低下し易いため、二酸化炭素及び硫化水素の溶解性が早期に著しく低下する。   Therefore, in the technique described in Patent Document 1, the pH of the absorbing liquid is likely to decrease due to absorption of carbon dioxide and hydrogen sulfide, so that the solubility of carbon dioxide and hydrogen sulfide is significantly reduced early.

このような従来技術の分析を踏まえて、本発明者は、吸収液としてメタン発酵後の消化液を用いることを検討した。   Based on such analysis of the prior art, the present inventor has studied the use of digested liquid after methane fermentation as the absorbing liquid.

消化液中には、アンモニアの他に、塩化アンモニウムが含まれる。したがって、弱塩基であるアンモニアと、その塩である塩化アンモニウムが共存することにより、アンモニア−塩化アンモニウム系の緩衝液となる。   The digestive fluid contains ammonium chloride in addition to ammonia. Therefore, when ammonia, which is a weak base, and ammonium chloride, which is a salt thereof, coexist, an ammonia-ammonium chloride buffer solution is obtained.

この外にも、他の消化液成分、例えば酢酸等の有機酸等の弱酸とその塩からなる系など、数種類のpH緩衝作用発現系が関与しているので、高い緩衝性を持つ。   In addition to this, since several types of pH buffer action expression systems such as a system composed of other digestive fluid components, for example, a weak acid such as an organic acid such as acetic acid and a salt thereof are involved, it has a high buffering property.

さらに、消化液のpHは、アンモニア態窒素等の存在により、好ましくは7〜9、より好ましくは8〜9に高められており、この高pH状態が、上述した緩衝液としての性質によって、強力に保持されているので、かかる消化液を、二酸化炭素及び硫化水素を溶解して除去する吸収液として用いることによって、二酸化炭素及び硫化水素に対する高い溶解性を長期に渡って持続することが可能となると考えたからである。   Furthermore, the pH of the digestive fluid is preferably increased to 7-9, more preferably 8-9, due to the presence of ammonia nitrogen and the like, and this high pH state is strong due to the above-mentioned properties as a buffer solution. Therefore, it is possible to maintain a high solubility in carbon dioxide and hydrogen sulfide over a long period of time by using such digestive fluid as an absorbing solution for dissolving and removing carbon dioxide and hydrogen sulfide. This is because I thought.

しかしながら、消化液は、高濃度のSSを含有しているため、従来のようにマイクロバブルやナノバブルとしてバイオガスを散気した場合は、バイオガス精製槽内においてSSが沈殿して散気口が閉鎖されたり、気泡の消化液中への拡散がSSにより阻害されたりすることにより、気泡と消化液との気液接触が不安定化する問題が生じる。   However, since digestive fluid contains high-concentration SS, when biogas is diffused as microbubbles or nanobubbles as in the past, SS precipitates in the biogas refining tank and the diffuser vent The problem that the gas-liquid contact between the bubbles and the digestive fluid becomes unstable due to the closure or the diffusion of the bubbles into the digestive fluid is inhibited by the SS.

また、バイオガス精製槽と、該バイオガス精製槽に供給される消化液を貯留する消化液貯留槽との間で消化液の循環を行った場合、気泡に捕捉されたSSがバイオガス精製槽内に滞留して、該バイオガス精製槽内においてSSが濃縮されてしまい、上述した気液接触が更に不安定化する。   Further, when the digestive fluid is circulated between the biogas purification tank and the digestive fluid storage tank that stores the digestive fluid supplied to the biogas purification tank, the SS trapped in the bubbles is the biogas purification tank. It stays inside and SS is concentrated in the biogas refining tank, and the above-mentioned gas-liquid contact is further destabilized.

気液接触が不安定化すると、精製バイオガス中のメタン濃度が経時的に不安定化する深刻な問題を生じる。   When the gas-liquid contact becomes unstable, a serious problem occurs that the methane concentration in the purified biogas becomes unstable over time.

さらに、エネルギー的な点から見ると、消化液貯留槽とバイオガス精製槽との間で消化液の循環を行う構成を有するバイオガス精製装置では、循環のための送液ポンプによって消費されるエネルギーが大きく、装置の実用化の観点や、環境保護の観点から重要な課題になっている。   Furthermore, from the point of view of energy, in the biogas purification apparatus having a configuration in which the digestive juice is circulated between the digestive juice storage tank and the biogas purification tank, the energy consumed by the liquid feed pump for circulation is used. However, it is an important issue from the viewpoint of practical application of the apparatus and from the viewpoint of environmental protection.

そこで、本発明は、精製バイオガス中のメタン濃度の経時安定性に優れ、省エネルギー化を実現できるバイオガス精製装置を提供することを課題とする。   Then, this invention makes it a subject to provide the biogas refinement | purification apparatus which is excellent in temporal stability of the methane density | concentration in refinement | purification biogas, and can implement | achieve energy saving.

また、本発明の他の課題は、以下の記載によって明らかになる。   Other problems of the present invention will become apparent from the following description.

上記課題は以下の各発明によって解決される。   The above problems are solved by the following inventions.

請求項1記載の発明は、メタン発酵槽からのメタン発酵後の消化液を貯留する消化液貯留槽本体と蓋体とからなり、該本体の下部に消化液を排出する消化液排出口を備え、該本体の上部にバイオガス精製後の消化液を流入する消化液流入口を備えた消化液貯留槽と、
メタン発酵後の消化液を貯留するバイオガス精製槽本体と、該本体の上部を密封する蓋体とからなり、該本体の下部にメタン発酵後の消化液を流入する消化液流入口を備え、該本体の上部にバイオガス精製後の消化液を排出する消化液排出口を備え、該本体の下部にメタン発酵槽から送られるメタンガス、二酸化炭素ガス、硫化水素ガスを少なくとも含むバイオガスを導入するバイオガス導入口を備え、該本体内部に貯留された消化液の液面よりも上方に精製後のバイオガスを取り出すバイオガス取出口を備え、該本体内部の下方に、前記バイオガス導入口から導入されたバイオガスを気泡化して消化液中に散気する気泡化手段を備えたバイオガス精製槽とからなり、
前記バイオガス精製槽が備える前記消化液流入口と、前記消化液貯留槽が備える前記消化液排出口とが供給配管により連結されると共に、前記バイオガス精製槽が備える前記消化液排出口と、前記消化液貯留槽が備える前記消化液流入口とが返送配管により連結されており、
前記消化液貯留槽と前記バイオガス精製槽との間で消化液を循環させてバイオガスの精製を行うバイオガス精製装置であって、
前記気泡化手段により発生する気泡の径は、300μm〜3mmの範囲であり、
前記バイオガス精製槽が備える前記消化液流入口及び前記消化液排出口は共に前記バイオガス精製槽本体内部に貯留された消化液の液面よりも下方に配置され、且つ、該消化液流入口は該本体の下部に配置され、該消化液排出口は該本体の上部に配置されており、
前記消化液貯留槽が備える前記消化液流入口及び前記消化液排出口は共に前記消化液貯留槽本体内部に貯留された消化液の液面よりも下方に配置され、且つ、該消化液流入口は該本体の上部に配置され、該消化液排出口は該本体の下部に配置されており、
前記バイオガス精製槽本体内部で気泡を含有した消化液と、前記消化液貯留槽本体内部から前記供給配管を介して新たに供給される気泡を含有しない消化液との間に生じる密度差により、前記消化液貯留槽と前記バイオガス精製槽との間に消化液循環力を生成することを特徴とするバイオガス精製装置である。
Invention of Claim 1 consists of a digestive-solution storage tank main body and a cover body which store the digested liquid after the methane fermentation from a methane fermenter, and is equipped with the digestive-solution discharge port which discharges digestive juice in the lower part of this main body. , A digestive fluid storage tank provided with a digestive fluid inlet into which the digested fluid after biogas purification flows into the upper part of the main body,
It consists of a biogas refining tank main body that stores the digested liquid after methane fermentation, and a lid that seals the upper part of the main body, and is provided with a digestive liquid inlet for flowing the digested liquid after methane fermentation into the lower part of the main body, The upper part of the main body is provided with a digestion liquid outlet for discharging the digested liquid after biogas purification, and a biogas containing at least methane gas, carbon dioxide gas, and hydrogen sulfide gas sent from the methane fermentation tank is introduced into the lower part of the main body. Provided with a biogas inlet, provided with a biogas outlet for taking out the purified biogas above the level of the digestive liquid stored in the main body, and from the biogas inlet under the main body It consists of a biogas refining tank equipped with a bubble forming means for bubbling the introduced biogas into the digestive juice,
The digestive fluid inlet provided in the biogas purification tank and the digestive fluid outlet provided in the digestive liquid storage tank are connected by a supply pipe, and the digestive fluid outlet provided in the biogas purification tank, The digestive fluid inlet provided in the digestive fluid storage tank is connected by a return pipe,
A biogas purification apparatus for purifying biogas by circulating a digestion liquid between the digestion liquid storage tank and the biogas purification tank,
The bubble diameter generated by the bubble forming means is in the range of 300 μm to 3 mm,
Both the digestive fluid inlet and the digestive fluid outlet provided in the biogas purification tank are disposed below the liquid level of digestive liquid stored in the biogas purification tank body, and the digestive fluid inlet Is disposed at the bottom of the body, the digestive juice outlet is disposed at the top of the body,
Both the digestive fluid inlet and the digestive fluid outlet provided in the digestive fluid storage tank are disposed below the level of the digestive fluid stored in the digestive fluid reservoir main body, and the digestive fluid inlet Is disposed at the top of the body, the digestive juice outlet is disposed at the bottom of the body,
Due to the density difference generated between the digestive liquid containing bubbles inside the biogas purification tank main body and the digestive liquid not containing bubbles newly supplied from the inside of the digestive liquid storage tank main body through the supply pipe, It is a biogas purification apparatus characterized by generating a digestive fluid circulation force between the digestive juice storage tank and the biogas purification tank.

請求項2記載の発明は、前記バイオガス精製槽本体内部の消化液のSS濃度は、5000〜40000mg/Lの範囲であることを特徴とする請求項1記載のバイオガス精製装置である。   The invention according to claim 2 is the biogas purification apparatus according to claim 1, wherein the SS concentration of the digestive liquid inside the biogas purification tank main body is in the range of 5000 to 40000 mg / L.

請求項3記載の発明は、前記バイオガス精製槽本体内部への酸素供給が断たれていることを特徴とする前記1又は2記載のバイオガス精製装置。 According to a third aspect of the invention, the biogas purification device of said 1 or 2, wherein the biogas purification tank oxygen supply to the internal body is dripping off.

請求項記載の発明は、前記消化液循環力のみによって、前記消化液貯留槽と前記バイオガス精製槽との間で消化液を循環することを特徴とする前記1〜3の何れかに記載のバイオガス精製装置。 Fourth aspect of the present invention, only by the digestive juices circulation force, the one of the 1 to 3, wherein that you circulate the digestive juices between said digested liquid reservoir and the biogas purification tank The biogas purification apparatus as described.

本発明によれば、精製バイオガス中のメタン濃度の経時安定性に優れ、省エネルギー化を実現できるバイオガス精製装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the biogas refinement | purification apparatus which is excellent in temporal stability of the methane density | concentration in refinement | purification biogas, and can implement | achieve energy saving can be provided.

本発明に係るバイオガス精製装置を備えたバイオガス製造システムの一例を示す概略図Schematic which shows an example of the biogas manufacturing system provided with the biogas purification apparatus which concerns on this invention 消化液の循環を行う送液ポンプを設けない態様を示す概略図Schematic showing an embodiment without a liquid feed pump that circulates digestive juice 消化液の循環を行う送液ポンプをバイパスライン上に設ける態様を示す概略図Schematic showing a mode in which a liquid feed pump for circulating digestive fluid is provided on the bypass line 二酸化炭素(炭酸)の存在形態のpH依存性を示す図Diagram showing the pH dependence of the existence form of carbon dioxide (carbonic acid)

以下、本発明を実施するための形態を、図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明に係るバイオガス精製装置を備えたバイオガス製造システムの一例を示す概略図である。   FIG. 1 is a schematic diagram illustrating an example of a biogas production system including a biogas purification apparatus according to the present invention.

図1において、1はメタン発酵槽、2はバイオガス精製装置である。バイオガス精製装置2は、消化液貯留槽3及びバイオガス精製槽4から構成されている。   In FIG. 1, 1 is a methane fermenter and 2 is a biogas purification apparatus. The biogas purification device 2 includes a digestive juice storage tank 3 and a biogas purification tank 4.

メタン発酵槽1は、有機性廃棄物(バイオマス)をメタン発酵するものであり、バイオマスとしては、例えば生ごみ、家畜糞尿、下水処理汚泥、浄化槽汚泥などを挙げることができる。   The methane fermentation tank 1 performs methane fermentation of organic waste (biomass), and examples of biomass include food waste, livestock manure, sewage treatment sludge, and septic tank sludge.

メタン発酵槽1にバイオマスが投入され、嫌気的条件の下でメタン発酵が行われる。メタン発酵により発生したバイオガスは、メタンガス及び不純物である二酸化炭素及び硫化水素を少なくとも含む。   Biomass is put into the methane fermentation tank 1 and methane fermentation is performed under anaerobic conditions. The biogas generated by methane fermentation contains at least methane gas and carbon dioxide and hydrogen sulfide which are impurities.

また、メタン発酵槽1におけるメタン発酵後の消化液は、高濃度のSSを含有しているが、吸収液として用いる場合には、SS濃度が5000〜40000mg/Lの範囲が好ましく、より好ましくは7000〜30000mg/Lの範囲である。   Moreover, although the digestive liquid after methane fermentation in the methane fermenter 1 contains high concentration SS, when using as an absorption liquid, the range whose SS density | concentration is 5000-40000 mg / L is preferable, More preferably It is the range of 7000-30000 mg / L.

メタン発酵後の消化液は、送液ポンプ11により、送液管12を介して、消化液貯留槽3に導入され、一方、メタン発酵槽1から発生したバイオガスは、ガスバック15に一時貯留された後、ブロワ13により、送風管14を介して、バイオガス精製槽4に導入される。   The digested liquid after methane fermentation is introduced into the digested liquid storage tank 3 by the liquid supply pump 11 via the liquid supply pipe 12, while the biogas generated from the methane fermentation tank 1 is temporarily stored in the gas bag 15. Then, it is introduced into the biogas purification tank 4 by the blower 13 through the blower pipe 14.

消化液貯留槽3は、メタン発酵槽1からのメタン発酵後の消化液を貯留する消化液貯留槽本体30aと蓋体30bとからなる。   The digestive fluid storage tank 3 includes a digestive fluid storage tank main body 30a and a lid 30b for storing the digested liquid after methane fermentation from the methane fermentation tank 1.

図示の例において、消化液貯留槽3は、消化液貯留槽本体30aの下部に消化液を排出する消化液排出口31を備え、消化液貯留槽本体30aの上部にバイオガス精製槽4におけるバイオガス精製後の消化液を流入する消化液流入口32を備える。   In the illustrated example, the digestive fluid storage tank 3 includes a digestive fluid discharge port 31 for discharging the digestive fluid at the lower part of the digestive fluid storage tank body 30a, and the biogas in the biogas purification tank 4 at the upper part of the digestive fluid storage tank body 30a. A digestive fluid inlet 32 into which digested fluid after gas purification flows is provided.

一方、バイオガス精製槽4は、メタン発酵後の消化液を貯留するバイオガス精製槽本体40aと、該バイオガス精製槽本体40aの上部を密封する蓋体40bとからなる。   On the other hand, the biogas purification tank 4 includes a biogas purification tank body 40a for storing digested liquid after methane fermentation, and a lid body 40b for sealing the upper part of the biogas purification tank body 40a.

図示の例において、バイオガス精製槽4は、バイオガス精製槽本体40aの下部に消化液貯留槽3からのメタン発酵後の消化液を流入する消化液流入口41を備え、バイオガス精製槽本体40aの上部にバイオガス精製後の消化液を排出する消化液排出口42を備える。   In the illustrated example, the biogas refining tank 4 includes a digestive fluid inlet 41 through which the digested liquid after methane fermentation from the digested liquid storage tank 3 flows into the lower part of the biogas refining tank main body 40a, and the biogas refining tank main body The upper part of 40a is equipped with the digestive-solution discharge port 42 which exhausts the digested liquid after biogas refinement | purification.

バイオガス精製槽4が備える消化液流入口41と、消化液貯留槽3が備える消化液排出口31とは供給配管51により連結されている。また、バイオガス精製槽4が備える消化液排出口42と、消化液貯留槽3が備える消化液流入口32とは返送配管52により連結されている。   The digestive fluid inlet 41 provided in the biogas purification tank 4 and the digestive fluid outlet 31 provided in the digested liquid storage tank 3 are connected by a supply pipe 51. In addition, the digestive juice outlet 42 provided in the biogas purification tank 4 and the digestive fluid inlet 32 provided in the digested liquid storage tank 3 are connected by a return pipe 52.

図示の例において、供給配管51には送液ポンプ50が設けられている。   In the illustrated example, the supply pipe 51 is provided with a liquid feed pump 50.

これにより、消化液貯留槽3とバイオガス精製槽4との間で、消化液貯留槽本体30a→消化液排出口31→供給配管51→消化液流入口41→バイオガス精製槽本体40a→消化液排出口42→返送配管52→消化液流入口32→消化液貯留槽本体30aの順で、消化液を循環させるようにしている。   Thereby, between the digestive fluid storage tank 3 and the biogas purification tank 4, the digestive fluid storage tank main body 30a → the digestive fluid discharge port 31 → the supply pipe 51 → the digestive fluid inlet 41 → the biogas purification tank main body 40a → the digestion. The digestive fluid is circulated in the order of the liquid discharge port 42 → the return pipe 52 → the digestive fluid inlet 32 → the digestive fluid storage tank body 30a.

バイオガス精製槽4は、バイオガス精製槽本体40aの下部にメタン発酵槽1から送られるメタンガス、二酸化炭素ガス、硫化水素ガスを少なくとも含むバイオガスを導入するバイオガス導入口43を備える。   The biogas refining tank 4 includes a biogas introduction port 43 for introducing biogas including at least methane gas, carbon dioxide gas, and hydrogen sulfide gas sent from the methane fermentation tank 1 to the lower portion of the biogas refining tank body 40a.

さらに、バイオガス精製槽本体40a内部の下方には、バイオガス導入口43から導入されたバイオガスを気泡化する気泡化手段43aが設けられている。   In addition, below the inside of the biogas refining tank main body 40a, an aeration means 43a that bubbles the biogas introduced from the biogas introduction port 43 is provided.

即ち、本発明では、気泡化手段43aにより、消化液中に気泡状のバイオガスを散気して気液接触させるようにしている。   That is, in the present invention, the bubbling means 43a diffuses the bubble-like biogas into the digested liquid so as to bring it into gas-liquid contact.

一方、バイオガス精製槽本体40a内部に貯留された消化液の液面よりも上方(ヘッドスペースH)には、精製後(気液接触後)のバイオガスを取り出すバイオガス取出口44が設けられている。   On the other hand, a biogas outlet 44 for taking out biogas after purification (after gas-liquid contact) is provided above the liquid level of the digested liquid stored in the biogas purification tank body 40a (headspace H). ing.

本発明において、上述した気泡化手段43aにより発生する気泡の径は、300μm〜3mmの範囲、好ましくは500μm〜2mm、より好ましくは800μm〜1500μmの範囲である。   In the present invention, the diameter of bubbles generated by the bubble forming means 43a is in the range of 300 μm to 3 mm, preferably 500 μm to 2 mm, more preferably 800 μm to 1500 μm.

気泡発生手段43aとしては、気泡径300μm〜3mmの気泡を発生可能であれば格別限定されず、細孔が形成されたプレートや膜フィルタ等を好ましく用いることができるが、中でもメンブレンディフューザが好適である。   The bubble generating means 43a is not particularly limited as long as it can generate bubbles having a bubble diameter of 300 μm to 3 mm, and a plate or a membrane filter in which pores are formed can be preferably used. Among them, a membrane diffuser is preferable. is there.

以上の構成を備える本発明のバイオガス精製装置2に、メタン発酵槽1からのバイオガスが導入されると、該バイオガスは、バイオガス精製槽本体40a内において気泡化手段43aによって消化液中に、300μm〜3mmの範囲、好ましくは500μm〜2mm、より好ましくは800μm〜1500μmの範囲の気泡として散気される。   When biogas from the methane fermentation tank 1 is introduced into the biogas purification apparatus 2 of the present invention having the above-described configuration, the biogas is contained in the digestion liquid by the aeration means 43a in the biogas purification tank body 40a. The air bubbles are diffused as bubbles in the range of 300 μm to 3 mm, preferably 500 μm to 2 mm, more preferably 800 μm to 1500 μm.

これにより、バイオガスと消化液とを気液接触させて、バイオガス中の二酸化炭素及び硫化水素を、バイオガス精製槽本体40a内の消化液中に溶解して除去する。   Thereby, the biogas and the digestive liquid are brought into gas-liquid contact, and the carbon dioxide and hydrogen sulfide in the biogas are dissolved and removed in the digestive liquid in the biogas refining tank body 40a.

一方、溶解度の小さいメタンガスは溶解されずにバイオガス精製槽本体40a内の消化液の液面からヘッドスペースHに脱気開放された後、バイオガス取出口44を介して精製バイオガスとして回収される。   On the other hand, methane gas having a low solubility is not dissolved but is degassed and released from the liquid level of the digested liquid in the biogas purification tank main body 40a to the headspace H, and then recovered as purified biogas via the biogas outlet 44. The

二酸化炭素と硫化水素を吸収した気液接触後の消化液は、返送配管52を介して、消化液貯留槽3に返送される。この返送に伴って、消化液貯留槽3から新たな消化液が供給配管51を介してバイオガス精製槽4に供給される。   The digested liquid after the gas-liquid contact that has absorbed carbon dioxide and hydrogen sulfide is returned to the digested liquid storage tank 3 via the return pipe 52. Along with this return, a new digestive fluid is supplied from the digestive fluid storage tank 3 to the biogas purification tank 4 via the supply pipe 51.

このようにして、消化液貯留槽3とバイオガス精製槽4との間で消化液を循環させてバイオガスの精製が行われる。   In this way, the digestion liquid is circulated between the digestion liquid storage tank 3 and the biogas purification tank 4 to purify the biogas.

バイオガス精製槽本体40a内の消化液のpHが所定値、好ましくはpH7以上に保たれるように、消化液貯留槽3とバイオガス精製槽4との間で消化液を循環させることが好ましい。   It is preferable to circulate the digestion liquid between the digestion liquid storage tank 3 and the biogas purification tank 4 so that the pH of the digestion liquid in the biogas purification tank body 40a is maintained at a predetermined value, preferably pH 7 or higher. .

上述したように、本発明では、従来用いられてきたマイクロバブルやナノバブルに分類される数10μm以下の気泡に比べて桁違いに大きい300μm〜3mmの気泡による気液接触が行われる。   As described above, in the present invention, gas-liquid contact is performed with 300 μm to 3 mm bubbles which are orders of magnitude larger than conventionally used bubbles of several tens of μm or less classified as microbubbles and nanobubbles.

当業者であれば、桁違いに大きい300μm〜3mmの気泡を用いたのでは、接触面積や、滞留時間が格段に減少し、気液接触による二酸化炭素及び硫化水素の除去効率が著しく損なわれると考えたはずである。   If a person skilled in the art uses 300 μm to 3 mm bubbles that are extremely large, the contact area and residence time will be greatly reduced, and the removal efficiency of carbon dioxide and hydrogen sulfide by gas-liquid contact will be significantly impaired. I should have thought.

これに対して、本発明者は、まず、上述したように、消化液のpHは、アンモニア態窒素等の存在により、好ましくは7〜9、より好ましくは8〜9に高められており、この高pH状態が、消化液の緩衝液としての性質によって強力に保持されるため、消化液は、二酸化炭素及び硫化水素に対する高い溶解性を長期に渡って維持できる。   On the other hand, as described above, the inventor firstly increased the pH of the digested liquid to 7-9, more preferably 8-9, due to the presence of ammonia nitrogen and the like. Since the high pH state is strongly maintained by the properties of the digestive juice as a buffer, the digestive fluid can maintain high solubility in carbon dioxide and hydrogen sulfide over a long period of time.

したがって、桁違いに大きい300μm〜3mmの気泡を用いても、消化液の二酸化炭素及び硫化水素に対する高い溶解性により、バイオガスの精製効率が好適に補われ、特にガスボイラーやガスエンジンのように要求されるメタン濃度が比較的低い(好ましくは60〜70%)用途であれば、満足できる精製バイオガスを提供する事ができる。   Therefore, even if bubbles of 300 μm to 3 mm, which are extremely large, are used, biogas purification efficiency is suitably supplemented by the high solubility of digestive fluid in carbon dioxide and hydrogen sulfide, especially in the case of gas boilers and gas engines. If the required methane concentration is relatively low (preferably 60 to 70%), a satisfactory purified biogas can be provided.

また、300μm〜3mmの気泡で消化液に散気を行うと、マイクロバブルないしナノバブルで、散気した場合にみられる、バイオガス精製槽本体40a内においてSSが沈殿して気泡発生手段43aの散気口が閉鎖される問題や、気泡の消化液中への拡散がSSにより阻害される問題が見られない。   In addition, when the digestion liquid is diffused with bubbles of 300 μm to 3 mm, SS is precipitated in the biogas purification tank main body 40a, which is observed when the bubbles are diffused with microbubbles or nanobubbles, and the bubbles are dispersed in the bubble generating means 43a. There is no problem that the mouth is closed or that the diffusion of bubbles into the digestive juice is hindered by SS.

さらに、消化液貯留槽3とバイオガス精製槽4との間で消化液の循環を行っても、SSが気泡によって捕捉され難く、バイオガス精製槽本体40a内においてSSが滞留して濃縮されることが防止される。これらの結果、本発明によれば、気泡と消化液との気液接触が極めて安定化し、長期に亘ってメタン濃度が60%以上の精製バイオガスを連続して提供する事ができる(経時的に安定化する)。   Furthermore, even if the digestive juice is circulated between the digestive juice storage tank 3 and the biogas purification tank 4, the SS is not easily captured by bubbles, and the SS is retained and concentrated in the biogas purification tank body 40a. It is prevented. As a result, according to the present invention, the gas-liquid contact between the bubbles and the digestive liquid is extremely stabilized, and it is possible to continuously provide purified biogas having a methane concentration of 60% or more over a long period of time (over time) To stabilize).

特に、本発明において、メタン濃度の経時安定性については、消化液の緩衝液としての性質も大きく貢献する。つまり、二酸化炭素及び硫化水素を吸収しても消化液のpH変動が小さく、長期に亘って好ましくはpH7以上に維持され易い。従って、二酸化炭素及び硫化水素の除去量が安定し、精製バイオガス中のメタン濃度が経時的に安定化する。   In particular, in the present invention, the property of the digestive juice as a buffer solution greatly contributes to the temporal stability of the methane concentration. That is, even if carbon dioxide and hydrogen sulfide are absorbed, the pH variation of the digestive fluid is small, and it is easily maintained at pH 7 or higher over a long period of time. Therefore, the removal amount of carbon dioxide and hydrogen sulfide is stabilized, and the methane concentration in the purified biogas is stabilized with time.

つまり、本発明によれば、気泡と消化液との気液接触の安定化と、消化液のpH安定性とが、有機的・相乗的に作用し合って、メタン濃度の経時安定性に極めて優れる効果を奏し、信頼性の高い精製バイオガスの提供が可能となる。特に、精製バイオガスを、ガスボイラーやガスエンジンに供給する場合は、ガスエンジンの失活や、ガスボイラーの着火不良を好適に防止する効果が得られる。   That is, according to the present invention, the stabilization of gas-liquid contact between the bubbles and the digestive fluid and the pH stability of the digestive fluid interact synergistically and synergistically, and the stability over time of the methane concentration is extremely high. It is possible to provide purified biogas with high reliability and high reliability. In particular, when purified biogas is supplied to a gas boiler or a gas engine, the effect of suitably preventing the deactivation of the gas engine or poor ignition of the gas boiler can be obtained.

さらに、本発明においては、消化液が二酸化炭素及び硫化水素に対する溶解性を長期に渡って維持できるから、消化液貯留槽3とバイオガス精製槽4との間における消化液の循環を大幅に低速化できる。即ち、送液ポンプ50の動力を大幅に削減して省エネルギー化を実現できる効果を奏する。このことは、バイオガス技術が元来環境保護(省エネルギー)を主な目的として発展してきたことを考えれば、実用上意義深い効果である。この効果については、後に更に詳述する。   Furthermore, in the present invention, the digestive fluid can maintain the solubility in carbon dioxide and hydrogen sulfide over a long period of time, so that the circulation of the digestive fluid between the digestive fluid storage tank 3 and the biogas purification tank 4 is significantly slowed down. Can be That is, there is an effect that energy saving can be realized by greatly reducing the power of the liquid feed pump 50. This is a practically significant effect in view of the fact that biogas technology was originally developed mainly for environmental protection (energy conservation). This effect will be described in detail later.

なお、図1の例では、送液ポンプ50が供給配管51に設けられる場合について説明したが、これに限定されるものではなく、返送配管52に設けられてもよい。   In the example of FIG. 1, the case where the liquid feed pump 50 is provided in the supply pipe 51 has been described. However, the present invention is not limited to this, and may be provided in the return pipe 52.

また、図1の例では、消化液貯留槽本体30aの下部に消化液排出口31を備え、上部に消化液流入口32を備える例を説明したが、消化液排出口31及び消化液流入口32の位置は、それぞれ消化液貯留槽本体30aの上部又は下部の何れであってもよい。   Moreover, in the example of FIG. 1, although the digestive fluid discharge port 31 was provided in the lower part of the digestive fluid storage tank main body 30a and the digestive fluid inlet 32 was provided in the upper part, the digestive fluid outlet 31 and the digestive fluid inlet were demonstrated. The position 32 may be either the upper part or the lower part of the digestive fluid storage tank main body 30a.

さらに、消化液貯留槽本体30aの消化液流入口32の位置は、図1に示したように消化液貯留槽本体30a内の消化液の液面よりも下方に配置されてもよいし、あるいは、上方に配置されてもよい。   Furthermore, the position of the digestive fluid inlet 32 of the digestive fluid reservoir main body 30a may be disposed below the level of the digestive fluid in the digestive fluid reservoir main body 30a as shown in FIG. , May be disposed above.

同様に、図1の例では、バイオガス精製槽本体40aの下部に消化液流入口41を備え、上部に消化液排出口42を備える例を説明したが、消化液流入口41及び消化液排出口42の位置は、それぞれバイオガス精製槽本体40aの上部又は下部の何れであってもよく、消化液流入口41の位置も、バイオガス精製槽本体40a内の消化液の液面より下方に配置されても、上方に配置されてもよい。   Similarly, in the example of FIG. 1, an example in which the digestion fluid inlet 41 is provided in the lower part of the biogas purification tank main body 40 a and the digestion fluid outlet 42 is provided in the upper part has been described. The position of the outlet 42 may be either the upper part or the lower part of the biogas purification tank main body 40a, and the position of the digestion liquid inlet 41 is also below the liquid level of the digestive liquid in the biogas purification tank main body 40a. It may be arranged or may be arranged above.

本発明においては、消化液が備える緩衝液としての性質を、更に効率的に引き出すと共に最大限に利用するために、バイオガス精製槽本体40a内部への酸素供給が実質的に断たれていることが好ましい。   In the present invention, oxygen supply to the inside of the biogas refining tank body 40a is substantially cut off in order to draw out the properties of the digestive fluid as a buffer solution more efficiently and make maximum use. Is preferred.

本明細書において、バイオガス精製槽本体40a内部への酸素供給が実質的に断たれているとは、具体的には、例えばバイオガス精製槽本体40a内部への空気による曝気処理や通気処理を行わないことを意味するものであって、例えばバイオガス精製槽本体40a内部に供給される消化液中に溶存酸素が存在する程度であれば酸素供給が実質的に断たれた状態は保たれる。また、嫌気発酵であるメタン発酵により生じたバイオガスは、、酸素を含んでいないので、これを導入しても酸素供給が実質的に断たれた状態は保たれる。   In this specification, the oxygen supply to the inside of the biogas purification tank main body 40a is substantially cut off. Specifically, for example, an aeration process or aeration process with air to the biogas purification tank main body 40a is performed. This means that the oxygen supply is substantially cut off as long as dissolved oxygen is present in the digested liquid supplied into the biogas refining tank body 40a, for example. . Moreover, since the biogas produced by methane fermentation, which is anaerobic fermentation, does not contain oxygen, even if this is introduced, the state where the oxygen supply is substantially cut off is maintained.

バイオガス精製槽本体40a内部への酸素供給が断たれていることにより、バイオガスと消化液の気液接触が、酸素供給が断たれた状態で行われるので、好気性菌である硫黄酸化細菌の活動が阻害される。したがって、硫黄酸化細菌による硫化水素の酸化反応は阻害され、強酸である硫酸の生成を抑制できる。   Since the gas-liquid contact between the biogas and the digestive fluid is performed in a state where the oxygen supply is cut off because the oxygen supply into the biogas purification tank main body 40a is cut off, the sulfur-oxidizing bacteria that are aerobic bacteria Activity is disturbed. Therefore, the oxidation reaction of hydrogen sulfide by sulfur-oxidizing bacteria is inhibited, and the production of sulfuric acid, which is a strong acid, can be suppressed.

本発明では、消化液中にバイオガスを散気することにより気液接触を行うため、好気性条件下でバイオガスに消化液を散液する生物脱硫装置と比べて硫酸の発生が防止されるが、上述のようにバイオガス精製槽本体40a内部への酸素供給が実質的に断たれていることにより、更に顕著に硫酸の発生が防止される。   In the present invention, since the gas-liquid contact is performed by aerating the biogas in the digestive liquid, the generation of sulfuric acid is prevented compared to the biodesulfurization apparatus that sprays the digestive liquid into the biogas under aerobic conditions. However, since the oxygen supply into the biogas refining tank main body 40a is substantially cut off as described above, the generation of sulfuric acid is further remarkably prevented.

強酸の発生を防止することにより、消化液のpH緩衝性が早期に緩衝限界に達することが回避され、消化液のpH緩衝性を二酸化炭素及び硫化水素の溶解除去のみのために作用させることができ、消化液が備える緩衝液としての性質を、極めて効率的に引き出すことが可能となる。その結果、消化液のpH変動が更に小さく、pHの低下が更に防止される。   By preventing the generation of a strong acid, it is avoided that the pH buffering ability of the digestive fluid reaches the buffer limit early, and the pH buffering property of the digestive fluid is made to act only for dissolving and removing carbon dioxide and hydrogen sulfide. It is possible to extract the properties of the digestive fluid as a buffer solution very efficiently. As a result, the pH variation of the digestive juice is further reduced, and the pH drop is further prevented.

本発明においては、消化液のpHの低下が防止され、消化液が二酸化炭素及び硫化水素に対する溶解性を長期に渡って維持できるから、送液ポンプ50の動力を削減可能であることを上述したが、以下に説明する構成とすることにより、更に送液ポンプ50の動力を顕著に低減する効果が得られる。   In the present invention, the pH of the digestive fluid is prevented from being lowered, and the digestive fluid can maintain the solubility in carbon dioxide and hydrogen sulfide over a long period of time, so that the power of the liquid feeding pump 50 can be reduced as described above. However, with the configuration described below, the effect of significantly reducing the power of the liquid feed pump 50 can be obtained.

即ち、図1に示したように、まず、バイオガス精製槽4が備える消化液流入口41及び消化液排出口42を共にバイオガス精製槽本体40a内部に貯留された消化液の液面よりも下方に配置する。そして、消化液流入口41をバイオガス精製槽本体40aの下方に配置し、消化液排出口42をバイオガス精製槽本体40aの上方に配置する。さらに、消化液貯留槽3が備える消化液流入口32及び消化液排出口31を共に消化液貯留槽本体30a内部に貯留された消化液の液面よりも下方に配置する。そして、消化液流入口を消化液貯留槽本体30aの上方に配置し、消化液排出口31を消化液貯留槽本体30aの下方に配置する。   That is, as shown in FIG. 1, first, both the digestive fluid inlet 41 and the digestive fluid outlet 42 provided in the biogas purification tank 4 are more than the liquid level of the digestive liquid stored in the biogas purification tank main body 40a. Place it below. And the digestive-solution inlet 41 is arrange | positioned under the biogas refinement | purification tank main body 40a, and the digestive-solution discharge port 42 is arrange | positioned above the biogas refinement | purification tank main body 40a. Furthermore, the digestive fluid inlet 32 and the digestive fluid outlet 31 provided in the digestive fluid storage tank 3 are both disposed below the liquid level of the digestive fluid stored in the digestive fluid storage tank body 30a. And a digestive-solution inflow port is arrange | positioned above the digestive-solution storage tank main body 30a, and the digestive-solution discharge port 31 is arrange | positioned under the digestive-solution storage tank main body 30a.

バイオガス精製槽本体40a内では、散気されたバイオガスが消化液中に滞在し続ける間、気泡を含んだ消化液は相対密度が減少する。このため、消化液貯留槽3から供給配管51を介して新たに供給される気泡を含有しない消化液との間に密度差が生じる。この密度差によって供給配管51にバイオガス精製槽4に向かう液流を生じ、これに伴って返送配管52に消化液貯留槽3に向かう液流を生じる力が生じる。つまり、消化液貯留槽3とバイオガス精製槽4との間に消化液循環力を生成する。   In the biogas refining tank main body 40a, while the aerated biogas continues to stay in the digestive liquid, the relative density of the digestive liquid containing bubbles decreases. For this reason, a density difference arises with the digestive liquid which does not contain the bubble newly supplied from the digestive liquid storage tank 3 via the supply piping 51. FIG. Due to this density difference, a liquid flow toward the biogas refining tank 4 is generated in the supply pipe 51, and a force for generating a liquid flow toward the digestive liquid storage tank 3 is generated in the return pipe 52. That is, a digestive fluid circulation force is generated between the digestive fluid storage tank 3 and the biogas purification tank 4.

消化液循環力が得られることにより、消化液貯留槽3とバイオガス精製槽4との間で消化液を循環する送液ポンプ50の負担が軽減され、動力コストを更に低減することが可能となる効果を奏する。   By obtaining the digestive fluid circulation force, the burden on the liquid feed pump 50 that circulates the digestive fluid between the digestive fluid storage tank 3 and the biogas purification tank 4 is reduced, and the power cost can be further reduced. The effect which becomes.

更に好ましい態様として、図1における送液ポンプ50を停止して、あるいは、図2に示すように送液ポンプ50を設けることなく、上述した消化液循環力のみによって、消化液貯留槽3とバイオガス精製槽4との間で消化液を循環するようにしてもよい。   As a more preferable mode, the liquid feeding pump 50 in FIG. 1 is stopped or the liquid feeding pump 50 is not provided as shown in FIG. You may make it circulate a digestion liquid between the gas purification tanks 4. FIG.

かかる消化液循環力のみによって得られる循環速度は、通常、送液ポンプ50による循環速度と比較すると、劣るものである。ところが、本発明においては、上述したように、消化液のpHの低下が顕著に防止され、僅かな循環でもバイオガス精製槽本体40a内の消化液のpHを高く保持できるので、比較的循環速度が低い消化液循環力のみでも、消化液の循環供給を好適に賄うことが可能となり、送液ポンプ50の動力にかかるコストを完全に排除することが可能となる効果を奏する。   The circulation speed obtained only by the digestive fluid circulation force is generally inferior to the circulation speed by the liquid feed pump 50. However, in the present invention, as described above, the pH of the digestive liquid is remarkably prevented and the pH of the digestive liquid in the biogas refining tank body 40a can be kept high even with a slight circulation. Even with a low digestive fluid circulation force, it is possible to suitably cover the digestive fluid circulation supply, and it is possible to completely eliminate the cost for the power of the liquid feed pump 50.

また、本発明においては、図3に示すように、送液ポンプ50を、供給配管51ではなく、供給配管51のバイパスライン51a上に設けることも好ましいことである。   In the present invention, as shown in FIG. 3, it is also preferable that the liquid feed pump 50 is provided not on the supply pipe 51 but on the bypass line 51 a of the supply pipe 51.

図3に示した構成を備えるバイオガス精製装置2において、通常運転では、送液ポンプ50は停止され、バイパスライン51aに設けられた弁51a’を閉とし、供給配管51に設けられた弁51’を開とし、供給配管51を介して上述した消化液循環力のみによる循環を行う。   In the biogas purification apparatus 2 having the configuration shown in FIG. 3, in normal operation, the liquid feed pump 50 is stopped, the valve 51 a ′ provided in the bypass line 51 a is closed, and the valve 51 provided in the supply pipe 51 is closed. 'Is opened, and circulation is performed only through the digestive fluid circulation force described above via the supply pipe 51.

そして、バイオガス精製槽本体40a内の消化液のpHが所定値(好ましくはpH7)よりも低下した場合に、供給配管51に設けられた弁51’を閉とし、バイパスライン51aに設けられた弁51a’を開とし、送液ポンプ50を作動させ、バイパスライン51aを介した循環を行うように切り替える。   And when pH of the digestive liquid in the biogas refinement | purification tank main body 40a falls below predetermined value (preferably pH7), valve | bulb 51 'provided in the supply piping 51 is closed, and it was provided in the bypass line 51a. The valve 51a ′ is opened, the liquid feed pump 50 is operated, and switching is performed so as to circulate through the bypass line 51a.

送液ポンプ50による循環の結果、バイオガス精製槽本体40a内の消化液のpHが所定値を超え、理想値(好ましくはpH7.5以上)まで回復したところで上述した通常運転に切り替える。   As a result of circulation by the liquid feed pump 50, when the pH of the digested liquid in the biogas purification tank main body 40a exceeds a predetermined value and is restored to an ideal value (preferably pH 7.5 or more), the normal operation described above is switched.

このような切り替えは、バイオガス精製槽本体40a内の消化液のpH検出するpH検出手段45、送液ポンプ50、弁51’及び弁51a’をそれぞれ制御部6に接続して、pH計測手段45からの検出結果に基づいて自動化されるように構成してもよい。   Such switching is performed by connecting the pH detecting means 45 for detecting the pH of the digested liquid in the biogas purification tank main body 40a, the liquid feed pump 50, the valve 51 'and the valve 51a' to the control unit 6, respectively, and measuring the pH. You may comprise so that it may be automated based on the detection result from 45.

このようにして、最低限のポンプ動力によって、より確実にバイオガス精製を行うことが可能となる効果を奏する。   In this way, there is an effect that the biogas purification can be more reliably performed with the minimum pump power.

図3の例では、送液ポンプ50を供給配管51のバイパスライン51aに設ける場合を説明したが、これに限定されず、送液ポンプ50を供給配管52のバイパスラインに設けて同様の切り替えを行ってもよい。   In the example of FIG. 3, the case where the liquid feed pump 50 is provided in the bypass line 51 a of the supply pipe 51 has been described. However, the present invention is not limited to this, and the liquid feed pump 50 is provided in the bypass line of the supply pipe 52 to perform the same switching. You may go.

また、本発明において、消化液貯留槽3は、消化液貯留槽本体30a内の消化液から放出されるガスに含まれるバイオガス由来の硫化水素を処理するための不図示の脱臭装置を備えてもよい。脱臭装置としては、格別限定されないが、活性炭充填層に硫化水素を吸収して除去するものを好ましく用いることができる。   Further, in the present invention, the digestive fluid storage tank 3 includes a deodorizing device (not shown) for processing biogas-derived hydrogen sulfide contained in the gas released from the digestive fluid in the digestive fluid storage tank body 30a. Also good. Although it does not specifically limit as a deodorizing apparatus, What absorbs and removes hydrogen sulfide in an activated carbon packed bed can be used preferably.

本発明において、バイオガス取出口44から回収された精製バイオガスは、ミストセパレータに供して、ミスト(水蒸気)を分離することも好ましい。   In the present invention, the purified biogas recovered from the biogas outlet 44 is preferably subjected to a mist separator to separate mist (water vapor).

また、バイオガス取出口44から回収された精製バイオガスを、生物脱硫等による脱硫装置に供して、バイオガス中の硫化水素を更に除去することもできる。本発明においては、硫化水素はバイオガス精製槽4で高度に除去できるので、脱硫装置を設ける場合は、脱硫装置の負荷軽減が可能となる効果を奏する。さらに、原料となるバイオマス等に起因してメタン発酵槽1から発生するバイオガス中の硫化水素濃度が低い場合などは、バイオガス精製槽4で十分な除去を行うことができ、脱硫装置が不要となる。   In addition, the purified biogas recovered from the biogas outlet 44 can be used in a desulfurization apparatus such as biological desulfurization to further remove hydrogen sulfide in the biogas. In the present invention, hydrogen sulfide can be removed to a high degree in the biogas refining tank 4, and therefore, when a desulfurization device is provided, the load on the desulfurization device can be reduced. Furthermore, when the concentration of hydrogen sulfide in the biogas generated from the methane fermentation tank 1 is low due to the raw material biomass, etc., the biogas refining tank 4 can perform sufficient removal, eliminating the need for a desulfurization device. It becomes.

以上の説明では、バイオガス精製装置2に導入される消化液とバイオガスとが、共に同一のメタン発酵槽1から生成したものである場合を示したが、これに限定されるものではなく、本発明において、バイオガス精製装置2に導入される消化液とバイオガスとは、互いに異なるメタン発酵槽から生成したものであってもよい。   In the above description, the digestion liquid and the biogas introduced into the biogas purification apparatus 2 are both generated from the same methane fermentation tank 1, but are not limited thereto. In the present invention, the digested liquid and the biogas introduced into the biogas purification apparatus 2 may be generated from different methane fermentation tanks.

消化液貯留槽3に貯留された消化液は、適宜抜き出されて肥料等として利用することが可能である。抜き出した分に応じて、適宜新たな消化液を補充することができる。   The digestive fluid stored in the digestive fluid storage tank 3 can be appropriately extracted and used as fertilizer or the like. Depending on the amount extracted, a new digestive juice can be appropriately supplemented.

以下に、本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

(実施例1)
<試験試料>
被処理バイオガスA:K市で実施しているメタン発酵槽から生成されたバイオガスを採取し、被処理バイオガスAとした。検知管によって検出された被処理バイオガスA中の二酸化炭素濃度は40%、硫化水素濃度は170ppmであった。温度は常温である。
Example 1
<Test sample>
Biogas A to be treated: Biogas produced from a methane fermentation tank implemented in K city was collected and used as biogas A to be treated. The carbon dioxide concentration in the biogas A to be treated detected by the detector tube was 40%, and the hydrogen sulfide concentration was 170 ppm. The temperature is room temperature.

試験液(消化液A):同メタン発酵槽から発酵終了後の消化液を採取し、大気下に2時間放置して消化液Aとした。pHメーターによって測定された消化液AのpHは、7.94であった。温度は常温である。SS濃度は、12000mg/Lであった。   Test solution (digestion solution A): The digestion solution after completion of fermentation was collected from the same methane fermenter and left in the atmosphere for 2 hours to obtain digestion solution A. The pH of the digestive fluid A measured by a pH meter was 7.94. The temperature is room temperature. The SS concentration was 12000 mg / L.

<試験方法>
上記被処理バイオガスA100mlと上記消化液A100mlとを白硬注射筒に注入し、常温・常圧下において密封状態(酸素供給が実質的に断たれた状態)で2分間振盪して気液接触させた。
<Test method>
100 ml of the biogas A to be treated and 100 ml of the digestive liquid A are poured into a white hard syringe and shaken for 2 minutes in a sealed state (at a state where oxygen supply is substantially cut off) at room temperature and normal pressure. It was.

振盪後、pHメーターによって液相(消化液)のpHを測定し、更に、検知管によって気相(バイオガス)中の二酸化炭素濃度及び硫化水素濃度を測定した。   After shaking, the pH of the liquid phase (digested liquid) was measured with a pH meter, and the carbon dioxide concentration and hydrogen sulfide concentration in the gas phase (biogas) were further measured with a detector tube.

また、試験前後におけるバイオガス中の二酸化炭素濃度及び硫化水素濃度の減少率を算出し、更に、この結果に基づいて試験後のバイオガス中におけるメタン濃度を算出した。結果を表1に示す。   In addition, the decrease rate of the carbon dioxide concentration and the hydrogen sulfide concentration in the biogas before and after the test was calculated, and further, the methane concentration in the biogas after the test was calculated based on this result. The results are shown in Table 1.

(実施例2)
<試験試料>
被処理バイオガスB:実施例1と同じメタン発酵槽から別の日に、実施例1と同様にバイオガスを採取し、被処理バイオガスBとした。検知管によって測定された被処理バイオガスB中の二酸化炭素濃度は35%であった。温度は常温である。
(Example 2)
<Test sample>
Biogas B to be treated: Biogas was collected from the same methane fermentation tank as in Example 1 on another day in the same manner as in Example 1 to obtain Biogas B to be treated. The carbon dioxide concentration in the treated biogas B measured by the detector tube was 35%. The temperature is room temperature.

試験液(消化液B):実施例1と同じメタン発酵槽から別の日に、実施例1と同様に消化液を採取し、大気下に2時間放置して消化液Bとした。pHメーターによって測定された消化液BのpHは、8.01であった。温度は常温である。SS濃度は、12000mg/Lであった。   Test solution (digestion solution B): On the other day from the same methane fermentation tank as in Example 1, the digestion solution was collected in the same manner as in Example 1, and left in the atmosphere for 2 hours to obtain Digestion Solution B. The pH of the digestive juice B measured with a pH meter was 8.01. The temperature is room temperature. The SS concentration was 12000 mg / L.

<試験方法>
上記被処理バイオガスB100mlと上記消化液B100mlとを白硬注射筒に注入し、常温・常圧下において密封状態で2分間振盪して気液接触させた。
<Test method>
100 ml of the biogas B to be treated and 100 ml of the digestive liquid B were injected into a white syringe, and were shaken for 2 minutes in a sealed state at normal temperature and normal pressure to make gas-liquid contact.

振盪後、pHメーターによって液相(消化液)のpHを測定し、更に、検知管によって気相(バイオガス)中の二酸化炭素濃度を測定した。   After shaking, the pH of the liquid phase (digested liquid) was measured with a pH meter, and the carbon dioxide concentration in the gas phase (biogas) was further measured with a detector tube.

また、試験前後におけるバイオガス中の二酸化炭素濃度の減少率を算出し、更に、この結果に基づいて試験後のバイオガス中におけるメタン濃度を算出した。結果を表1に示す。   Moreover, the decrease rate of the carbon dioxide concentration in the biogas before and after the test was calculated, and further, the methane concentration in the biogas after the test was calculated based on this result. The results are shown in Table 1.

(比較例1)
<試験試料>
被処理バイオガスA:実施例1で用いたものと同様である。
(Comparative Example 1)
<Test sample>
Biogas A to be treated: The same as that used in Example 1.

試験液(水道水):試験液として水道水を用いた。pHメーターによって測定された水道水のpHは、7.18であった。温度は常温である。   Test liquid (tap water): Tap water was used as the test liquid. The pH of tap water measured by a pH meter was 7.18. The temperature is room temperature.

<試験方法>
上記被処理バイオガスA100mlと上記水道水100mlとを白硬注射筒に注入し、常温・常圧下において密封状態で2分間振盪して気液接触させた。
<Test method>
100 ml of the biogas A to be treated and 100 ml of the tap water were poured into a white hard syringe and shaken for 2 minutes in a sealed state at normal temperature and normal pressure to make gas-liquid contact.

振盪後、pHメーターによって液相(水道水)のpHを測定し、更に、検知管によって気相(バイオガス)中の二酸化炭素濃度及び硫化水素濃度を測定した。   After shaking, the pH of the liquid phase (tap water) was measured with a pH meter, and the carbon dioxide concentration and hydrogen sulfide concentration in the gas phase (biogas) were further measured with a detector tube.

また、試験前後におけるバイオガス中の二酸化炭素濃度及び硫化水素濃度の減少率を算出し、更に、この結果に基づいて試験後のバイオガス中におけるメタン濃度を算出した。結果を表1に示す。   In addition, the decrease rate of the carbon dioxide concentration and the hydrogen sulfide concentration in the biogas before and after the test was calculated, and further, the methane concentration in the biogas after the test was calculated based on this result. The results are shown in Table 1.

Figure 0005743686
Figure 0005743686

<評価>
メタン発酵後の消化液と、バイオマスをメタン発酵して生成するバイオガスとを、酸素供給が実質的に断たれた状態で気液接触させた実施例1、2では、消化液に代えて水道水を用いた比較例1に対して、気液接触によるpHの低下が顕著に防止され、且つ、二酸化炭素と硫化水素の除去効率に優れることがわかる。
<Evaluation>
In Examples 1 and 2 in which the digested liquid after methane fermentation and the biogas produced by methane fermentation of biomass were brought into gas-liquid contact in a state where the oxygen supply was substantially cut off, water was used instead of the digested liquid. It can be seen that, compared to Comparative Example 1 using water, a drop in pH due to gas-liquid contact is remarkably prevented and the removal efficiency of carbon dioxide and hydrogen sulfide is excellent.

(実施例3)
直径150mm、高さ2050mm(体積36L)のバイオガス精製槽を用いてバイオガスと消化液を気液接触させ、バイオガス精製を行った。
(Example 3)
Biogas purification was performed by gas-liquid contact between biogas and digestive fluid using a biogas purification tank having a diameter of 150 mm and a height of 2050 mm (volume: 36 L).

バイオガスは、ガスバックからのガス(フレッシュガス)を、バイオガス精製槽の下部に設けたメンブレンディフューザにより気泡化しながら導入した。ガス流量は、6L/分で行った。   The biogas was introduced while the gas from the gas bag (fresh gas) was bubbled by a membrane diffuser provided at the bottom of the biogas purification tank. The gas flow rate was 6 L / min.

消化液は、1ヶ月以上貯留したSS濃度12000mg/Lの消化液100Lを、上向流(バイオガス精製槽の下部から供給しバイオガス精製槽上部から消化液貯留槽に戻す)で循環させた。消化液の循環流量は、6L/分で行った。   The digestive fluid was circulated in an upward flow (supplied from the lower part of the biogas refining tank and returned to the digestive liquid storage tank from the upper part of the biogas refining tank) with a digestive liquid of 100 L having an SS concentration of 12000 mg / L stored for one month or more. . The circulation flow rate of the digestive fluid was 6 L / min.

消化液のpHは、pHメーター(東亜ディーケーケー社製ポータブルpH計HM)で測定した。フレッシュガス及び、バイオガス精製槽出口ガス(精製ガス)は、メタン及び硫化水素の濃度を測定した。メタン及び硫化水素濃度の測定は、ガスをそれぞれサンプリングし、後日ガスクロマトグラフ分析によって測定した。結果を表2に示す。   The pH of the digested liquid was measured with a pH meter (portable pH meter HM manufactured by Toa DKK Corporation). Fresh gas and biogas purification tank outlet gas (purified gas) were measured for methane and hydrogen sulfide concentrations. The methane and hydrogen sulfide concentrations were measured by sampling the gas and measuring it later by gas chromatographic analysis. The results are shown in Table 2.

なお、表2中、気液比は、バイオガス精製槽内のガス流量を、バイオガス精製槽内の消化液流量で除した値である。   In Table 2, the gas-liquid ratio is a value obtained by dividing the gas flow rate in the biogas purification tank by the digestion flow rate in the biogas purification tank.

Figure 0005743686
Figure 0005743686

<評価>
消化液との接触時間(バイオガスがバイオガス精製槽に導入されてからヘッドスペースに達するまで)は、約5秒であったが、精製ガスのメタンガス濃度は70%以上にすることができた。硫化水素の濃度も200ppm以下に削減することができた。
<Evaluation>
The contact time with the digestive fluid (from when biogas was introduced into the biogas refining tank until it reached the headspace) was about 5 seconds, but the methane gas concentration of the purified gas could be increased to 70% or more. . The concentration of hydrogen sulfide could also be reduced to 200 ppm or less.

1:メタン発酵槽
11:送液ポンプ
12:送液管
13:ブロワ
14:送風管
15:ガスバック
2:バイオガス精製装置
3:消化液貯留槽
30a:消化液貯留槽本体
30b:蓋体
31:消化液排出口
32:消化液流入口
4:バイオガス精製槽
40a:バイオガス精製槽本体
40b:蓋体
41:消化液流入口
42:消化液排出口
43:バイオガス導入口
43a:気泡化手段
44:バイオガス取出口
45:pH検出手段
50:送液ポンプ
51:供給配管
51’:弁
51a:バイパスライン
51a’:弁
52:返送配管
6:制御部
1: Methane fermentation tank 11: Liquid feed pump 12: Liquid feed pipe 13: Blower 14: Air blow pipe 15: Gas bag 2: Biogas purification device 3: Digestive liquid storage tank 30a: Digestive liquid storage tank body 30b: Lid 31 : Digestive fluid outlet 32: Digestive fluid inlet port 4: Biogas purification tank 40a: Biogas purification tank body 40b: Lid 41: Digestive fluid inlet port 42: Digestive fluid outlet port 43: Biogas inlet port 43a: Bubble formation Means 44: Biogas outlet 45: pH detection means 50: Liquid feed pump 51: Supply pipe 51 ': Valve 51a: Bypass line 51a': Valve 52: Return pipe 6: Control unit

Claims (4)

メタン発酵槽からのメタン発酵後の消化液を貯留する消化液貯留槽本体と蓋体とからなり、該本体の下部に消化液を排出する消化液排出口を備え、該本体の上部にバイオガス精製後の消化液を流入する消化液流入口を備えた消化液貯留槽と、
メタン発酵後の消化液を貯留するバイオガス精製槽本体と、該本体の上部を密封する蓋体とからなり、該本体の下部にメタン発酵後の消化液を流入する消化液流入口を備え、該本体の上部にバイオガス精製後の消化液を排出する消化液排出口を備え、該本体の下部にメタン発酵槽から送られるメタンガス、二酸化炭素ガス、硫化水素ガスを少なくとも含むバイオガスを導入するバイオガス導入口を備え、該本体内部に貯留された消化液の液面よりも上方に精製後のバイオガスを取り出すバイオガス取出口を備え、該本体内部の下方に、前記バイオガス導入口から導入されたバイオガスを気泡化して消化液中に散気する気泡化手段を備えたバイオガス精製槽とからなり、
前記バイオガス精製槽が備える前記消化液流入口と、前記消化液貯留槽が備える前記消化液排出口とが供給配管により連結されると共に、前記バイオガス精製槽が備える前記消化液排出口と、前記消化液貯留槽が備える前記消化液流入口とが返送配管により連結されており、
前記消化液貯留槽と前記バイオガス精製槽との間で消化液を循環させてバイオガスの精製を行うバイオガス精製装置であって、
前記気泡化手段により発生する気泡の径は、300μm〜3mmの範囲であり、
前記バイオガス精製槽が備える前記消化液流入口及び前記消化液排出口は共に前記バイオガス精製槽本体内部に貯留された消化液の液面よりも下方に配置され、且つ、該消化液流入口は該本体の下部に配置され、該消化液排出口は該本体の上部に配置されており、
前記消化液貯留槽が備える前記消化液流入口及び前記消化液排出口は共に前記消化液貯留槽本体内部に貯留された消化液の液面よりも下方に配置され、且つ、該消化液流入口は該本体の上部に配置され、該消化液排出口は該本体の下部に配置されており、
前記バイオガス精製槽本体内部で気泡を含有した消化液と、前記消化液貯留槽本体内部から前記供給配管を介して新たに供給される気泡を含有しない消化液との間に生じる密度差により、前記消化液貯留槽と前記バイオガス精製槽との間に消化液循環力を生成することを特徴とするバイオガス精製装置。
A digestive fluid storage tank main body for storing digested liquid after methane fermentation from a methane fermentation tank and a lid, and a digestive fluid outlet for discharging the digestive fluid at the lower part of the main body, and a biogas at the upper part of the main body A digestive fluid storage tank having a digestive fluid inlet into which the purified digestive fluid flows, and
It consists of a biogas refining tank main body that stores the digested liquid after methane fermentation, and a lid that seals the upper part of the main body, and is provided with a digestive liquid inlet for flowing the digested liquid after methane fermentation into the lower part of the main body, The upper part of the main body is provided with a digestion liquid outlet for discharging the digested liquid after biogas purification, and a biogas containing at least methane gas, carbon dioxide gas, and hydrogen sulfide gas sent from the methane fermentation tank is introduced into the lower part of the main body. Provided with a biogas inlet, provided with a biogas outlet for taking out the purified biogas above the level of the digestive liquid stored in the main body, and from the biogas inlet under the main body It consists of a biogas refining tank equipped with a bubble forming means for bubbling the introduced biogas into the digestive juice,
The digestive fluid inlet provided in the biogas purification tank and the digestive fluid outlet provided in the digestive liquid storage tank are connected by a supply pipe, and the digestive fluid outlet provided in the biogas purification tank, The digestive fluid inlet provided in the digestive fluid storage tank is connected by a return pipe,
A biogas purification apparatus for purifying biogas by circulating a digestion liquid between the digestion liquid storage tank and the biogas purification tank,
The bubble diameter generated by the bubble forming means is in the range of 300 μm to 3 mm,
Both the digestive fluid inlet and the digestive fluid outlet provided in the biogas purification tank are disposed below the liquid level of digestive liquid stored in the biogas purification tank body, and the digestive fluid inlet Is disposed at the bottom of the body, the digestive juice outlet is disposed at the top of the body,
Both the digestive fluid inlet and the digestive fluid outlet provided in the digestive fluid storage tank are disposed below the level of the digestive fluid stored in the digestive fluid reservoir main body, and the digestive fluid inlet Is disposed at the top of the body, the digestive juice outlet is disposed at the bottom of the body,
Due to the density difference generated between the digestive liquid containing bubbles inside the biogas purification tank main body and the digestive liquid not containing bubbles newly supplied from the inside of the digestive liquid storage tank main body through the supply pipe, A biogas purification apparatus that generates a digestive fluid circulation force between the digestive juice storage tank and the biogas purification tank.
前記バイオガス精製槽本体内部の消化液のSS濃度は、5000〜40000mg/Lの範囲であることを特徴とする請求項1記載のバイオガス精製装置。   The biogas purification apparatus according to claim 1, wherein the SS concentration of the digestive liquid inside the biogas purification tank main body is in the range of 5000 to 40000 mg / L. 前記バイオガス精製槽本体内部への酸素供給が断たれていることを特徴とする請求項1又は2記載のバイオガス精製装置。   The biogas purification apparatus according to claim 1 or 2, wherein oxygen supply to the biogas purification tank main body is cut off. 前記消化液循環力のみによって、前記消化液貯留槽と前記バイオガス精製槽との間で消化液を循環することを特徴とする請求項1〜3の何れかに記載のバイオガス精製装置。   The biogas purification apparatus according to any one of claims 1 to 3, wherein the digestion liquid is circulated between the digestion liquid storage tank and the biogas purification tank only by the digestive liquid circulation force.
JP2011100063A 2011-04-27 2011-04-27 Biogas purification equipment Active JP5743686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011100063A JP5743686B2 (en) 2011-04-27 2011-04-27 Biogas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011100063A JP5743686B2 (en) 2011-04-27 2011-04-27 Biogas purification equipment

Publications (2)

Publication Number Publication Date
JP2012229382A JP2012229382A (en) 2012-11-22
JP5743686B2 true JP5743686B2 (en) 2015-07-01

Family

ID=47431205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011100063A Active JP5743686B2 (en) 2011-04-27 2011-04-27 Biogas purification equipment

Country Status (1)

Country Link
JP (1) JP5743686B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152203B (en) * 2014-08-31 2017-02-08 广西大学 Method for purifying and preparing high-purity biomass methane by using biogas slurry

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235131B2 (en) * 1991-09-18 2001-12-04 栗田工業株式会社 Digestion gas desulfurization method and apparatus
JP4268768B2 (en) * 2001-03-23 2009-05-27 メタウォーター株式会社 Air diffuser and biological treatment tank using the same
JP2005255700A (en) * 2004-03-09 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Biogas purification method and biogas purification system
JP4781302B2 (en) * 2007-03-14 2011-09-28 ダイセン・メンブレン・システムズ株式会社 Aeration method and water treatment operation method
JP2008255209A (en) * 2007-04-04 2008-10-23 Japan Steel Works Ltd:The Method and apparatus for concentrating methane gas

Also Published As

Publication number Publication date
JP2012229382A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
Marín et al. Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor
JP2006036849A (en) System for treating and utilizing biomass and method for treating and utilizing biomass gas
CN109264845A (en) A kind of device and method of reverse osmosis concentrated water organic matter and ammonia nitrogen removal simultaneously
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
US8163179B2 (en) Apparatus for removing dissolved hydrogen sulfide in anaerobic treatment
JP5262735B2 (en) Anaerobic treatment method and apparatus
JP5743686B2 (en) Biogas purification equipment
JP5064338B2 (en) Wastewater treatment equipment
JP2003136089A (en) Method for suppressing generation of hydrogen sulfide
JP2005154503A (en) Method for removing hydrogen sulfide from biogas
CN203639220U (en) High-concentration critical sewage treatment system
CN205616731U (en) Integrated advanced treatment unit who contains formaldehyde, methyl alcohol waste water
JP5773381B2 (en) Ammonia removing apparatus, organic waste processing apparatus and processing method using the same
JP5894857B2 (en) Waste water treatment apparatus and waste water treatment method
US20160185632A1 (en) Method and installation for removing sulphur from the digestate and the biogas of a digester
JP2001038378A (en) Method and device for anaerobically treating organic waste water
JP6424807B2 (en) Water treatment system and water treatment method
JP2004089858A (en) Organic waste processing method and apparatus
JP5930798B2 (en) Organic wastewater treatment method and apparatus
CN209128117U (en) A kind of device of reverse osmosis concentrated water organic matter and ammonia nitrogen removal simultaneously
JPH11333492A (en) Apparatus and method for methane fermentation
JP2008012488A (en) Anaerobic fermentation method and biological desulfurization method
CN103357258B (en) Carbon dioxide free radical based oxygen-containing gas deoxygenation method
JP2012101139A (en) Biogas producing system and method for removing ammonia in biogas
JP2010207726A (en) Apparatus and method for purifying gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5743686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350