JP5741528B2 - Raw material filling method and single crystal manufacturing method - Google Patents

Raw material filling method and single crystal manufacturing method Download PDF

Info

Publication number
JP5741528B2
JP5741528B2 JP2012133457A JP2012133457A JP5741528B2 JP 5741528 B2 JP5741528 B2 JP 5741528B2 JP 2012133457 A JP2012133457 A JP 2012133457A JP 2012133457 A JP2012133457 A JP 2012133457A JP 5741528 B2 JP5741528 B2 JP 5741528B2
Authority
JP
Japan
Prior art keywords
raw material
single crystal
filling
quartz crucible
conical valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012133457A
Other languages
Japanese (ja)
Other versions
JP2013256406A (en
Inventor
星 亮二
亮二 星
淳 岩崎
淳 岩崎
嵩希 今井
嵩希 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2012133457A priority Critical patent/JP5741528B2/en
Priority to KR1020130066972A priority patent/KR101901874B1/en
Publication of JP2013256406A publication Critical patent/JP2013256406A/en
Application granted granted Critical
Publication of JP5741528B2 publication Critical patent/JP5741528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Description

本発明は、単結晶の製造において、リチャージ管を用いて原料を石英ルツボに充填する方法に関する。   The present invention relates to a method of filling a raw material into a quartz crucible using a recharge tube in the production of a single crystal.

半導体集積回路の基板として用いられるシリコン単結晶の製法としては、CZ(チョクラルスキー)法や、磁場を印加するMCZ(磁場印加チョクラルスキー)法が一般的である。これらCZ/MCZ法では、石英ルツボ内にシリコン原料を充填して溶融し、その融液に種結晶を着液した後、引き上げることでシリコン単結晶を育成することができる。CZ/MCZ法の単結晶製造装置(引き上げ機)では、メインチャンバー内に融液を加熱するヒーターが設置され、その内側に融液を収容する石英ルツボが設置される。   As a method for producing a silicon single crystal used as a substrate of a semiconductor integrated circuit, a CZ (Czochralski) method and a MCZ (magnetic field applied Czochralski) method for applying a magnetic field are generally used. In these CZ / MCZ methods, a silicon raw material is filled in a quartz crucible and melted, a seed crystal is deposited in the melt, and then pulled up to grow a silicon single crystal. In a CZ / MCZ single crystal manufacturing apparatus (pulling machine), a heater for heating a melt is installed in a main chamber, and a quartz crucible for storing the melt is installed inside the heater.

通常、まずこの石英ルツボに原料を詰め、ヒーター加熱によって原料が溶融される。近年のシリコン単結晶の大口径化や結晶長尺化に伴い、石英ルツボ内に初期に詰めた原料分だけでは足らず、さらに原料を追加する場合がある。これを追いチャージと呼び、後に説明するリチャージと同様に、円錐状のコーン(円錐バルブ)を下端に有するリチャージ管に原料を詰め、そのリチャージ管で石英ルツボ内に原料を投入する。そして、これらの原料を全て溶融した後、シリコン単結晶の育成を開始する。   Usually, the raw material is first packed in this quartz crucible, and the raw material is melted by heating with a heater. With the recent increase in the diameter and length of silicon single crystals, there are cases where more raw materials are added than the raw materials initially packed in the quartz crucible. This is called follow-up charge, and similarly to the recharge described later, the raw material is filled in a recharge tube having a conical cone (conical valve) at the lower end, and the raw material is charged into the quartz crucible through the recharge tube. Then, after all these raw materials are melted, the growth of the silicon single crystal is started.

石英ルツボ内には原料が溶解された融液が満たされており、ここからシリコン単結晶が育成される。育成された単結晶は、メインチャンバー上部にゲートバルブを介して連接されている引き上げチャンバー内に収容され、冷却される。その後、この引き上げチャンバーから単結晶を取り出す。   The quartz crucible is filled with a melt in which raw materials are dissolved, from which a silicon single crystal is grown. The grown single crystal is accommodated in a pulling chamber connected to the upper part of the main chamber via a gate valve and cooled. Thereafter, the single crystal is taken out from the pulling chamber.

このような製造において、1つの石英ルツボから1本の単結晶を育成するのみであれば、この時点で育成は終了となるが、石英ルツボは割れて再使用ができないことから製造コストが高くなってしまう。そこで1つの石英ルツボから複数の単結晶を育成するマルチ操業が行われる場合がある。その場合、単結晶育成後には石英ルツボ中の融液は育成された結晶分だけ減少しているため、そのままでは次の単結晶を育成できない。従って、この減少分を補うために原料を再度投入するリチャージが行われる。   In such production, if only one single crystal is grown from one quartz crucible, the growth is terminated at this point, but the quartz crucible is cracked and cannot be reused, resulting in an increase in production cost. End up. Therefore, there are cases where a multi-operation for growing a plurality of single crystals from one quartz crucible is performed. In that case, after growing the single crystal, the melt in the quartz crucible is reduced by the amount of the grown crystal, so that the next single crystal cannot be grown as it is. Therefore, recharging is performed in which the raw material is charged again to compensate for this decrease.

リチャージの方法としては、ロッドリチャージ法や、特許文献1に開示されたような原料タンクから供給する方法などが古くから提案されてきた。しかし、多くの特許文献に取り上げられている技術は、下端に円錐バルブを有するリチャージ管に原料を収容し、そのリチャージ管に収容された原料を石英ルツボ内に投入する方法である。この技術の基本が開示されているのが、特許文献2、3である。例えば特許文献3では、円錐バルブの円錐角度(頂点の角度)は40−100度、より好ましくは60−90度と記載されている。   As a recharging method, a rod recharging method and a method of supplying from a raw material tank as disclosed in Patent Document 1 have been proposed for a long time. However, the technique taken up in many patent documents is a method in which a raw material is stored in a recharge tube having a conical valve at the lower end, and the raw material stored in the recharge tube is put into a quartz crucible. Patent Documents 2 and 3 disclose the basics of this technology. For example, Patent Document 3 describes that the conical angle (vertex angle) of the conical valve is 40-100 degrees, more preferably 60-90 degrees.

このような方法を用いることで、ゲートバルブで仕切られた引き上げチャンバーからシリコン単結晶を取り出した後、原料を収容したリチャージ管をワイヤーで吊り下げて装着し、真空引きにより引き上げチャンバー内の炉内圧をメインチャンバー内の炉内圧にあわせた後ゲートバルブを開き、原料を投入する。   By using such a method, after the silicon single crystal is taken out from the pulling chamber partitioned by the gate valve, the recharge tube containing the raw material is hung with a wire and attached, and the pressure inside the pulling chamber is increased by vacuuming. After adjusting to the furnace pressure in the main chamber, the gate valve is opened and the raw material is charged.

例えば特許文献4ではワイヤーを保護管で覆うという改善を施したり、特許文献5では破損防止のためにリチャージ管や円錐バルブにワイヤーを封入した改善を施したり、特許文献6では原料落下防止のために円錐バルブに溝を入れる改善を施す等、特許文献2、3の開示技術に多少の改良を加えた技術が開示されている。しかし、基本的な技術は特許文献2、3に示された内容である。
これだけ多くの文献がでていることからわかるように、リチャージ管を用いたリチャージ方法は、広く使われている技術のひとつであるといえる。しかしながら特許文献3以降円錐バルブの角度に検討を加えられているものはない。
For example, in Patent Document 4, the wire is covered with a protective tube, and in Patent Document 5, the wire is enclosed in a recharge tube or a conical valve to prevent breakage. A technique in which some improvements are made to the disclosed techniques of Patent Documents 2 and 3 is disclosed, such as an improvement of inserting a groove in a conical valve. However, the basic technique is the contents shown in Patent Documents 2 and 3.
As can be seen from so many documents, the recharge method using a recharge tube is one of the widely used technologies. However, since Patent Document 3, no consideration has been given to the angle of the conical valve.

上記のように充填される原料は、通常、多結晶もしくは稀に単結晶の場合もあり、それらの結晶を砕いたものが用いられ、リチャージ管に詰められた状態では空隙がある。従って、単結晶を育成した分に相当するような原料を追加するためには、リチャージ管による1回の投入では不足である。このため、複数回の投入を連続して行うことになる。   The raw material to be filled as described above may usually be polycrystalline or rarely single crystal, and those crushed crystals are used, and there are voids when packed in a recharge tube. Therefore, in order to add a raw material corresponding to the amount of the single crystal grown, it is not sufficient to make a single charge with a recharge tube. For this reason, a plurality of inputs are continuously performed.

特開昭62−260791号公報JP-A-62-260791 特開平2−157180号公報JP-A-2-157180 WO2002/068732WO2002 / 068732 特開2006−89294号公報JP 2006-89294 A 特開2008−13376号公報JP 2008-13376 A 特開2008−88000号公報JP 2008-88000 A

上記のように複数回連続して原料を投入する際、従来の方法においては、同じ形のリチャージ管を用いることから円錐バルブの角度が一定であるため、半径方向で見て同じ位置に集中的に原料が投下される。このため、追加投入された原料が石英ルツボ内でドーナツ状に高く積もり、未溶融原料高さの不均一が大きくなる。従って、前に投入した原料がある程度溶けるまで待ってから次の投入を行ったり、うまく全原料を投入できたとしても原料の溶融に時間がかかったりし、何れにしても追加原料の溶融に時間がかかるという問題があった。   As described above, when the raw material is continuously charged a plurality of times, the conventional method uses a recharge pipe of the same shape, so the angle of the conical valve is constant, so that it is concentrated at the same position as seen in the radial direction. Raw materials are dropped. For this reason, the added raw material is piled up in a donut shape in the quartz crucible, and the unevenness of the unmelted raw material height increases. Therefore, after waiting for the raw material previously charged to melt to some extent, the next charging is performed, or even if all the raw materials are successfully input, it takes time to melt the raw material. There was a problem that it took.

本発明は、上記問題点に鑑みてなされたものであって、単結晶の製造の際、石英ルツボ内での投入原料の高さの不均一を抑制することができる方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method capable of suppressing the unevenness of the height of the input material in the quartz crucible during the production of a single crystal. And

上記目的を達成するために、本発明は、石英ルツボ内に原料を充填する工程と、前記石英ルツボ内で前記原料を溶融して融液とする工程と、該融液から単結晶を引き上げる工程とを有する単結晶の製造における、前記石英ルツボ内に原料を充填する工程において、前記原料を収容する石英製の円筒部材と、前記円筒部材の下端の開口部を開閉するための円錐バルブとを有するリチャージ管に前記原料を収容し、前記原料を収容したリチャージ管をチャンバー内にセットし、前記円錐バルブで前記円筒部材の開口部を開けることで前記石英ルツボ内に前記リチャージ管内に収容した原料投入連続して2回以上行う原料充填方法であって、前記連続して2回以上行う原料の投入の内の少なくとも1回の前記原料の投入において、前記円錐バルブの円錐角度が異なる前記リチャージ管を用いて前記原料を充填することを特徴とする原料充填方法を提供する。 To achieve the above object, the present invention includes a step of filling a raw material in a quartz crucible, a step of melting the raw material in the quartz crucible to form a melt, and a step of pulling a single crystal from the melt in the manufacture of a single crystal having bets, in the step of filling the raw material into the quartz crucible, and quartz cylindrical member for accommodating the raw material, and a conical valve for opening and closing the opening of the lower end of the cylindrical member material containing the raw material to recharge tube, sets the recharge tube containing the raw material into the chamber and housed in the recharge pipe into the quartz crucible by opening the opening portion of the cylindrical member with said conical valve having a the charged raw material filling method of performing two or more times in succession, the introduction of at least one of the material of the introduction of the raw material to carry out the consecutive two or more times, said conical Bal Providing raw material filling method, wherein the cone angle of filling the raw material with different the recharge pipe.

このように、円錐角度が異なる円錐バルブを用いることで、他の原料充填の際の原料の投入位置とは違う位置に原料を投入することができ、連続して原料充填を行っても、石英ルツボ内での投入原料の高さの不均一を抑制することができる。従って、原料充填と溶融を効率的に実施でき、単結晶製造の生産性を向上させることができる。   In this way, by using a conical valve with a different cone angle, the raw material can be charged at a position different from the raw material charging position when filling other raw materials. It is possible to suppress unevenness in the height of the raw material charged in the crucible. Therefore, raw material filling and melting can be performed efficiently, and productivity of single crystal production can be improved.

このとき、前記円錐バルブの円錐角度を、30−150度の範囲とすることが好ましい。
このような円錐角度であれば、リチャージ管の容量を小さくすることなく、原料をスムーズに投入することができ、原料充填をより効率的に実施できる。
At this time, it is preferable that the conical angle of the conical valve be in the range of 30 to 150 degrees.
With such a cone angle, the raw material can be introduced smoothly without reducing the capacity of the recharge tube, and the raw material can be charged more efficiently.

このとき、前記少なくとも1回の原料充填において、前記円錐バルブの円錐角度が15度以上異なる前記リチャージ管を用いて前記原料を充填することが好ましい。
このような15度以上異なる円錐角度とすることで、石英ルツボ内での原料の投入位置を効果的に変化させることができ、原料の高さの不均一を確実に抑制することができる。
At this time, it is preferable to fill the raw material using the recharge pipe in which the conical valve has a cone angle different by 15 degrees or more in the at least one raw material filling.
By setting the cone angle to be different by 15 degrees or more, the raw material charging position in the quartz crucible can be effectively changed, and the unevenness of the height of the raw material can be surely suppressed.

このとき、前記石英ルツボの口径を、610mm以上とすることが好ましい。
このような大口径の石英ルツボでは、本発明による原料の高さの不均一の抑制の必要性が高く、単結晶製造の生産性の向上により効果的に作用する。
At this time, the diameter of the quartz crucible is preferably 610 mm or more.
Such a large-diameter quartz crucible is highly necessary to suppress unevenness in the height of the raw material according to the present invention, and works effectively by improving the productivity of single crystal production.

また本発明は、石英ルツボ内に原料を充填する工程と、前記石英ルツボ内で前記原料を溶融して融液とする工程と、該融液から単結晶を引き上げる工程とを繰り返し、同一の石英ルツボを用いて複数の単結晶を製造する方法であって、1本目の前記単結晶の引き上げにおける前記原料を充填する工程、及び/又は、2本目以降のそれぞれの前記単結晶の引き上げにおける前記原料を充填する工程において、本発明の原料充填方法により前記原料を充填することを特徴とする単結晶の製造方法を提供する。   The present invention also includes a step of filling a raw material in a quartz crucible, a step of melting the raw material in the quartz crucible to form a melt, and a step of pulling a single crystal from the melt, thereby repeating the same quartz. A method of producing a plurality of single crystals using a crucible, the step of filling the raw material in pulling up the first single crystal and / or the raw material in pulling up the single crystal after the second one In the step of filling a single crystal, the raw material is filled by the raw material filling method of the present invention.

このようなマルチプーリングによる単結晶の製造における追いチャージや、リチャージに本発明の原料充填方法を用いることで、原料充填と溶融を効率的に実施でき、単結晶の生産性を向上できる。   By using the raw material filling method of the present invention for recharging and recharging in the production of a single crystal by such multi-pooling, raw material filling and melting can be carried out efficiently, and the productivity of the single crystal can be improved.

以上のように、本発明によれば、石英ルツボへの原料充填と溶融を効率的に実施でき、単結晶製造の生産性を向上させることができる。   As described above, according to the present invention, the raw material filling and melting into the quartz crucible can be carried out efficiently, and the productivity of single crystal production can be improved.

本発明に用いることができる単結晶製造装置の一例を示す概略図である。It is the schematic which shows an example of the single crystal manufacturing apparatus which can be used for this invention. 本発明に用いることができるリチャージ管の一例を示す概略図である。It is the schematic which shows an example of the recharge pipe | tube which can be used for this invention. リチャージ管により石英ルツボ内へ原料を充填する際の概略図である。It is the schematic at the time of filling a raw material in a quartz crucible with a recharge pipe | tube. 本発明において用いることができる円錐バルブの例を示す概略図である。It is the schematic which shows the example of the conical valve which can be used in this invention. 実験において求めた円錐バルブの円錐角度による投入原料の分布を示すグラフと概略図である。It is the graph and schematic which show distribution of the input raw material by the cone angle of the cone valve calculated | required in experiment.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
図1は、本発明の原料充填方法に用いることができるCZ法の単結晶製造装置である。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 shows a CZ method single crystal manufacturing apparatus that can be used in the raw material filling method of the present invention.

図1の単結晶製造装置20は、メインチャンバー1と、メインチャンバー1内で融液5を収容する石英ルツボ6及び黒鉛ルツボ7と、石英ルツボ6及び黒鉛ルツボ7の周囲に配置されたヒーター8と、ヒーター8の外側周囲の断熱部材9と、メインチャンバー1の上部にゲートバルブ3を介して接続され、育成した単結晶(単結晶インゴット)4を収納する引き上げチャンバー2と、引き上げ中の単結晶4を囲繞するガス整流筒12とを備えて構成されている。引き上げチャンバー2には炉内を循環させるガスを導入するガス導入口11が設けられ、メインチャンバー1の底部には炉内を循環したガスを排出するガス流出口10が設けられている。また、ヒーター8や融液5からの熱の輻射を遮断するための遮熱部材13も設けることができる。石英ルツボ6及び黒鉛ルツボ7は結晶成長軸方向に昇降可能であり、結晶成長中に結晶化して減少した融液5の液面下降分を補うように石英ルツボ6及び黒鉛ルツボ7を上昇させる。これにより、融液5の液面の高さはほぼ一定に保たれる。   1 includes a main chamber 1, a quartz crucible 6 and a graphite crucible 7 that store a melt 5 in the main chamber 1, and a heater 8 disposed around the quartz crucible 6 and the graphite crucible 7. A heat insulating member 9 around the outside of the heater 8, a pulling chamber 2 connected to the upper portion of the main chamber 1 via a gate valve 3 and containing a grown single crystal (single crystal ingot) 4; A gas rectifying cylinder 12 surrounding the crystal 4 is provided. The pulling chamber 2 is provided with a gas inlet 11 for introducing a gas to be circulated in the furnace, and a gas outlet 10 for discharging the gas circulated in the furnace is provided at the bottom of the main chamber 1. Further, a heat shield member 13 for blocking heat radiation from the heater 8 or the melt 5 can also be provided. The quartz crucible 6 and the graphite crucible 7 can be moved up and down in the direction of the crystal growth axis, and the quartz crucible 6 and the graphite crucible 7 are raised so as to compensate for the liquid level drop of the melt 5 that has been crystallized and decreased during crystal growth. Thereby, the height of the liquid surface of the melt 5 is kept substantially constant.

さらに、製造条件に合わせて、メインチャンバー1の外側に磁場発生装置(図示せず)を設置し、融液5に水平方向あるいは垂直方向の磁場を印加することによって、融液5の対流を抑制し、単結晶4の安定成長を図る、いわゆるMCZ法の装置を用いることもできる。   Furthermore, a convection of the melt 5 is suppressed by installing a magnetic field generator (not shown) outside the main chamber 1 according to manufacturing conditions and applying a horizontal or vertical magnetic field to the melt 5. In addition, a so-called MCZ method apparatus for achieving stable growth of the single crystal 4 can also be used.

上記した単結晶製造装置20による単結晶製造の際には、図2に示すような、原料(多結晶又は単結晶)14を収容する石英製の円筒部材15と、該円筒部材15の下端の開口部を開閉するための円錐バルブ16とを有するリチャージ管17に原料14を収容し、該原料14を収容したリチャージ管17を引き上げチャンバー2内にワイヤー18で吊してセットし、図3に示すように、円錐バルブ16で円筒部材15の開口部を開けることでリチャージ管17内に収容した原料14を石英ルツボ6内に投入する原料充填を実施する。本発明では、この原料充填を、単結晶引き上げ前に連続して2回以上行う。   When the single crystal is manufactured by the single crystal manufacturing apparatus 20 described above, as shown in FIG. 2, a quartz cylindrical member 15 containing a raw material (polycrystalline or single crystal) 14, and a lower end of the cylindrical member 15 The raw material 14 is accommodated in a recharge pipe 17 having a conical valve 16 for opening and closing the opening, and the recharge pipe 17 containing the raw material 14 is pulled up and suspended in a chamber 2 by a wire 18 and set in FIG. As shown in the drawing, the opening of the cylindrical member 15 is opened by the conical valve 16 so as to charge the raw material 14 accommodated in the recharge pipe 17 into the quartz crucible 6. In the present invention, this raw material filling is performed twice or more continuously before pulling the single crystal.

そして、本発明では、このように連続して2回以上行う原料充填の内の少なくとも1回の原料充填において、円錐バルブ16の円錐角度が異なるリチャージ管17を用いて原料14を充填する。ここで、本発明において、円錐バルブ16の円錐角度とは、図4に示すように、円錐バルブ16の頂点の角度(縦断面の頂角)θを言う。
円錐角度によって、円錐バルブの斜面の傾きが異なるため、当該斜面の傾きが異なれば、他の原料充填の際の原料の投入位置とは違う位置に原料を投入することができる。円錐バルブの円錐角度が大きいと外側へ原料が投下され、また、円錐角度が小さいと中心近くに原料が投下される。これを組み合わせることで、特定の箇所のみ投入原料の高さが高くなることを防止し、投入された原料の高さの平滑化を図ることができる。従って、原料充填毎に時間を空ける必要が無く、また、溶融も効率的に進行する。これにより、単結晶製造の生産性を効果的に向上させることができる。
In the present invention, the raw material 14 is filled using the recharge pipe 17 having a different cone angle of the conical valve 16 in at least one of the raw material fillings performed continuously twice or more in this way. Here, in the present invention, the conical angle of the conical valve 16 refers to the angle (vertical angle of the longitudinal section) θ of the apex of the conical valve 16, as shown in FIG.
Since the inclination of the inclined surface of the conical valve varies depending on the cone angle, if the inclination of the inclined surface is different, the raw material can be charged at a position different from the raw material charging position at the time of filling other raw materials. When the cone angle of the conical valve is large, the raw material is dropped to the outside, and when the cone angle is small, the raw material is dropped near the center. By combining this, it is possible to prevent the height of the input raw material from increasing only at a specific location and to smooth the height of the input raw material. Therefore, it is not necessary to make time for each raw material filling, and the melting proceeds efficiently. Thereby, productivity of single crystal manufacture can be improved effectively.

図4に示すような円錐バルブ16の円錐角度θとしては、特に限定されないが、30−150度の範囲で設定することが好ましい。
30度以上であれば、円錐バルブの高さを抑えることができるためリチャージ管の容量が小さくならず効率的であり、また、150度以下であれば原料の落下速度が低下しすぎることがなく、原料をルツボ中心より遠くに落下させることができる。さらに、円錐角度θは40−120度の範囲がより好ましい。40度以上であれば原料の落下速度が速くなりすぎず、120度以下であれば原料投入時の円錐バルブが振られず安定する。また、石英ルツボのサイズとリチャージ管のサイズとの関係にも依存するが、このような円錐角度θであれば、投入位置がルツボ中心より遠くになりすぎることがなく、原料が石英ルツボの内壁に強くぶつかることも確実に防止できる。
Although it does not specifically limit as cone angle (theta) of the cone valve 16 as shown in FIG. 4, It is preferable to set in the range of 30-150 degree | times.
If it is 30 degrees or more, the height of the conical valve can be suppressed, so the capacity of the recharge pipe is not reduced, and it is efficient. If it is 150 degrees or less, the dropping speed of the raw material does not decrease too much. The raw material can be dropped farther from the center of the crucible. Furthermore, the cone angle θ is more preferably in the range of 40 to 120 degrees. If it is 40 degree | times or more, the falling speed of a raw material will not become too fast, and if it is 120 degree | times or less, the conical valve at the time of raw material injection | throwing will not be shaken but will be stabilized. Also, depending on the relationship between the size of the quartz crucible and the size of the recharge tube, if the cone angle θ is such, the charging position is not too far from the center of the crucible, and the raw material is the inner wall of the quartz crucible. It can be surely prevented that it hits strongly.

このように円錐バルブ16の円錐角度θを変えて原料充填を行う際、図4に示すように円錐バルブ16の円錐角度θが15度以上異なるリチャージ管17を用いることが好ましい。
このように円錐角度θが15度以上異なる円錐バルブであれば、他の原料充填における原料の投入位置とは確実に異なる位置に原料を投入することができ、石英ルツボ内での投入原料の高さをより均一にすることができる。
In this way, when charging the raw material by changing the cone angle θ of the conical valve 16, it is preferable to use a recharge pipe 17 in which the cone angle θ of the conical valve 16 differs by 15 degrees or more as shown in FIG.
In this way, if the conical valve has a cone angle θ different by 15 degrees or more, the raw material can be reliably charged at a position different from the raw material charging position in the other raw material filling, and the amount of the raw material charged in the quartz crucible can be increased. The thickness can be made more uniform.

例えば、図4に示すように、円錐角度θが3水準の円錐バルブ16a、16b、16cを用意して、原料充填毎に、用いる円錐バルブを変えて原料充填することができる。または、少なくとも1回の原料充填において円錐角度θが異なる円錐バルブを用いればよいので、例えば、3回連続で原料充填する場合には、1回目は円錐バルブ16a、2回目は円錐バルブ16c、3回目は円錐バルブ16aの順に用いて原料充填することもできる。   For example, as shown in FIG. 4, conical valves 16a, 16b, and 16c having a three-degree cone angle θ are prepared, and the material can be charged by changing the cone valve to be used every time the material is charged. Alternatively, a conical valve having a different cone angle θ may be used in at least one raw material filling. Therefore, for example, when raw material filling is performed three times in succession, the first time is the conical valve 16a, the second is the conical valve 16c, 3 The second time can be filled with the raw material by using the conical valve 16a in this order.

このような本発明の原料充填方法は、口径610mm以上の石英ルツボ6に原料14を充填する際に用いることが好ましい。
このような大口径の石英ルツボは、容量が大きく連続で行う原料充填の回数も増え、さらに直径が大きいため、投入された原料の高さ位置が不均一になりやすい。リチャージ管の太さは遮熱部材等によって制限されるため、基本的に育成される結晶太さと同程度である。一方、石英ルツボもおおよそ育成される結晶の3倍前後の口径が用いられる。従って、リチャージ管からルツボ壁までの距離は、リチャージ原料を飛ばしたい距離であり、おおよそ結晶直径程度ということになる。つまり、サイズ比は一定であっても、実際の距離はルツボ径が大きくなればなるほど大きくなる。このため、本発明が好適である。
Such a raw material filling method of the present invention is preferably used when the raw material 14 is filled into the quartz crucible 6 having a diameter of 610 mm or more.
Such a large-diameter quartz crucible has a large capacity and the number of continuous filling of raw materials increases, and since the diameter is large, the height position of the charged raw materials tends to be uneven. Since the thickness of the recharge tube is limited by the heat shielding member or the like, it is basically the same as the crystal thickness grown. On the other hand, the diameter of the quartz crucible is approximately three times that of the crystal to be grown. Therefore, the distance from the recharge tube to the crucible wall is the distance at which the recharge material is desired to be blown, and is approximately the crystal diameter. That is, even if the size ratio is constant, the actual distance increases as the crucible diameter increases. For this reason, this invention is suitable.

本発明の原料充填方法は、上記した単結晶製造装置20を用いて、石英ルツボ6内に原料14を充填する工程と、石英ルツボ6内で原料14を溶融して融液5とする工程と、該融液5から単結晶4を引き上げる工程とを繰り返し、同一の石英ルツボ6を用いて複数の単結晶4を製造するマルチプーリングによる単結晶製造に用いることができる。
この場合、1本目の単結晶4の引き上げにおける原料14を充填する工程、及び/又は、2本目以降のそれぞれの単結晶4の引き上げにおける原料14を充填する工程において、本発明の原料充填方法により原料14を充填する。
The raw material filling method of the present invention includes a step of filling the raw material 14 into the quartz crucible 6 using the single crystal manufacturing apparatus 20 described above, and a step of melting the raw material 14 into the melt 5 in the quartz crucible 6. The process of pulling up the single crystal 4 from the melt 5 can be repeated to produce a single crystal by multi-pooling that produces a plurality of single crystals 4 using the same quartz crucible 6.
In this case, in the step of filling the raw material 14 in the pulling up of the first single crystal 4 and / or the step of filling up the raw material 14 in the pulling up of each single crystal 4 after the second, the raw material filling method of the present invention. The raw material 14 is filled.

最初の単結晶の引き上げにおける原料の追いチャージにおいて、本発明の方法により充填することが可能であり、または、2本目以降の単結晶の引き上げにおけるリチャージにおいて本発明により原料充填することもできる。   In the follow-up charge of the raw material in the first pulling of the single crystal, it is possible to fill by the method of the present invention, or in the recharge in the pulling of the second and subsequent single crystals, the raw material can be charged by the present invention.

以上のような本発明であれば、チョクラルスキー法(MCZ法を含む)における単結晶の製造の際、原料充填時間や原料溶融時間を短縮することができ、生産性を効果的に向上させることができる。   With the present invention as described above, when manufacturing a single crystal in the Czochralski method (including the MCZ method), the raw material filling time and the raw material melting time can be shortened, and the productivity is effectively improved. be able to.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実験)
図4に示したように円錐角度θを100度、70度、50度と振った3水準の円錐バルブを準備した。これをリチャージ管の下端にセットし、図2に示したように、リチャージ管の中に原料を詰めた。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Experiment)
As shown in FIG. 4, a three-level conical valve with a conical angle θ of 100 degrees, 70 degrees, and 50 degrees was prepared. This was set at the lower end of the recharge tube, and the recharge tube was filled with the raw material as shown in FIG.

次に、室温にて、石英ルツボに板を敷いてシリコン融液の代わりに見立てて、その板の上にリチャージ管内の原料を、図3に示すように投入した。この実験を、図4に示す円錐角度の異なる3水準の円錐バルブを用いて行った。
その結果、図5(a)に示すように、投下された原料はドーナッツ状の山を形成した。その高さを測定したものが図5(b)である。図5(b)のグラフの数字は、石英ルツボの中心から内壁までの距離を1として比率で表記した。図5(b)からわかるように、円錐角度θが大きくなるほど山の頂点はルツボ外側に移動し、山の高さは低くなる傾向が見られる。
Next, at room temperature, a quartz crucible was laid on a plate and regarded as a substitute for silicon melt, and the raw material in the recharge tube was put on the plate as shown in FIG. This experiment was performed using three levels of conical valves with different cone angles as shown in FIG.
As a result, as shown in FIG. 5 (a), the dropped raw material formed a donut-like mountain. FIG. 5B shows the measured height. The numbers in the graph of FIG. 5B are expressed as a ratio, with the distance from the center of the quartz crucible to the inner wall being 1. As can be seen from FIG. 5B, as the cone angle θ increases, the peak of the mountain moves to the outside of the crucible and the height of the mountain tends to decrease.

以上より、円錐バルブの円錐角度を振ることにより、原料が落下する位置を制御できることがわかった。従来は1種類の角度のみで複数回の原料充填を行ってきた。しかし、ドーナッツ状の山の高さが同じ位置で高くなり、投入した原料がある程度溶けるのを待ってから次の投入を行うなど、作業上の煩雑さがあったり、溶融に時間がかかったりしていた。しかし、円錐角度を変えることにより、原料の落下位置が変わるため、例えば投入毎に円錐角度を変えた円錐バルブを用いれば、山の高さをなだらかにかつ低く抑えられることができることがわかった。この投入実験は室温で実施したが、リチャージ等の原料充填は実際には高温下で行われる作業であり、先に充填した原料は後から原料を追加充填する際には溶け始めている。このため、実際の装置の高温条件の下で、以下の実施例1−3、比較例を行った。   From the above, it was found that the position where the raw material falls can be controlled by swinging the cone angle of the cone valve. Conventionally, raw material filling has been performed several times at only one kind of angle. However, the height of the donut-shaped mountain increases at the same position, and there is a troublesome work such as waiting for the charged raw material to melt to some extent and then performing the next charging, and it takes time to melt. It was. However, it has been found that the height of the mountain can be suppressed gently and low by using, for example, a conical valve in which the cone angle is changed every time the material is dropped, since the position of the raw material changes by changing the cone angle. Although this charging experiment was performed at room temperature, material charging such as recharging is actually performed at a high temperature, and the previously charged material starts to melt when the material is further charged later. For this reason, the following Example 1-3 and the comparative example were performed under the high temperature conditions of the actual apparatus.

(実施例1)
図1に示した単結晶製造装置を用いて、メインチャンバー内に直径26インチ(660mm)の石英ルツボを装備して、磁場印加チョクラルスキー法(MCZ法)を用いて直径8インチ(200mm)のシリコン単結晶を育成した。
Example 1
Using the single crystal manufacturing apparatus shown in FIG. 1, a quartz crucible having a diameter of 26 inches (660 mm) is installed in the main chamber, and a magnetic field application Czochralski method (MCZ method) is used and the diameter is 8 inches (200 mm). The silicon single crystal was grown.

この装置においてシリコン単結晶を育成した後、石英ルツボ内に120kgの原料を追加充填し、それを溶融した。このとき、原料は各投入量を同じ40kgとして三回に分けて連続投入した。三回の投入の際、それぞれの円錐バルブの円錐角θを、1投目50度、2投目70度、3投目100度とした。
メインチャンバー内は減圧状態なので、リチャージ管を引き上げチャンバー内に常圧下で装着した後、真空ポンプにて引き上げチャンバー内をメインチャンバーと同じ圧力まで減圧し、ゲートバルブを開いた。その後リチャージ管を融液面近くまで降ろして、円錐バルブで開口部を開けることで原料投下を行った。その後、空になったリチャージ管を再度引き上げチャンバー内に引き上げ、ゲートバルブを閉じ、常圧に戻した。この操作を繰り返して、3回の原料投入を行った。
After growing a silicon single crystal in this apparatus, 120 kg of raw material was additionally filled in a quartz crucible and melted. At this time, the raw materials were continuously fed in three times with the same amount of each being 40 kg. When thrown three times, the cone angle θ of each conical valve was set to 50 degrees for the first throw, 70 degrees for the second throw, and 100 degrees for the third throw.
Since the inside of the main chamber was in a reduced pressure state, the recharge pipe was pulled up and installed in the chamber under normal pressure, and then the inside of the pulling chamber was reduced to the same pressure as the main chamber with a vacuum pump, and the gate valve was opened. Thereafter, the recharge pipe was lowered to near the melt surface, and the raw material was dropped by opening an opening with a conical valve. Thereafter, the evacuated recharge pipe was again pulled up into the chamber, the gate valve was closed, and the pressure was returned to normal pressure. This operation was repeated, and the raw material was charged three times.

その結果、原料を投入する際に山が高くなりすぎて投入することができない、という状態が発生せず、よどみなく作業を進めることができた。結果的に溶融にかかった時間は、後に示す比較例に比べて15%短縮できた。   As a result, when the raw material was added, the mountain was too high to be input, and the operation could be carried out without stagnation. As a result, the time required for melting could be shortened by 15% compared to the comparative example shown later.

(実施例2)
円錐バルブの円錐角を、1投目100度、2投目50度、3投目100度としたこと以外には、実施例1と同様に、合計120kgの原料投入及び溶融を行った。
その結果、実施例1と同様に、原料を投入する際に山が高くなりすぎて投入することができない、という状態が発生せず、よどみなく作業を進めることができた。結果的に溶融にかかった時間は、後に示す比較例に比べて約14%短縮できた。
(Example 2)
A total of 120 kg of raw materials were charged and melted in the same manner as in Example 1 except that the conical angle of the conical valve was set to 100 degrees for the first throw, 50 degrees for the second throw, and 100 degrees for the third throw.
As a result, as in Example 1, the state that the crest was too high when the raw material was charged and the material could not be charged did not occur, and the operation could proceed without stagnation. As a result, the time required for melting could be shortened by about 14% compared with the comparative example shown later.

(実施例3)
円錐バルブの円錐角を、1投目100度、2投目70度、3投目50度としたこと以外には、実施例1と同様に、合計120kgの原料投入及び溶融を行った。
その結果、1投目、2投目まではよどみなく投入可能であったが、3投目を投入する際に少し山の高さが高すぎたため、原料が溶けるのを少し待ってから3投目を投入した。結果的に溶融にかかった時間は、後に示す比較例に比べて約8%短縮できた。
(Example 3)
A total of 120 kg of raw material was charged and melted in the same manner as in Example 1 except that the cone angle of the conical valve was set to 100 ° for the first throw, 70 ° for the second throw, and 50 ° for the third throw.
As a result, the first and second shots could be thrown in smoothly, but when the third shot was thrown, the height of the mountain was a little too high. I put my eyes. As a result, the time required for melting could be shortened by about 8% compared with the comparative example shown later.

(比較例)
円錐角が70度の円錐バルブを3投ともに用いたこと以外には、実施例1と同様に、合計120kgの原料投入及び溶融を行った。
その結果、1投目、2投目まではよどみなく投入可能であったが、3投目を投入する際にはドーナツ状の山の高さが高すぎたため、ゲートバルブを開けずに投入タイミングを待った。原料が溶け始めて山が低くなったところで、ゲートバルブを開けてリチャージ管を降ろし、3投目の原料投入を行った。結果的に先に述べた実施例1−3よりも溶融時間が長くなってしまった。
(Comparative example)
A total of 120 kg of raw material was charged and melted in the same manner as in Example 1 except that a conical valve with a cone angle of 70 degrees was used for all three throws.
As a result, the first and second shots could be thrown in smoothly, but when the third shot was thrown, the donut-shaped mountain height was too high, so the timing was not opened without opening the gate valve. Waited. When the raw material began to melt and the mountain became lower, the gate valve was opened to lower the recharge pipe, and the third raw material was charged. As a result, the melting time was longer than in Example 1-3 described above.

上記実施例1−3では、円錐角を徐々に大きくしたり、逆に徐々に小さくしたり、大小を交互に用いたり、また、連続で3回投入し、各回の投入量が同じ例を示した。しかし、本発明はこのような実施形態に限定されず、連続で4回以上又は2回の投入にも適用でき、また、各回の投入量が異なる場合でも適用でき、原料の投入された状況を見ながら、本発明により適切な変更角度を選ぶことが可能である。   In the above Example 1-3, the cone angle is gradually increased, conversely is gradually decreased, the size is alternately used, or the sizes are alternately input three times, and the input amount at each time is the same. It was. However, the present invention is not limited to such an embodiment, and can be applied to four or more times or two times of continuous feeding, and can be applied even when the amount of charging of each time is different. While looking, it is possible to select an appropriate change angle according to the present invention.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…メインチャンバー、 2…引き上げチャンバー、 3…ゲートバルブ、
4…単結晶、 5…融液、 6…石英ルツボ、 7…黒鉛ルツボ、
8…ヒーター、 9…断熱部材、 10…ガス流出口、 11…ガス導入口、
12…ガス整流筒、 13…遮熱部材、 14…原料、 15…円筒部材、
16…円錐バルブ、 17…リチャージ管、 18…ワイヤー、
20…単結晶製造装置。
1 ... Main chamber, 2 ... Lifting chamber, 3 ... Gate valve,
4 ... single crystal, 5 ... melt, 6 ... quartz crucible, 7 ... graphite crucible,
8 ... heater, 9 ... heat insulating member, 10 ... gas outlet, 11 ... gas inlet,
12 ... Gas flow straightening tube, 13 ... Heat shield member, 14 ... Raw material, 15 ... Cylindrical member,
16 ... Conical valve, 17 ... Recharge pipe, 18 ... Wire,
20: Single crystal manufacturing apparatus.

Claims (5)

石英ルツボ内に原料を充填する工程と、前記石英ルツボ内で前記原料を溶融して融液とする工程と、該融液から単結晶を引き上げる工程とを有する単結晶の製造における、前記石英ルツボ内に原料を充填する工程において、前記原料を収容する石英製の円筒部材と、前記円筒部材の下端の開口部を開閉するための円錐バルブとを有するリチャージ管に前記原料を収容し、前記原料を収容したリチャージ管をチャンバー内にセットし、前記円錐バルブで前記円筒部材の開口部を開けることで前記石英ルツボ内に前記リチャージ管内に収容した原料投入連続して2回以上行う原料充填方法であって、
前記連続して2回以上行う原料の投入の内の少なくとも1回の前記原料の投入において、前記円錐バルブの円錐角度が異なる前記リチャージ管を用いて前記原料を充填することを特徴とする原料充填方法。
The quartz crucible in the production of a single crystal, comprising: filling a raw material into a quartz crucible; melting the raw material in the quartz crucible to form a melt; and pulling the single crystal from the melt. in the step of filling the raw material within, accommodating the material to recharge tube having a quartz cylindrical member for accommodating the raw material, and a conical valve for opening and closing the opening of the lower end of the cylindrical member, the material set the recharge pipe into the chamber containing the raw material filling performing the conical valve in the cylindrical opening of in the quartz crucible by opening the member the recharge pipe received therein and the introduction of the raw material two or more times in succession A method,
In introduction of at least one of the material of the introduction of the raw material to carry out the consecutive two or more times, the raw material filling, characterized by filling the raw material using the recharge pipe cone angle different from the conical valve Method.
前記円錐バルブの円錐角度を、30−150度の範囲とすることを特徴とする請求項1に記載の原料充填方法。   2. The raw material filling method according to claim 1, wherein a conical angle of the conical valve is in a range of 30 to 150 degrees. 前記少なくとも1回の原料充填において、前記円錐バルブの円錐角度が15度以上異なる前記リチャージ管を用いて前記原料を充填することを特徴とする請求項1又は請求項2に記載の原料充填方法。   3. The raw material filling method according to claim 1, wherein in the at least one raw material filling, the raw material is filled using the recharge pipe having a cone angle of the conical valve different by 15 degrees or more. 前記石英ルツボの口径を、610mm以上とすることを特徴とする請求項1乃至請求項3のいずれか一項に記載の原料充填方法。   The raw material filling method according to any one of claims 1 to 3, wherein a diameter of the quartz crucible is set to 610 mm or more. 石英ルツボ内に原料を充填する工程と、前記石英ルツボ内で前記原料を溶融して融液とする工程と、該融液から単結晶を引き上げる工程とを繰り返し、同一の石英ルツボを用いて複数の単結晶を製造する方法であって、
1本目の前記単結晶の引き上げにおける前記原料を充填する工程、及び/又は、2本目以降のそれぞれの前記単結晶の引き上げにおける前記原料を充填する工程において、請求項1乃至請求項4のいずれか一項に記載の原料充填方法により前記原料を充填することを特徴とする単結晶の製造方法。
A step of filling a raw material in a quartz crucible, a step of melting the raw material in the quartz crucible to form a melt, and a step of pulling a single crystal from the melt are repeated, and a plurality of steps are performed using the same quartz crucible. A method for producing a single crystal of
5. The step of filling the raw material in the first pulling of the single crystal and / or the step of filling the raw material in the pulling of the single crystal after the second one, respectively. A method for producing a single crystal, wherein the raw material is filled by the raw material filling method according to claim 1.
JP2012133457A 2012-06-13 2012-06-13 Raw material filling method and single crystal manufacturing method Active JP5741528B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012133457A JP5741528B2 (en) 2012-06-13 2012-06-13 Raw material filling method and single crystal manufacturing method
KR1020130066972A KR101901874B1 (en) 2012-06-13 2013-06-12 Method for filling raw material, and method for preparaing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133457A JP5741528B2 (en) 2012-06-13 2012-06-13 Raw material filling method and single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2013256406A JP2013256406A (en) 2013-12-26
JP5741528B2 true JP5741528B2 (en) 2015-07-01

Family

ID=49953180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133457A Active JP5741528B2 (en) 2012-06-13 2012-06-13 Raw material filling method and single crystal manufacturing method

Country Status (2)

Country Link
JP (1) JP5741528B2 (en)
KR (1) KR101901874B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102523134B1 (en) * 2015-12-15 2023-04-18 재단법인 포항산업과학연구원 Anode for electrolysis with improved feeding system of raw material and electrolytic cell comprising the same
KR101951735B1 (en) * 2017-01-09 2019-02-25 에스케이실트론 주식회사 Solid Raw Material Supplying Unit and Single Crystal Ingot Grower Having The Same
KR102003697B1 (en) * 2018-01-09 2019-07-25 에스케이실트론 주식회사 Method and apparatus for raw material recharge
KR20210068694A (en) 2019-12-02 2021-06-10 웅진에너지 주식회사 Raw material filling apparatus for solar cell ingot growth
KR20230116813A (en) * 2020-12-10 2023-08-04 신에쯔 한도타이 가부시키가이샤 Single Crystal Manufacturing Equipment
CN114686978B (en) * 2022-03-24 2023-05-30 中环领先(徐州)半导体材料有限公司 Charging assembly, single crystal growth device with charging assembly and charging method
CN115304249A (en) * 2022-08-01 2022-11-08 宁夏盾源聚芯半导体科技股份有限公司 Sand lifting device and method for synthetic sand at bottom of quartz crucible before smelting

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260791A (en) * 1986-05-08 1987-11-13 Toshiba Ceramics Co Ltd Device for pulling up silicon single crystal
JP2640683B2 (en) * 1988-12-12 1997-08-13 信越半導体株式会社 Single crystal rod pulling device
WO2002068732A1 (en) * 2001-02-28 2002-09-06 Shin-Etsu Handotai Co., Ltd. Recharge pipe for solid multicrystal material, and single crystal producing method using the same
JP4345624B2 (en) * 2004-09-21 2009-10-14 株式会社Sumco Raw material supply apparatus and raw material supply method by Czochralski method
JP2007277069A (en) * 2006-04-12 2007-10-25 Covalent Materials Corp Recharge device and method for recharging solid raw material
JP5008346B2 (en) * 2006-06-28 2012-08-22 ジェコス株式会社 Fire catch structure
JP2008007995A (en) * 2006-06-28 2008-01-17 Shimizu Corp Steel brace stiffening structure and method of constructing the same
JP2008013376A (en) * 2006-07-03 2008-01-24 Covalent Materials Corp Recharge device for solid raw material, and recharge method using the same
KR100800212B1 (en) 2006-08-02 2008-02-01 주식회사 실트론 Apparatus and method for supplying solid raw material to single crystal grower
JP4699976B2 (en) 2006-09-29 2011-06-15 Sumco Techxiv株式会社 Raw material supply equipment
JP4931122B2 (en) * 2006-09-29 2012-05-16 Sumco Techxiv株式会社 Raw material supply apparatus and raw material supply method
JP2008087995A (en) * 2006-09-29 2008-04-17 Covalent Materials Corp Single crystal pulling apparatus

Also Published As

Publication number Publication date
KR101901874B1 (en) 2018-09-28
KR20130139784A (en) 2013-12-23
JP2013256406A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5741528B2 (en) Raw material filling method and single crystal manufacturing method
US20110036860A1 (en) Single-crystal growth apparatus and raw-material supply method
KR100800212B1 (en) Apparatus and method for supplying solid raw material to single crystal grower
KR20080056674A (en) A crucible having a doped upper wall portion and method for making the same
KR101997600B1 (en) Raw material filling method, method for manufacturing single crystal, and device for manufacturing single crystal
US10415150B2 (en) Apparatus for manufacturing silicon single crystal and melt inlet pipe of the same
US9745666B2 (en) Continuous czochralski method and apparatus
EP2248932A1 (en) Silicon monocrystal growth method
US10494734B2 (en) Method for producing silicon single crystals
US20150259821A1 (en) Apparatus for manufacturing ingot
US20150259824A1 (en) Apparatus and methods for manufacturing ingot
US11326272B2 (en) Mono-crystalline silicon growth apparatus
TWI720354B (en) Recharge tube, raw material supply device single crystal pulling device, recharge tube using method, recharge method, single crystal pulling method
JP6471700B2 (en) Method for melting silicon raw material using recharge device
JP2005001977A (en) Apparatus and method for supplying raw material in czochralski method
JP2009018984A (en) Low oxygen concentration silicon single crystal and its manufacturing method
JP5167942B2 (en) Method for producing silicon single crystal
JP6546721B2 (en) Quartz glass crucible for pulling single crystal silicon
JP7021626B2 (en) Raw material supply method and silicon single crystal manufacturing method
JP2009274920A (en) Production method of silicon single crystal
JP2000007496A (en) Single crystal pulling-up equipment and single crystal pulling-up method using the same
KR101554411B1 (en) Apparatus and method for growing ingot
KR20200088045A (en) Unit for supplying raw material and apparatus for growing silicon single crytal ingot including the same
KR101516480B1 (en) Apparutus for staking poly silicon
TWI736169B (en) Process and device for growing a semiconductor crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250