JP5741104B2 - Temperature reduction tower - Google Patents

Temperature reduction tower Download PDF

Info

Publication number
JP5741104B2
JP5741104B2 JP2011062045A JP2011062045A JP5741104B2 JP 5741104 B2 JP5741104 B2 JP 5741104B2 JP 2011062045 A JP2011062045 A JP 2011062045A JP 2011062045 A JP2011062045 A JP 2011062045A JP 5741104 B2 JP5741104 B2 JP 5741104B2
Authority
JP
Japan
Prior art keywords
nozzle
tower
opening
inner peripheral
temperature reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011062045A
Other languages
Japanese (ja)
Other versions
JP2012197972A (en
Inventor
茂也 林
茂也 林
宏 天野
宏 天野
昌宏 丸山
昌宏 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011062045A priority Critical patent/JP5741104B2/en
Publication of JP2012197972A publication Critical patent/JP2012197972A/en
Application granted granted Critical
Publication of JP5741104B2 publication Critical patent/JP5741104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Description

本発明は、ガスを冷却する減温塔に関する。   The present invention relates to a temperature reducing tower for cooling a gas.

従来、特許文献1では液体を貯留した冷却槽中に上方からガスを導入し、ガス中の塩化水素を液体に溶解させている。また、特許文献2では鉛直上方から供給されるガスに液体を噴霧し、塔の内周面に液膜を形成して壁面保護を図っている。   Conventionally, in Patent Document 1, gas is introduced from above into a cooling tank in which liquid is stored, and hydrogen chloride in the gas is dissolved in the liquid. Moreover, in patent document 2, a liquid is sprayed on the gas supplied from vertically upward, and a liquid film is formed in the inner peripheral surface of a tower, and the wall surface protection is aimed at.

特開2002−316803号公報JP 2002-316803 A 特開2004−277574号公報JP 2004-277574 A

しかしながら特許文献1にあっては、ガスを液体中に導入するための圧力が必要であり、系全体の圧力損失が増大するという問題があった。また、特許文献2では塔の鉛直上方から供給されるガスを乱流域に保つための縮小部が設けられており、構造が煩雑である。いずれも、下側からガスを供給し、上側から散水して塔の内周面を液膜で保護する際、局所的な流速増大が問題となる点については記載されていない。
本発明は上記問題点に着目してなされたものであり、その目的とするところは、圧力損失を低減しつつ塔内周面の壁面を保護し、かつ簡易な構成を実現した減温塔を提供することにある。
However, Patent Document 1 requires a pressure for introducing the gas into the liquid, and there is a problem that the pressure loss of the entire system increases. Moreover, in patent document 2, the reduction part for keeping the gas supplied from the vertical upper direction of a tower in a turbulent flow area is provided, and a structure is complicated. In either case, when the gas is supplied from the lower side and water is sprayed from the upper side to protect the inner peripheral surface of the tower with the liquid film, there is no description about the point that the local increase in the flow velocity becomes a problem.
The present invention has been made by paying attention to the above-mentioned problems, and the object of the present invention is to provide a temperature reducing tower that protects the wall surface of the inner peripheral surface of the tower while reducing pressure loss and realizes a simple configuration. It is to provide.

上述の目的を解決するため、本願発明では、円筒状の塔と、前記塔に接続し、前記塔の内周面に液体を供給するとともに、この内周面の表面に液膜を形成する散水管と、前記散水管の鉛直下方側で前記塔の内周側に接続し、前記塔の内周側に突出して延在する円柱状のノズルとを備え、
前記ノズルから前記塔の内周側にガスを供給し、前記散水管から供給される液体により、前記塔内を上昇する前記ガスを冷却する減温塔であって、前記塔の底部は、前記散水管から供給され、前記内周面に沿って流れた液体を一時的に貯留する貯留部であって、前記貯留された液体の表面は、前記ノズルの鉛直下方側に位置し、前記ノズルから前記減温塔内周面の鉛直上側頂部までの距離をH1、前記ノズルから前記貯留された液体の液面までの距離をH2とすると、H1>H2であって、前記ノズルは、前記塔内周側への突出方向先端側を底部とする有底の円筒形状であって、前記貯留された液体の液面に対し離間して設けられるとともに、前記塔の鉛直上方側に複数円形開口する上側開口部と、鉛直下方側に複数円形開口する下側開口部を有し、前記上側開口部のノズル軸方向略中心部は、前記塔の中心軸に対し、前記ノズルの根元部側に偏心して設けられ、前記上側開口部の開口面積は、前記下側開口部の開口面積よりも大きく設けられ、前記上側開口部を形成する円形開口の数は、前記下側開口部を形成する円形開口の数よりも多いこととした。
In order to solve the above-mentioned object, in the present invention, a cylindrical tower is connected to the tower, and a liquid is supplied to the inner peripheral surface of the tower and a liquid film is formed on the inner peripheral surface. A water pipe, and a columnar nozzle connected to the inner peripheral side of the tower on the vertically lower side of the sprinkling pipe and projecting and extending to the inner peripheral side of the tower,
A temperature reducing tower that supplies gas from the nozzle to the inner peripheral side of the tower and cools the gas rising in the tower by liquid supplied from the sprinkling pipe, and the bottom of the tower is A storage section for temporarily storing the liquid supplied from the water spray pipe and flowing along the inner peripheral surface, wherein the surface of the stored liquid is positioned vertically below the nozzle, and H1> H2, where H1 is the distance from the nozzle to the vertical top of the inner peripheral surface of the temperature reducing tower, and H2 is the distance from the nozzle to the liquid level of the stored liquid . A bottomed cylindrical shape with the front end side in the protruding direction to the circumferential side as a bottom, and is provided apart from the liquid level of the stored liquid, and an upper side that opens a plurality of circles vertically above the tower Opening and lower opening with multiple circular openings vertically below A nozzle axis direction substantially central portion of the upper opening, the center axis of the tower, provided eccentrically on the base portion side of the nozzle, the opening area of the upper opening, said lower opening And the number of circular openings forming the upper opening is larger than the number of circular openings forming the lower opening.

よって、圧力損失を低減しつつ塔内周面の壁面を保護し、かつ簡易な構成を実現した減温塔を提供できる。   Therefore, it is possible to provide a temperature reducing tower that protects the wall surface on the inner peripheral surface of the tower while reducing pressure loss and realizes a simple configuration.

本発明における減温塔である。It is a temperature reduction tower in the present invention. 本発明における減温塔の軸方向B−B断面図である。It is an axial direction BB sectional view of a temperature reduction tower in the present invention. 本発明における減温塔の方向断面図である。 Axial direction C of the temperature reducing tower in the present invention - is a C cross section. 図3の断面図である。A A cross-sectional view - A of FIG. 本発明における減温塔内のガス流を示す図である。It is a figure which shows the gas flow in the temperature reduction tower in this invention. 比較例における減温塔の軸方向B−B断面図である。It is an axial direction BB sectional view of a temperature reduction tower in a comparative example. 比較例における減温塔の径方向A−A断面図である。It is radial direction AA sectional drawing of the temperature reduction tower in a comparative example. 比較例における減温塔内のガス流を示す図である。It is a figure which shows the gas flow in the temperature reduction tower in a comparative example.

[実施の形態1]
[減温塔の概要]
図1は本発明の減温塔1の概略図である。減温塔1は鉛直方向を軸とする円筒形状であって、円筒側面の外周側から内周側に突出するノズル100が設けられている。このノズル100は減温塔1の鉛直下方側に設けられ、他の機器(脱塩素設備等)から排出される高温の排ガスを減温塔1内周側に供給する。また、減温塔1の鉛直上方側には水を散水する散水管3が設けられ、この水によって、ノズル100から排出された排ガスを冷却する。冷却後のガスは減温塔1の頂部12から系外に排出される。
[Embodiment 1]
[Overview of the cooling tower]
FIG. 1 is a schematic view of a temperature reducing tower 1 of the present invention. The temperature reducing tower 1 has a cylindrical shape with the vertical direction as an axis, and is provided with a nozzle 100 protruding from the outer peripheral side of the cylindrical side surface to the inner peripheral side. The nozzle 100 is provided vertically below the temperature reducing tower 1 and supplies high-temperature exhaust gas discharged from other equipment (dechlorination equipment or the like) to the inner peripheral side of the temperature reducing tower 1. Further, a water spray pipe 3 for spraying water is provided on the vertically upper side of the temperature reducing tower 1, and the exhaust gas discharged from the nozzle 100 is cooled by this water. The cooled gas is discharged out of the system from the top 12 of the temperature reducing tower 1.

減温塔1の底部であってノズル100の鉛直下方側には、散水管3から散水された水、および系外から供給される冷却水を一時的に貯留する貯留部14が設けられている。この貯留部14に滞留する貯留水15はポンプ2によって汲み出され、一部は散水管を介し減温塔1内に供給されて水滴31を形成し、一部は排水として系外に排出される。また水滴31の一部は内周11に到達し、内周11を覆う水膜32が形成される(図2参照)。   At the bottom of the temperature-decreasing tower 1 and on the vertically lower side of the nozzle 100, a reservoir 14 is provided for temporarily storing water sprayed from the water spray pipe 3 and cooling water supplied from outside the system. . The stored water 15 staying in the storage unit 14 is pumped out by the pump 2, and a part thereof is supplied into the temperature reducing tower 1 through the water spray pipe to form a water droplet 31, and a part thereof is discharged out of the system as drainage. The A part of the water droplet 31 reaches the inner periphery 11 and a water film 32 covering the inner periphery 11 is formed (see FIG. 2).

ノズル100は、貯留水15の水面16よりも鉛直上方側に設けられ、貯留水15と離間するとともに接触しないよう設けられる。貯留水15は排ガス冷却後の水滴31が混入するため、排ガス中の塩化水素等の成分が貯留水15に供給される。したがって、ノズル100と貯留水15とを離間させ、塩化水素等がノズル100に影響を及ぼすことを回避する。   The nozzle 100 is provided vertically above the water surface 16 of the stored water 15, and is provided so as to be separated from the stored water 15 and not to contact. Since the stored water 15 is mixed with water droplets 31 after cooling the exhaust gas, components such as hydrogen chloride in the exhaust gas are supplied to the stored water 15. Therefore, the nozzle 100 and the stored water 15 are separated from each other, and the influence of hydrogen chloride or the like on the nozzle 100 is avoided.

減温塔1の内側の最頂部12とノズル100との距離をH1、貯留水15の水面16とノズル100までの距離をH2とすると、ノズル100はH1>H2となる位置に設けられている。したがって、減温塔1の内周側においては、ノズル100の鉛直下方側の容積は、ノズル100の鉛直上方側の容積よりも小さく形成されることとなる。   The nozzle 100 is provided at a position where H1> H2, where H1 is the distance between the topmost part 12 inside the temperature reducing tower 1 and the nozzle 100 and H2 is the distance between the water surface 16 of the stored water 15 and the nozzle 100. . Therefore, on the inner peripheral side of the temperature reducing tower 1, the volume on the vertically lower side of the nozzle 100 is formed smaller than the volume on the vertically upper side of the nozzle 100.

ノズル100には2つの開口部110,120が設けられている。円筒形状のノズル100の鉛直上方側には上方側開口部110が開口し、鉛直下方側には下方側開口部120が開口する。他の機器からノズル100に供給された排ガスは、この2つの開口部110,120から減温塔1内に導入され、冷却される。   The nozzle 100 is provided with two openings 110 and 120. An upper opening 110 is opened on the vertically upper side of the cylindrical nozzle 100, and a lower opening 120 is opened on the vertically lower side. The exhaust gas supplied to the nozzle 100 from another device is introduced into the temperature reducing tower 1 from the two openings 110 and 120 and cooled.

[ノズルの詳細]
図2は本願における減温塔1の軸方向B−B断面図(図参照)、図3は減温塔1の軸方向断面図(図参照)、図4は図3の断面図である。なお、以下では減温塔1に対しノズル100が挿入される方向をx軸正方向とし、鉛直上方側をz軸正方向とする。また、x軸、z軸に直交し、図の図面上側をy軸正方向とする。
[Details of nozzle]
2 is a sectional view taken along the line B-B of the temperature reducing tower 1 in the present application (see FIG. 4 ), FIG. 3 is a sectional view taken along the direction C - C of the temperature reducing tower 1 (see FIG. 4 ), and FIG. a - it is a a cross-sectional view. In the following, the direction in which the nozzle 100 is inserted into the temperature reducing tower 1 is defined as the x-axis positive direction, and the vertical upper side is defined as the z-axis positive direction. In addition, it is orthogonal to the x-axis and z-axis, and the upper side of FIG. 4 is the y-axis positive direction.

略中空円筒形状のノズル100は減温塔1に対しx軸正方向側に向かって挿入され、x軸方向のノズル底部101は閉塞されている。また外周側であってz軸正方向側には上側開口部110が形成され、z軸下方側には下側開口部120が形成されている。上側開口部110のx軸方向略中心位置Mは、円筒状の減温塔1の軸心Oに対しx軸負方向側に偏心している。ノズル100設置位置における減温塔1の半径をrとすると、軸心Oに対する略中心部Mの偏心量は0.3r〜0.4rである。
The substantially hollow cylindrical nozzle 100 is inserted into the temperature reducing tower 1 toward the positive x-axis direction, and the nozzle bottom 101 in the x-axis direction is closed. In addition, an upper opening 110 is formed on the outer peripheral side and in the z-axis positive direction side, and a lower opening 120 is formed on the lower side of the z-axis. The substantially central position M in the x-axis direction of the upper opening 110 is decentered to the x-axis negative direction side with respect to the axis O of the cylindrical temperature reducing tower 1. When the radius of the temperature reducing tower 1 at the nozzle 100 installation position is r, the amount of eccentricity of the substantially central portion M with respect to the axis O is 0.3r to 0.4r.

各開口部110,120は、複数の円形開口110a,120aによりノズル100の円筒外周面を牙孔して形成される。コスト低減のため各円形開口110a,120aはそれぞれ同一形状の円形開口によって形成され、各開口部110,120の開口面積S1,S2は各円形開口110a,120aの数に比例することとなる(図2参照)。本実施形態では上側円形開口110aは下側円形開口120aよりも多く設けられ、したがって上側開口部110の開口面積は下側開口部120よりも大きくなる。   Each of the openings 110 and 120 is formed by drilling the cylindrical outer peripheral surface of the nozzle 100 with a plurality of circular openings 110a and 120a. In order to reduce costs, the circular openings 110a and 120a are formed by circular openings having the same shape, and the opening areas S1 and S2 of the openings 110 and 120 are proportional to the number of the circular openings 110a and 120a (FIG. 2). In the present embodiment, the upper circular opening 110 a is provided more than the lower circular opening 120 a, and thus the opening area of the upper opening 110 is larger than that of the lower opening 120.

また、各開口部110,120は、中空円筒状のノズル100先端部における底面内側105とは離間して設けられている。すなわち、各開口部110,120の開口先端部112,122は底面内側105とは離間し、したがって各開口部110,120と底面内側105との間にはノズル100のノズル側面103に覆われた空隙部130が形成される。   The openings 110 and 120 are provided apart from the bottom surface inner side 105 at the tip of the hollow cylindrical nozzle 100. That is, the opening front end portions 112 and 122 of the openings 110 and 120 are separated from the bottom surface inner side 105, so that the nozzle side surface 103 of the nozzle 100 is covered between the openings 110 and 120 and the bottom surface inner side 105. A gap 130 is formed.

なお、ノズル100と減温塔内周11の距離は軸Gを含む水平面N(図4参照)上で最も短くなるため、ノズル100の水平方向端部103aからガスが排出されることは好ましくない。上側開口部110から排出されたガスは自身の熱に基づく上昇気流によって鉛直上方側に移動するが、下側開口部120が軸Gよりも鉛直上方側に開口する場合、下側開口部120から排出されたガスが水平面N上に排出されて流速が低下しないまま減温塔内周11に当たり、形成された水膜32が飛散して壁面保護が図れないおそれがある。   Since the distance between the nozzle 100 and the inner periphery 11 of the temperature reducing tower is the shortest on the horizontal plane N (see FIG. 4) including the axis G, it is not preferable that the gas is discharged from the horizontal end portion 103a of the nozzle 100. . The gas discharged from the upper opening 110 moves vertically upward due to the rising airflow based on its own heat. When the lower opening 120 opens vertically upward from the axis G, the gas is discharged from the lower opening 120. There is a possibility that the discharged gas is discharged onto the horizontal plane N and hits the inner periphery 11 of the temperature reducing tower without decreasing the flow velocity, and the formed water film 32 scatters and the wall surface protection cannot be achieved.

したがって、上側開口部110をノズル100の軸Gよりも鉛直上方側に開口させ、下側開口部120を軸Gよりも鉛直下方側に開口させることで、排ガスを水平面N上に排出されることを回避し、壁面保護を図るものである。なお、上側開口部110の開口面積S1と下側開口部120の開口面積S2の比は、1<(S1/S2)≦2.0である。   Therefore, exhaust gas is discharged onto the horizontal plane N by opening the upper opening 110 vertically upward from the axis G of the nozzle 100 and opening the lower opening 120 vertically downward from the axis G. Is intended to protect the wall surface. The ratio of the opening area S1 of the upper opening 110 and the opening area S2 of the lower opening 120 is 1 <(S1 / S2) ≦ 2.0.

[ノズル偏心と減温塔内周面保護の相関]
図5は、本願における減温塔1内のガス流を示す図である。
(本願:ノズル上側開口部からの流れ)
図5の太一点鎖線は、ノズル100の上側開口部110から排出されるガス流を示す図である。ガス流はノズル100内をx軸正方向側に流れているため、上側開口部110から排出された後も、慣性によってx軸正方向側に流れ、減温塔内周11であってノズル底部101に対向するノズル対向面11aに衝突するおそれがある。その場合、ノズル対向面11aに形成された水膜32がガス流によって飛散し、内周面11が剥き出しになって内周面11が高温のガス流にさらされるおそれがある。
[Correlation between nozzle eccentricity and protection of inner surface of cooling tower]
FIG. 5 is a diagram showing a gas flow in the temperature reducing tower 1 in the present application.
(Application: Flow from nozzle upper opening)
5 is a diagram illustrating a gas flow discharged from the upper opening 110 of the nozzle 100. Since the gas flow flows in the x-axis positive direction side in the nozzle 100, it flows to the x-axis positive direction side by inertia even after being discharged from the upper opening 110, and is the inner periphery 11 of the temperature reducing tower at the bottom of the nozzle. There is a possibility of colliding with the nozzle facing surface 11a facing 101. In that case, the water film 32 formed on the nozzle facing surface 11a may be scattered by the gas flow, the inner peripheral surface 11 may be exposed, and the inner peripheral surface 11 may be exposed to a high temperature gas flow.

本願では、各開口部110,120のx軸方向略中心位置Mが減温塔1の軸心Oに対しx軸負方向側に偏心しており、この偏心に伴って上側開口先端部112もx軸負方向側に移動するため、各開口部110,120が偏心しない場合(図6〜図8参照)と比べて上側開口先端部112とノズル対向面11aとの距離が大きくなる。   In the present application, the approximate center position M in the x-axis direction of the openings 110 and 120 is decentered to the x-axis negative direction side with respect to the axis O of the temperature reducing tower 1. Since it moves to the axial negative direction side, the distance between the upper opening tip 112 and the nozzle facing surface 11a is larger than when the openings 110 and 120 are not eccentric (see FIGS. 6 to 8).

したがって、各開口部110,120が偏心しない場合と比べ、本願では上側開口部110から排出された後ノズル対向面11aに至るまでの距離が大きいため、排出されたガス流の速度はより低下することとなる。よって、ノズル対向面11aの水膜32がガス流によって飛散するおそれを低減させ、高温のガス流から内周面11をより保護することが可能となる。   Therefore, compared with the case where each opening part 110,120 is not eccentric, in this application, since the distance from the upper opening part 110 to the nozzle facing surface 11a is large, the speed of the discharged gas flow is further reduced. It will be. Therefore, the possibility that the water film 32 on the nozzle facing surface 11a is scattered by the gas flow is reduced, and the inner peripheral surface 11 can be further protected from the high-temperature gas flow.

(本願:ノズル下側開口部からの流れ)
図5の細破線は、ノズル100の下側開口部120から排出されるガス流を示す図である。上側開口部110から排出されたガス流(太一点鎖線)と同様、各開口部110,120の偏心によってノズル対向面11aにおけるガス流は低下する。
(This application: Flow from the nozzle lower opening)
A thin broken line in FIG. 5 is a diagram showing a gas flow discharged from the lower opening 120 of the nozzle 100. Similar to the gas flow discharged from the upper opening 110 (thick one-dot chain line), the gas flow in the nozzle facing surface 11a decreases due to the eccentricity of the openings 110 and 120.

ここで、ノズル100の鉛直下方側(z軸負方向側)には滞留水15が存在するため、減温塔1内部においてはノズル100の鉛直上方と下方では容積が異なる。すなわち、ノズル側面103の鉛直上方側の上端部103aとノズル頂部102との距離をH1、ノズル側面103の鉛直下方側の下端部103bと水面16との距離をH2とすると、H1>H2に設けられている。   Here, since the staying water 15 exists on the vertically lower side (z-axis negative direction side) of the nozzle 100, the volume is different between the vertically upper side and the lower side of the nozzle 100 in the temperature reducing tower 1. That is, assuming that the distance between the upper end 103a vertically above the nozzle side surface 103 and the nozzle top 102 is H1, and the distance between the lower end 103b vertically below the nozzle side surface 103 and the water surface 16 is H2, H1> H2. It has been.

そのため、ノズル100の鉛直下方側は上方側に比べて容積が小さく、その分ガス流の逃げ場が少ない。したがって下側開口部120から排出されたガスは水面16の下方側に逃げることができないため、流速が十分低下しないままノズル対向面11aに衝突するおそれが高い。   Therefore, the vertical lower side of the nozzle 100 has a smaller volume than the upper side, and the gas flow escape space is less. Therefore, since the gas discharged from the lower opening 120 cannot escape to the lower side of the water surface 16, there is a high possibility that the gas will collide with the nozzle facing surface 11a without sufficiently reducing the flow velocity.

したがって本願では、下側開口部120の面積S2を上側開口部110の面積S1よりも小さく設ける。これにより、ノズル100内のガスのうち、下側開口部120から排出されるガス量は、上側開口部110から排出されるガス量よりも相対的に少なくなり、ノズル100の鉛直下方側に導入されるガスの流量も減少する。よって、下側開口部120から排出されたガスがノズル対向面11aに到達したとしても、流量が小さいため水膜32に与える影響は小さくなり、水膜32の飛散を低減することが可能となる。   Therefore, in the present application, the area S2 of the lower opening 120 is set smaller than the area S1 of the upper opening 110. As a result, the amount of gas discharged from the lower opening 120 out of the gas in the nozzle 100 is relatively smaller than the amount of gas discharged from the upper opening 110, and is introduced to the vertically lower side of the nozzle 100. The flow rate of the gas to be reduced is also reduced. Therefore, even if the gas discharged from the lower opening 120 reaches the nozzle facing surface 11a, the influence on the water film 32 is small because the flow rate is small, and scattering of the water film 32 can be reduced. .

また、本願では下側開口部120の開口先端部122は、上側開口部110の開口先端部112よりもx軸負方向側(ノズル根元部104側)に位置するため、上側開口部110と比べて下側開口部120の開口先端部122とノズル対向面11aとの距離がより大きくなる。したがって、上側開口部110から排出されるガス流と比べ、下側開口部120から排出されたガス流速をノズル対向面11aに到達するまでにより低下させ、ノズル対向面11aにおける水膜32の保護を図ることが可能である。   Further, in the present application, the opening front end portion 122 of the lower opening portion 120 is located closer to the x-axis negative direction side (nozzle root portion 104 side) than the opening front end portion 112 of the upper opening portion 110, and therefore, compared with the upper opening portion 110. Thus, the distance between the opening front end 122 of the lower opening 120 and the nozzle facing surface 11a becomes larger. Therefore, compared with the gas flow discharged from the upper opening 110, the gas flow rate discharged from the lower opening 120 is decreased until reaching the nozzle facing surface 11a, thereby protecting the water film 32 on the nozzle facing surface 11a. It is possible to plan.

(本願:ノズル底部で反転する反転流)
図5の二点鎖線は、ノズル100のx軸正方向側に設けられた空隙部130によって反転するガス流を示す図である。空隙部130はノズル底部101によってx軸正方向側を閉塞され、またノズル側面103によって周囲を覆われており、x軸正方向側に凹む凹部となっている。そのため、空隙部130に進入したガス流はノズル底部101により反転し、さらにノズル側面103によってx軸負方向側に案内される。
(Application: Reverse flow that reverses at the bottom of the nozzle)
A two-dot chain line in FIG. 5 is a diagram showing a gas flow that is reversed by the gap 130 provided on the positive side of the nozzle 100 in the x-axis direction. The gap portion 130 is closed on the x-axis positive direction side by the nozzle bottom portion 101, and is surrounded by the nozzle side surface 103, and is a recess that is recessed toward the x-axis positive direction side. Therefore, the gas flow that has entered the gap portion 130 is reversed by the nozzle bottom portion 101, and is further guided to the x-axis negative direction side by the nozzle side surface 103.

したがって空隙部130に進入したガス流は、ノズル底部101で反転するとともに速度が低下し、ガス自身の熱に基づく上昇気流によってノズル対向面11aに衝突することなくノズル上方側開口部110から排出される。空隙部130で反転しノズル下方側開口部120から排出されるガスも、x軸正方向の速度成分が低下するためノズル対向面11aの水膜32に与える影響は軽微である。   Therefore, the gas flow that has entered the gap portion 130 is reversed at the nozzle bottom 101 and the velocity is reduced, and is discharged from the nozzle upper side opening portion 110 without colliding with the nozzle facing surface 11a by the rising air flow based on the heat of the gas itself. The The gas that reverses in the gap 130 and is discharged from the nozzle lower opening 120 also has a slight influence on the water film 32 on the nozzle facing surface 11a because the velocity component in the x-axis positive direction decreases.

また、複数の円形開口110a,120aにより各開口部110,120を形成するため、各円形開口110a,120aの間に形成される遮蔽部110b、120bが抵抗となり、さらに各開口部110,120の合計面積がノズル100の断面積より大きいために、円形開口110ノズル100から流出するガスの流速が低下する。したがって、減温塔1内での流速がさらに低減され、水膜32の保護をさらに図ることができる。   Further, since the openings 110 and 120 are formed by the plurality of circular openings 110a and 120a, the shielding parts 110b and 120b formed between the circular openings 110a and 120a serve as resistances, and further, the openings 110 and 120 Since the total area is larger than the cross-sectional area of the nozzle 100, the flow rate of the gas flowing out from the circular opening 110 nozzle 100 decreases. Therefore, the flow velocity in the temperature reducing tower 1 is further reduced, and the water film 32 can be further protected.

また、下側開口部120の開口先端部122がx軸負方向側に位置するため、ノズル底部101から下側開口先端部122までの距離m2は、ノズル底部101から上側開口先端部112までの距離m1よりも長くなる(図5参照)。すなわち、ノズル底面内側105で反転した反転流はノズル側面103によってx軸負方向側に案内されるが、鉛直上方側の上端部103aよりも、鉛直下方側の下端部103bのほうが距離が長く設けられることとなる。   In addition, since the opening tip 122 of the lower opening 120 is located on the x-axis negative direction side, the distance m2 from the nozzle bottom 101 to the lower opening tip 122 is from the nozzle bottom 101 to the upper opening tip 112. It becomes longer than the distance m1 (see FIG. 5). That is, the reverse flow reversed at the nozzle bottom surface 105 is guided to the x-axis negative direction side by the nozzle side surface 103, but the lower end portion 103b on the vertically lower side is longer than the upper end portion 103a on the vertically upper side. Will be.

したがって、ノズル底部101にて反転したガス流は鉛直下方側の下端部103bにおいてより長い距離を案内され、x軸負方向側に向かって流れる。そのため、下側開口部120から排出されるガス流速は下端部103bにより案内された反転流により減速された後に排出されるため、ノズル100の鉛直下方側における流速がさらに低減される。   Therefore, the gas flow reversed at the nozzle bottom 101 is guided at a longer distance at the lower end portion 103b on the vertically lower side, and flows toward the negative x-axis direction. Therefore, the gas flow velocity discharged from the lower opening 120 is discharged after being decelerated by the reverse flow guided by the lower end portion 103b, so that the flow velocity on the vertically lower side of the nozzle 100 is further reduced.

(比較例)
図6は比較例における減温塔1の軸方向B−B断面図(図7参照)、図7は径方向A−A断面図(図6参照)である。比較例では上側、下側開口部110’、120’の略中心位置M’は、減温塔1の軸心Oと一致し、偏心はしていない。また、上側、下側開口部110’、120’の開口面積はともに等しく、形状も同一である。すなわち、開口面積はともに等しくS1であり、x軸方向幅はともに2L、y軸方向幅はともにw1である。
(Comparative example)
FIG. 6 is an axial BB sectional view (see FIG. 7) of the temperature reducing tower 1 in the comparative example, and FIG. 7 is a radial direction AA sectional view (see FIG. 6). In the comparative example, the approximate center positions M ′ of the upper and lower openings 110 ′ and 120 ′ coincide with the axis O of the temperature reducing tower 1 and are not eccentric. The upper and lower openings 110 ′ and 120 ′ have the same opening area and the same shape. That is, the opening areas are both equal S1, the x-axis direction width is 2L, and the y-axis direction width is both w1.

図8は比較例における減温塔1内のガス流を示す図である。比較例ではノズル100’の上側、下側開口部110’、120’が減温塔1の軸心Oに対し偏心せず一致するため、本願と比べて各開口部110’,120’の開口先端部112’,122’とノズル対向面11aとの距離が短くなり、上側、下側開口部110’、120’から排出されたガスは、流速が十分低下しないままノズル対向面11aに衝突する。そのため、本願と比べてノズル対向面11aにおける水膜32が飛散しやすく、ノズル対向面11aの壁面保護が不十分となる。   FIG. 8 is a diagram showing a gas flow in the temperature reducing tower 1 in the comparative example. In the comparative example, the upper and lower openings 110 ′ and 120 ′ of the nozzle 100 ′ coincide with each other without being eccentric with respect to the axis O of the temperature reducing tower 1, so that the openings of the openings 110 ′ and 120 ′ are compared with the present application. The distance between the tip portions 112 ′ and 122 ′ and the nozzle facing surface 11a is shortened, and the gas discharged from the upper and lower openings 110 ′ and 120 ′ collides with the nozzle facing surface 11a without sufficiently reducing the flow velocity. . Therefore, compared with the present application, the water film 32 on the nozzle facing surface 11a is likely to scatter, and the wall surface protection of the nozzle facing surface 11a becomes insufficient.

また、各開口部110’,120’の面積が等しいため、排出されるガスの流量は上側開口部110’と下側開口部120’でほぼ等しくなる。したがって、本願と比べ、比較例では鉛直下方側に排出されるガス流量が相対的に増大するため、鉛直上方側に比べて容積の小さいノズル100の鉛直下方側の領域における流量が増大し、ガス流の速度が低下しないままノズル対向面11aに衝突して水膜32を飛散させるおそれがある。
Further, since the areas of the openings 110 ′ and 120 ′ are equal, the flow rate of the discharged gas is substantially equal between the upper opening 110 ′ and the lower opening 120 ′. Therefore, compared to the present application, in the comparative example, the gas flow rate discharged to the vertically lower side is relatively increased, and therefore the flow rate in the region on the vertically lower side of the nozzle 100 ′ having a small volume compared to the vertically upper side is increased. There is a possibility that the water film 32 may be scattered by colliding with the nozzle facing surface 11a without decreasing the gas flow speed.

[本願の効果]
筒状の減温塔1と、
減温塔1に接続し、減温塔1の内周面11に液体を供給するとともに、この内周面11の表面に液膜32を形成する散水管3と、
散水管3の鉛直下方側で塔1の内周側に接続し、減温塔1の内周側に突出して延在する円柱状のノズル100とを備え、
ノズル100から減温塔1の内周側にガスを供給し、散水管3から供給される液体により、減温塔1内を上昇するガスを冷却する減温塔であって、
ノズル100は、減温塔内周側への突出方向先端側を底部とする有底の円筒形状であって、この円筒状側面の少なくとも上方側に開口する開口部110,120を有し、
開口部110,120のノズル軸方向略中心部Mは、減温塔1の中心軸Oに対し、ノズル100の根元部104側に偏心して設けられ、
開口部は、ノズル100の円筒状側面に複数設けられた円形開口110a,120aにより形成されることとした。
[Effects of the present application]
And reducing cooling tower 1 of the circle cylindrical,
The sprinkler pipe 3 connected to the temperature reducing tower 1 and supplying liquid to the inner peripheral surface 11 of the temperature reducing tower 1 and forming a liquid film 32 on the surface of the inner peripheral surface 11;
A columnar nozzle 100 connected to the inner peripheral side of the tower 1 on the vertically lower side of the water spray pipe 3 and extending to the inner peripheral side of the temperature reducing tower 1;
A temperature reducing tower that supplies gas from the nozzle 100 to the inner peripheral side of the temperature reducing tower 1 and cools the gas rising in the temperature reducing tower 1 by the liquid supplied from the sprinkling pipe 3,
The nozzle 100 has a bottomed cylindrical shape with the front end side in the protruding direction toward the inner peripheral side of the temperature-decreasing tower, and has openings 110 and 120 that open at least above the cylindrical side surface.
The substantially central portion M in the nozzle axis direction of the openings 110 and 120 is provided eccentric to the root portion 104 side of the nozzle 100 with respect to the central axis O of the temperature reducing tower 1.
The openings are formed by circular openings 110 a and 120 a provided in a plurality on the cylindrical side surface of the nozzle 100.

ノズル100先端側を閉塞することにより、ノズル100先端側に向かうガス流が高い流速を保ったまま減温塔内周面11に直接吹き付けられることを回避し、減温塔内周側の液膜切れを低減することができる。また、ノズル100先端を閉塞した場合であっても開口部110,120から流出した高速のガス流が減温塔内周面11に当たるが、開口部110,120の略中心部Mをノズル根元部104側に偏心させることで、開口部110,120から流出したガス流が減温塔内周面11に至るまでの距離を長く設け、減温塔内周面11に到達するガス流速を低減させることができる。   By closing the tip end side of the nozzle 100, it is avoided that the gas flow toward the tip end side of the nozzle 100 is directly blown to the inner peripheral surface 11 of the temperature reducing tower while maintaining a high flow velocity, and the liquid film on the inner peripheral side of the temperature reducing tower is avoided. Cutting can be reduced. Even when the tip of the nozzle 100 is closed, a high-speed gas flow that has flowed out of the openings 110 and 120 hits the inner peripheral surface 11 of the temperature reducing tower. By decentering to the 104 side, a long distance is provided for the gas flow flowing out from the openings 110 and 120 to reach the temperature reducing tower inner peripheral surface 11, and the gas flow velocity reaching the temperature reducing tower inner peripheral surface 11 is reduced. be able to.

また、ノズル開口部110,120を1つの開口とする場合、開口部110,120におけるガス流の抵抗が少ないためガス流速が低下しづらい。これに対し、円形開口110a,120aをノズル100円周面に複数設けてノズル開口部110,120を形成することにより、各円形開口110a,120a同士の間に存在する遮蔽部110b、120bがガス流の抵抗となり、さらに各開口部110,120の合計面積がノズル100の断面積より大きいために、排出されるガス流速を低減させることが可能となる。よって、減温塔内周面1におけるガス流速を低減させ、水膜32の飛散をさらに抑制することができる。
Further, when the nozzle openings 110 and 120 are formed as one opening, the gas flow rate is difficult to decrease because the resistance of the gas flow in the openings 110 and 120 is small. On the other hand, by providing a plurality of circular openings 110a and 120a on the circumferential surface of the nozzle 100 to form the nozzle openings 110 and 120, the shielding parts 110b and 120b existing between the circular openings 110a and 120a are gas. Further, since the total area of the openings 110 and 120 is larger than the cross-sectional area of the nozzle 100, the flow rate of the discharged gas can be reduced. Thus, reducing the gas flow rate definitive in temperature reducing tower peripheral surface 1 1, it is possible to further suppress scattering of water film 32.

数の円形開口110aは、同一の円形であることとした。同一形状とすることで、加工工数を低減することができる。
Circular opening 110a of the multiple was set to be identical circular. By making it the same shape, the number of processing steps can be reduced.

減温塔1の底部は、散水管3から供給され、内周面11に沿って流れた液体を一時的に貯留する貯留部14であって、
貯留された水15の水面16は、ノズル100の鉛直下方側に位置し、
ノズル100から減温塔内周面11の鉛直上側頂部12までの距離をH1、ノズル100から水面16までの距離をH2とすると、H1>H2であって、
ノズル100は、水面16に対し離間して設けられるとともに、減温塔1の鉛直上方側に開口する上側開口部110と、鉛直下方側に開口する下側開口部120を有し、
上側開口部110の開口面積は、下側開口部120の開口面積よりも大きく設けられ、 上側開口部110を形成する円形開口110aの数は、下側開口部120を形成する円形開口120aの数よりも多いこととした。
( 1 ) The bottom of the temperature-decreasing tower 1 is a storage unit 14 that temporarily stores the liquid that is supplied from the water spray pipe 3 and flows along the inner peripheral surface 11.
The water surface 16 of the stored water 15 is located on the vertically lower side of the nozzle 100,
When the distance from the nozzle 100 to the vertical upper top portion 12 of the inner circumferential surface 11 of the temperature reducing tower is H1, and the distance from the nozzle 100 to the water surface 16 is H2, H1> H2,
The nozzle 100 is provided apart from the water surface 16, and has an upper opening 110 that opens vertically above the temperature reducing tower 1, and a lower opening 120 that opens vertically downward.
The opening area of the upper opening 110 is larger than the opening area of the lower opening 120, and the number of circular openings 110 a forming the upper opening 110 is the number of circular openings 120 a forming the lower opening 120. More than that.

円形開口110a,120aの数を変更することで上側と下側の開口面積が変更可能となり、開口面積の調整が容易である。   By changing the number of the circular openings 110a and 120a, the upper and lower opening areas can be changed, and the opening area can be easily adjusted.

)下側開口部120のノズル先端側端部122は、上側開口部110のノズル先端側端部112よりも根元部104側に位置することとした。
下側開口部120のノズル先端側端部122を上側開口部110よりも根元部104側に設けることで、その分下側開口部120の先端側端部122と減温塔1の内周面11とを距離を離間させ、ノズル対向面11a付近であってノズル100よりも下方側のガス流速を低減させ、より水膜32の保護を図ることができる。
( 2 ) The nozzle tip end 122 of the lower opening 120 is positioned closer to the root 104 than the nozzle tip end 112 of the upper opening 110.
By providing the nozzle tip side end 122 of the lower opening 120 closer to the root part 104 than the upper opening 110, the tip end 122 of the lower opening 120 and the inner peripheral surface of the temperature reducing tower 1 correspondingly. 11, the gas flow rate in the vicinity of the nozzle facing surface 11a and below the nozzle 100 can be reduced, and the water film 32 can be further protected.

ガスを冷却する減温塔・冷却塔一般に用いることができる。   It can be used in general for a temperature reducing tower or a cooling tower for cooling a gas.

1 減温塔
3 散水管
11 内周面
12 鉛直上側頂部
14 貯留部
15 水
16 水面
32 水膜
100 ノズル
104 ノズル根元部
110 上側開口部
120 下側開口部
112、122 ノズル先端側端部
M ノズル軸方向略中心部
DESCRIPTION OF SYMBOLS 1 Temperature-reduction tower 3 Water spray pipe 11 Inner peripheral surface 12 Vertical top part 14 Reservoir 15 Water 16 Water surface 32 Water film 100 Nozzle 104 Nozzle base part 110 Upper opening part 120 Lower opening part 112, 122 Nozzle front end part M Nozzle Axis center

Claims (2)

円筒状の塔と、
前記塔に接続し、前記塔の内周面に液体を供給するとともに、この内周面の表面に液膜を形成する散水管と、
前記散水管の鉛直下方側で前記塔の内周側に接続し、前記塔の内周側に突出して延在する円柱状のノズルと
を備え、
前記ノズルから前記塔の内周側にガスを供給し、前記散水管から供給される液体により、前記塔内を上昇する前記ガスを冷却する減温塔であって、
前記塔の底部は、前記散水管から供給され、前記内周面に沿って流れた液体を一時的に貯留する貯留部であって、
前記貯留された液体の表面は、前記ノズルの鉛直下方側に位置し、
前記ノズルから前記減温塔内周面の鉛直上側頂部までの距離をH1、前記ノズルから前記貯留された液体の液面までの距離をH2とすると、H1>H2であって、
前記ノズルは、前記塔内周側への突出方向先端側を底部とする有底の円筒形状であって、前記貯留された液体の液面に対し離間して設けられるとともに、前記塔の鉛直上方側に複数円形開口する上側開口部と、鉛直下方側に複数円形開口する下側開口部を有し、
前記上側開口部のノズル軸方向略中心部は、前記塔の中心軸に対し、前記ノズルの根元部側に偏心して設けられ、
前記上側開口部の開口面積は、前記下側開口部の開口面積よりも大きく設けられ、
前記上側開口部を形成する円形開口の数は、前記下側開口部を形成する円形開口の数よりも多いこと
を特徴とする減温塔。
A cylindrical tower,
A sprinkler pipe connected to the tower and supplying a liquid to the inner peripheral surface of the tower, and forming a liquid film on the surface of the inner peripheral surface;
A columnar nozzle connected to the inner peripheral side of the tower on the vertically lower side of the sprinkling pipe, and protruding and extending to the inner peripheral side of the tower;
A temperature reducing tower that supplies gas from the nozzle to the inner peripheral side of the tower and cools the gas rising in the tower by a liquid supplied from the watering pipe,
The bottom of the tower is a reservoir that temporarily stores the liquid that is supplied from the sprinkler pipe and flows along the inner peripheral surface,
The surface of the stored liquid is located on the vertically lower side of the nozzle,
H1> H2 where H1 is the distance from the nozzle to the vertical upper top of the inner peripheral surface of the temperature reducing tower, and H2 is the distance from the nozzle to the liquid level of the stored liquid.
The nozzle is a bottomed cylindrical shape having a bottom portion in a protruding direction toward the inner peripheral side of the tower, and is provided separately from the liquid level of the stored liquid, and vertically above the tower An upper opening having a plurality of circular openings on the side, and a lower opening having a plurality of circular openings on the vertically lower side,
The substantially central portion in the nozzle axis direction of the upper opening is provided eccentric to the root side of the nozzle with respect to the central axis of the tower,
The opening area of the upper opening is provided larger than the opening area of the lower opening,
The number of circular openings that form the upper opening is greater than the number of circular openings that form the lower opening .
請求項に記載の減温塔において、
前記下側開口部の前記ノズル先端側端部は、前記上側開口部の前記ノズル先端側端部よりも前記根元部側に位置すること
を特徴とする減温塔。
The temperature reducing tower according to claim 1 ,
The nozzle tip side end of the lower opening is positioned closer to the root side than the nozzle tip side end of the upper opening.
JP2011062045A 2011-03-22 2011-03-22 Temperature reduction tower Active JP5741104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062045A JP5741104B2 (en) 2011-03-22 2011-03-22 Temperature reduction tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062045A JP5741104B2 (en) 2011-03-22 2011-03-22 Temperature reduction tower

Publications (2)

Publication Number Publication Date
JP2012197972A JP2012197972A (en) 2012-10-18
JP5741104B2 true JP5741104B2 (en) 2015-07-01

Family

ID=47180377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062045A Active JP5741104B2 (en) 2011-03-22 2011-03-22 Temperature reduction tower

Country Status (1)

Country Link
JP (1) JP5741104B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353799A (en) * 1963-05-22 1967-11-21 American Radiator & Standard Fluid treating apparatus and packing construction therefor
JPS6139080Y2 (en) * 1981-04-24 1986-11-10
JPH04244590A (en) * 1991-01-30 1992-09-01 Meidensha Corp Heat exchanger
JPH0545077A (en) * 1991-08-08 1993-02-23 Meidensha Corp Heat exchanger device
US5453107A (en) * 1994-02-17 1995-09-26 Msp Corporation Air and gas cooling and filtration apparatus
JPH1119457A (en) * 1997-07-04 1999-01-26 Niigata Eng Co Ltd Gaseous hydrogen chloride absorption device
JP5533118B2 (en) * 2010-03-25 2014-06-25 宇部興産株式会社 Temperature reduction tower
JP5696533B2 (en) * 2011-03-04 2015-04-08 宇部興産株式会社 Temperature reduction tower

Also Published As

Publication number Publication date
JP2012197972A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5533118B2 (en) Temperature reduction tower
EP3209392B1 (en) Automatic nozzle for firefighting systems
CN113148171B (en) Spraying unmanned aerial vehicle
RU2016116404A (en) AXIAL TYPE MULTI-STAGE TURBINE DESIGN
WO2014102909A1 (en) Full cone spray nozzle
JP5741104B2 (en) Temperature reduction tower
JP5696533B2 (en) Temperature reduction tower
JP5449968B2 (en) Water leakage prevention device for cooling equipment of continuous hot dip galvanizing line
US20210086203A1 (en) High-Efficiency Smooth Bore Nozzles
JP4253618B2 (en) Fan guard
JP5233954B2 (en) Coolant reserve tank
JP5187623B2 (en) Mist generating device, mist generating unit having the same, and bathroom air conditioning system having a mist generating function
JP2007024464A (en) Cooling tower
JP5928078B2 (en) Rotary kiln cooling system
JP5765853B2 (en) Water discharge type head
JP5749206B2 (en) Temperature reduction tower
JP2014126334A (en) Outdoor equipment of air conditioner
JP2016133231A (en) Mist cooler
KR20130128974A (en) Wind deflector installation structure of bridge wing
JP5126520B2 (en) Mist generator and bathroom air conditioner
JP2018134617A (en) Cooling device
JP7129592B2 (en) Cooling system
US20210086006A1 (en) High-Efficiency Smooth Bore Nozzles
JP2009125750A (en) Submerged nozzle for continuous casting
JP2015093308A (en) Up-drawing casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250