JP5740047B2 - 植込み型医療システム - Google Patents

植込み型医療システム Download PDF

Info

Publication number
JP5740047B2
JP5740047B2 JP2014508342A JP2014508342A JP5740047B2 JP 5740047 B2 JP5740047 B2 JP 5740047B2 JP 2014508342 A JP2014508342 A JP 2014508342A JP 2014508342 A JP2014508342 A JP 2014508342A JP 5740047 B2 JP5740047 B2 JP 5740047B2
Authority
JP
Japan
Prior art keywords
signal
detected
control module
electrical signal
pacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014508342A
Other languages
English (en)
Other versions
JP2014516296A (ja
Inventor
エリンソン,マイケル・エル
ユーン,ヒュン・ジェイ
パリッシュ,パトリック・エル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of JP2014516296A publication Critical patent/JP2014516296A/ja
Application granted granted Critical
Publication of JP5740047B2 publication Critical patent/JP5740047B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3718Monitoring of or protection against external electromagnetic fields or currents

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Description

本発明は、全体として、植込み型医療システムに関する。より具体的には、本発明は、電磁干渉(EMI)の存在下にてペーシングする技術を記載する。
患者の生理学的状態を治療し又は監視する多岐にわたる植込み型医療システムが患者の体内に臨床的に植込まれ又は臨床的に植込む提案が為されている。植込み型医療システムは、植込み型医療装置(IMD)と接続された植込み型医療リードを含むことができる。例えば、植込み型リードは、一般に植込み型ペースメーカ、除細動器、カルジオバータ等と接続して植込み型心臓システムを形成し、この植込み型心臓システムは、心臓に電気的刺激を送り出し又は心臓の電気的活動を検知する。電気的刺激パルスを心臓に送り出し、また、電気信号を例えば、典型的に、リードの遠位端近くにてリード上に配設された電極によって検知することができる。植込み型リードは、また、神経学的装置、筋肉刺激療法、胃系統の刺激器及びその他の植込み型医療装置(IMDs)にても使用されている。
植込み型医療システムを有する患者は、患者の体内構造体の像を得るため各種の医療画像法による利点を受けることができ、または、かかる方法を必要とすることさえもある。1つの一般的な医療画像法は、磁気共鳴画像法(MRI)である。MRI法は、その他の医療用画像技術よりも高い分解能及び(又は)より優れたコントラスト像(特に柔軟な組織)を生成することができる。MRI法は、また、患者の身体にイオン化放射線を送り出すことなく、これらの像を生成することができ、その結果、MRI法は、患者にかかる放射線を曝すことなく反復することができる。
MRI法の間、患者又は患者の身体の特定の部分は、MRI装置内に配置される。MRI装置は、多岐にわたる磁界及び電磁界を生成し、静磁界、勾配磁界、及び高周波数(RF)界を含む、患者の像を得ることができる。静磁界は、MRI装置内部の一次磁石により生成することができ、また、MRI法を開始する前に、存在するようにすることができる。勾配磁界は、MRI装置の電磁石により生成させ、また、MRI法の間、存在するようにすることができる。MRI界は、MRI装置の伝送/受信コイルにより生成し、また、MRI法の間、存在するようにすることができる。MRI法を受ける患者が植込み型医療システムを有する場合、MRI装置により形成された各種の界は、医療リード及び(又は)リードが接続されたIMDの作用に影響を与えるであろう。例えば、MRI法の間に生成された勾配磁界又はRF界は、植込み型リードにてエネルギを誘発させ(例えば、電流の形態にて)、このエネルギは、IMDによる過検知を引き起こす可能性がある。換言すれば、IMDは、心臓信号が存在しないのに、心臓信号を不正確に検知する可能性がある。過検知の結果、望まれないときにIMDは療法を送り出し、又は望まれるときに療法を差し控えることになる。
MRI法の間、過検知の効果を少なくするため多数の技術が報告されている。例えば、ジエールメーカへの米国特許第7,693,568号(以下、「第´568号特許」と称する)は、MRIの人為的効果を減少させる信号処理アリゴズムを記載している。第´568号特許の図5Bに関して説明されているように、ステップ402にて電気的活動及び勾配界の活動が検知されたとき、その検知した電気的事象に基づいて、ステップ403にてある決定が為される。例えば、リードの電極により検知した電気的事象が、その電気的事象が外挿法によって推定した心臓事象と一致するかどうかを問わずに、勾配界の活動と一致しないならば、その事象は、ステップ404Cにて実際の心臓事象としてカウントされる。検知した心臓事象が検知した勾配界と一致するが、外挿法によって推定した心臓事象と一致しないならば、その事象は、ステップ404Bにて、ノイズとしてカウントされる。検知した事象が外挿法によって推定した心臓事象及び検知した勾配界の双方と一致するならば、その事象はステップ404Aにて「仮想の」又は潜在的な心臓事象としてカウントされる。「仮想の」事象は、装置の典型的な技術的限界の状態に従ってその装置により処理され、療法の送り出しを制御し、生理学的な心臓の機能を維持し得るようにする。ステップ405にて、ノイズ事象及び「仮想的」心臓事象の合計カウント値が所定の数を超えるとき、ステップ406にて電気的検知は無視される。電気的検知が無視された場合、次に、装置は、予め定めた療法の送り出しモードに切り換わり、例えば、毎分当たりの所定のビート数にてペーシング刺激する。
別の例として、ポール等への米国特許第5,697,958号(以下、第´958号特許と称する)は、電磁干渉(EMI)が検出されたとのメッセージに応答するデマンド型ペースメーカを記載しており、この検出方法は、患者の心臓が期待された事象を実行できなかったと検知された場合に、応答するのと同一の仕方にて行われる、すなわち、心臓の信号が検知される室を拍動させるためペーシング信号を発生させることによって検出する。第´958号特許の図7を参照すると、図示したプロセス200の開始210のとき、マイクロプロセッサは、ステップ212にてエスケープ間隔を開始する、すなわち、ペースメーカが検知する心臓の電気的信号を形成するような、事象を心臓が行うのをペースメーカが待ち、また、その間、ペースメーカは心臓にペーシング信号を送らない時間間隔を開始する。ステップ214にて、ペースメーカは、エスケープ間隔が満了するのを待つか、又は心臓にて1つの事象をペースメーカが検知するかのその何れかが最初に生じたときを待つ。マイクロプロセッサは、ステップ216にて、心臓事象がエスケープ間隔の満了までに検知されているかどうかを問い合わせる。
その答えが肯定的であるならば、第´958号特許のマイクロプロセッサは、ステップ216から進み、ステップ218にて、例えば、ステップ212のエスケープ間隔の開始以降の時間間隔の間、本発明のノイズ検出器から「EMI存在」のフラグ又はEMI合致フラグを受け取ったかどうかを決定する。EMIが存在しない場合、ペースメーカは適正に機能しており、また、検知した信号は、心臓事象の発生の真の表示であるとの結論に達し、ステップ220−224が実行される。しかし、ステップ218にて、EMIが存在すると決定された場合、ペースメーカにより検知された信号は実際に心臓事象の結果であるか、又はペースメーカの電子部品のEMIの結果であるかどうかをマイクロプロセッサが知ることはできない。このため、EMIがステップ218にて存在すると決定された場合、ペースメーカは、あたかも患者が支援を必要としてするかのように進行する。ペースメーカは、ステップ228にて、現在のエスケープ時間間隔が満了するのを待ち、ステップ226にて刺激パルスを生成する。
本発明は、ノイズに起因する過検知がペーシング療法に与える効果を少なくするペーシング技術を提供する。以下に更に詳細に説明するように、IMDは、リードの1つにて検知された電気信号が独立的に検知したノイズ信号と一致し、且つ予想される固有の心臓信号の時間の間にて生ずるかどうかに基づいて、ペーシング療法を制御する。IMDは、検知した電気信号が独立的に検出したノイズ信号と一致し、また、検知した電気信号が予想された固有の心臓信号の時間の間に生じるとき、リードにて電気信号を検知した後、ペーシングパルスを送り出す。IMDは、ある場合、エスケープ間隔が満了するのを待つのではなく、エスケープ間隔の間にページングパルスの送り出しを励起することができる。本発明の技術に従ってペーシングすることは、不適切なペーシングの阻止と関係したリスクを少なくし、且つ心臓サイクルの脆弱な期間の間、ペーシングと関係したリスクを少なくすることにより、MRI法の間の療法を改良することができる。
一例において、本発明は、植込み型医療リードにおける電気信号を検知するステップと、検知した電気信号が検知したノイズ信号と一致するかどうかを決定するステップと、検知した電気信号が予想される固有の心臓の信号の時間の間に生じるかどうかを決定するステップと、検知した電気信号が検知したノイズと一致し、且つ検知した電気信号が予想される固有の心臓の信号の期間の間に生ずるとき、エスケープ間隔が満了する前、ペーシングパルスの送り出しを励起するステップとを備える方法に関する。
別の例において、本発明は、植込み型医療リードと接続した少なくとも1つの電極と、植込み型医療装置とを含む、植込み型医療システムに関する。植込み型医療装置は、ノイズ信号を検出するノイズ検出モジュールと、植込み型医療リードにおける電気信号を検出する検知モジュールと、植込み型リードを介してペーシング療法を送り出す療法モジュールと、制御モジュールとを備えている。制御モジュールは、検知した電気信号が検知したノイズ信号と一致するかどうかを決定し、且つ検知した電気信号が予想した本来的な心臓信号の時間間隔の間に生ずるかどうかを決定し、検知した電気信号が検知したノイズ信号と一致し、且つ検知した電気信号が予想した本来的な心臓信号の時間間隔の間に生ずるとき、エスケープ期間の満了前に、ペーシングパルスを送り出すよう療法モジュールを制御する。
更なる例において、本発明は、実行したとき、医療装置が植込み型医療リードにおける電気信号を検知するようにすると共に、検知した電気信号が検知したノイズ信号と一致するかどうかを決定し、検知した電気信号が予想した心臓の信号の時間の間に生じるかどうかを決定し、また、検知した電気信号が検知したノイズ信号と、一致し、且つ検知した電気信号が予想した固有の心臓信号の時間の間に生ずるとき、エスケープ間隔の満了前に、ペーシングパルスの送り出しを励起する命令を含む、コンピュータ読み取り可能な媒体に関する。
この概要は、本明細書に記載した主題事項の概説的な説明を提供することを目的とするものである。これは、添付図面及び以下の説明に詳細に記載した技術の完全な又は余すところのない説明を提供することを意図するものではない。1つ又は2つ以上の例の更なる説明は、添付図面及び以下の説明に掲げられている。その他の特徴、目的及び有利な効果は、説明及び図面から、また、以下の記述から明らかになるであろう。
米国特許第5,697,958号 米国特許第7,693,568号
植込み型医療システムを有する患者が外部界に露出された環境を示す概念図である。 一例としての植込み型医療システムを示す、概念図である。 植込み型医療装置の電子部品の一例としての設計の機能的ブロック図である。 検知した電気信号が検知したノイズ信号と一致するかどうかの決定、及び検知した電気信号が予想した固有の心臓の信号の時間の間に生ずるかどうかの決定に基づいてペーシングを励起する植込み型医療装置の一例としての作動を示す流れ図である。 本明細書にて説明したペーシング技術のタイミング線図を示す図である。 本明細書にて説明したペーシング技術のタイミング線図を示す図である。
図1は、植込み型医療システム14を有する患者12が外部界18に露出される環境を示す概念図である。図1に示した一例において、環境10は、外部界18を生成するMRI装置16を含む。MRI装置16は、磁界及びRF界を生成し、損傷、病気及び(又は)異常を診断するため身体構造体の像を形成する。特に、MRI装置16は、当該技術にて周知であるように、静磁界、勾配磁界及びRF界を生成する。静磁界は、典型的に、常に、MRI法が進行中であるかどうかを問わず、MRI装置16の回りに存在する、時間と共に変化しない大きい磁界である。勾配磁界は、典型的に、MRI法が進行中であるときにのみ存在するパルス状の磁界である。RF界は、典型的に、MRI法が進行中であるときにのみ存在するパルス状の高周波界である。
静磁界、勾配磁界及びRF界の振幅、周波数又はその他の特徴は、界を形成するMRI装置の型式、又は実行しているMRI法の型式に基づいて変化する。例えば、1.5 T MRI装置は、約1.5テスラ(T)の静磁界を形成し、また、約64メガヘルツ(MHz)の相応するRF周波数を有する一方、3.0 T MRI装置は、約3.0テスラの静磁界を形成し、約128MHzの相応するRF周波数を有する。しかし、その他のMRI装置は異なる界を生成する。
植込み型医療システム14は、一例において、1つ又はより多くのリードと接続したIMDを含むことができる。IMDは、患者12の心臓の電気的活動を検知し且つ(又は)患者12の心臓に電気的刺激療法を送り出す植込み型心臓装置とすることができる。例えば、IMDは、植込み型ペースメーカ、植込み型カルジオバータ除細動器(ICD)、心臓の再同期化療法除細動器(CRT−D)、カルジオバータ型装置、又はそれらの組合せとすることができる。IMDは、これと代替的に、植込み型神経刺激器又は電気的刺激療法を送り出すその他の装置のような、心臓以外への植込み型装置としてもよい。
MRI法を行う間、患者12は、MRI装置16のボア内に少なくとも部分的に配置される。MRI装置16により形成された各種型式の界(外部界18により表してある)の幾つかの又は全ては、植込み型医療システム14に望ましくない効果を与える電磁干渉(EMI)を形成する。一例において、MRI法の間に生成した勾配磁界及び(又は)RF界、リードの導体にエネルギを誘発するであろう(例えば、電流の形態にて)。リードにて誘発したエネルギは、IMDに伝導され、且つ過検知と呼ばれることが多い現象である、生理学的信号として不適切に検出される。リードにて誘発したエネルギを生理学的信号として検出する結果、IMDは望まないとき、療法を送り出し(例えば、ペーシングパルスの励起)、又は望まれるとき、療法を差し控える(例えば、ペーシングパルスの阻止)ことになる。
本発明は、EMIに起因する過検知がペーシング療法に与える効果を少なくするペーシング技術を提供する。以下に更に詳細に説明するように、IMDは、1つのリードにて検知した電気信号が独立的に検出されたノイズ信号と一致し、且つ予想した固有の心臓信号の時間の間に生じたかどうかに基づいてペーシング療法を制御する。かかる技術は、実際の心臓信号をEMIに起因する誘発された信号からより正確に識別する。本発明の技術に従ったペーシングは、不適切なペーシングの阻止と関係したリスクを少なくし、且つ心臓サイクルの脆弱な期間中のペーシングと関係したリスクを減らすことにより、MRI法を行う間の療法を改良することを許容することができる。
ある場合、IMDは、通常の作動モードとして説明したペーシングモードに従って、作動することができる。この場合、本発明の技術に従ってペーシングすることは、患者がMRI法を受ける前及び受けた後、MRIの安全な作動モードを手操作にてプログラミングすることに関係した作業上の負担を無くすることもできよう。その他の場合、IMDは、MRI装置16の存在を検出したとき、説明したペーシングモードにて、又はMRI法を受ける前に、手操作にて作動するような設計することができる。
図2は、一例としての植込み型医療システム20を示す概念図である。植込み型医療システム20は、図1の植込み型医療システム14と相応するものとすることができる。植込み型医療システム20は、リード24a、24bと接続したIMD22を含むことができる。IMD22は、IMD22の電気的構成要素及び電源が内部に収納されたハウジング26を含む。ハウジング26は、導電性材料、非導電性材料又はそれらの組み合わせにて形成することができる。以下に更に詳細に説明するように、ハウジング26は、1つ又はより多くのプロセッサ、メモリ、トランスミッタ、レシーバ、トランシーバ、センサ、検知回路、療法回路、アンテナ及びその他の構成要素を収容することができる。
リード24a、24bの各々は、1つ又はより多くの電極を含む。図2に示した一例において、リード24a、24bの各々は、それぞれの電極28a、28bと、それらのそれぞれのリード24a、24bの遠位端近くに配置されたリング電極30a、30bとを含む。植え込んだとき、先端電極28a、28b及び(又は)リング電極30a、30bは、選んだ組織、筋肉、神経又は患者12の体内のその他の位置に対して又はそれらの内部に配置される。図2に示した例において、先端電極28a、28bは、リード24a、24bの遠位端を患者12の体内の標的位置に固定し易くするため伸長可能なヘリカル形状の電極である。このようにして、先端電極28a、28bは、固定機構を規定するよう形成されている。その他の実施の形態において、先端電極28a、28bの一方又は双方は、その他の構造体の固定機構を規定するよう形成することができる。その他の場合、リード24a、24bは、先端電極28a、28bと分離した固定機構を含むことができる。固定機構は、握り機構、ヘリカル又はねじ機構、薬剤が組織の感染及び(又は)はれを少なくする作用を果たす、薬剤被覆した接続機構又はその他の装着機構を含む、任意の適当な型式のものとすることができる。
リード24a、24bは、コネクタブロック32を介して近位端にてIMD22と接続されている。コネクタブロック32は、リード24a、24bの近位端に配置された1つ又はより多くのコネクタ端子と相互接続する1つ又はより多くのコンセントを含むことができる。リード24a、24bは、最終的に、ハウジング26内の1つ又はより多くの電気的構成要素と電気的に接続されている。
1つ又はより多くの導体(図2に図示せず)は、リードの長さに沿ってコネクタブロック32からリード24a、24b内にて伸び、リング電極30a、30b及び先端電極28a、28bとそれぞれ係合する。このようにして、先端電極28a、28b及びリング電極30a、30bの各々は、その関係したリード本体内にてそれぞれの導体に電気的に接続される。例えば、第一の導電体は、リード24aの本体の長さに沿ってコネクタブロック32から伸び、且つ先端電極28aと電気的に接続することができ、また、第二の電極体は、リード24aの本体の長さに沿ってコネクタブロック32から伸び、リング電極30aと電気的に接続することができる。それぞれの導体は、コネクタブロック32内の接続部を介してIMD22の療法モジュール又は検知モジュールのような、回路と電気的に接続することができる。IMD22は、1つ又はより多くの電極28a、28bへの導電体を介して心臓(又はその他の箇所)に療法を提供し、且つ1つ又はより多くの電極28a、28b、30a、30bから導電体にて検知した電気信号を受け取る。
IMD22は、外部装置34と連絡し、外部装置34とデータを交換することができる。外部装置34は、例えば、IMD22と連絡し、IMD22を作動させるため1つ又はより多くの作動パラメータを提供することができる。IMD22は、検知した生理学的データ、検知した生理学的データに基づいて為された診断上の決定、IMDの性能データ及び(又は)IMDの完全性データを外部装置34に伝送することもできる。IMD22及び外部装置34は、当該技術にて知られた任意の技術を使用して無線通信を介して連絡することができる。連絡技術の例は、例えば、誘導テレメトリー、又はRFテレメトリーを含むことができるが、その他の技術を用いることも考えられる。
図2に示した植込み型医療システム20の設計は、単に一例である。その他の例において、植込み型医療システム20は、IMD22から伸びるより多くの又はより少ないリードを含むようにしてもよい。例えば、IMD22は、患者の心臓の左心室内に植込んだ、例えば第三のリードのような3本のリードと接続することができる。別の例において、IMD22は、患者の心臓の心房又は心室内に植込んだ1本のリードに接続してもよい。従って、IMD22は、単一室又は多室の心臓リズム管理療法のため使用することが可能である。
より多く又はより少ないリードに加えて、リードの各々は、より多く又はより少ない電極を含むようにしてもよい。IMD22が例えば除細動又はカルジオバーションのような、ペーシング以外の療法のため使用される場合、リードは、ある場合、コイルの形態をとる細長い電極を含むようにしてもよい。IMD22は、細長い電極とハウジング電極との任意の組合せを介して心臓に除細動又はカルジオバーションショックを送り出す。別の例として、医療システム20は、例えば、先端電極を使用せずに、又は「先端電極」として機能するリング電極の1つを使用して幾つかの植込み型神経刺激器にて使用されているように、複数のリング電極を有するリードを含むようにすることも可能である。
図3は、IMD22の電子構成要素の一例としての設計の機能的ブロック図である。IMD22は、制御モジュール40と、検知モジュール42と、療法モジュール44と、ノイズ検出モジュール46と、連絡モジュール48と、メモリ50と、磁界センサ52とを含む。電子構成要素は、充電型又は非充電型電池でよい電源54から電力を受け取ることができる。別の実施の形態において、IMD22は、より多くの又はより少ない電子構成要素を含むようにしてもよい。更に、上述したモジュール又は構成要素の任意のものは、全部、共通の機器構成要素上に具体化するか又は離散しているが、相互に作動可能なハードウェア又はソフトウェアの構成要素として別個に具体化することが可能である。異なる特徴部分をモジュール又は構成要素として説明することは、異なる機能上の特徴を強調することを意図するものであり、かかるモジュール又はユニットが別個のハードウェア又はソフトウェアの構成要素によって実現しなければならないことを必ずしも意味するものではない。しかし、1つ又はより多くのモジュールと関係した機能は、別個のハードウェア又はソフトウェアの構成要素により実行し、又は共通の又は別個のハードウェア又はソフトウェアの構成要素内に一体化してもよい。
メモリ50は、実行したとき、IMD22及び(又は)その他の制御モジュール40が本発明にてIMD22及び制御モジュール40に属する各種の機能を実行するようにするコンピュータ読み取り可能な命令を含むことができる。換言すれば、メモリ50は、IMD22の作動を制御するコンピュータ読み取り可能な命令を含む。メモリ50は、例えば、本明細書に記載した少なくともペーシングモードを含む、多数の作動モードの任意のものに対する作動パラメータを保存することができる。メモリ50は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、不揮発性RAM(NVRAM)、電気的に消去可能なプログラマブルROM(EEPROM)、フラッシュメモリ又は任意のその他の媒体又はそれらの組み合わせのような、揮発性、不揮発性、磁気、光学、又は電気的媒体を含むことができる。
制御モジュール40は、マイクロプロセッサ、コントローラ、デジタル信号プロセッサ(DSP)、アナログ回路、デジタル回路又は論理回路を含む、アプリ特定ケーション集積回路(ASIC)、フィールドプログラマグルゲートアレー(FPGA)、又は同等の離散型又は集積型回路の任意の1つ又はより多くを含むことが可能である。ある例において、制御モジュール40は、1つ又はより多くのマイクロプロセッサ、1つ又はより多くのコントローラ、1つ又はより多くのDSPs、1つ又はより多くのASICs、又はより多くのFPGAs並びに他の離散型又は集積型論理回路の任意の組み合わせのような、多数の構成要素を含むようにすることができる。本発明にて制御モジュール40に属する機能は、ソフトウェア、ファームウェア、ハードウェア又はそれらの任意の組合せにて具体化することができる。
制御モジュール40は、IMD22のアンテナ56の助けを受けて外部装置34からダウンリンクテレメトリーを受信し、且つアップリンクテレメトリーを外部装置34に送るよう連絡モジュール48を制御することができる。アンテナ56は、IMD22のコネクタブロック32内に又はIMD22のハウジング26内に配置することができる。一例において、アンテナ56は、IMD22のハウジング26内の誘導コイルアンテナとすることができる。別の例において、アンテナ56は、コネクタブロック32内に配置し、且つフィードスルーを介して連絡モジュール48に接続したRFアンテナとしてもよい。更なる例において、IMD22は、連絡モジュール48に接続した誘導コイルアンテナ及びRFアンテナの双方を含むこともできる。連絡モジュール48は、例えば、無線テレメトリーによって外部装置34及び(又は)患者のモニターのような、別の装置と連絡するため任意の適当なハードウェア、ファームウェア、ソフトウェア又はそれらの任意の組み合わせを含むようにしてもよい。例えば、連絡モジュール48は、データの伝送及び受信のため、適当な変調、復調、周波数変換、フィルタリング、及び増幅器の構成要素を含むようにすることが可能である。
制御モジュール40は、IMDがプログラム化した作動モードにて作動するように検知モジュール42及び療法モジュール44を制御することも可能である。検知モジュール42及び療法モジュール44は、リード24a、24bの導体を介して電極28a、28bの幾つかに又はその全てに、又はハウジング26の内部の導体を介してハウジング電極(例えば、ハウジング26から又はその上に形成された)と電気的に接続される。検知モジュール42は、1つ又はより多くの電極28a、28b、30a、30bを介して検知した信号を得るような設計とされている。制御モジュール40は、検知形態又は検知ベクトルと称されることがある、検知電極として機能する電極を選び、心臓の電気的活動を監視することができる。一例において、検知モジュール42は、スイッチモジュール(図示せず)を含むことができ、制御モジュール40は、心臓の活動を検知するため使用すべく利用可能な電極を選ぶ設計とすることができる。
制御モジュール40は、リード24a、24bからの信号を処理し、患者12の心臓の活動を監視することができる。制御モジュール40は、検出した心臓の活動に基づいてマーカチャネルデータを生成する。例えば、マーカチャネルデータは、患者12及び(又は)IMD22と関係した検知、診断及び療法事象の発生及びタイミングを表示するデータを含むようにすることができる。制御モジュール40は、検知モジュール42により得られた信号及び任意の生成したEGM波形、マーカチャネルデータ又はメモリ50内の検知した信号に基づいて得られたその他のデータを保存する。制御モジュール40は、EGM波形及び(又は)マーカチャネルデータを分析し、心臓事象(例えば、頻脈)を検出することができる。制御モジュール40は、また、例えば、連絡モジュール48を介して受信した外部装置34からの要求に基づいて、メモリ50から保存したEGM及び(又は)マーカチャネルデータを後にて検索するようにしてもよい。更なる例において、検知モジュール42は、リード24a、24bに含まれない1つ又はより多くのセンサに、例えば、有線又は無線接続を介して、接続される。かかるセンサは、圧力センサ、加速度計、流量センサ、血脈の化学組成センサ、活動センサ、磁界センサ又はその他の型式の生理学的センサを含むことができる。
療法モジュール44は、電気的刺激療法を生成し且つ心臓に送り出す設計とされている。制御モジュール40は、療法モジュール44を制御し、メモリ50内に保存可能な1つの又はより多くの療法プログラムに従って、1つ又はより多くの電極28a、28b、30a、30bを介して心臓に電気的刺激を送り出すことができる。制御モジュール40は、選んだ療法プログラムにより特定された振幅、パルス幅、周波数、電極の組み合わせ又は電極の設計の電気的ペーシングパルス、心臓再同期化ペーシングパルス、カルジオバーションパルス、又は除細動パルスを送り出すよう療法モジュール44を制御する。
例えば、ペーシングの場合、療法モジュール44は、例えば、電極28a、28b及びリング電極30a、30bを使用する、双極電極の設計を介してペーシングパルスを送り出すことができる。その他の場合、療法モジュール44は、例えば、電極28a、28及びIMD22のハウジング電極を使用する単極電極の設計を介してペーシングパルスを送り出すことができる。療法モジュール44は、スイッチモジュール(図示せず、且つ検知モジュール42に関して上述したものと同一又は異なるスイッチモジュールとすることができる)を含むことができる。制御モジュール40は、刺激療法を送り出すため、利用可能な電極のどれを使用すべきかを選ぶスイッチモジュールの設計としてもよい。療法モジュール44は、正弦波、方形波又はその他の実質的に連続的な信号のような、パルス又はショック以外の他の信号の形態にてこれら型式の刺激の1つ又はより多くを送り出すようにしてもよい。
制御モジュール40又は療法モジュール44は、ハードウェア、ソフトウェア又はこれらの任意の組み合わせとして具体することのできるペーサタイミング及び制御回路を含むことができる。ペーサタイミング及び制御回路は、制御モジュール40又は療法モジュール44の他の構成要素と別個のASIC、DSP又はプロセッサ、又は制御モジュール40又は療法モジュール44の構成要素によって実行されるソフトウェアモジュールのような専用のハードウェア回路を備えることができる。
ペーサタイミング及び制御回路は、各種の単室及び二室ペーシングモードと関係した基本的な時間間隔を制御するプログラマブルカウンタを含むことができる。ペーシングタイミング及び制御回路によって規定された間隔は、例えば、心房及び心室ペーシングエスケープ間隔、すなわち検知したP波及びR波がペーシングパルスのエスケープ間隔及びパルス幅のタイミングを再始動させる効果はない、レフレクタ期間を含むことができる。別の例として、ペースタイミング及び制御モジュールは、空白期間を規定し、また、検知モジュール42に信号を提供し、心臓に電気的刺激を送り出す間及び送り出した後のある期間、例えば、増幅器のような、1つ又はより多くのチャネルを空白にすることができる。これら間隔の時間は、メモリ50内の保存したプログラムデータ及び応答した制御モジュール40により決定することができる。ペーサタイミング及び制御回路は、心臓のペーシングパルスの振幅を決定するようにしてもよい。
エスケープ間隔は、心臓にペーシングパルスを送り出す前、心臓のそれぞれの室の固有の心臓の脱分極のような、IMD22が心臓の事象を検知するのを待つ時間間隔を規定する。特に、IMD22は、心房のエスケープ間隔の間、心房内の心臓の事象を検知するのを待ち、且つ心室のエスケープ間隔の間、心室内の心臓の事象を検知するのを待つ。制御モジュール40は、エスケープ間隔が満了し、また、心臓事象が検知されないとき、心臓にペーシングパルスを送り出すよう療法モジュール44を制御する。制御モジュール40は、検知モジュール42の検出チャネルにより心臓事象を検知したとき、ペーサタイミング及び制御回路内のエスケープ間隔カウンタをリセットするようにすることができる。
植込んだ医療システム20を有する患者は、図1の外部界18のような、外部界に植込み型医療システム20を露出させる特定の療法又は診断技術を受けることができる。例えば、MRI法の場合、植込み型医療システム20は、高周波数RFパルス及び各種の磁界に露出され、患者12に関する像のデータを形成する。RFパルス及び(又は)勾配磁界は、IMD22のリード24a、24bの導体に電流を誘発することができる。リード24a、24bにて誘発された電流をIMD22の電子構成要素に伝導し、且つ心臓信号として検出し、これにより過検知を生じる可能性がある。従来のペースメーカにおいて、リードにて誘発された電流は、固有の心臓事象が実際に生じないとき、IMDが心房及び(又は)心室のエスケープ間隔カウンタをリセットし、これにより、望まれるペーシングパルスの送り出しを阻止する可能性がある。
本明細書にて説明したペーシング技術に従って、制御モジュール40は、心臓の電子物理的データ及び機構の最近の経歴を利用して、ノイズを独立的に検出し、EMIの存在下にて、より適当なペーシング療法を提供する。制御モジュール40は、固有の心臓信号が生じることが予想される時間を決定する。制御モジュール40は、例えば、心拍、心拍の可変性、ペーシング率等の最近の経歴に基づいて予想される固有の心臓信号のための時間を決定する。このようにして、制御モジュール40は、固有の心臓事象が生じることが予想される時間を決定する。固有の心臓信号が生じることが予想されると決定されたおおよその時間は、エスケープ間隔よりも短い場合がある。おおよそのエスケープ間隔の終了時、及び固有の心臓信号が生じることが予想される時間の終了時は、実質的に同一である。固有の心臓信号が生じることが予想される時間は、一例とし、数100ミリ秒程度とすることができる。
IMD22のノイズ検出モジュール46は、リード24a、24bにて検出された信号と別個のノイズ信号を独立的に検出する。ノイズ検出モジュール46は、例えば、少なくとも1つのアンテナ58によりノイズ信号を受信する。ある場合には、IMD22は、RF界及び勾配磁界の双方を検出することのできるアンテナを含む。その他の場合、IMD22は、MRI装置16により生成されたRF界を検出する1つのアンテナと、MRI装置16により生成された勾配磁界を検出する別のアンテナとを含むようにしてもよい。
ノイズ検出モジュール46のアンテナ58は、例えば、誘導コイルアンテナ、RFアンテナ等のような、連絡モジュール48のアンテナ56と同一のものとしてよい。例えば、アンテナ56/58にて受信した信号を分割し、且つ連絡モジュール48及びノイズ検出モジュール46に提供することができる。別の例において、ノイズ検出モジュール46及び連絡モジュール48は、アンテナにて受信した信号を分析する単一のモジュールとする。このように、テレメトリーアンテナ内にて誘発されたノイズ信号は、本明細書にて更に詳細に説明したように、検出され、且つ適宜に処理される。IMD22が誘導コイルアンテナ及びRFアンテナの双方を含む場合、ノイズ検出モジュール46は、その双方に接続することができる。
別の例において、アンテナ58は、少なくとも別個の専用アンテナとすることができる。一例としてのアンテナは、MRI勾配磁界を検出するトランスデューサ40の説明にて本明細書に含めた、ゼイジェイルマーカ(Zeijiemaker)への米国特許第7,693,568号に説明されている。第´568号の特許のトランスデューサ40は、界の方向に依存して、界を3つの矩形コイル41、42、43の1つと誘導接続することを介してMRI勾配磁界を検出することができる。´568号のトランスデューサ40のコイル41、42、43は、例えば、毎秒当たり約5テスラ及び毎秒当たり約300テスラの範囲の磁界における僅かな変化を検出するのに十分、高感度である。
更なる例において、アンテナ58は、電気信号が監視されるリードと異なる別の1つのリード24とする。例えば、心房リードは、心室における検知した電気信号がノイズと一致するかどうかを決定するためノイズアンテナとして利用してもよい。この場合、ノイズ検出モジュール46は、検知モジュール42の一部分とすることが可能である。
制御モジュール40は、リード24a、24bの1つにて検知した電気信号が独立的に検出したノイズ信号と一致し、且つ固有の心臓信号が生じることが予想される時間の間に生じるかどうかに基づいてペーシング療法を制御する。図4−6の流れ図に関して更に詳細に説明したように、制御モジュール40は、検知した電気信号が独立的に検出したノイズ信号と一致し、且つ検知した電気信号が予想される固有の心臓信号の時間の間に生じたとき、リードにて電気信号を検知した後、ペーシングパルスを送り出す。制御モジュール40は、例えば、100ミリ秒の直後に、ペーシングパルスを送り出すことができ、検知した電気信号が独立的に検出したノイズ信号と一致し、且つ予想した固有の心臓信号の時間の間にて生じたことを決定する。ある場合には、制御モジュール40は、エスケープ間隔が満了するのを待つことに代えて、エスケープ間隔の間、ペーシングパルスの送り出しを励起させるようにしてもよい。
リードにて検知した電気信号がノイズ信号と一致しないとき、制御モジュール40は、ペーシングパルスの送り出しを差し控える(阻止する)。エスケープ間隔の間、信号が検知されないとき、制御モジュール40は、エスケープ間隔の満了時、ペーシングパルスを送り出す。固有の心臓信号が生じることが予想され、且つノイズ信号と一致する時間の間、リードにて検知された電気信号が生じないとき、制御モジュール40は、ペーシング療法を送り出す目的のため、検知を無視する。本発明の技術に従ったペーシングは、不適切なペーシングの阻止と関係したリスクを少なくし、且つ心臓サイクルの脆弱な時間の間、ペーシングと関係したリスクを少なくすることによりMRI法の間、療法を改良することを許容する。
本明細書にて説明した技術は、ゼイジェイルマーカへの第´568号特許及びポール等への第´958号特許に記載された技術に優る幾つかの有利な効果を提供する。上述したように、第´568号特許は、外挿法によって推定した心臓事象と、生理学的心臓機能を維持するよう療法の送り出しを制御するべく典型的な技術状態に従った検知した勾配界との双方と一致する検知した電気的事象を、ノイズ事象及び「仮想」の心臓事象の累積カウント数が所定の数を上回るまで、処理するステップを記載している。ノイズ事象及び「仮想」の心臓事象の累積カウント数が所定の数を上回ったとき、電気的検知は無視され、装置は、毎分当たりの所定の心拍数のペーシング刺激に切り換わる。他方、本発明ペーシング技術は、予想される固有の心臓信号に対する時間間隔の間に生じ、且つ典型的な現在の技術制限に従ってノイズ検出モジュール46によって検出されたノイズ信号と一致する、検知した心臓信号を処理しない。その代わり、制御モジュール40は、検知した信号の直後、ペーシングを励起し、このことは、ペーシングパルスの送り出しを阻止し、且つ心臓の事象の検出に応答してエスケープ間隔のリセットを励起する典型的な技術の状態と反対である。この機能を提供するステップは、不適切なペーシングの阻止と関係したリスクを少なくすることになる。
ポール等への第´958号特許は、電磁干渉(EMI)が検出されたとのそのメッセージに応答するデマンド型ペースメーカを記載しており、その応答の仕方は、患者の心臓は予想される事象を実行し損ったと検知した場合に応答するのと同一の仕方、すなわち、心臓の信号が検知されている室を拍動させるペーシング信号を形成することにより行われる。心臓の事象が検知され、その事象がEMI存在フラグと一致するとき、患者が支援を必要としているかのように、ペースメーカは進行する。特に、第´958号特許のペースメーカは、現在のエスケープ時間間隔が完了するのを待ち、そのエスケープ時間間隔の満了後、刺激パルスを生成する。これと反対に、制御モジュール40は、本発明の技術に従って、検知した心臓信号の直後、ペーシングを励起する。従って、制御モジュール40は、エスケープ時間間隔が満了するのを待つことに代えて、エスケープ時間間隔の間にペーシングを励起することができる。この機能を提供することは、心臓サイクルの脆弱な時間の間のペーシングと関係したリスクを少なくすることになる。
療法モジュール44は、制御モジュール40の制御の下、心臓に対するカルジオバーション及び除細動療法を生成させ、且つ送り出す設計とすることもできる。例えば、制御モジュール40が心房又は心室の頻脈を検出した場合、制御モジュール40は、メモリ50及び制御療法モジュール40からATP処方にロードし、ATP処方を具体化することもできる。療法モジュール44は、また、高電圧ショックを生成し心臓の除細動を行う高電圧の充電回路及び高電圧の出力回路を含むこともできる。
ある場合には、制御モジュール40は、通常の作動モードとして、上述したペーシングモードに従って、IMD22を作動させることができる。この場合、本発明の技術に従ったペーシングは、患者がMRI法を受ける前及び受けた後、MRIの安全な作動モードを手操作にてプログラミングすることに関係した作業上の負担を解消することもできる。その他の場合、制御モジュール40は、MRIモードにて作動しているとき、本発明の技術に従ってペーシングするようIMD22を作動させることができる。制御モジュール40は、また、MRIモードにて作動する間、頻脈の検出及び療法、細動の検出及び療法、インピーダンスの測定、電池の測定等を含む、IMD22のその他の機能を一時的に中断することもできる。
制御モジュール40は、MRI装置16の存在を検出したとき、IMD22の作動をMRIモードに移行することができる。IMD22は、MRI装置16の存在を検出する磁界センサ52のような、1つ又はより多くのセンサを含むことができる。磁界センサ52は、ホールセンサ又はリードスイッチのような、磁界検出器を含むことができる。磁界センサ52により形成された信号は、例えば、磁界がMRI装置16の閾値レベルの表示値より大きいか又はそれと等しいとき、患者12がMRI環境に入ったと識別することができる。これと代替的に、制御モジュール40は、MRI法を受ける前に、IMD22の作動を手操作にてMRIモードに移行することができる。例えば、内科医、臨床医又は技術員のような操作者は、外部装置34を手操作にて操作し、制御モジュール40がIMD22の作動をMRIモードに移行するようにする指令を伝送することができる。
図4は、検知した電気信号が検知したノイズ信号と一致するかどうかの決定、且つ検知した電気信号が予想した固有の心臓信号の時間の間に生じるかどうかの決定に基づいて、ペーシングを励起する植込み型医療装置の作動の例を示す流れ図である。図4については、説明の目的のため、植込み型医療システム20に関して説明する。しかし、この技術は、任意の植込み型医療装置にて具体化可能である。
最初に、IMD22の制御モジュール40は、ペーシングエスケープ間隔(60)を開始する。上述したように、ペーシングエスケープ間隔は、心臓にペーシングパルスを送り出す前、IMD22が心臓のそれぞれの室の固有の心臓の脱分極のような、心臓事象を検知するのを待つ間の時間を規定する。制御モジュール40は、エスケープ間隔と関係した時間、植込み型医療リードにて電気信号が検知されないとき、ペーシングエスケープ間隔が満了したかどうかを決定する(62)。ペーシングエスケープ間隔が満了したとき、(ブロック62の「イエス」枝)、制御モジュール40は、療法モジュール44を制御し、ペーシングパルスを送り出す(64)。
ペーシングエスケープ間隔が満了しないとき(ブロック62の「ノー」枝)、制御モジュール40は、植込み型医療リードにて電気信号が検知されたかどうかを決定する(66)。植込み型医療リードにて電気信号が検知されないとき(ブロック66の「ノー」枝)、制御モジュール40は、ペーシングエスケープ間隔が満了したかどうかを決定する(62)。植込み型医療リードにて電気信号が検知されたとき(ブロック66の「イエス」枝)、制御モジュール40は、検知した電気信号がノイズ信号と一致するかどうかを決定する(68)。上述したように、IMD22のノイズ検出モジュール46は、リード24a、24bにて検知された任意の信号と独立的にノイズ信号を検出し、且つノイズ信号を提供するか、又は、制御モジュール40に対しノイズ信号が検出されたことを表示する。制御モジュール40は、ノイズ信号が検知されたときと、電気信号が検出されたときとを比較し、電気信号とノイズ信号とが一致するかどうかを決定する。これら2つの信号は、これらの信号が互いに閾値時間内にて生ずる限り一致する。例えば、制御モジュール40は、リード24にて検知した電気信号及びノイズ検出モジュール46を介して検知した、ノイズ信号が10ミリ秒以内に生じるとき、これらの信号は一致すると決定する。しかし、10ミリ秒より長く又は短い値を使用してもよい。
検知した電気信号はノイズ信号と一致しない(ブロック68の「ノー」枝)と制御モジュール40が決定したとき、制御モジュール40は、エスケープ間隔を再開する(60)。ある場合、エスケープ間隔は、不応期を含む。その他の場合、検知した電気信号はノイズ信号と一致しないと制御モジュール40が決定し、不応期の満了後、間隔を再開させることに応答して、制御モジュール40は、不応期のタイマーを始動させることができる。
検知した電気信号がノイズ信号と一致すると(ブロック68の「イエス」枝)制御モジュール40が決定するとき、制御モジュールは、固有の心臓信号が生じると予想される期間、電気信号が生じるかどうかを決定する(70)。制御モジュール40は、心臓の電気物理学的データ(心拍、心拍の可変性、ペーシング率等を含む)の最近の経歴を分析して、固有の心臓信号が生じることが予想される時間を決定することができる。
固有の心臓信号が予想される時間の間、電気信号が生じない(ブロック70の「ノー」枝)と制御モジュール40が決定するとき、制御モジュール40は、ペーシング療法をお送り出す目的のため検知を無視する(72)。固有の心臓信号が予想される時間の間、電気信号が生じる(ブロック70の「イエス」枝)と制御モジュール40が決定するとき、制御モジュール40は、ペーシングパルスを送り出すよう療法モジュール44を制御する(64)。この場合、制御モジュール40は、エスケープ間隔の時間が切れるのを待たない。その代わり、制御モジュール40は、決定の実質的に直後、例えば、電気信号を検知した100ミリ秒以内にペーシングパルスが送り出されるようにする。この機能を提供することは、不適切なペーシングの阻止と関係したリスクを少なくし、且つ心臓サイクルの脆弱な期間の間、ペーシングと関係したリスクを少なくすることになる。
図5には、タイミング図が示されている。タイミング図80は、マーカチャネルの情報(符号82で表示)、患者の心臓の固有の心臓信号(符号84 で表示)、リードにて検知した電気信号(符号86で表示)、及びアンテナにおけるノイズ信号(符号88で表示)を示す。破線ボックス90a、90bは、固有の心臓信号が生じることが予想される期間を表わす。タイミング図は、一例としての目的のため、患者の心房内に植え込んだリードに関して説明する。
図5に示した例において、患者は、固有の心臓の電気信号を有しない固有の心臓信号により明らかであるように、遅い又は基礎となる固有のリズムを有する。基礎となる固有の心臓信号は存在しないが、検知モジュール42は、リードにて電気信号92a−92d(「電気信号92」)を検知する。上述したように、検知モジュール42は、固有の心臓信号を検出することに加えて、外部の信号によりリードに誘発された電気信号を検出することができる。図5に示した例において、電気信号92は、MRI法の間、MRI装置により生成されたRF界及び(又は)勾配磁界のような、ノイズによりリードにて誘発されたエネルギに対応する。
リードにて検知した電気信号92は、検知した心室事象(図5のマーカチャネル情報にてVで表示)と対応する。換言すれば、リードにて検知した電気信号が閾値の大きさを超えるとき、検知した心室事象は、マーカチャネル情報に加えられる。しかし、より多くの情報が無い場合、マーカチャネル情報における電気信号92及び(又は)検知した心室事象(V)が固有の心臓信号又はノイズ信号に対応するかどうかを決定することはできない。
固有の心臓信号をノイズ信号と区別するのを助けるため、ノイズ検出モジュール46は、アンテナ58にて検知した信号を監視する。上述したように、ノイズ検出モジュール46は、リードにて検知した電気信号の任意のものと独立的にノイズ信号を監視する。アンテナ58にて検知した信号は、ノイズ検出モジュール46により検知したノイズ信号94a−94d(ノイズ信号「94」)を含む。図3に示した例において、電気信号92及び検知した心室事象(V)の全ては、MRI誘発のノイズに起因する。
制御モジュール40は、上述した技術に従って、リードにて受信した信号及びアンテナ58にて受信した信号を処理し、ペーシング療法を制御する。例えば、制御モジュールは、電気信号92aがノイズ信号94aと一致すると決定する。しかし、電気信号92aは、予想される固有の心臓信号の時間の間(例えば、ボックス90a、90bの1つ内)にて生じないため、制御モジュール40は、電気信号92aを固有の心臓活動ではなくMRI誘発によるノイズであると特徴づける。制御モジュール40は、療法の送り出しの目的のため、検知した電気信号92aを無視し、それは、その電気信号は予想される固有の心臓信号の時間中に生じないからである。制御モジュール40は、電気信号92c、92dを92aと同一の仕方にて処理する。
制御モジュールは、電気信号92bがノイズ(すなわち、ノイズ信号94b)とも一致すると決定する。しかし、制御モジュール40は、電気信号92bが予想される固有の心臓信号の期間の間(例えば、ボックス90aで示した期間内)にて生ずるとも決定する。制御モジュール40は、電気信号92bを不定のものと特徴付け、それは、制御モジュール40は、固有の心臓信号はこの時間に又はその近くにて生じるので、電気信号92bがMRI誘発のノイズに起因すると確信が持てないからである。このため、制御モジュール40は、電気信号92bを検出した後、短い時間にてペーシングパルスの送り出しを励起する。送り出しペーシングパルスは、図5のマーカチャネル情報にてVとして表わされている。制御モジュール40は、電気信号92bの100ミリ秒以内にてペーシングパルスの送り出しを励起し、ペーシング療法が生理学的に適正な時点にて処方されることを保証することができる。図5に示した例において、制御モジュール40は、ボックス90aで示した期間の終了時にて生じる心室エスケープ間隔の満了前に、ペーシングパルスVの送り出しを励起する。この機能を提供することは、例えば、T波にてペーシングするといった、心臓サイクルの脆弱な期間中のペーシングと関係したリスクを少なくすることになる。
制御モジュール40がリードにていかなる電気信号92も検出しないとき、制御モジュール40は、心室のエスケープ間隔の満了時にペーシングパルスの送り出しを励起する。かかるシナリオは、ボックス90bで示した期間に関して示されている。従って、ペーシング療法は、リードにて電気信号が検出されないとき、より低いレート限界値にて提供される。
図6には、タイミング図100が示されている。タイミング図100は、マーカチャネル情報(符号102で表示)、患者の心臓の固有の心臓信号(符号104で表示)、リードにて検知した電気信号(符号106で表示)、及びアンテナにて検知したノイズ信号(符号108で表示)を示す。破線ボックス110a、110bは、固有の心臓信号が生じることが予想される期間を表わす。タイミング図100については、例示の目的のため、患者の心室内に植え込んだリードに関して説明する。
図5に示した例と異なり、患者は、図6に示した例において、基礎となる固有の心臓リズムを有している。固有の心臓信号は、多数の固有の心臓信号112a−112b(「固有の心臓信号112」)を含む。ノイズ検出モジュール46は、また、アンテナ58にて多数のノイズ信号114a−114b(「ノイズ信号114」)も検出する。検知モジュール42は、また、固有の心臓信号112、ノイズ信号114の何れか一方又はその双方に対応するリードにおける電気信号116a−116b(「電気信号116」)を検知する。検知モジュール42がリードにおける電気信号が閾値の大きさを超えると検知するとき、検知した心室事象(符号Vで表示)がマーカチャネル情報に追加される。
しかし、より多くの情報がない場合、制御モジュール40は、マーカチャネル情報における電気信号116及び(又は)対応する検知した心室事象(V)が固有の心臓信号又はノイズ信号に対応するかどうかを決定することはできない。制御モジュール40は、リードにて受信した電気信号116、及びアンテナ58にて受信したノイズ信号114を上述した技術に従って処理し、ノイズを心臓信号からより良く判別する。一方、制御モジュール40は、より正確なペーシング療法を提供する。
制御モジュール40は、電気信号116aを検出し、電気信号116aがノイズ114aと一致すると決定する。更に、制御モジュール40は、電気信号116aが予想される固有の心臓信号の期間の間(例えば、ボックス110aで示した期間内)にて生じると決定する。制御モジュール40は、電気信号116aがMRI誘発のノイズに起因するか、又はこの時間にて又は、その時間付近にて生じた固有の心臓信号と関係しているかを保証することはできないため、制御モジュール40は、その電気信号116aを不定のものと特徴付ける。このため、制御モジュール40は、電気信号116aを検出した後、短い時間にて、ペーシングパルスの送り出しを励起する。送り出されたペーシングパルスは、図6のマーカチャネル情報内にてVとして表わされている。制御モジュール40、電気信号116bの100ミリ秒以内にてペーシングパルスの送り出しを励起し、ペーシング療法が生理学的に適当な時点にて処方されることを保証する。図6に示した例において、制御モジュール40は、ボックス110aで示した時間の終了時に生じる、心室のエスケープ間隔の満了前、ペーシングパルスVの送り出しを励起する。この機能を提供することは、心臓サイクルの脆弱な期間の間、関係したペーシング、例えば、T波のペーシングと関係したリスクを少なくすることになる。
制御モジュール40は、電気的事象116bを検出し、且つその電気的事象116bがノイズ信号114bと一致すると決定する。しかし、電気的信号116bは、予想される心臓信号の短い時間の間(例えば、ボックス110a、110bの1つの内)にて生じないため、制御モジュール40は、電気信号116bを固有の心臓活動ではなくMRI誘発のノイズと特徴付け、療法の送り出しの目的のため、検知した電気信号116bを無視する。
制御モジュール40は、電気的事象116cを検出し、且つその電気的事象116cはアンテナ58にて検出された任意のノイズ信号と一致しないと決定する。電気信号116cは、アンテナ58にて検出された任意のノイズ信号と一致しないため、制御モジュール40は、電気信号116cが固有の心臓活動と関係していると確実に決定する。制御モジュール40は、電気信号が固有の心臓活動と関係しているため、ペーシングパルスの送り出しを差し控える。
本明細書にて記載した技術は、その他の療法システムに適用可能である。例えば、本明細書に記載した技術は、患者12のその他の筋肉、神経又は器官に電気的刺激療法を送り出すIMDを含む、システムに適用可能である。別の例として、本明細書に記載した技術は、薬剤の送り出し又は注入モジュールを含む、植込み型薬剤送り出し又は注入装置又は、IMDを含む、システムに適用可能である。植込み型装置のその他の組み合わせは、当該技術の当業者に明らかであり、また、本発明の範囲に属するものであろう。
IMD22に属するものを含んで、本明細書に記載した技術は、ハードウェア、ソフトウェア又はそれらの任意の組み合わせにて少なくとも部分的に、具体化することができる。例えば、この技術の各種の特徴は、1つ又はより多くのマイクロプロセッサ、DSP、ASIC、FPGA、又は任意のその他の同等の集積回路又は離散型論理回路、及びかかる構成要素の任意の組み合わせを含む1つ又はより多くのプロセッサ内にて具体化し、また、内科医又は患者のプログラマーのような、プログラマー、刺激器又はその他の装置にて具体化することができる。「プロセッサ」という語は、全体として、単独にて又はその他の回路と組み合わせた、上記の回路の任意のもの、又は任意のその他の同等の回路を意味する。
かかるハードウェア、ソフトウェア又はファームウェアは、本明細書に記載した各種の作用及び機能を支えるため同一の装置又は別個の装置にて具体化することができる。更に、記載したユニット、モジュール又は構成要素の任意のものは、一体的に、又は離散型であるが、相互に作動可能な論理装置として別個に具体化することができる。モジュール又はユニットとして異なる特徴を説明することは、異なる機能上の特徴を強調することを意図するものであり、必ずしも、かかるモジュールユニット又はユニットは別個のハードウェア又はソフトウェア構成要素によって実現しなければならないことを意味するものではない。むしろ、1つ又はより多くのモジュール又はユニットと関係した機能は、別個のハードウェア又はソフトウェアの構成要素により実行し、又は共通の又は別個のハードウェア又はソフトウェア構成要素内にて一体化することができる。
ソフトウェアにて具体化したとき、本明細書に記載したシステム、装置及び技術に属する機能は、RAM、ROM、NVRAM、EEPROM、又はフラッシュメモリ、磁気データ保存媒体、光学データ保存媒体等のようなコンピュータ読み取り可能な媒体上の命令として具体化することもできる。これらの命令は、本明細書に記載した機能の1つ又はより多くの特徴を支えるよう実行することができる。
各種の例について説明した。これらの及びその他の例は、以下の特許請求の範囲に属するものである。

Claims (4)

  1. 植込み型医療システムにおいて、
    少なくとも1つの電極(28a、28b、30a、30b9い)を含む植込み型医療リード(24a、24b)と、
    植込み型医療装置と、を備え、該植込み型医療装置は、
    ノイズ信号(88、108)を検出するノイズ検出モジュール(46)と、
    植込み型医療リード(24a、24b)における電気信号(86、106)を検出する検知モジュール(42)と、
    植込み型医療リード(24a、24b)を介してペーシング療法を送り出す療法モジュール(44)と、検知した電気信号(86、106)が検知したノイズ信号(88、108)と一致するかどうかを決定、且つ検知した電気信号(86、106)が予想した固有の心臓信号の期間(90、110)の間にて生じるかどうかを決定する制御モジュール(40)とを備え、
    前記制御モジュール(40)は、
    植込み型医療リード(24a、24b)にて電気信号(86、106)が検知されたとき、該検知した電気信号(86、106)が検知したノイズ信号(88、108)と互いに閾値時間内にて生じる限り一致し、且つ検知した電気信号(86、106)が予想した固有の心臓信号の期間(90、110)の間にて生じるとき、エスケープ間隔の満了前、ペーシングパルスを送り出すよう療法モジュール(44)を制御し、前記予想した固有の心臓信号の期間は前記エスケープ間隔と同一か又は小さい、植込み型医療システム。
  2. 請求項1に記載のシステムにおいて、
    前記制御モジュール(40)は、
    検知した電気信号(86、106)が検知したノイズ信号(88、108)と一致しないとき、ペーシングパルスの送り出しを差し控え、
    検知した電気信号(86、106)が検知したノイズ信号(88、108)と互いに閾値時間内にて生じる限り一致し、且つ検知した電気信号(86、106)が予想した固有の心臓信号の期間(90、110)の間にて生じないとき、ペーシング療法を送り出す目的のための該検知した電気信号(86、106)を無視し、
    前記制御モジュール(40)は、
    植込み型医療リード(24a、24b)にて電気信号(86、106)が検知されないとき、エスケープ間隔の満了時に、ペーシングパルスの送り出しを励起する、システム。
  3. 請求項1又は2に記載のシステムにおいて、
    前記制御モジュール(40)は、植込み型医療リード(24a、24b)が植込まれた心臓の同一室内にてペーシングパルスの送り出しを励起する、システム。
  4. 請求項1から3の何れか1項に記載のシステムにおいて、
    磁界センサ(52)を更に備え、
    前記制御モジュール(40)は、磁界センサ(52)の出力に基づいてMRI装置(16)の存在を示すMRIモードを検出すると共に、該MRIモードの検出に応答して、検知した電気信号(86、106)が検知したノイズ信号(88、108)と互いに閾値時間内にて生じる限り一致し、検知した電気信号(86、106)が予想した固有の心臓信号の期間(90、110)の間にて生じるとき、エスケープ間隔の満了前、ペーシングパルスの送り出しが励起されるペーシングモードを検出する、システム。
JP2014508342A 2011-04-27 2012-01-06 植込み型医療システム Active JP5740047B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/095,076 2011-04-27
US13/095,076 US8433408B2 (en) 2011-04-27 2011-04-27 Pacing in the presence of electromagnetic interference
PCT/US2012/020406 WO2012148506A1 (en) 2011-04-27 2012-01-06 Pacing in the presence of electromagnetic interference

Publications (2)

Publication Number Publication Date
JP2014516296A JP2014516296A (ja) 2014-07-10
JP5740047B2 true JP5740047B2 (ja) 2015-06-24

Family

ID=45529222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014508342A Active JP5740047B2 (ja) 2011-04-27 2012-01-06 植込み型医療システム

Country Status (5)

Country Link
US (1) US8433408B2 (ja)
EP (1) EP2701794B1 (ja)
JP (1) JP5740047B2 (ja)
CN (1) CN103517733B (ja)
WO (1) WO2012148506A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9151055B2 (en) 2009-02-25 2015-10-06 Owens Corning Intellectual Capital, Llc Hip and ridge roofing material
US8744578B2 (en) * 2010-10-29 2014-06-03 Medtronic, Inc. Staged sensing adjustments by an implantable medical device in the presence of interfering signals
US8983606B2 (en) 2010-10-29 2015-03-17 Medtronic, Inc. Enhanced sensing by an implantable medical device in the presence of an interfering signal from an external source
US8663202B2 (en) * 2011-05-20 2014-03-04 Advastim, Inc. Wireless remote neurostimulator
US9675806B2 (en) * 2012-10-09 2017-06-13 Medtronic, Inc. Cardiac pacing during medical procedures
US10441796B2 (en) * 2014-07-17 2019-10-15 Medtronic, Inc. Multi-chamber intracardiac pacing system
US9839783B2 (en) * 2014-07-25 2017-12-12 Medtronic, Inc. Magnetic field detectors, implantable medical devices, and related methods that utilize a suspended proof mass and magnetically sensitive material
US9399139B2 (en) * 2014-09-08 2016-07-26 Medtronic, Inc. System and method for dual-chamber pacing
US9492668B2 (en) * 2014-11-11 2016-11-15 Medtronic, Inc. Mode switching by a ventricular leadless pacing device
EP3268083A1 (en) 2015-03-11 2018-01-17 Medtronic Inc. Multi-chamber intracardiac pacing system
US10293167B2 (en) 2016-04-15 2019-05-21 Medtronic, Inc. Methods and implantable medical systems that implement exposure modes of therapy that allow for continued operation during exposure to a magnetic disturbance
US10441798B2 (en) 2016-04-15 2019-10-15 Medtronic, Inc. Methods and implantable medical systems that implement exposure modes of therapy that allow for continued operation during exposure to a magnetic disturbance
US10286209B2 (en) 2016-04-29 2019-05-14 Medtronic, Inc. Methods and implantable medical devices for automatic entry to an exposure mode of operation upon exposure to a magnetic disturbance
CN106110504B (zh) * 2016-06-17 2019-06-04 清华大学 一种具有mri模式的植入式医疗器械及其工作方法
CN106110503B (zh) * 2016-06-17 2018-11-23 清华大学 一种具有mri模式的植入式医疗器械及其工作方法
US10589090B2 (en) 2016-09-10 2020-03-17 Boston Scientific Neuromodulation Corporation Implantable stimulator device with magnetic field sensing circuit
CN111918694A (zh) 2018-02-01 2020-11-10 心脏起搏器股份公司 针对mri环境设计的可插入心脏监视设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522857A (en) 1994-09-20 1996-06-04 Vitatron Medical, B.V. Pacemaker with improved detection of and response to noise
US5647379A (en) 1994-11-22 1997-07-15 Ventritex, Inc. Correlator based electromagnetic interference responsive control system useful in medical devices
US5697958A (en) * 1995-06-07 1997-12-16 Intermedics, Inc. Electromagnetic noise detector for implantable medical devices
SE9704520D0 (sv) 1997-12-04 1997-12-04 Pacesetter Ab Pacemaker
US7082328B2 (en) 2002-01-29 2006-07-25 Medtronic, Inc. Methods and apparatus for controlling a pacing system in the presence of EMI
EP1680183A2 (en) 2003-09-29 2006-07-19 Medtronic, Inc. Controlling blanking during magnetic resonance imaging
US8332011B2 (en) 2003-09-29 2012-12-11 Medtronic, Inc. Controlling blanking during magnetic resonance imaging
US8509876B2 (en) * 2004-08-09 2013-08-13 The Johns Hopkins University Implantable MRI compatible stimulation leads and antennas and related systems and methods
US7693568B2 (en) 2006-03-30 2010-04-06 Medtronic, Inc. Medical device sensing and detection during MRI
WO2009100003A1 (en) * 2008-02-06 2009-08-13 Cardiac Pacemakers, Inc. Lead with mri compatible design features
US8078277B2 (en) 2008-10-29 2011-12-13 Medtronic, Inc. Identification and remediation of oversensed cardiac events using far-field electrograms

Also Published As

Publication number Publication date
JP2014516296A (ja) 2014-07-10
EP2701794A1 (en) 2014-03-05
CN103517733B (zh) 2016-01-06
WO2012148506A1 (en) 2012-11-01
US20120277817A1 (en) 2012-11-01
US8433408B2 (en) 2013-04-30
CN103517733A (zh) 2014-01-15
EP2701794B1 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP5740047B2 (ja) 植込み型医療システム
US9675806B2 (en) Cardiac pacing during medical procedures
EP3185952B1 (en) Implantable cardiac rhythm system and an associated method for triggering a blanking period through a second device
JP5389947B2 (ja) Mri環境において不整脈治療を提供するためのシステム
JP4381817B2 (ja) 静磁界を検出する方法および装置
JP4297872B2 (ja) Emiの存在下でペーシングシステムを制御する方法および装置
US9138584B2 (en) Multiphasic pacing in the presence of electromagnetic interference
US8437862B2 (en) Magnetic field detection using magnetohydrodynamic effect
US20150080977A1 (en) Implantable medical device telemetry in disruptive energy field
EP2398555B1 (en) Automatic disablement of an exposure mode of an implantable medical device
WO2012148507A1 (en) Implantable medical device with automatic sensing threshold adjustment in noisy environment
US7120493B2 (en) Shock lead impedance measurement to ensure safe delivery of shock therapy to maintain circuit integrity
US9795792B2 (en) Emergency mode switching for non-pacing modes
US20120109001A1 (en) Sensing in an implantable device in the presence of an interfering signal using lead impedance measurements
US8467882B2 (en) Magnetic field detection using magnetohydrodynamic effect
US9095721B2 (en) Unipolar pacing in the presence of electromagnetic interference
US9409026B2 (en) Lead monitoring frequency based on lead and patient characteristics
US9399141B2 (en) Lead monitoring frequency based on lead and patient characteristics
WO2012134603A1 (en) Magnetic field detection using magnetohydrodynamic effect
WO2015123483A1 (en) Lead monitoring frequency based on lead and patient characteristics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150424

R150 Certificate of patent or registration of utility model

Ref document number: 5740047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250