JP5737233B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP5737233B2
JP5737233B2 JP2012163147A JP2012163147A JP5737233B2 JP 5737233 B2 JP5737233 B2 JP 5737233B2 JP 2012163147 A JP2012163147 A JP 2012163147A JP 2012163147 A JP2012163147 A JP 2012163147A JP 5737233 B2 JP5737233 B2 JP 5737233B2
Authority
JP
Japan
Prior art keywords
valve
pressure reducing
metering valve
reducing valve
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012163147A
Other languages
Japanese (ja)
Other versions
JP2014020350A (en
Inventor
英生 成瀬
英生 成瀬
渡辺 博
博 渡辺
真秀 梶川
真秀 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012163147A priority Critical patent/JP5737233B2/en
Priority to DE102013107627.0A priority patent/DE102013107627B4/en
Publication of JP2014020350A publication Critical patent/JP2014020350A/en
Application granted granted Critical
Publication of JP5737233B2 publication Critical patent/JP5737233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2086Output circuits, e.g. for controlling currents in command coils with means for detecting circuit failures
    • F02D2041/2093Output circuits, e.g. for controlling currents in command coils with means for detecting circuit failures detecting short circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、「高圧ポンプの調量弁(PCV)」と「コモンレールの減圧弁(PRV)」を選択駆動する燃料噴射装置に関する。   The present invention relates to a fuel injection device that selectively drives a “high-pressure pump metering valve (PCV)” and a “common rail pressure reducing valve (PRV)”.

〔従来技術〕
特許文献1には、
(i)先ず、コンデンサに蓄えた大電力エネルギー(バッテリ電圧を昇圧回路で昇圧させコンデンサで蓄圧した電気エネルギー)を「電磁アクチュエータ」に印加し、
(ii)続いて、バッテリ電圧を制御して「電磁アクチュエータ」に与える技術が開示されている。
[Conventional technology]
In Patent Document 1,
(I) First, high-power energy stored in the capacitor (electric energy stored in the capacitor by boosting the battery voltage with the booster circuit) is applied to the “electromagnetic actuator”.
(Ii) Subsequently, a technique is disclosed in which the battery voltage is controlled and applied to the “electromagnetic actuator”.

〔従来技術の問題点〕
上記特許文献1の技術を用いて、「高圧ポンプの調量弁」と「コモンレールの減圧弁」を選択駆動することが考えられる。
その場合、図1(b)に示すように、「高圧ポンプの調量弁3」の電流下流側が何らかの不具合により地絡(図中、短絡箇所X参照)したことを仮定すると、「減圧弁6を作動」させるべく減圧弁6に駆動電流を付与した場合は、調量弁3と減圧弁6の両方に駆動電流が流れ、「減圧弁6が作動」するとともに、「高圧ポンプも作動」してしまう。
[Problems of the prior art]
It is conceivable to selectively drive the “high-pressure pump metering valve” and the “common rail pressure-reducing valve” using the technique disclosed in Patent Document 1.
In this case, as shown in FIG. 1B, assuming that the current downstream side of the “high-pressure pump metering valve 3” has a ground fault (refer to the short-circuit point X in the figure) due to some trouble, the “pressure reducing valve 6 When a drive current is applied to the pressure reducing valve 6 in order to “activate”, the drive current flows through both the metering valve 3 and the pressure reducing valve 6, “the pressure reducing valve 6 is activated” and “the high pressure pump is also activated”. End up.

「減圧弁6を作動」させる際は、コモンレール圧を降下させたい時であるが、調量弁3の通電により「高圧ポンプが意図せずに作動」することで、高圧燃料がコモンレールに供給されてしまう。
その結果、最悪の場合には、コモンレール圧が上昇して、コモンレール圧が加わる部品や部材に設計値を超えた過大な負荷が加わる懸念がある。
When the "pressure reducing valve 6 is actuated", it is a time when the common rail pressure is to be lowered. When the metering valve 3 is energized, the "high pressure pump is actuated unintentionally", whereby high pressure fuel is supplied to the common rail. End up.
As a result, in the worst case, the common rail pressure rises, and there is a concern that an excessive load exceeding the design value is applied to components and members to which the common rail pressure is applied.

特開2002−295293号公報JP 2002-295293 A

本発明は、上記問題点に鑑みてなされたものであり、その目的は、高圧ポンプにおける「調量弁の電流下流側の地絡」を検出して、「減圧弁の作動時」に「高圧ポンプが意図せずに作動」するのを回避できる燃料噴射装置の提供にある。   The present invention has been made in view of the above problems, and its purpose is to detect a “ground fault on the current downstream side of a metering valve” in a high-pressure pump, It is an object of the present invention to provide a fuel injection device capable of avoiding the “unintentional operation of the pump”.

本発明の燃料噴射装置は、調量弁と減圧弁の両方の選択が成されていない状態で、調量弁と減圧弁への電流供給側に所定電圧を印加しても、調量弁と減圧弁への電流供給側の電圧が略グランド電圧に低下する時は、高圧ポンプにおける「調量弁の電流下流側の地絡」を判定する。
このように、本発明によって高圧ポンプにおける「調量弁の電流下流側の地絡」が判定できるため、「減圧弁の作動時」に「高圧ポンプが意図せずに作動」するのを回避することができ、コモンレール圧が加わる部品や部材に設計値を超えた過大な負荷が加わる懸念を無くすことができる。
Even if a predetermined voltage is applied to the current supply side to the metering valve and the pressure reducing valve in a state where both the metering valve and the pressure reducing valve are not selected, the fuel injection device of the present invention When the voltage on the current supply side to the pressure reducing valve drops to approximately the ground voltage, the “ground fault on the current downstream side of the metering valve” in the high pressure pump is determined.
As described above, according to the present invention, the “ground fault on the current downstream side of the metering valve” in the high-pressure pump can be determined, so that “unintentionally operating the high-pressure pump” is avoided when “the pressure reducing valve is operating”. Therefore, it is possible to eliminate the concern that an excessive load exceeding the design value is applied to the parts and members to which the common rail pressure is applied.

(a)制御装置の要部回路図、(b)「調量弁の電流下流側の地絡時」に減圧弁が選択された状態の回路説明図、(c)「調量弁の電流下流側の地絡時」に調量弁が選択された状態の回路説明図である。(A) Circuit diagram of the main part of the control device, (b) Circuit explanatory diagram in a state where the pressure reducing valve is selected at the time of “earth fault on the current downstream side of the metering valve”, (c) “Current downstream of the metering valve” FIG. 10 is a circuit explanatory diagram in a state where a metering valve is selected at the time of “ground fault on the side”. 燃料噴射装置のシステム構成図である。It is a system configuration figure of a fuel injection device. 高圧ポンプの作動説明図である。It is operation | movement explanatory drawing of a high pressure pump. 調量弁および減圧弁の駆動波形図である。It is a drive waveform diagram of a metering valve and a pressure reducing valve. 調量弁の電流下流側の地絡検出方法にかかる説明図である。It is explanatory drawing concerning the ground fault detection method of the electric current downstream of a metering valve. 調量弁の電流下流側の地絡診断のフローチャートである。It is a flowchart of the ground fault diagnosis of the electric current downstream side of a metering valve. 「調量弁の電流下流側の地絡時」に調量弁が選択された際の駆動波形図である。FIG. 6 is a drive waveform diagram when the metering valve is selected “at the time of ground fault on the current downstream side of the metering valve”.

以下、発明を実施するための形態を、図面に基づいて詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the invention will be described in detail with reference to the drawings.

以下で開示する実施例は、本発明の具体的な一例であって、本発明が実施例に限定されないことは言うまでもない。   The examples disclosed below are specific examples of the present invention, and it goes without saying that the present invention is not limited to the examples.

[実施例1]
図1〜図7を参照して実施例1を説明する。
この実施例は、本発明に係る燃料噴射装置を、車両ディーゼルエンジン用の燃料噴射装置に適用したものである。
この燃料噴射装置は、蓄圧式(コモンレール式)であり、図2に示すように、フィードポンプ1、高圧ポンプ2、調量弁3、コモンレール4、レール圧センサ5、減圧弁6、インジェクタ7、制御装置8(ECU9+EDU10)等を備えて構成されている。
[Example 1]
Embodiment 1 will be described with reference to FIGS.
In this embodiment, the fuel injection device according to the present invention is applied to a fuel injection device for a vehicle diesel engine.
This fuel injection device is a pressure accumulation type (common rail type), and as shown in FIG. 2, a feed pump 1, a high pressure pump 2, a metering valve 3, a common rail 4, a rail pressure sensor 5, a pressure reducing valve 6, an injector 7, A control device 8 (ECU9 + EDU10) is provided.

フィードポンプ1は、燃料タンクから燃料を吸入して高圧ポンプ2に供給するものである。
高圧ポンプ2は、図3に示すように、エンジン11から動力を得て回転するカムシャフトの回転に伴ってプランジャ12がシリンダ13内を往復移動することにより、シリンダ13内に吸入した燃料をシリンダ13内にて加圧する周知のプランジャポンプである。
The feed pump 1 sucks fuel from a fuel tank and supplies it to the high pressure pump 2.
As shown in FIG. 3, the high-pressure pump 2 is configured so that the plunger 12 reciprocates in the cylinder 13 as the camshaft rotates by obtaining power from the engine 11. 13 is a known plunger pump that pressurizes the inside of the pump.

調量弁3は、高圧ポンプ2の吸入側に設けられてコモンレール4に圧送される燃料の量を調整する調整弁である。
この調量弁3は、常開型の開閉弁を電磁アクチュエータで閉弁させる常開型(ノーマリ・オープン型)の電磁弁であり(限定するものではない)、調量弁3(具体的には電磁アクチュエータにおけるソレノイドコイル)を通電することにより閉弁する。
The metering valve 3 is an adjustment valve that is provided on the suction side of the high-pressure pump 2 and adjusts the amount of fuel pumped to the common rail 4.
This metering valve 3 is a normally open (normally open type) solenoid valve that closes a normally open type on-off valve with an electromagnetic actuator (not limited), and the metering valve 3 (specifically, Is closed by energizing the solenoid coil) in the electromagnetic actuator.

具体的に、この実施例の調量弁3は、図3に示すように、プランジャ12のリフト時(吐出行程時)に閉弁すると、調量弁3の通電が停止されても、加圧燃料により閉弁状態が維持されるものであり、プランジャ12が下降(吸入行程)に転じると、加圧燃料の喪失およびリターンスプリングの開弁力により開弁するものである。   Specifically, as shown in FIG. 3, when the metering valve 3 of this embodiment is closed when the plunger 12 is lifted (during the discharge stroke), the metering valve 3 is pressurized even when the metering valve 3 is de-energized. The closed state is maintained by the fuel, and when the plunger 12 moves downward (intake stroke), the valve is opened due to the loss of pressurized fuel and the opening force of the return spring.

高圧ポンプ2の吐出部には、高圧ポンプ2からコモンレール4側に吐出された燃料が高圧ポンプ2に逆流することを防止する吐出弁14が設けられており、高圧ポンプ2の吐出圧がコモンレール4内の圧力より大きくなったときにのみ吐出弁14が開き、燃料がコモンレール4に圧送される。   The discharge portion of the high pressure pump 2 is provided with a discharge valve 14 for preventing the fuel discharged from the high pressure pump 2 to the common rail 4 side from flowing back to the high pressure pump 2. Only when the pressure becomes larger than the internal pressure, the discharge valve 14 opens and the fuel is pumped to the common rail 4.

なお、
・図3の実線Aは調量弁3の駆動電流を示し、
・図3の実線Bは調量弁3の開閉状態を示し、
・図3の実線Cはプランジャ12のリフト量を示すものである。
In addition,
The solid line A in FIG. 3 shows the drive current of the metering valve 3,
The solid line B in FIG. 3 shows the open / close state of the metering valve 3,
A solid line C in FIG. 3 indicates the lift amount of the plunger 12.

コモンレール4は、高圧ポンプ2から圧送された燃料を蓄圧し、蓄圧燃料をエンジン運転状態に応じた目標圧力に保持する畜圧容器である。
レール圧センサ5は、実レール圧(コモンレール4の内部圧力)を検出する圧力検出手段であり、検出された実レール圧が目標レール圧(ECU9が求めた目標圧力)に一致するように、調量弁3および減圧弁6が制御装置8により制御される。
The common rail 4 is a stock pressure vessel that accumulates fuel pumped from the high-pressure pump 2 and holds the accumulated fuel at a target pressure corresponding to the engine operating state.
The rail pressure sensor 5 is pressure detection means for detecting the actual rail pressure (internal pressure of the common rail 4), and adjusts the detected actual rail pressure so as to match the target rail pressure (target pressure obtained by the ECU 9). The quantity valve 3 and the pressure reducing valve 6 are controlled by the control device 8.

減圧弁6は、実コモンレール圧を素早く降下させるための調整弁である。
この減圧弁6は、常閉型の開閉弁を電磁アクチュエータで開弁させる常閉型(ノーマリ・クローズ型)の電磁弁であり、減圧弁6(具体的には電磁アクチュエータのソレノイドコイル)を通電することにより常閉型の開閉弁を閉弁してコモンレール4に蓄圧された燃料の一部を溢流させ、通電が停止されると閉弁して燃料の溢流を停止するものである。
The pressure reducing valve 6 is a regulating valve for quickly reducing the actual common rail pressure.
This pressure reducing valve 6 is a normally closed type (normally closed type) electromagnetic valve that opens a normally closed type on-off valve by an electromagnetic actuator. The pressure reducing valve 6 (specifically, a solenoid coil of the electromagnetic actuator) is energized. Thus, the normally closed on-off valve is closed to overflow a part of the fuel accumulated in the common rail 4, and when energization is stopped, the valve is closed and the fuel overflow is stopped.

インジェクタ7は、各気筒毎に独立して設けられて、コモンレール4に対して並列接続されるものであり、コモンレール4に蓄圧されている燃料を各気筒内に噴射する燃料噴射弁である。
このインジェクタ7は、常閉型の開閉弁を電磁アクチュエータで開弁させる常閉型の電磁インジェクタ7(ニードルを閉弁させる背圧室の油圧を電磁弁で開閉する2ウェイ・インジェクタ7、ニードルを電磁アクチュエータにより直接駆動するダイレクト・インジェクタ7等)であり、インジェクタ7(具体的には電磁アクチュエータのソレノイドコイル)を通電することにより、ニードルがリフトして燃料噴射を開始し、通電を停止すると燃料の噴射を停止するものである。
The injector 7 is provided independently for each cylinder and is connected in parallel to the common rail 4, and is a fuel injection valve that injects fuel accumulated in the common rail 4 into each cylinder.
This injector 7 is a normally closed electromagnetic injector 7 that opens a normally closed on-off valve with an electromagnetic actuator (a two-way injector 7 that opens and closes the hydraulic pressure of a back pressure chamber that closes the needle with an electromagnetic valve, and a needle. A direct injector 7 or the like directly driven by an electromagnetic actuator). When the injector 7 (specifically, a solenoid coil of the electromagnetic actuator) is energized, the needle is lifted to start fuel injection, and when energization is stopped, the fuel Is stopped.

ECU9は、各種メモリ等を搭載する周知のマイクロコンピュータを用いて構成されるものであり、各種センサ(回転角センサ、アクセル開度センサ、レール圧センサ5等)によって検出された車両の運転状態(エンジン11の運転状態、燃料噴射装置の運転状態、ドライバーの操作状態等)に基づいて、各電気機能部品(調量弁3、減圧弁6、インジェクタ7等)に対して指示信号(指令信号)を与える。   The ECU 9 is configured using a well-known microcomputer equipped with various memories and the like, and the driving state of the vehicle (rotation angle sensor, accelerator opening sensor, rail pressure sensor 5, etc.) detected by various sensors (e.g. Based on the operating state of the engine 11, the operating state of the fuel injection device, the operating state of the driver, etc.), an instruction signal (command signal) is sent to each electric functional component (the metering valve 3, the pressure reducing valve 6, the injector 7, etc.). give.

EDU10は、ECU9から与えられる指示信号から駆動信号(駆動パルス)を生成するとともに、センサ信号をECU9の読取信号に変換する信号制御部15を備えるものであり、この信号制御部15の発生する駆動信号に基づき、調量弁3、減圧弁6、インジェクタ7の通電制御を実施する。   The EDU 10 includes a signal control unit 15 that generates a drive signal (drive pulse) from an instruction signal supplied from the ECU 9 and converts the sensor signal into a read signal of the ECU 9. The drive generated by the signal control unit 15. Based on the signal, energization control of the metering valve 3, the pressure reducing valve 6, and the injector 7 is performed.

以下では、調量弁3と減圧弁6に係るEDU10の具体的な電気回路を、図1を参照して説明する。
この実施例のEDU10は、調量弁3、減圧弁6、インジェクタ7を通電する際、
(i)先ず、「コンデンサ放電駆動手段」を用いて、コンデンサ16に蓄えた大電力エネルギーを「電磁アクチュエータ(具体的には、スイッチ手段により選択された調量弁3、減圧弁6、インジェクタ7における電磁アクチュエータ)」に印加し、
(ii)続いて、「バッテリ駆動手段」を用いて、バッテリ電圧をデューティ比制御して「電磁アクチュエータ(具体的には、スイッチ手段により選択された調量弁3、減圧弁6、インジェクタ7における電磁アクチュエータ)」に与える技術を採用する。
Below, the specific electric circuit of EDU10 which concerns on the metering valve 3 and the pressure reducing valve 6 is demonstrated with reference to FIG.
When the EDU 10 of this embodiment energizes the metering valve 3, the pressure reducing valve 6, and the injector 7,
(I) First, using the “capacitor discharge driving means”, the high-power energy stored in the capacitor 16 is converted into “electromagnetic actuators (specifically, the metering valve 3, the pressure reducing valve 6, the injector 7 selected by the switch means). Applied to the electromagnetic actuator)
(Ii) Subsequently, by using the “battery driving means”, the duty ratio of the battery voltage is controlled and “electromagnetic actuator (specifically, in the metering valve 3, the pressure reducing valve 6 and the injector 7 selected by the switch means) Adopt technology given to "electromagnetic actuator)".

「コンデンサ放電駆動手段」は、
・バッテリ電圧を高電圧に昇圧する昇圧回路17と、
・昇圧した電荷を蓄えるコンデンサ16と、
・このコンデンサ16の蓄えた電荷が昇圧回路17側へ戻るのを防ぐ逆流防止用ダイオード18と、
・コンデンサ16の蓄えた大電力エネルギーを調量弁3と減圧弁6の電力供給ラインCOMに印加する高電圧制御用のトランジスタ19、
を備えて構成される。
"Capacitor discharge driving means"
A booster circuit 17 that boosts the battery voltage to a high voltage;
A capacitor 16 for storing the boosted charge;
A backflow prevention diode 18 for preventing the charge stored in the capacitor 16 from returning to the booster circuit 17 side;
A high-voltage control transistor 19 for applying the large power energy stored in the capacitor 16 to the power supply line COM of the metering valve 3 and the pressure reducing valve 6;
It is configured with.

なお、昇圧回路17は、バッテリの電源ラインVddとグランド(アース接地)の間に介在させたインダクタンス20を昇圧用のトランジスタ21で高速に繰り返し断続させることで、「バッテリ電圧よりも高い電圧」を発生させるDDコンバータであり、昇圧した高電圧は大きな容量のコンデンサ16にチャージされる。なお、この実施例のトランジスタは、全てスイッチング素子として用いるものである。   Note that the booster circuit 17 repeatedly “interrupts” the inductance 20 interposed between the power supply line Vdd of the battery and the ground (earth ground) with the booster transistor 21 at high speed, thereby generating a “voltage higher than the battery voltage”. This is a DD converter to be generated, and the boosted high voltage is charged to a capacitor 16 having a large capacity. Note that all the transistors of this embodiment are used as switching elements.

「バッテリ駆動手段」は、
・バッテリの電源ラインVddから電力供給ラインCOMへバッテリ電圧を印加するバッテリ電圧制御用のトランジスタ22と、
・電力供給ラインCOMに生じさせた高電圧(高電圧制御用のトランジスタ19の作動にともなう電圧)がバッテリの電源ラインVddへ導かれるのを防ぐ逆流防止用ダイオード23と、
・バッテリ電圧制御用のトランジスタ22のOFF時に調量弁3または減圧弁6に流れる電流を還流させる還流ダイオード24と、
を備えて構成される。
"Battery drive means"
A battery voltage control transistor 22 for applying a battery voltage from the battery power line Vdd to the power supply line COM;
A backflow prevention diode 23 for preventing a high voltage generated in the power supply line COM (a voltage associated with the operation of the transistor 19 for high voltage control) from being led to the power supply line Vdd of the battery;
A recirculation diode 24 that recirculates a current flowing through the metering valve 3 or the pressure reducing valve 6 when the battery voltage control transistor 22 is OFF;
It is configured with.

調量弁3と減圧弁6は、電力供給ラインCOMに対して並列接続されるものであり、調量弁3と減圧弁6の電流供給側(電流上流側)には電気的結合部αが設けられている。
一方、調量弁3と減圧弁6の電流下流側(グランド側)は、電気的結合部βを介してグランドに接地するものであり、電気的結合部βとグランドの間には、電流検出用の抵抗体25が介在されている。
The metering valve 3 and the pressure reducing valve 6 are connected in parallel to the power supply line COM, and an electrical coupling portion α is provided on the current supply side (current upstream side) of the metering valve 3 and the pressure reducing valve 6. Is provided.
On the other hand, the current downstream side (ground side) of the metering valve 3 and the pressure reducing valve 6 is grounded to the ground via the electrical coupling portion β, and current detection is performed between the electrical coupling portion β and the ground. A resistor 25 is interposed.

調量弁3がONされる際はコモンレール圧を昇圧させる時であり、逆に、減圧弁6がONされる際はコモンレール圧を下降させる時である。このため、ECU9は、調量弁3と減圧弁6を同時にONする指示信号を与えない。   When the metering valve 3 is turned on, the common rail pressure is increased. Conversely, when the pressure reducing valve 6 is turned on, the common rail pressure is decreased. For this reason, the ECU 9 does not give an instruction signal for simultaneously turning on the metering valve 3 and the pressure reducing valve 6.

そこで、図1(a)に示すように、「高圧ポンプ2の調量弁3」と「コモンレール4の減圧弁6」は、選択して駆動される。
具体的に、
・調量弁3と電気的結合部βとの間には、調量弁3の作動を選択する調量弁用のトランジスタ26が介在され、
・減圧弁6と電気的結合部βとの間には、減圧弁6の作動を選択する減圧弁用のトランジスタ27が介在されている。
Therefore, as shown in FIG. 1A, “the metering valve 3 of the high-pressure pump 2” and “the pressure reducing valve 6 of the common rail 4” are selected and driven.
Specifically,
A metering valve transistor 26 for selecting the operation of the metering valve 3 is interposed between the metering valve 3 and the electrical coupling part β.
A pressure reducing valve transistor 27 for selecting the operation of the pressure reducing valve 6 is interposed between the pressure reducing valve 6 and the electrical coupling portion β.

そして、
・調量弁用のトランジスタ26がONされた状態で、「コンデンサ放電駆動手段」および「バッテリ駆動手段」から電力供給ラインCOMへ「高電圧」および「バッテリの制御電圧」が印加されることで、調量弁3が作動し、
・減圧弁用のトランジスタ27がONされた状態で、「コンデンサ放電駆動手段」および「バッテリ駆動手段」から電力供給ラインCOMへ「高電圧」および「バッテリの制御電圧」が印加されることで、減圧弁6が作動する。
And
By applying “high voltage” and “battery control voltage” from the “capacitor discharge driving means” and the “battery driving means” to the power supply line COM with the transistor 26 for the metering valve being turned on. The metering valve 3 is activated,
By applying “high voltage” and “battery control voltage” from the “capacitor discharge driving means” and the “battery driving means” to the power supply line COM with the transistor 27 for the pressure reducing valve being turned on, The pressure reducing valve 6 operates.

次に、図4を参照して、調量弁3および減圧弁6に与えられる駆動電流の波形を説明する。
なお、
・図中の実線Dはコンデンサ16の電圧を示し、
・図中の実線Eは調量弁3および減圧弁6の駆動電圧を示し、
・図中の実線Fは調量弁3および減圧弁6の駆動電流を示し、
・中の実線Gは調量弁3または減圧弁6の駆動信号(選択信号)を示すものである。
Next, with reference to FIG. 4, the waveform of the drive current given to the metering valve 3 and the pressure reducing valve 6 will be described.
In addition,
The solid line D in the figure indicates the voltage of the capacitor 16,
-The solid line E in the figure indicates the driving voltage of the metering valve 3 and the pressure reducing valve 6,
The solid line F in the figure shows the drive currents of the metering valve 3 and the pressure reducing valve 6,
The solid line G in the middle indicates a drive signal (selection signal) for the metering valve 3 or the pressure reducing valve 6.

調量弁3または減圧弁6を作動させる際、駆動信号(実線G参照)によって「調量弁用のトランジスタ26」または「減圧弁用のトランジスタ27」の一方がONされる。
そして、先ず、「高電圧制御用のトランジスタ19」が一時的にONされる。これにより、実線E、Fに示すように、コンデンサ16にチャージした大電力エネルギー(高電圧、高電流)が電力供給ラインCOMを介して調量弁3または減圧弁6に供給される。これにより、駆動信号により選択された調量弁3または減圧弁6の作動応答性が向上する。
When the metering valve 3 or the pressure reducing valve 6 is operated, one of the “metering valve transistor 26” and the “pressure reducing transistor 27” is turned on by the drive signal (see the solid line G).
First, the “high voltage control transistor 19” is temporarily turned on. Thereby, as shown by the solid lines E and F, the large power energy (high voltage and high current) charged in the capacitor 16 is supplied to the metering valve 3 or the pressure reducing valve 6 through the power supply line COM. Thereby, the operation responsiveness of the metering valve 3 or the pressure reducing valve 6 selected by the drive signal is improved.

続いて、「高電圧制御用のトランジスタ19」が一時的にONした後、実線Eに示すように、「バッテリ電圧制御用のトランジスタ22」をデューティ比制御して、バッテリの電源ラインVddから電力供給ラインCOMへ所定の定電流(電磁アクチュエータ駆動用の第1駆動電流F1、あるいはそれよりも低い電磁アクチュエータの作動保持用の第2駆動電流F2)を供給する。これにより、駆動信号により選択された調量弁3または減圧弁6が作動する。   Subsequently, after the “high-voltage control transistor 19” is temporarily turned on, as shown by the solid line E, the “battery voltage control transistor 22” is duty-controlled and the power is supplied from the battery power line Vdd. A predetermined constant current (a first drive current F1 for driving the electromagnetic actuator or a second drive current F2 for holding the operation of the electromagnetic actuator lower than that) is supplied to the supply line COM. Thereby, the metering valve 3 or the pressure reducing valve 6 selected by the drive signal is operated.

ここで、図1(b)における地絡箇所Xに示すように、調量弁3の電流下流側が何らかの不具合により地絡した場合(具体的には、調量弁3とトランジスタ26の間がグランドに電気的に触れた場合)、「減圧弁6を作動」させるべく減圧弁6に駆動電流を付与すると、調量弁3と減圧弁6の両方に駆動電流が流れてしまい、減圧弁6の作動時に、意図せずに高圧ポンプ2も作動してしまう。   Here, as shown in the ground fault location X in FIG. 1B, when the current downstream side of the metering valve 3 is grounded due to some trouble (specifically, the ground between the metering valve 3 and the transistor 26 is grounded). If the drive current is applied to the pressure reducing valve 6 to “activate the pressure reducing valve 6”, the drive current flows through both the metering valve 3 and the pressure reducing valve 6. During the operation, the high-pressure pump 2 is also operated unintentionally.

そこで、この実施例の燃料供給装置は、
・調量弁3と減圧弁6への電流供給側(電力供給ラインCOM)の電圧を検出する供給電圧検出手段28と、
・調量弁3と減圧弁6の両方の選択が成されていない状態(「調量弁用のトランジスタ26」と「減圧弁用のトランジスタ27」の両方がOFFした状態)で、調量弁3と減圧弁6への電流供給側に所定電圧(グランド電圧とバッテリ電圧との中間の電圧:数V:図5の実線H参照)を印加する地絡検出用電圧発生手段と、
・調量弁3と減圧弁6への電流供給側に所定電圧を発生させ、供給電圧検出手段28によって検出される電圧が略グランド電圧(略0V)の場合に、「調量弁3の電流下流側の地絡」を判定する地絡判定手段と、
を備える。
なお、地絡判定手段は、ECU9に設けられた制御プログラムである。
Therefore, the fuel supply device of this embodiment is
A supply voltage detection means 28 for detecting the voltage on the current supply side (power supply line COM) to the metering valve 3 and the pressure reducing valve 6;
The metering valve in a state where both the metering valve 3 and the pressure reducing valve 6 are not selected (“the metering valve transistor 26” and “the pressure reducing valve transistor 27” are both OFF). 3 and a ground fault detection voltage generating means for applying a predetermined voltage (a voltage intermediate between the ground voltage and the battery voltage: several V: see solid line H in FIG. 5) to the current supply side to 3 and the pressure reducing valve 6;
When a predetermined voltage is generated on the current supply side to the metering valve 3 and the pressure reducing valve 6 and the voltage detected by the supply voltage detecting means 28 is approximately ground voltage (approximately 0 V), “current of the metering valve 3” A ground fault determination means for determining a `` downstream ground fault '';
Is provided.
The ground fault determination means is a control program provided in the ECU 9.

供給電圧検出手段28は、電力供給ラインCOMとグランドとの間に介在された2つの抵抗28a、28b間の分圧値に基づいて調量弁3と減圧弁6への電流供給側(電力供給ラインCOM)の電圧を検出するものである。
なお、図5の実線Hは、供給電圧検出手段28によって検出される調量弁3と減圧弁6の上流側の電圧を示す。
The supply voltage detection means 28 is a current supply side (power supply) to the metering valve 3 and the pressure reducing valve 6 based on the divided value between the two resistors 28a and 28b interposed between the power supply line COM and the ground. The voltage of the line COM) is detected.
A solid line H in FIG. 5 indicates the upstream voltage of the metering valve 3 and the pressure reducing valve 6 detected by the supply voltage detecting means 28.

地絡検出用電圧発生手段は、地絡診断を実施する条件が成立し、且つ「調量弁用のトランジスタ26」と「減圧弁用のトランジスタ27」の両方をOFFする状態(図5の地絡検出エリアT参照)の時に、電力供給ラインCOM(調量弁3と減圧弁6への電流供給側)に所定電圧(数V)を発生させるものである。   The ground fault detection voltage generating means is in a state in which a condition for performing the ground fault diagnosis is satisfied and both the “metering valve transistor 26” and the “pressure reducing valve transistor 27” are turned off (the ground in FIG. 5). At the time of the contact detection area T), a predetermined voltage (several V) is generated on the power supply line COM (current supply side to the metering valve 3 and the pressure reducing valve 6).

電力供給ラインCOMに所定電圧(数V)を発生させる手段は、限定するものではなく、種々採用可能なものであり、例えば、
・「バッテリ電圧制御用のトランジスタ22」のゲート電圧をコントロールしてバッテリ電圧を減圧した所定電圧(数V)を電力供給ラインCOMに発生させるものであっても良いし、
・バッテリ電圧を「分圧抵抗」で減圧した所定電圧(数V)をスイッチ手段を介して電力供給ラインCOMに発生させるものであっても良い。
The means for generating the predetermined voltage (several V) in the power supply line COM is not limited and can be variously adopted.
The gate voltage of the “battery voltage control transistor 22” may be controlled to generate a predetermined voltage (several V) by reducing the battery voltage in the power supply line COM.
A predetermined voltage (several V) obtained by reducing the battery voltage with a “voltage dividing resistor” may be generated in the power supply line COM via the switch means.

次に、この実施例における地絡診断の制御例を、図6のフローチャートを参照して説明する。
地絡診断を実施する条件が成立し、且つ「調量弁用のトランジスタ26」と「減圧弁用のトランジスタ27」の両方がOFF状態になると、地絡診断を開始し、調量弁3と減圧弁6への電流供給側(電力供給ラインCOM)に所定電圧を発生させる(ステップS1)。
続いて、供給電圧検出手段28によって検出された電圧が略グランド電圧(略0V)であるか否かに基づいて、地絡が検出された否かを判定する(ステップS2)。
Next, a control example of ground fault diagnosis in this embodiment will be described with reference to the flowchart of FIG.
When the condition for executing the ground fault diagnosis is established and both the “metering valve transistor 26” and the “pressure reducing valve transistor 27” are in the OFF state, the ground fault diagnosis is started. A predetermined voltage is generated on the current supply side (power supply line COM) to the pressure reducing valve 6 (step S1).
Subsequently, it is determined whether or not a ground fault has been detected based on whether or not the voltage detected by the supply voltage detecting means 28 is approximately ground voltage (approximately 0V) (step S2).

このステップS2の判断結果がYESの場合は、「調量弁3の電流下流側の地絡」が発生していると判断し、減圧弁6の通電を即時に停止する(ステップS3)。
この実施例における「減圧弁6の通電停止」は、「減圧弁6の通電を完全に停止」するものではなく、「高圧ポンプ2が作動しない範囲」で「減圧弁6を作動」させるものであり、
(1)高圧ポンプ2が燃料を吐出しない通電長まで、減圧弁6の通電期間を制限するものであっても良いし、
(2)高圧ポンプ2が燃料を吐出しないポンプタイミング(高圧ポンプ2におけるプランジャ12の下降領域)に、減圧弁6の作動タイミングを変更するものであっても良い。
If the determination result in step S2 is YES, it is determined that a “ground fault on the current downstream side of the metering valve 3” has occurred, and energization of the pressure reducing valve 6 is immediately stopped (step S3).
The “energization stop of the pressure reducing valve 6” in this embodiment does not “completely stop the energization of the pressure reducing valve 6” but “activates the pressure reducing valve 6” in the “range where the high pressure pump 2 does not operate”. Yes,
(1) The energization period of the pressure reducing valve 6 may be limited until the energization length at which the high-pressure pump 2 does not discharge fuel,
(2) The operation timing of the pressure reducing valve 6 may be changed to a pump timing at which the high-pressure pump 2 does not discharge fuel (a descending region of the plunger 12 in the high-pressure pump 2).

続いて、上記の地絡検出の回数(ステップS2のYESの判定回数)をカウントアップする(ステップS4)。
そして、地絡検出の回数(連続する回数であっても良いし、分断して発生した回数であっても良い)が、予め設定した所定回数(10回や20回など)に達したか否かを判断する(ステップS5)。
Subsequently, the number of times of detecting the above-mentioned ground fault (the number of determinations of YES in step S2) is counted up (step S4).
Whether or not the number of times of ground fault detection (which may be a continuous number of times or a number of times generated by dividing) has reached a predetermined number of times (such as 10 times or 20 times) set in advance. Is determined (step S5).

このステップS5の判断結果がNOの場合は、地絡の頻度が小さいと判断し、この地絡診断のルーチンを終了する(ステップS6)。
上記ステップS5の判断結果がYESの場合は、地絡の頻度が大きいと判断し、地絡故障を確定する(ステップS7)。なお、地絡故障が確定した場合の一例としては、乗員の視認範囲に設けられたモニターによって故障表示を実施して、乗員に故障が発生している旨を表示する。
その後、ステップS6へ進み、この地絡診断のルーチンを終了する。
If the determination result in step S5 is NO, it is determined that the frequency of ground faults is low, and the ground fault diagnosis routine is terminated (step S6).
If the determination result in step S5 is YES, it is determined that the frequency of ground faults is high, and a ground fault is determined (step S7). In addition, as an example when the ground fault is confirmed, the failure display is performed by the monitor provided in the occupant's viewing range, and the fact that the failure has occurred is displayed to the occupant.
Thereafter, the process proceeds to step S6, and the ground fault diagnosis routine is terminated.

一方、上述したステップS2の判断結果がNOの場合は、「調量弁3の電流下流側の地絡」が発生していないと判断し、減圧弁6の通電禁止を解除する(ステップS8)。
その後、ステップS6へ進み、この地絡診断のルーチンを終了する。
On the other hand, if the determination result in step S2 is NO, it is determined that the “ground fault on the current downstream side of the metering valve 3” has not occurred, and the energization prohibition of the pressure reducing valve 6 is canceled (step S8). .
Thereafter, the process proceeds to step S6, and the ground fault diagnosis routine is terminated.

(実施例の効果1)
この実施例の燃料噴射装置は、上述したように、調量弁3と減圧弁6の両方の選択が成されていない状態で、調量弁3と減圧弁6への電流供給側に所定電圧を印加しても、電圧が略グランド電圧に低下する際は、「調量弁3の電流下流側の地絡」を判定する。
そして、「調量弁3の電流下流側の地絡」を判定した場合は、減圧弁6を通電停止する。このように、減圧弁6を通電しないため、「高圧ポンプ2が意図せずに作動」することがない。
このため、「高圧ポンプ2が意図せずに作動」する不具合(コモンレール圧が加わる部品や部材に設計値を超えた過大な負荷が加わる不具合)を回避することができる。
(Effect 1 of an Example)
As described above, the fuel injection device of this embodiment has a predetermined voltage on the current supply side to the metering valve 3 and the pressure reducing valve 6 in a state where both the metering valve 3 and the pressure reducing valve 6 are not selected. When the voltage drops to substantially the ground voltage even when is applied, “ground fault on the current downstream side of the metering valve 3” is determined.
When the “ground fault on the current downstream side of the metering valve 3” is determined, the pressure reducing valve 6 is deenergized. Thus, since the pressure reducing valve 6 is not energized, the “high pressure pump 2 does not operate unintentionally”.
For this reason, it is possible to avoid the problem that “the high pressure pump 2 operates unintentionally” (the problem that an excessive load exceeding the design value is applied to the parts and members to which the common rail pressure is applied).

(実施例の効果2)
「調量弁3の電流下流側の地絡」を判定した際における「減圧弁6の通電停止」は、
(1)高圧ポンプ2が燃料を吐出しない通電長まで、減圧弁6の通電期間を制限するもの、
(2)あるいは、高圧ポンプ2が燃料を吐出しないポンプタイミング(高圧ポンプ2におけるプランジャ12の下降領域)に減圧弁6の作動タイミングを変更するものである。
このように、「減圧弁6の通電を完全に停止」するものではなく、「高圧ポンプ2が作動しない範囲」で「減圧弁6を作動」させるため、コモンレール4に蓄圧された燃料の一部を減圧弁6によって溢流させることができ、実レール圧の減圧を実施できる。
(Effect 2 of Example)
When “the ground fault on the current downstream side of the metering valve 3” is determined, “the energization stop of the pressure reducing valve 6”
(1) Limiting the energization period of the pressure reducing valve 6 until the energization length at which the high-pressure pump 2 does not discharge fuel,
(2) Alternatively, the operation timing of the pressure reducing valve 6 is changed to a pump timing at which the high-pressure pump 2 does not discharge fuel (a descending region of the plunger 12 in the high-pressure pump 2).
In this way, a part of the fuel accumulated in the common rail 4 is not used in order to “activate the pressure reducing valve 6” in the “range in which the high pressure pump 2 does not operate” rather than “stop energization of the pressure reducing valve 6 completely”. Can be overflowed by the pressure reducing valve 6, and the actual rail pressure can be reduced.

(実施例の効果3)
ここで、図1(c)における地絡箇所Xに示すように、調量弁3の電流下流側が何らかの不具合により地絡した状態で、「調量弁3を作動」させるべく調量弁3に駆動電流を付与した場合、電流検出用の抵抗体25の検出電流が0(ゼロ)になる。
この状態で調量弁3を作動させる場合、従来技術では、ECU9が調量弁3の駆動電流を増加させるべく、「バッテリ電圧制御用のトランジスタ22」のデューティ比を高める。その結果、図7の実線Iに示すように、調量弁3に付与される駆動電流が、正常時(破線F参照)に比較して大きくなってしまう。
(Effect 3 of Example)
Here, as shown in the ground fault location X in FIG. 1 (c), the metering valve 3 is set to “activate the metering valve 3” in a state where the current downstream side of the metering valve 3 is grounded due to some trouble. When the drive current is applied, the detection current of the current detection resistor 25 becomes 0 (zero).
When the metering valve 3 is operated in this state, in the prior art, the ECU 9 increases the duty ratio of the “battery voltage control transistor 22” in order to increase the drive current of the metering valve 3. As a result, as shown by the solid line I in FIG. 7, the drive current applied to the metering valve 3 becomes larger than that at the normal time (see the broken line F).

これに対し、この実施例の地絡判定手段は、調量弁3を通電させた際に、電流検出用の抵抗体25の検出電流において「調量弁3の電流下流側に電流が流れていない場合」は、「調量弁3の電流下流側の地絡」を識別するように設けられる。
このように、「調量弁3の電流下流側の地絡」を識別できるため、従来技術とは異なり、調量弁3に供給する駆動電流を制限することができる。これにより、調量弁3に供給する駆動電流が、正常時(破線F参照)に比較して大きくなる不具合を回避することができる。
On the other hand, when the metering valve 3 is energized, the ground fault determination means of this embodiment indicates that “current is flowing downstream from the metering valve 3 in the current detected by the resistor 25 for current detection. “If not” is provided to identify “ground fault on the current downstream side of the metering valve 3”.
Thus, since “the ground fault on the current downstream side of the metering valve 3” can be identified, the driving current supplied to the metering valve 3 can be limited unlike the prior art. As a result, it is possible to avoid a problem that the drive current supplied to the metering valve 3 becomes larger than that at the normal time (see the broken line F).

(実施例の効果4)
この実施例の燃料噴射装置は、調量弁3と減圧弁6の両方の選択が成されていない状態で、調量弁3と減圧弁6への電流供給側に所定電圧(数V)を印加した際に、上記とは逆に、調量弁3と減圧弁6への電流供給側の「電圧が上昇」した場合(バッテリ電圧が検出された場合)、「バッテリショート(「バッテリの電源ラインVdd」と「電力供給ラインCOM」の短絡)」を判定することができる。
(Effect 4 of Example)
The fuel injection device of this embodiment applies a predetermined voltage (several V) to the current supply side to the metering valve 3 and the pressure reducing valve 6 in a state where both the metering valve 3 and the pressure reducing valve 6 are not selected. Contrary to the above, when the voltage is increased on the current supply side to the metering valve 3 and the pressure reducing valve 6 when the voltage is applied (when the battery voltage is detected), “battery short (“ battery power ” Line Vdd "and" power supply line COM "short circuit)".

上記では、実施例の複雑化を回避する目的で、「減圧弁6」と「選択駆動される1つの調量弁3」のみを開示したが、複数の調圧弁(他の高圧ポンプの調量弁)を搭載するものであっても良い。
その場合、上述した調量弁3とは異なる他の調量弁(他の調量弁)が、上述した調量弁3とは独立して作動制御されるものである。
In the above, for the purpose of avoiding complication of the embodiment, only “the pressure reducing valve 6” and “one metering valve 3 to be selectively driven” are disclosed, but a plurality of pressure regulating valves (metering of other high pressure pumps) are disclosed. Valve) may be mounted.
In this case, another metering valve (other metering valve) different from the metering valve 3 described above is operated and controlled independently of the metering valve 3 described above.

2 高圧ポンプ
3 調量弁
4 コモンレール
6 減圧弁
8 制御装置
28 供給電圧検出手段
2 High-pressure pump 3 Metering valve 4 Common rail 6 Pressure reducing valve 8 Control device 28 Supply voltage detection means

Claims (4)

高圧燃料を吐出する高圧ポンプ(2)において燃料の吐出量を調量する調量弁(3)と、
前記高圧ポンプ(2)の吐出した燃料を蓄圧するコモンレール(4)において蓄圧燃料を減圧するもので通電により開弁する減圧弁(6)と、
前記調量弁(3)と前記減圧弁(6)を電流供給側において共通して通電制御するとともに、前記調量弁(3)と前記減圧弁(6)を電流下流側で選択して駆動する制御装置(8)と、
を有する燃料噴射装置であって、
前記制御装置(8)は、
前記調量弁(3)と前記減圧弁(6)への前記電流供給側の電圧を検出する供給電圧検出手段(28)と、
前記調量弁(3)と前記減圧弁(6)の両方共に前記駆動の選択が成されていない状態で、前記調量弁(3)と前記減圧弁(6)への前記電流供給側に所定電圧を印加しても、前記調量弁(3)と前記減圧弁(6)への前記電流供給側の検出電圧が略グランド電圧に低下する時に、前記調量弁(3)の前記電流下流側の地絡を判定する地絡判定手段と、
を具備し、
前記地絡判定手段が前記調量弁(3)の前記電流下流側の地絡を判定した場合は、前記電流供給側による電流制御により前記調量弁(3)の吐出量の調量を継続し、且つ前記減圧弁(6)を前記電流下流側で通電停止することを特徴とする燃料噴射装置。
A metering valve (3) for metering the amount of fuel discharged in the high-pressure pump (2) for discharging high-pressure fuel;
A pressure reducing valve (6) for depressurizing the accumulated fuel in the common rail (4) for accumulating the fuel discharged from the high pressure pump (2) and opening the valve by energization ;
The metering valve (3) and the pressure reducing valve (6) are energized in common on the current supply side, and the metering valve (3) and the pressure reducing valve (6) are selected and driven on the current downstream side. A control device (8) for
A fuel injection device comprising :
The control device (8)
Said metering valve (3) and the pressure reducing valve supply voltage detecting means for detecting a voltage of the current supply side of the (6) (28),
With both not both selected in the drive is made of the metering valve (3) and the pressure reducing valve (6), the current supply side of the metering valve (3) the pressure reducing valve to (6) even by applying a predetermined voltage, when the detection voltage of the current supply side to the metering valve (3) and the pressure reducing valve (6) is reduced to substantially the ground voltage, the current of the metering valve (3) A ground fault determination means for determining a ground fault on the downstream side;
Equipped with,
Continuing said if it is determined the ground fault current downstream metering the discharge amount of the metering valve (3) by the current control of the current supply side of the ground fault judging means the metering valve (3) fuel injection system and, and characterized by stopping energizing said pressure reducing valve (6) in said current downstream.
請求項1に記載の燃料噴射装置において、
前記減圧弁(6)の通電停止は、前記高圧ポンプ(2)が燃料を吐出しない通電長まで、前記減圧弁(6)の通電期間を制限することを特徴とする燃料噴射装置。
The fuel injection device according to claim 1 ,
Stopping energization of the pressure reducing valve (6) limits the energization period of the pressure reducing valve (6) until the energization length at which the high pressure pump (2) does not discharge fuel.
請求項1に記載の燃料噴射装置において、
前記減圧弁(6)の通電停止は、前記高圧ポンプ(2)が燃料を吐出しないポンプタイミングに、前記減圧弁(6)の作動タイミングを変更することを特徴とする燃料噴射装置。
The fuel injection device according to claim 1 ,
Stopping energization of the pressure reducing valve (6) changes the operation timing of the pressure reducing valve (6) to a pump timing at which the high pressure pump (2) does not discharge fuel.
請求項1〜請求項3のいずれか1つに記載の燃料噴射装置において、
前記地絡判定手段は、前記調量弁(3)を通電させた際に、前記調量弁(3)の電流下流側に電流が流れていない場合に、前記調量弁(3)の電流下流側の地絡を識別することを特徴とする燃料噴射装置。
In the fuel-injection apparatus as described in any one of Claims 1-3 ,
The ground fault determination means is configured such that when the metering valve (3) is energized, if no current flows downstream of the metering valve (3), the current of the metering valve (3) A fuel injection device for identifying a ground fault on the downstream side.
JP2012163147A 2012-07-23 2012-07-23 Fuel injection device Active JP5737233B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012163147A JP5737233B2 (en) 2012-07-23 2012-07-23 Fuel injection device
DE102013107627.0A DE102013107627B4 (en) 2012-07-23 2013-07-17 Fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012163147A JP5737233B2 (en) 2012-07-23 2012-07-23 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2014020350A JP2014020350A (en) 2014-02-03
JP5737233B2 true JP5737233B2 (en) 2015-06-17

Family

ID=49880006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012163147A Active JP5737233B2 (en) 2012-07-23 2012-07-23 Fuel injection device

Country Status (2)

Country Link
JP (1) JP5737233B2 (en)
DE (1) DE102013107627B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778439B (en) * 2019-09-26 2021-11-19 潍柴动力股份有限公司 Anti-clamping stagnation system and method for diesel engine
CN113803184B (en) * 2020-06-12 2023-08-29 卓品智能科技无锡有限公司 Method for detecting whether pressure limiting valve is clamped at closed position

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244143A (en) * 1988-03-23 1989-09-28 Fuji Heavy Ind Ltd Trouble diagnosing device for solenoid valve
JP3147460B2 (en) * 1991-04-26 2001-03-19 株式会社デンソー Fuel injection device for internal combustion engine
DE19611522B4 (en) * 1996-03-23 2009-01-29 Robert Bosch Gmbh Method and device for fault detection in an output stage circuit arrangement
DE19723456C2 (en) * 1997-06-04 2003-03-27 Siemens Ag Fault detection device for electrical consumers
JP2002295293A (en) * 2001-03-29 2002-10-09 Denso Corp Fuel injection device
JP2002303183A (en) * 2001-04-06 2002-10-18 Denso Corp Abnormality detector of inductive load drive device
JP3885652B2 (en) * 2002-04-26 2007-02-21 株式会社デンソー Accumulated fuel injection system

Also Published As

Publication number Publication date
DE102013107627B4 (en) 2018-02-15
DE102013107627A1 (en) 2014-01-23
JP2014020350A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
WO2016080067A1 (en) Drive device for fuel injection device
EP1777402B1 (en) High-pressure fuel supply system using variable displacement fuel pump
EP1909009B1 (en) Solenoid operated valve device designed to ensure high responsiveness of valve action
CN104632445B (en) Method for detecting a fault in the opening behavior of an injector
JP4784592B2 (en) Fuel injection control device and method of adjusting injection characteristics of fuel injection valve
US10648419B2 (en) Fuel injection control device and fuel injection system
JP6245009B2 (en) Fuel injection control device
US9341181B2 (en) Control device of high pressure pump
JP2007255394A (en) Pump failure diagnostic apparatus
US20160102779A1 (en) Method for predefining a current in a solenoid valve
JP2019085925A (en) Injection controller
JP5737233B2 (en) Fuel injection device
JP5659117B2 (en) Fuel injection device for internal combustion engine
JP2009138593A (en) Accumulating type fuel injection device
US9217406B2 (en) Method for controlling a high-pressure fuel pump
JP2012102657A (en) Fuel injection control device of internal combustion engine
US10837394B2 (en) Fuel injection controller
JP2019019778A (en) Electronic control device
JP6323168B2 (en) High pressure pump control device
CN109154243A (en) Fuel injection valve conduction control method and common rail fuel injection control device
JP2007327463A (en) Fuel injector
JP6483547B2 (en) Control device for internal combustion engine
JP2014224479A (en) Electronic control device
JP3890914B2 (en) Fuel injection control device
JP6459463B2 (en) Control device for fuel injection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5737233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250