JP5735371B2 - Transmission V-belt and method for producing and using the same - Google Patents

Transmission V-belt and method for producing and using the same Download PDF

Info

Publication number
JP5735371B2
JP5735371B2 JP2011161234A JP2011161234A JP5735371B2 JP 5735371 B2 JP5735371 B2 JP 5735371B2 JP 2011161234 A JP2011161234 A JP 2011161234A JP 2011161234 A JP2011161234 A JP 2011161234A JP 5735371 B2 JP5735371 B2 JP 5735371B2
Authority
JP
Japan
Prior art keywords
belt
rubber layer
transmission
pulley
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161234A
Other languages
Japanese (ja)
Other versions
JP2013024349A (en
Inventor
高場 晋
晋 高場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2011161234A priority Critical patent/JP5735371B2/en
Publication of JP2013024349A publication Critical patent/JP2013024349A/en
Application granted granted Critical
Publication of JP5735371B2 publication Critical patent/JP5735371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変速機に使用可能な伝動用Vベルトに関し、詳しくは伝達効率に優れ、加速性能を長期に亘り維持できる伝動用Vベルト並びにその製造方法及び使用方法に関する。   The present invention relates to a transmission V-belt that can be used in a transmission, and more particularly to a transmission V-belt that has excellent transmission efficiency and can maintain acceleration performance over a long period of time, and a method for manufacturing and using the same.

近年、排ガス規制や、固形燃料の枯渇問題から、伝動用Vベルトには耐側圧性や耐久性以外に、省燃費性(燃費)の向上が求められている。詳しくは、燃費を向上させるために、ベルトの伝動ロスを低下することが求められている。そこで、ベルトの屈曲によるエネルギー損失(伝動ロス)を低減するために、ベルトの内周側又は内周側と外周側(背面側)の両方にコグを設け、ベルトの曲げ剛性を低くして伝動ロスを抑えたコグドVベルトが開発されている。   In recent years, due to exhaust gas regulations and solid fuel depletion problems, transmission V-belts are required to have improved fuel efficiency (fuel efficiency) in addition to side pressure resistance and durability. Specifically, in order to improve fuel consumption, it is required to reduce the transmission loss of the belt. Therefore, in order to reduce the energy loss (transmission loss) due to the bending of the belt, cogs are provided on the inner peripheral side of the belt or on both the inner peripheral side and the outer peripheral side (back side) to reduce the belt's bending rigidity. Cogged V-belts with reduced loss have been developed.

例えば、特開平10−238596号公報(特許文献1)には、伸張及び圧縮ゴム層の少なくとも一方のゴム硬度を90〜96°、接着ゴム層のゴム硬度を83〜89°の範囲に設定し、伸張及び圧縮ゴム層にはアラミド短繊維をベルト幅方向に配向させた伝動用Vベルトが開示されている。この文献では、早期にクラックや各ゴム層及びコードのセパレーション(剥離)の発生を防止し、耐側圧性を向上させて高負荷伝動能力を向上させている。   For example, in JP-A-10-238596 (Patent Document 1), the rubber hardness of at least one of the stretched and compressed rubber layers is set to 90 to 96 °, and the rubber hardness of the adhesive rubber layer is set to a range of 83 to 89 °. In addition, a transmission V-belt in which aramid short fibers are oriented in the belt width direction is disclosed in the stretch and compression rubber layers. In this document, the occurrence of cracks and separation (separation) of each rubber layer and cord is prevented at an early stage, the lateral pressure resistance is improved, and the high load transmission capability is improved.

しかし、この伝動用Vベルトでも、エネルギーロスが大きく、燃費を充分に向上できない。すなわち、省燃費性はベルトの屈曲によるエネルギー損失以外に、摩擦伝動面とプーリとの擦れにより生じる摩擦力にも影響を受ける。しかし、この伝動用Vベルトでは、この摩擦力が大きいため、摩擦伝動面とプーリとが円滑に摺動できず、これがエネルギーロス(伝達ロス)となって省燃費性が低下する。   However, even this transmission V-belt has a large energy loss and cannot sufficiently improve fuel consumption. That is, the fuel efficiency is influenced not only by the energy loss due to the bending of the belt but also by the frictional force generated by the friction between the friction transmission surface and the pulley. However, in this transmission V-belt, since this frictional force is large, the friction transmission surface and the pulley cannot slide smoothly, and this becomes an energy loss (transmission loss), resulting in a reduction in fuel consumption.

一方、ローエッジベルトなどの伝動用Vベルトは、一般的に、ベルト角度やベルト背面の幅を所定の値とするために、その両側面(摩擦伝動面)は全体に亘って研磨される。例えば、特開2008−44017号公報(特許文献2)には、圧縮ゴム層と伸長ゴム層との間にアラミド繊維からなる心線をベルト長手方向に埋設して形成される伝動ベルトの側面を研磨するにあたって、伝動ベルトをベルト長手方向に走行回転させながら、伝動ベルトの側面に研磨具を当接させると共に、伝動ベルトの側面への研磨具の当接面に水分の潤滑作用を働かせて、研磨を行う伝動ベルトの側面研磨方法が開示されている。このような研磨方法では、研磨により短繊維が側面から突出し、突出した短繊維により側面の摩擦係数が低くなる。さらに、この摩擦係数の低下、すなわち摩擦力の低下により、摩擦伝動面とプーリとの摺動が円滑となって燃費が向上する。   On the other hand, a transmission V-belt such as a low edge belt is generally ground on both sides (friction transmission surfaces) in order to set the belt angle and the width of the back surface of the belt to predetermined values. For example, Japanese Patent Application Laid-Open No. 2008-44017 (Patent Document 2) describes a side surface of a transmission belt formed by embedding a core wire made of an aramid fiber between a compression rubber layer and an elongated rubber layer in the belt longitudinal direction. In polishing, while rotating the transmission belt in the longitudinal direction of the belt, the polishing tool is brought into contact with the side surface of the transmission belt, and the lubricating action of moisture is applied to the contact surface of the polishing tool to the side surface of the transmission belt, A side polishing method for a power transmission belt for polishing is disclosed. In such a polishing method, the short fiber protrudes from the side surface by polishing, and the side surface has a low coefficient of friction due to the protruding short fiber. Further, the reduction of the friction coefficient, that is, the reduction of the frictional force makes the sliding between the friction transmission surface and the pulley smooth, thereby improving the fuel consumption.

なお、この種の伝動用Vベルトとして無段変速機に用いられる変速ベルトがある。この変速ベルトはプーリ半径方向にベルトがそのプーリ上を上下に移動して無段階に変速比(駆動プーリと従動プーリとの回転比)を変化できる構造を有している。   A transmission belt used for a continuously variable transmission is known as this type of transmission V-belt. This speed change belt has a structure in which the speed change ratio (the rotation ratio between the driving pulley and the driven pulley) can be changed steplessly by moving the belt up and down in the pulley radial direction.

この変速ベルトに求められる性能の一つとして加速性能がある。加速性能とは、変速ベルトが変速を開始してから車速が急激に上昇するに到るまでの性能を意味する。変速回転数とは、ベルトが変速し始める駆動(Dr.)プーリの回転数のことであり、この変速回転数が大きい程、加速性能は高くなる。一般的には、変速中の領域が平坦または右上がりであればベルトの加速性能は良好とされる。図1は、Dr.回転数と車速との関係を表すグラフである。図1から明らかなように、ベルトが変速し始めるまでは車速は小さい(LOW時)が、ベルトがプーリ半径方向外側に移動し始める(変速開始)と、車速は急激に上昇(変速中)し、最終的には最高速度(TOP時)となる。   One of the performances required for this transmission belt is acceleration performance. The acceleration performance means the performance from when the speed change belt starts to change until the vehicle speed rapidly increases. The speed change speed is the speed of the drive (Dr.) pulley at which the belt starts to change speed, and the higher the speed change speed, the higher the acceleration performance. In general, the acceleration performance of the belt is good if the region during shifting is flat or right-up. FIG. It is a graph showing the relationship between a rotation speed and a vehicle speed. As is clear from FIG. 1, the vehicle speed is small until the belt starts shifting (during LOW), but when the belt begins to move outward in the radial direction of the pulley (shifting starts), the vehicle speed increases rapidly (during shifting). Finally, the maximum speed (at the time of TOP) is reached.

図2は、ベルトのDr.プーリに対する位置を模式的に表した図である。変速前のLOW時では、ベルトはプーリ半径方向内側に位置しており、車速は小さい。Dr.プーリの回転数が大きくなって所定の回転数(変速回転数)を超えると、Dr.プーリの一方(可動プーリ片)が移動(プーリの溝幅が小さくなる方向)し、それに伴いベルトはプーリ半径方向外側に移動(変速中)し、車速は急激に上昇する。変速後のTOP時では、ベルトはプーリの外周側に位置し、車速は最高速度となる。   FIG. 2 shows the dr. It is the figure which represented the position with respect to a pulley typically. At the time of LOW before shifting, the belt is located on the inner side in the pulley radial direction and the vehicle speed is small. Dr. When the number of rotations of the pulley increases and exceeds a predetermined number of rotations (shifting rotation number), Dr. One of the pulleys (movable pulley piece) moves (in the direction in which the groove width of the pulley decreases), and accordingly, the belt moves outward (in gear shifting) in the pulley radial direction, and the vehicle speed rapidly increases. At the time of TOP after shifting, the belt is positioned on the outer peripheral side of the pulley, and the vehicle speed becomes the maximum speed.

この加速性能が不足すると、加速してからの車速が十分に上昇しなかったり、最高速度(TOP)に到達するまでの時間が長くなる。この加速性能には、摩擦伝動面の表面状態が大きく影響を及ぼす。すなわち、ベルトを長時間走行させると摩擦伝動面がプーリと擦れて摩耗するため、その表面状態は変化するが、この変化が大きいと加速性能も大きく変化する。特許文献2の研磨方法では、ベルト側面全体を研磨するため、ベルト側面の伸張ゴム層及び圧縮ゴム層のいずれにおいても、短繊維が突出する。従って、ベルトを長時間走行させると、短繊維(特に圧縮ゴム層の短繊維)はプーリと擦れて切断したり、摩耗して消失し、その表面状態は大きく変化する。そのため、走行初期(新品時)と長時間走行させた後とでは、ベルトの加速性能が大きく変化する。   If the acceleration performance is insufficient, the vehicle speed after acceleration does not increase sufficiently, or the time until the vehicle reaches the maximum speed (TOP) becomes longer. The acceleration performance is greatly affected by the surface condition of the friction transmission surface. That is, when the belt is run for a long time, the friction transmission surface is worn by rubbing against the pulley, so that the surface state changes, but if this change is large, the acceleration performance also changes greatly. In the polishing method of Patent Document 2, since the entire belt side surface is polished, the short fibers protrude in both the stretch rubber layer and the compression rubber layer on the belt side surface. Therefore, when the belt is run for a long time, the short fibers (particularly, the short fibers of the compressed rubber layer) are rubbed with the pulley and cut or worn and lost, and the surface state changes greatly. For this reason, the acceleration performance of the belt changes greatly between the initial running time (when new) and after running for a long time.

特開平10−238596号公報(特許請求の範囲、段落[0005])JP-A-10-238596 (claims, paragraph [0005]) 特開2008−44017号公報(請求項1、図1)JP 2008-44017 A (Claim 1, FIG. 1)

従って、本発明の目的は、伝達効率を低下させずに、変速機に使用しても加速性能を長期間安定して維持できる伝動用Vベルト並びにその製造方法及び使用方法を提供することにある。   Accordingly, an object of the present invention is to provide a transmission V-belt that can stably maintain acceleration performance for a long period of time even when used in a transmission without reducing transmission efficiency, and a method for manufacturing and using the same. .

本発明の他の目的は、耐側圧性、耐久性を維持できるとともに、燃費を向上できる伝動用Vベルト並びにその製造方法及び使用方法を提供することにある。   Another object of the present invention is to provide a transmission V-belt that can maintain side pressure resistance and durability, and that can improve fuel efficiency, and a method for manufacturing and using the same.

本発明者は、前記課題を達成するため鋭意検討した結果、接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えた伝動用Vベルトにおいて、前記圧縮ゴム層及び前記伸張ゴム層に短繊維をベルト幅方向に配向して埋設し、少なくとも前記伸張ゴム層の側面で短繊維を突出させ、かつ前記圧縮ゴム層の側面に、前記伸張ゴム層よりも短繊維の突出高さが低い平滑領域を形成することにより、伝達効率を低下させずに、変速機に使用しても加速性能を長期間安定して維持できることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor has formed an adhesive rubber layer, a compressed rubber layer formed on one surface of the adhesive rubber layer, and the other surface of the adhesive rubber layer. In the transmission V-belt provided with the stretched rubber layer, short fibers are embedded in the compressed rubber layer and the stretched rubber layer so as to be oriented in the width direction of the belt, and the short fibers protrude at least on the side surfaces of the stretched rubber layer, In addition, by forming a smooth region on the side of the compressed rubber layer where the protruding length of the short fibers is lower than that of the stretched rubber layer, the acceleration performance is prolonged even when used in a transmission without reducing the transmission efficiency. The present invention was completed by finding that it can be stably maintained for a period of time.

すなわち、本発明の伝動用Vベルトは、ベルトの長手方向に心線を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えた伝動用Vベルトであって、前記圧縮ゴム層及び前記伸張ゴム層に、短繊維がベルト幅方向に配向して埋設され、少なくとも前記伸張ゴム層の側面で短繊維が突出し、かつ前記圧縮ゴム層の側面が、前記伸張ゴム層の側面全体における短繊維の平均突出高さよりも短繊維の平均突出高さが低い平滑領域を有する。前記圧縮ゴム層の側面全体(特に前記圧縮ゴム層及び接着ゴム層の側面全体)は平滑領域であってもよい。前記平滑領域において、短繊維が突出していなくてもよい。本発明の伝動用Vベルトは、平滑領域におけるベルト角度が、プーリ角度と略同一の角度であり、かつ伸張ゴム層におけるベルト角度がプーリ角度と略同一の角度又はプーリ角度よりも小さい角度であってもよい。本発明の伝動用Vベルトは、ローエッジコグドVベルトで構成された変速ベルトであってもよい。   That is, the transmission V-belt of the present invention includes an adhesive rubber layer having a core wire embedded in the longitudinal direction of the belt, a compression rubber layer formed on one surface of the adhesive rubber layer, and the other of the adhesive rubber layer. A transmission V-belt provided with a stretched rubber layer formed on the surface, wherein short fibers are embedded in the compressed rubber layer and the stretched rubber layer so as to be oriented in the belt width direction, and at least the stretched rubber layer Short fibers protrude from the side surfaces, and the side surface of the compressed rubber layer has a smooth region in which the average protrusion height of the short fibers is lower than the average protrusion height of the short fibers in the entire side surface of the stretched rubber layer. The entire side surface of the compressed rubber layer (particularly the entire side surfaces of the compressed rubber layer and the adhesive rubber layer) may be a smooth region. In the smooth region, the short fibers may not protrude. In the transmission V-belt of the present invention, the belt angle in the smooth region is substantially the same as the pulley angle, and the belt angle in the stretched rubber layer is substantially the same as the pulley angle or smaller than the pulley angle. May be. The transmission V-belt of the present invention may be a transmission belt constituted by a low edge cogged V-belt.

本発明には、伸張ゴム層、接着ゴム層及び圧縮ゴム層の側面のうち、少なくとも伸張ゴム層の側面を研磨する研磨工程を含む前記伝動用Vベルトの製造方法も含まれる。本発明の製造方法では、圧縮ゴム層の側面のうち、少なくともベルト内周側の側面(特に側面全体)は研磨しなくてもよい。さらに、伸張ゴム層の側面のみを研磨してもよい。   The present invention also includes a method for producing the transmission V-belt, which includes a polishing step of polishing at least a side surface of the stretch rubber layer among the side surfaces of the stretch rubber layer, the adhesive rubber layer, and the compression rubber layer. In the production method of the present invention, at least the side surface (especially the entire side surface) on the belt inner peripheral side among the side surfaces of the compressed rubber layer may not be polished. Further, only the side surface of the stretched rubber layer may be polished.

本発明には、前記伝動用Vベルトを変速機に使用する方法も含まれる。   The present invention also includes a method of using the transmission V-belt in a transmission.

本発明では、接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えた伝動用Vベルトにおいて、前記圧縮ゴム層及び前記伸張ゴム層に短繊維がベルト幅方向に配向して埋設され、少なくとも前記伸張ゴム層の側面で短繊維が突出し、かつ前記圧縮ゴム層の側面が、前記伸張ゴム層よりも短繊維の平均突出高さが低い平滑領域を有するため、伝達効率を低下させずに、変速機に使用しても加速性能を長期間安定して維持できる。さらに、耐側圧性、耐久性を維持できるとともに、燃費を向上できる。   In the present invention, in a transmission V-belt comprising an adhesive rubber layer, a compressed rubber layer formed on one surface of the adhesive rubber layer, and an extended rubber layer formed on the other surface of the adhesive rubber layer Short fibers are embedded in the compressed rubber layer and the stretched rubber layer so as to be oriented in the belt width direction, the short fibers protrude at least on the side surfaces of the stretched rubber layer, and the side surfaces of the compressed rubber layer are formed on the stretched rubber layer. Therefore, the acceleration performance can be stably maintained for a long time even when used in a transmission without lowering the transmission efficiency. Furthermore, the lateral pressure resistance and durability can be maintained, and fuel consumption can be improved.

図1は、駆動プーリの回転数と車速との関係を表すグラフである。FIG. 1 is a graph showing the relationship between the rotational speed of the drive pulley and the vehicle speed. 図2は、ベルトの駆動プーリに対する位置を模式的に表した図である。FIG. 2 is a diagram schematically showing the position of the belt with respect to the drive pulley. 図3は、本発明の伝動用Vベルトの一例を示す概略斜視図である。FIG. 3 is a schematic perspective view showing an example of the transmission V-belt of the present invention. 図4は、図3の伝動用Vベルトをベルト長手方向に切断した概略断面図である。FIG. 4 is a schematic sectional view of the transmission V-belt of FIG. 3 cut in the belt longitudinal direction. 図5は、図4のベルト側面の拡大図である。FIG. 5 is an enlarged view of the belt side surface of FIG. 図6は、ベルト角度とプーリ角度との関係の一例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of the relationship between the belt angle and the pulley angle. 図7は、ベルト角度とプーリ角度との関係の他の例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing another example of the relationship between the belt angle and the pulley angle. 図8は、伝達効率の測定方法を説明するための概略図である。FIG. 8 is a schematic diagram for explaining a method for measuring transmission efficiency. 図9は、ベルトスリーブ側面の一部を研磨する方法を示すための模式図である。FIG. 9 is a schematic view for illustrating a method of polishing a part of the side surface of the belt sleeve. 図10は、ベルトスリーブ側面の研磨部の他の例を示すための概略断面図である。FIG. 10 is a schematic cross-sectional view for illustrating another example of the polishing portion on the side surface of the belt sleeve. 図11は、実施例での摩擦係数の測定方法を説明するための概略図である。FIG. 11 is a schematic diagram for explaining a method of measuring a friction coefficient in the embodiment. 図12は、実施例での高速走行試験を説明するための概略図である。FIG. 12 is a schematic diagram for explaining a high-speed running test in the example. 図13は、実施例での耐久走行試験を説明するための概略図である。FIG. 13 is a schematic diagram for explaining a durability running test in the example.

[伝動用Vベルト]
本発明の伝動用Vベルトは、ベルトの長手方向に心線を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えた伝動用Vベルトにおいて、前記伸張ゴム層の側面で短繊維が突出し、かつ前記圧縮ゴム層の側面が前記伸張ゴム層よりも短繊維の突出高さが低い平滑領域を有しているため、伝達効率を低下させずに、変速機に使用しても加速性能を長期間安定して維持できるとともに、燃費も向上できる。
[V-belt for transmission]
The transmission V-belt of the present invention comprises an adhesive rubber layer having a core wire embedded in the longitudinal direction of the belt, a compressed rubber layer formed on one surface of the adhesive rubber layer, and the other surface of the adhesive rubber layer. In the transmission V-belt provided with the formed stretch rubber layer, the short fiber protrudes on the side surface of the stretch rubber layer, and the short fiber protrudes lower on the side surface of the compression rubber layer than the stretch rubber layer. Since it has a smooth region, acceleration performance can be stably maintained for a long time even when used in a transmission without reducing transmission efficiency, and fuel efficiency can be improved.

図3は、本発明の伝動用Vベルト(ローエッジコグドVベルト)の一例を示す概略斜視図であり、図4は、図3の伝動用Vベルトをベルト長手方向に切断した概略断面図であり、図5は、図4のベルト側面の拡大図である。   FIG. 3 is a schematic perspective view showing an example of a transmission V-belt (low-edge cogged V-belt) according to the present invention, and FIG. 4 is a schematic cross-sectional view of the transmission V-belt of FIG. 3 cut in the longitudinal direction of the belt. FIG. 5 is an enlarged view of the side surface of the belt in FIG. 4.

この例では、伝動用Vベルト1は、ベルト本体の内周面に、ベルトの長手方向に沿って所定の間隔をおいて形成された複数のコグ部1aを有しており、このコグ部1aの長手方向及び長手方向に対して直交する方向における断面形状は台形である。すなわち、各コグ部1aは、ベルト厚み方向において、コグ底部1bから断面台形状に突出している。伝動用Vベルト1は、積層構造を有しており、ベルト外周側から内周側(コグ部1aが形成された側)に向かって、補強布2、伸張ゴム層3、接着ゴム層4、圧縮ゴム層5、補強布6が順次積層されている。ベルト幅方向における断面形状は、ベルト外周側から内周側に向かってベルト幅が小さくなる台形状である。さらに、接着ゴム層4内には、心線4a2が埋設されており、前記コグ部1aは、コグ付き成形型により圧縮ゴム層5に形成されている。図3に示すように、伸張ゴム層3及び圧縮ゴム層5には、プーリからの押圧に対するベルトの圧縮変形を抑制するために、それぞれ短繊維3a及び短繊維5aがベルト幅方向に配向して埋設されている。さらに、伸張ゴム層3の側面において短繊維3aが突出している。   In this example, the transmission V-belt 1 has a plurality of cog portions 1a formed at predetermined intervals along the longitudinal direction of the belt on the inner peripheral surface of the belt main body. The cross-sectional shape in the direction perpendicular to the longitudinal direction and the longitudinal direction is trapezoidal. That is, each cog part 1a protrudes in a trapezoidal cross section from the cog bottom part 1b in the belt thickness direction. The transmission V-belt 1 has a laminated structure, and the reinforcing cloth 2, the stretch rubber layer 3, the adhesive rubber layer 4, from the belt outer peripheral side toward the inner peripheral side (side on which the cog 1 a is formed), A compressed rubber layer 5 and a reinforcing cloth 6 are sequentially laminated. The cross-sectional shape in the belt width direction is a trapezoidal shape in which the belt width decreases from the belt outer peripheral side toward the inner peripheral side. Further, a core wire 4a2 is embedded in the adhesive rubber layer 4, and the cog 1a is formed on the compressed rubber layer 5 by a molding die with cogs. As shown in FIG. 3, in the stretch rubber layer 3 and the compression rubber layer 5, short fibers 3a and short fibers 5a are respectively oriented in the belt width direction in order to suppress the compressive deformation of the belt against the pressure from the pulley. Buried. Further, short fibers 3 a protrude from the side surface of the stretched rubber layer 3.

(伸張ゴム層)
伸張ゴム層は、ゴム成分及び短繊維を含むゴム組成物で形成されている。本発明では、伸張ゴム層において、ベルト幅方向に平行又は略平行に配向して埋設された短繊維は、プーリとの接触面である側面で突出している。そのため、プーリに対する摺動性を向上でき、表面の摩擦係数を下げて発音を抑制したり、プーリとの擦れによる摩耗を低減できる。
(Stretch rubber layer)
The stretch rubber layer is formed of a rubber composition containing a rubber component and short fibers. In the present invention, in the stretched rubber layer, the short fibers embedded so as to be oriented parallel or substantially parallel to the belt width direction protrude at the side surface which is a contact surface with the pulley. Therefore, the slidability with respect to the pulley can be improved, the surface friction coefficient can be lowered to suppress sound generation, and wear due to friction with the pulley can be reduced.

(1)短繊維
伸長ゴム層の側面全体における短繊維の平均突出高さは、50μm以上であればよく、例えば、50〜200μm、好ましくは60〜180μm、さらに好ましくは70〜160μm(特に80〜150μm)程度である。平均突出高さが小さすぎると、表面の摩擦係数を充分に低減できず、大きすぎると、破損や脱落が起こり易くなる。平均突出高さは、例えば、ベルト幅方向に切断した断面を電子顕微鏡などで拡大観察を行ない、ベルト側面より突出する短繊維の長さ(突出高さ)を複数本(例えば、10〜1000本、好ましくは30〜500本、さらに好ましくは50〜200本、特に100本程度)測定し、これらを平均して算出することができる。
(1) Short fiber The average protrusion height of the short fiber in the entire side surface of the elongated rubber layer may be 50 μm or more, for example, 50 to 200 μm, preferably 60 to 180 μm, more preferably 70 to 160 μm (particularly 80 to 150 μm). If the average protrusion height is too small, the friction coefficient of the surface cannot be sufficiently reduced, and if it is too large, breakage or dropout is likely to occur. The average protrusion height is obtained by, for example, observing a cross section cut in the belt width direction with an electron microscope or the like, and measuring a plurality of short fibers protruding from the belt side surface (protrusion height) (for example, 10 to 1000). , Preferably 30 to 500, more preferably 50 to 200, especially about 100), and these can be calculated by averaging.

突出部における短繊維の形状は、特に限定されず、側面より略垂直に突出した形状、一方向(例えば、研磨方向)にカールした形状、先端部がフィブリル化した形状、研磨時の熱で溶融した開花状などの形状であってもよい。さらに、特開平7−98044号公報や特開平7−151191号公報に記載された形状であってもよい。   The shape of the short fiber in the protruding portion is not particularly limited, the shape protruding substantially perpendicularly from the side surface, the shape curled in one direction (for example, the polishing direction), the shape fibrillated at the tip, and melted by the heat during polishing It may be a shape such as a flowering shape. Furthermore, the shape described in JP-A-7-98044 and JP-A-7-151191 may be used.

伸張ゴム層の側面では、側面全体(又は側面の略全面)に短繊維が突出した領域(非平滑領域)を形成され、側面で突出した短繊維の密度は、例えば、2万〜20万本/cm、好ましくは4万〜15万本/cm、さらに好ましくは6万〜13万本/cm程度である。 On the side surface of the stretch rubber layer, a region (non-smooth region) in which short fibers protrude is formed on the entire side surface (or substantially the entire side surface), and the density of short fibers protruding on the side surface is, for example, 20,000 to 200,000 / Cm 2 , preferably 40,000 to 150,000 pieces / cm 2 , more preferably about 60,000 to 130,000 pieces / cm 2 .

短繊維の平均長さは、例えば、1〜20mm、好ましくは2〜15mm、さらに好ましくは3〜10mmであり、1〜8mm(例えば、3〜6mm)程度であってもよい。短繊維の平均長さが小さすぎると、列理方向の力学特性(例えばモジュラスなど)を十分に高めることができず、一方、大きすぎると、ゴム組成物中の短繊維の分散不良が生じ、ゴムに亀裂が発生してベルトが早期に損傷する虞がある。   The average length of the short fibers is, for example, 1 to 20 mm, preferably 2 to 15 mm, more preferably 3 to 10 mm, and may be about 1 to 8 mm (for example, 3 to 6 mm). If the average length of the short fibers is too small, the mechanical properties (for example, the modulus) in the line direction cannot be sufficiently increased. On the other hand, if the average length is too large, poor dispersion of the short fibers in the rubber composition occurs. There is a risk of cracking the rubber and premature damage to the belt.

短繊維の平均繊維径は、例えば、5〜50μm、好ましくは7〜40μm、さらに好ましくは9〜35μm(特に10〜30μm)程度である。繊維径が小さすぎると、摺動性の向上効果が小さく、大きすぎると、伸張ゴム層の機械的特性が低下する。   The average fiber diameter of the short fibers is, for example, about 5 to 50 μm, preferably 7 to 40 μm, and more preferably about 9 to 35 μm (particularly 10 to 30 μm). If the fiber diameter is too small, the effect of improving the slidability is small, and if too large, the mechanical properties of the stretched rubber layer are lowered.

短繊維の種類としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維など)、ポリアルキレンアリレート系繊維[ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのC2−4アルキレンC6−14アリレート系繊維など]、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;綿、麻、羊毛などの天然繊維;炭素繊維などの無機繊維が汎用される。これらの短繊維は、単独でまたは二種以上組み合わせて使用できる。これらの短繊維のうち、合成繊維(ポリアミド繊維、ポリアルキレンアリレート系繊維など)や天然繊維(綿など)、特に、剛直で高い強度、モジュラスを有し、研磨により突出し易い点から、アラミド繊維、PBO繊維が好ましい。アラミド短繊維は、高い耐摩耗性をも有しており、商品名「コーネックス」、「ノーメックス」、「ケブラー」、「テクノーラ」、「トワロン」などとして市販されている。PBO短繊維は、アラミド短繊維以上の耐摩耗を有しており、商品名「ザイロン」として市販されている。 Examples of the short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers [polyethylene terephthalate ( PET) fiber, C 2-4 alkylene C 6-14 arylate fiber such as polyethylene naphthalate (PEN) fiber, etc.], vinylon fiber, polyvinyl alcohol fiber, synthetic fiber such as polyparaphenylene benzobisoxazole (PBO) fiber Natural fibers such as cotton, hemp and wool; inorganic fibers such as carbon fibers are widely used. These short fibers can be used alone or in combination of two or more. Among these short fibers, synthetic fibers (polyamide fiber, polyalkylene arylate fiber, etc.) and natural fibers (cotton, etc.), especially rigid, high strength, modulus, aramid fibers, PBO fibers are preferred. Aramid short fibers also have high wear resistance, and are commercially available under the trade names “Conex”, “Nomex”, “Kevlar”, “Technola”, “Twaron” and the like. PBO short fibers have a wear resistance higher than that of aramid short fibers, and are commercially available under the trade name “Zylon”.

短繊維は、ゴム組成物中での分散性や接着性を向上させるため、慣用の接着処理(又は表面処理)、例えば、レゾルシン−ホルマリン−ラテックス(RFL)液などで処理してもよい。   The short fibers may be treated with a conventional adhesion treatment (or surface treatment), for example, resorcin-formalin-latex (RFL) solution, in order to improve dispersibility and adhesion in the rubber composition.

短繊維の割合は、ゴム成分100質量部に対して、例えば、5〜50質量部、好ましくは10〜40質量部、さらに好ましくは15〜35質量部(特に20〜30質量部)程度である。短繊維の割合が少なすぎると、機械的特性及びプーリとの摺動性を向上できず、多すぎると、機械的特性及び短繊維の分散不良が生じて耐久性が低下する。   The proportion of the short fibers is, for example, about 5 to 50 parts by mass, preferably 10 to 40 parts by mass, and more preferably about 15 to 35 parts by mass (particularly 20 to 30 parts by mass) with respect to 100 parts by mass of the rubber component. . If the proportion of the short fibers is too small, the mechanical properties and the sliding property with the pulley cannot be improved. If the proportion is too large, the mechanical properties and poor dispersion of the short fibers are generated and the durability is lowered.

(2)ゴム成分
ゴム成分としては、加硫又は架橋可能なゴム、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴムなど)、エチレン−α−オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらのゴム成分は単独で又は二種以上組み合わせて使用できる。
(2) Rubber component The rubber component may be vulcanized or cross-linkable rubber such as diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber). And hydrogenated nitrile rubber), ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber, and the like. These rubber components can be used alone or in combination of two or more.

好ましいゴム成分は、エチレン−α−オレフィンエラストマー(エチレン−プロピレンゴム(EPR)、エチレン−プロピレン−ジエンモノマー(EPDMなど)などのエチレン−α−オレフィン系ゴム)、クロロプレンゴムである。特に好ましいゴム成分は、クロロプレンゴムである。クロロプレンゴムは、硫黄変性タイプであってもよく、非硫黄変性タイプであってもよい。   Preferred rubber components are ethylene-α-olefin elastomers (ethylene-α-olefin rubbers such as ethylene-propylene rubber (EPR) and ethylene-propylene-diene monomers (EPDM, etc.)) and chloroprene rubber. A particularly preferred rubber component is chloroprene rubber. The chloroprene rubber may be a sulfur-modified type or a non-sulfur-modified type.

(3)他の添加剤
ゴム組成物には、必要により、慣用の添加剤、例えば、加硫剤又は架橋剤(又は架橋剤系)(例えば、硫黄系加硫剤など)、共架橋剤(例えば、ビスマレイミド類など)、加硫助剤又は加硫促進剤(例えば、チウラム系促進剤など)、加硫遅延剤、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、増強剤(カーボンブラック、含水シリカなどの酸化ケイ素など)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止材、オゾン劣化防止剤など)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などを含んでいてもよい。なお、金属酸化物は架橋剤として作用してもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
(3) Other additives In the rubber composition, if necessary, conventional additives such as a vulcanizing agent or a crosslinking agent (or a crosslinking agent system) (for example, a sulfur-based vulcanizing agent), a co-crosslinking agent ( For example, bismaleimides), vulcanization aids or vulcanization accelerators (eg thiuram accelerators), vulcanization retarders, metal oxides (eg zinc oxide, magnesium oxide, calcium oxide, barium oxide, Iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), reinforcing agents (carbon black, silicon oxide such as hydrous silica), fillers (clay, calcium carbonate, talc, mica, etc.), softeners (paraffin oil, naphthene) Oils such as oils), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants) Heat aging inhibitors, anti-bending materials, anti-ozone agents, etc.), colorants, tackifiers, plasticizers, coupling agents (such as silane coupling agents), stabilizers (UV absorbers, heat stabilizers) Etc.), flame retardants, antistatic agents and the like. The metal oxide may act as a crosslinking agent. These additives can be used alone or in combination of two or more.

伸長ゴム層の厚みは、例えば、0.8〜10.0mm、好ましくは1.2〜6.5mm、さらに好ましくは1.6〜5.2mm程度である。   The thickness of the stretched rubber layer is, for example, about 0.8 to 10.0 mm, preferably 1.2 to 6.5 mm, and more preferably about 1.6 to 5.2 mm.

(圧縮ゴム層)
圧縮ゴム層も、ゴム成分及び短繊維を含むゴム組成物で形成されている。本発明では、伸張ゴム層の側面全体で短繊維が突出した非平滑領域を形成しているのに対して、圧縮ゴム層の側面では、前記伸張ゴム層の側面全体における短繊維の平均突出高さよりも短繊維の平均突出高さが低い平滑領域を有することを特徴とする。圧縮ゴム層の側面に、このような平滑領域を形成することにより、プーリとの摩耗により、圧縮ゴム層における側面の表面状態の変化を小さくでき、変速ベルトにおける加速性能を長期間一定に維持できる。
(Compressed rubber layer)
The compressed rubber layer is also formed of a rubber composition containing a rubber component and short fibers. In the present invention, a non-smooth region in which short fibers protrude on the entire side surface of the stretch rubber layer is formed, whereas on the side surface of the compression rubber layer, the average protrusion height of the short fibers on the entire side surface of the stretch rubber layer. It has the smooth area | region where the average protrusion height of a short fiber is lower than this. By forming such a smooth region on the side surface of the compressed rubber layer, the change in the surface state of the side surface of the compressed rubber layer due to wear with the pulley can be reduced, and the acceleration performance of the transmission belt can be maintained constant for a long time. .

平滑領域では、短繊維の平均突出高さは、前記伸張ゴム層の側面全体における短繊維の平均突出高さよりも低ければよく、例えば、50μm未満、好ましくは30μm以下(例えば、0〜30μm、さらに好ましくは10μm以下(例えば、0〜10μm)であり、実質的に0μmであってもよい。平均突出高さが大きすぎると、プーリとの擦れにより短繊維の突出部が摩擦摩耗して側面の表面状態が大きく変化するため、ベルトの加速性能を継続して維持できない。突出高さの下限は特に設定されないが、切断加工のみで研磨しない場合は、短繊維は突出せず(短繊維の切断面のみが露出して、残りはゴム中に埋設し)、実質的に平均突出高さは0μmとなるが、生産性や簡便性の点からは、短繊維が突出していない圧縮ゴム層が好ましい。   In the smooth region, the average protruding height of the short fibers may be lower than the average protruding height of the short fibers in the entire side surface of the stretched rubber layer, for example, less than 50 μm, preferably 30 μm or less (for example, 0 to 30 μm, further Preferably, it is 10 μm or less (for example, 0 to 10 μm), and may be substantially 0 μm.If the average protrusion height is too large, the protruding portion of the short fiber is frictionally worn by rubbing with the pulley, and the side surface Because the surface condition changes greatly, the acceleration performance of the belt cannot be maintained continuously.The lower limit of the protruding height is not particularly set, but if it is not polished only by cutting processing, the short fiber does not protrude (cut short fibers) Only the surface is exposed and the rest is embedded in rubber), and the average protrusion height is substantially 0 μm. From the viewpoint of productivity and simplicity, a compressed rubber layer in which short fibers do not protrude is preferable. .

前記平滑領域は、圧縮ゴム層の側面において、ベルト内周側の側面に形成されているのが好ましい。また、伝動用Vベルトがコグ部を有する場合、変速ベルトの加速性能を安定して維持できる点から、圧縮ゴム層の側面において、少なくともコグ部全体(ベルト内周側(コグ頂部)からコグ底部までの領域)を含む領域に、平滑領域が形成されているのが好ましい。特に、本発明では、圧縮ゴム層の側面において、ベルト内周側(コグ頂部)から、接着ゴム層及び圧縮ゴム層の界面とコグ底部との中央部までを含む領域(例えば、圧縮ゴム層の側面全体)に平滑領域が形成されているのが好ましい。このような領域に平滑領域が形成されていると、伝達効率を低下させることなく、加速性能を一定に維持できる。平滑領域が内周側の所定の領域に形成されておらず、短繊維が突出している場合には、短繊維の切断や摩耗によるプーリに対する影響が大きくなり、ベルトの加速性能を長期間安定して維持できない。   The smooth region is preferably formed on the side surface of the inner peripheral side of the belt on the side surface of the compressed rubber layer. Further, when the transmission V-belt has a cog portion, at least the entire cog portion (from the belt inner peripheral side (cog top portion) to the cog bottom portion on the side surface of the compression rubber layer can stably maintain the acceleration performance of the transmission belt. It is preferable that a smooth region is formed in a region including In particular, in the present invention, on the side surface of the compressed rubber layer, a region including from the belt inner peripheral side (cog top) to the center of the interface between the adhesive rubber layer and the compressed rubber layer and the cog bottom (for example, the compressed rubber layer) A smooth region is preferably formed on the entire side surface. If a smooth region is formed in such a region, the acceleration performance can be maintained constant without reducing the transmission efficiency. If the smooth area is not formed in the specified area on the inner circumference side and the short fibers are protruding, the influence of the short fibers on the pulley due to cutting and wear increases, and the acceleration performance of the belt is stabilized for a long time. Cannot be maintained.

圧縮ゴム層の側面全体に対して平滑領域が占める面積割合は、例えば、50%以上、好ましくは60〜100%、さらに好ましくは80〜100%(特に略100%)程度である。   The area ratio occupied by the smooth region with respect to the entire side surface of the compressed rubber layer is, for example, about 50% or more, preferably about 60 to 100%, and more preferably about 80 to 100% (particularly about 100%).

圧縮ゴム層の側面の一部の領域(特に、接着ゴム層及び圧縮ゴム層の界面から、この界面とコグ底部との中央部までの領域)に、短繊維が突出した領域(非平滑領域)を形成する場合、短繊維の平均突出高さは、伸張ゴム層における短繊維の平均突出高さと同一であってもよく、低くてもよい。突出した短繊維の形状も、伸張ゴム層の項で例示された形状などが挙げられ、通常、伸張ゴム層とともに研磨されるため、同一の形状である。突出した短繊維の密度も、伸張性ゴム層の項で記載された範囲から選択できる。   A region in which short fibers protrude from a part of the side surface of the compressed rubber layer (particularly, a region from the interface between the adhesive rubber layer and the compressed rubber layer to the center of the interface and the bottom of the cog) (non-smooth region) The average protruding height of the short fibers may be the same as or lower than the average protruding height of the short fibers in the stretched rubber layer. Examples of the shape of the protruding short fiber include the shape exemplified in the section of the stretched rubber layer and are usually polished together with the stretched rubber layer, and thus have the same shape. The density of the protruding short fibers can also be selected from the range described in the section of the extensible rubber layer.

ゴム組成物は、前記伸張ゴム層の項で例示されたゴム組成物であってもよい。すなわち、短繊維の種類は、伸張ゴム層の項で記載された種類から選択でき、平均長さ、平均繊維径及びゴム成分に対する割合も、伸張ゴム層の項で記載された範囲から選択できる。ゴム成分及び添加剤も、伸張ゴム層の項で記載された種類から選択できる。圧縮ゴム層のゴム組成物は、簡便性や生産性などの点から、通常、伸張ゴム層と同一のゴム組成物が使用される。   The rubber composition may be the rubber composition exemplified in the section of the stretched rubber layer. That is, the type of the short fiber can be selected from the types described in the section of the stretched rubber layer, and the average length, the average fiber diameter, and the ratio to the rubber component can also be selected from the range described in the section of the stretched rubber layer. The rubber component and additive can also be selected from the types described in the section of the stretched rubber layer. As the rubber composition of the compressed rubber layer, the same rubber composition as that of the stretched rubber layer is usually used from the viewpoint of simplicity and productivity.

圧縮ゴム層の厚みは、例えば、2.0〜25.0mm、好ましくは3.0〜16.0mm、さらに好ましくは4.0〜12.0mm程度である。   The thickness of the compressed rubber layer is, for example, about 2.0 to 25.0 mm, preferably about 3.0 to 16.0 mm, and more preferably about 4.0 to 12.0 mm.

(接着ゴム層)
接着ゴム層は、心線及びゴム成分を含むゴム組成物で形成されている。心線は、接着ゴム層中において、ベルト長手方向に延びて埋設され、通常、複数本の心線が、ベルトの長手方向に平行に所定のピッチで並列的に埋設されており、隣接する心線の間隔(スピニングピッチ)は、例えば、0.5〜3mm、好ましくは0.8〜1.5mm、さらに好ましくは1〜1.3mm程度である。
(Adhesive rubber layer)
The adhesive rubber layer is formed of a rubber composition containing a core wire and a rubber component. The core wires are embedded in the adhesive rubber layer so as to extend in the longitudinal direction of the belt. Usually, a plurality of core wires are embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt. The line spacing (spinning pitch) is, for example, about 0.5 to 3 mm, preferably about 0.8 to 1.5 mm, and more preferably about 1 to 1.3 mm.

心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば、0.5〜3mm、好ましくは0.6〜1.5mm、さらに好ましくは0.7〜1.2mm程度である。   As the core wire, a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used. The average wire diameter (fiber diameter of the twisted cord) of the core wire is, for example, about 0.5 to 3 mm, preferably about 0.6 to 1.5 mm, and more preferably about 0.7 to 1.2 mm.

心線を構成する繊維としては、短繊維として例示された繊維を使用できる。前記繊維のうち、ポリエステル繊維、アラミド繊維などの合成繊維、ガラス繊維、炭素繊維などの無機繊維などが汎用され、ベルトスリップ率を低下できる点から、ポリエチレンテレフタレート繊維やポリエチレンナフタレート繊維などのポリエステル繊維が特に好ましい。ポリエステル繊維はマルチフィラメント糸であってもよい。マルチフィラメント糸で構成される心線の繊度は、例えば、2000〜10000デニール(特に4000〜8000デニール)程度であってもよい。心線の表面には、前記短繊維と同様に、慣用の接着処理(又は表面処理)が施されていてもよい。   As the fibers constituting the core wire, fibers exemplified as short fibers can be used. Among the fibers, synthetic fibers such as polyester fibers and aramid fibers, inorganic fibers such as glass fibers and carbon fibers are widely used, and polyester fibers such as polyethylene terephthalate fibers and polyethylene naphthalate fibers because the belt slip rate can be reduced. Is particularly preferred. The polyester fiber may be a multifilament yarn. The fineness of the core wire composed of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier). The surface of the core wire may be subjected to conventional adhesion treatment (or surface treatment) in the same manner as the short fibers.

ゴム成分としては、伸張ゴム層の項で記載された種類から選択できる。ゴム成分は、伸張ゴム層及び圧縮ゴム層のゴム成分と同系統又は同種のゴムを使用する場合が多い。ゴム組成物は、さらに伸張ゴム層の項で例示された添加剤を含んでいてもよく、さらに接着性改善剤(レゾルシン−ホルムアルデヒド共縮合物、アミノ樹脂など)を含んでいてもよい。   The rubber component can be selected from the types described in the section of the stretched rubber layer. The rubber component often uses the same type or type of rubber as the rubber component of the stretch rubber layer and the compression rubber layer. The rubber composition may further contain the additive exemplified in the section of the stretched rubber layer, and may further contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).

接着ゴム層でも、初期の摺動性を向上させる点から、心線をベルト側面に露出していてもよいが、使用による加速性能の安定性を高度に向上できる点から、接着ゴム層の側面は平滑領域とするのが好ましい。特に、心線をベルト側面から突出(ケバ、ほつれ)させると、ベルト走行時に突出部を起点として心線がベルト側面より飛び出す現象(ポップアウト)が生じ、ベルトの耐久性を低下させる虞がある。   Even in the adhesive rubber layer, the core may be exposed on the side of the belt from the viewpoint of improving the initial slidability, but the side of the adhesive rubber layer can be highly improved in the stability of acceleration performance by use. Is preferably a smooth region. In particular, if the core wire protrudes from the side surface of the belt (scratching or fraying), a phenomenon that the core wire protrudes from the side surface of the belt when the belt travels (pop-out) may occur, which may reduce the durability of the belt. .

接着ゴム層の厚みは、例えば、0.4〜3.0mm、好ましくは0.6〜2.2mm、さらに好ましくは0.8〜1.4mm程度である。   The thickness of the adhesive rubber layer is, for example, about 0.4 to 3.0 mm, preferably about 0.6 to 2.2 mm, and more preferably about 0.8 to 1.4 mm.

(補強布)
伝動用Vベルトにおいて、前記圧縮ゴム層及び/又は前記伸張ゴム層の表面には、補強布を積層してもよい。補強布は、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)を圧縮ゴム層及び/又は伸張ゴム層の表面に積層することにより形成でき、必要であれば、前記接着処理、例えば、RFL液で処理(浸漬処理など)したり、接着ゴムを前記布材にすり込むフリクションや、前記接着ゴムと前記布材とを積層(コーティング)した後、圧縮ゴム層及び/又は伸張ゴム層の表面に積層してもよい。
(Reinforcing cloth)
In the transmission V-belt, a reinforcing cloth may be laminated on the surface of the compressed rubber layer and / or the stretched rubber layer. The reinforcing cloth can be formed, for example, by laminating a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth, and a non-woven cloth on the surface of the compression rubber layer and / or the stretch rubber layer. For example, after the adhesive treatment, for example, treatment with RFL liquid (immersion treatment, etc.), friction for rubbing adhesive rubber into the cloth material, or lamination (coating) of the adhesive rubber and the cloth material, a compressed rubber layer And / or may be laminated on the surface of the stretch rubber layer.

(ベルト角度)
本発明の伝動用Vベルトのベルト角度は、プーリの角度に応じて選択されるが、例えば、プーリ角度と同一の角度に形成してもよく、プーリ角度よりも小さい角度に形成してもよい。本明細書において、ベルト角度とは、ベルトの両側面がなす角度、すなわち、両側面を図6及び図7の破線のように延長させて交差させたときの角度を意味する。特に、本発明では、非平滑領域(後述する研磨部)の両側面がなす角度をベルト角度と定義し、研磨部が形成されていない場合には、平滑領域(後述する未研磨部)の両側面がなす角度をベルト角度と定義することもある。同様に、プーリ角度とは、プーリの斜面同士がなす角度を意味する。
(Belt angle)
The belt angle of the transmission V-belt of the present invention is selected according to the angle of the pulley. For example, it may be formed at the same angle as the pulley angle or at an angle smaller than the pulley angle. . In the present specification, the belt angle means an angle formed by both side surfaces of the belt, that is, an angle when both side surfaces are extended and intersected as shown by broken lines in FIGS. In particular, in the present invention, an angle formed by both side surfaces of a non-smooth region (a polishing portion described later) is defined as a belt angle, and when the polishing portion is not formed, both sides of a smooth region (an unpolished portion described later) are formed. The angle formed by the surface may be defined as the belt angle. Similarly, the pulley angle means an angle formed by the slopes of the pulleys.

図6は、ベルト11のベルト角度αと、プーリ12のプーリ角度βとを同一の角度とした場合であり、研磨部13と未研磨部14のベルト角度は同一の角度に形成されている。   FIG. 6 shows a case where the belt angle α of the belt 11 and the pulley angle β of the pulley 12 are the same, and the belt angles of the polishing portion 13 and the unpolished portion 14 are formed to be the same angle.

図7は、他の形態の例であり、研磨部23のベルト角度γは、プーリ角度βよりも小さく形成されている。さらに、このベルトでは、研磨部23と未研磨部24とのベルト角度は異なる角度に形成されており、未研磨部24のベルト角度αは、プーリ角度βと同一の角度に形成されている。すなわち、角度の関係は、「研磨部のベルト角度γ<未研磨部のベルト角度α=プーリ角度β」となる。この形態では研磨部とプーリとが直接接触しておらず、未研磨部のみが接触するため、プーリとの摺動ロスが小さくなって伝達効率が向上する。プーリとの摩擦により未研磨部が摩耗して研磨部とプーリとが接触しても、研磨部では短繊維が突出して摩擦係数が低くなっているため、摺動ロスの上昇を抑えることが可能である。   FIG. 7 is an example of another embodiment, in which the belt angle γ of the polishing portion 23 is formed smaller than the pulley angle β. Further, in this belt, the belt angle of the polishing portion 23 and the unpolished portion 24 is formed at different angles, and the belt angle α of the unpolished portion 24 is formed at the same angle as the pulley angle β. That is, the relationship of the angle is “belt angle γ of the polished portion <belt angle α of the unpolished portion = pulley angle β”. In this embodiment, the polishing portion and the pulley are not in direct contact with each other, and only the unpolished portion is in contact, so that a sliding loss with the pulley is reduced and transmission efficiency is improved. Even if the unpolished part wears due to friction with the pulley and the polished part comes into contact with the pulley, the short fiber protrudes in the polished part and the friction coefficient is low, so it is possible to suppress an increase in sliding loss. It is.

すなわち、本発明の伝動用Vベルトでは、平滑領域におけるベルト角度がプーリ角度と略同一の角度であればよく、伸張ゴム層(又は非平滑領域)におけるベルト角度はプーリ角度と略同一の角度又はプーリ角度よりも小さい角度であってもよい。平滑領域におけるベルト角度がプーリ角度と略同一の角度に形成されていれば、平滑領域においてベルトとプーリとが接触できるため、非平滑領域においては、プーリ角度よりも小さい角度にベルト角度を形成した場合であっても、耐久性に優れており、長期間の使用により異音などの発生を抑制でき、安定して運転できる。   That is, in the transmission V-belt of the present invention, the belt angle in the smooth region may be approximately the same as the pulley angle, and the belt angle in the stretched rubber layer (or non-smooth region) may be substantially the same as the pulley angle. The angle may be smaller than the pulley angle. If the belt angle in the smooth region is formed at substantially the same angle as the pulley angle, the belt and the pulley can contact in the smooth region. Therefore, in the non-smooth region, the belt angle is formed at an angle smaller than the pulley angle. Even if it is a case, it is excellent in durability, generation | occurrence | production of abnormal noise etc. can be suppressed by long-term use, and it can drive | operate stably.

(伝達効率)
本発明の伝動用Vベルトを用いると、伸張ゴム層の側面に短繊維が突出した非平滑領域が形成されているため、伝達効率を向上できる。伝達効率とは、ベルトが駆動プーリからの回転トルクを従動プーリに伝える指標であり、この伝達効率が高いほどベルトの伝動ロスが小さく、省燃費性に優れることを意味する。図8に示す駆動(Dr.)プーリ32及び従動(Dn.)プーリ33の二つのプーリにベルト31を掛架した二軸レイアウトにおいて、伝達効率は以下のようにして求めることができる。
(Transmission efficiency)
When the transmission V-belt of the present invention is used, a non-smooth region in which short fibers protrude from the side surface of the stretched rubber layer is formed, so that transmission efficiency can be improved. The transmission efficiency is an index for the belt to transmit the rotational torque from the drive pulley to the driven pulley. The higher the transmission efficiency, the smaller the belt transmission loss and the better the fuel efficiency. In the two-axis layout in which the belt 31 is hung on the two pulleys of the drive (Dr.) pulley 32 and the driven (Dn.) Pulley 33 shown in FIG. 8, the transmission efficiency can be obtained as follows.

駆動プーリの回転数をρ、プーリ半径をrとしたとき、駆動プーリの回転トルクTは、ρ×Te×rで表すことができる。Teは張り側張力(ベルトが駆動プーリに向かう側の張力)から緩み側張力(ベルトが従動プーリに向かう側の張力)を差し引いた有効張力である。同様に、従動プーリの回転数をρ、プーリ半径をrとしたとき、従動プーリの回転トルクTは、ρ×Te×rで示される。そして、伝達効率T/Tは、従動プーリの回転トルクTを駆動プーリの回転トルクTで除して算出され、次式で表すことができる。 When the rotational speed of the driving pulley is ρ 1 and the pulley radius is r 1 , the rotational torque T 1 of the driving pulley can be expressed by ρ 1 × Te × r 1 . Te is an effective tension obtained by subtracting the loose side tension (tension on the side where the belt faces the driven pulley) from the tension side tension (tension on the side where the belt faces the driving pulley). Similarly, when the rotational speed of the driven pulley is ρ 2 and the pulley radius is r 2 , the rotational torque T 2 of the driven pulley is represented by ρ 2 × Te × r 2 . The transmission efficiency T 2 / T 1 is calculated by dividing the rotational torque T 2 of the driven pulley by the rotational torque T 1 of the drive pulley, and can be expressed by the following equation.

/T=(ρ×Te×r)/(ρ×Te×r)=(ρ×r)/(ρ×r
なお、実際は伝達効率が1以上の値になることはないが、1に近いほどベルトの伝動ロスが小さく、省燃費性に優れていることを表す。T/Tは0.7以上であってもよく、例えば、0.7〜0.9、好ましくは0.75〜0.85程度である。
T 2 / T 1 = (ρ 2 × Te × r 2 ) / (ρ 1 × Te × r 1 ) = (ρ 2 × r 2 ) / (ρ 1 × r 1 )
Actually, the transmission efficiency does not become a value of 1 or more, but the closer to 1, the smaller the belt transmission loss and the better the fuel economy. T 2 / T 1 may be 0.7 or more, for example, 0.7 to 0.9, preferably about 0.75 to 0.85.

[伝動用Vベルトの製造方法]
本発明の伝動用Vベルトの製造方法は、特に限定されず、各層の積層工程(ベルトスリーブの製造方法)に関しては、慣用の方法を利用できる。
[Manufacturing method of transmission V-belt]
The production method of the transmission V-belt of the present invention is not particularly limited, and a conventional method can be used for the lamination process of each layer (a production method of the belt sleeve).

例えば、コグドVべルトの場合、補強布(下布)と圧縮ゴム層用シート(未加硫ゴム)からなる積層体を、前記補強布を下にして歯部と溝部とを交互に配した平坦なコグ付き型に設置し、温度60〜100℃(特に70〜80℃)程度でプレス加圧することによってコグ部を型付けしたコグパッド(完全には加硫しておらず、半加硫状態にあるパッド)を作製した後、このコグパッドの両端をコグ山部の頂部から垂直に切断してもよい。さらに、円筒状の金型に歯部と溝部とを交互に配した内母型を被せ、この歯部と溝部に係合させてコグパッドを巻き付けてコグ山部の頂部でジョイントし、この巻き付けたコグパッドの上に第1の接着ゴム層用シート(下接着ゴム:未加硫ゴム)を積層した後、心線を螺旋状にスピニングし、この上に第2の接着ゴム層用シート(上接着ゴム:前記接着ゴム層用シートと同じ)、伸張ゴム層用シート(未加硫ゴム)、補強布(上布)を順次巻き付けて成形体を作製してもよい。その後、ジャケットを被せて金型を加硫缶に設置し、温度120〜200℃(特に150〜180℃)程度で加硫してベルトスリーブを調製した後、カッターなどを用いて、V状に切断加工してもよい。   For example, in the case of a cogged V belt, a laminated body composed of a reinforcing cloth (under cloth) and a sheet for a compressed rubber layer (unvulcanized rubber) is arranged with teeth and grooves alternately with the reinforcing cloth down. Installed on a flat cogged mold, cog pad with the cog part formed by press-pressing at a temperature of about 60-100 ° C (especially 70-80 ° C) (not completely vulcanized, in a semi-cured state) After producing a certain pad), both ends of the cog pad may be cut vertically from the top of the cog crest. Furthermore, an inner mother die in which teeth and grooves are alternately arranged is covered on a cylindrical mold, and a cog pad is wound around the teeth and the grooves, and a joint is formed at the top of the cog crest, and this is wound. After laminating the first adhesive rubber layer sheet (lower adhesive rubber: unvulcanized rubber) on the cog pad, the core wire was spun into a spiral shape, and the second adhesive rubber layer sheet (upper adhesive) Rubber: Same as the adhesive rubber layer sheet), a stretch rubber layer sheet (unvulcanized rubber), and a reinforcing cloth (upper cloth) may be wound in order to produce a molded body. After that, a jacket is put on and the mold is placed in a vulcanizing can, and vulcanized at a temperature of about 120 to 200 ° C. (especially 150 to 180 ° C.) to prepare a belt sleeve. Cutting may be performed.

なお、伸張ゴム層用シート及び圧縮ゴム層用シートにおいて、短繊維の配向方向をベルト幅方向に配向させる方法としては、慣用の方法、例えば、所定の間隙を設けた一対のカレンダーロール間にゴムを通してシート状に圧延し、圧延方向に短繊維が配向した圧延シートの両側面を圧延方向と平行方向に切断するとともに、ベルト成形幅(ベルト幅方向の長さ)となるように圧延シートを圧延方向と直角方向に切断し、圧延方向と平行方向に切断した側面同士をジョイントする方法などが挙げられる。例えば、特開2003−14054号公報に記載の方法などを利用できる。   In the stretched rubber layer sheet and the compressed rubber layer sheet, as a method of aligning the orientation direction of the short fibers in the belt width direction, a conventional method, for example, rubber between a pair of calendar rolls provided with a predetermined gap is used. Rolled into a sheet shape, cut both sides of the rolled sheet with short fibers oriented in the rolling direction in a direction parallel to the rolling direction, and rolled the rolled sheet to have a belt forming width (length in the belt width direction) Examples include a method in which side surfaces cut in a direction perpendicular to the direction and in a direction parallel to the rolling direction are joined together. For example, the method described in JP2003-14054A can be used.

本発明では、得られたV状ベルトスリーブの側面を部分的に研磨する工程を経ることを特徴とする。ベルトスリーブ側面の研磨方法としては、慣用の方法を利用でき、例えば、ベルトスリーブを駆動プーリと従動プーリの間に懸架し、ベルトスリーブをベルト長手方向に所定の張力下で走行回転させながら、回転させた研磨具をスリーブの側面に当接させて研磨する方法などが利用できる。本発明では、ベルト側面(伸張ゴム層、接着ゴム層及び圧縮ゴム層)のうち、少なくとも伸張ゴム層の側面を研磨し、圧縮ゴム層の側面の少なくとも一部(特に内周側の領域)を研磨しないことにより、圧縮ゴム層の側面に平滑領域を形成できるため、変速機に使用しても加速性能を長期間安定して維持できる。研磨具としては、例えば、サンディングペーパーなどを用いることができる。研磨方法は、例えば、特開2008−44017号公報(特許文献2)に記載された研磨方法であってもよい。   The present invention is characterized by undergoing a step of partially polishing the side surface of the obtained V-shaped belt sleeve. As a method for polishing the side surface of the belt sleeve, a conventional method can be used. For example, the belt sleeve is suspended between a driving pulley and a driven pulley, and the belt sleeve is rotated while rotating in the longitudinal direction of the belt under a predetermined tension. For example, a method in which the polished polishing tool is brought into contact with the side surface of the sleeve for polishing can be used. In the present invention, among the belt side surfaces (extension rubber layer, adhesive rubber layer, and compression rubber layer), at least the side surfaces of the extension rubber layer are polished, and at least a part of the side surfaces of the compression rubber layer (particularly the inner peripheral region) is polished. By not polishing, a smooth region can be formed on the side surface of the compressed rubber layer, so that acceleration performance can be stably maintained for a long time even when used in a transmission. As a polishing tool, for example, sanding paper or the like can be used. The polishing method may be, for example, a polishing method described in JP 2008-44017 A (Patent Document 2).

これらの研磨方法のうち、側面を部分的に研磨し易い点から、回転可能な円盤状研磨具を用いる方法などを利用できる。図9は、ベルトスリーブ側面の一部(背面側)を研磨する方法を示すための模式図である。この例では、研磨具41は、ベルトスリーブと接触する表面がサンディングペーパーで形成されており、回転軸42で回転駆動される円盤状である。この研磨具41は、ベルトスリーブの両側面に接触するように、サンディングペーパーが配置されており、伝動ベルトの側面に対して近接・離脱する方向に移動可能である。この研磨具41をベルトスリーブの側面に近接させて当接させることよって、研磨具41でベルトスリーブの側面を研磨できる。この例では、前記研磨具41の外周面の幅は、接着ゴム層及び伸張ゴム層の側面全体を研磨可能な幅に調整されており、円盤状の研磨具の外周面をベルトスリーブの側面の一部(背面側)に局所的に押し当てて研磨することにより、接着ゴム層及び伸張ゴム層の側面全体を研磨できる。このように研磨することによって、ベルト側面の背面側のみ(接着ゴム層及び伸張ゴム層)を研磨して伸張ゴム層の側面より短繊維を突出させて摩擦係数を低減できる。さらに、接着ゴム層の側面の研磨により側面から心線を露出させた場合には、さらに摩擦係数を低減できる。また、図9は、回転軸42をベルトスリーブ側面と平行に配向させて研磨しているが、回転軸の角度を変えて研磨部のベルト角度と未研磨部のベルト角度とが異なるベルトを製造してもよい。研磨部と未研磨部との角度を変える場合、研磨部のベルト角度を未研磨部のベルト角度より小さく形成するのが好ましい。   Among these polishing methods, a method using a rotatable disk-shaped polishing tool can be used because the side surface is easily polished partially. FIG. 9 is a schematic view for illustrating a method of polishing a part of the side surface (back side) of the belt sleeve. In this example, the polishing tool 41 has a disk shape whose surface that contacts the belt sleeve is formed of sanding paper and is rotationally driven by the rotating shaft 42. Sanding paper is disposed on the polishing tool 41 so as to come into contact with both side surfaces of the belt sleeve, and the polishing tool 41 can move in the direction of approaching and detaching from the side surface of the transmission belt. By bringing the polishing tool 41 close to and in contact with the side surface of the belt sleeve, the side surface of the belt sleeve can be polished by the polishing tool 41. In this example, the width of the outer peripheral surface of the polishing tool 41 is adjusted to a width capable of polishing the entire side surfaces of the adhesive rubber layer and the stretched rubber layer, and the outer peripheral surface of the disc-shaped polishing tool is adjusted to the side surface of the belt sleeve. The entire side surfaces of the adhesive rubber layer and the stretched rubber layer can be polished by locally pressing against a part (the back side) and polishing. By polishing in this way, it is possible to polish only the back side (adhesive rubber layer and stretched rubber layer) of the side surface of the belt and cause the short fibers to protrude from the side surface of the stretched rubber layer, thereby reducing the friction coefficient. Furthermore, when the core wire is exposed from the side surface by polishing the side surface of the adhesive rubber layer, the friction coefficient can be further reduced. In FIG. 9, polishing is performed with the rotation shaft 42 oriented parallel to the side surface of the belt sleeve, but by changing the angle of the rotation shaft, the belt angle of the polishing part and the belt angle of the unpolished part are different. May be. When changing the angle between the polishing part and the unpolished part, it is preferable to form the belt angle of the polishing part smaller than the belt angle of the unpolished part.

図10は、ベルトスリーブ側面の研磨部の他の例を示すための概略断面図である。この例では、ベルト側面は、伸張ゴム層及び接着ゴム層の側面だけでなく、圧縮ゴム層においても、接着ゴム層及び圧縮ゴム層の界面53から、この界面53とコグ底部52との中央部までの領域の側面も研磨され、研磨部51を形成している。   FIG. 10 is a schematic cross-sectional view for illustrating another example of the polishing portion on the side surface of the belt sleeve. In this example, the belt side surface is not only the side surface of the stretched rubber layer and the adhesive rubber layer, but also in the compressed rubber layer, from the interface 53 between the adhesive rubber layer and the compressed rubber layer, the central portion of the interface 53 and the cog bottom 52. The side surface of the region up to this point is also polished to form a polishing portion 51.

本発明では、研磨工程で研磨される研磨部は、少なくとも伸張ゴム層の側面を研磨すればよく、接着ゴム層の側面及び圧縮ゴム層の側面の一部は、研磨しても、研磨しなくてもいずれでもよい。圧縮ゴム層の側面を研磨する場合は、少なくとも内周側の側面(例えば、コグ部全体を含む領域)を未研磨部とするのが好ましく、特に、図10に示すように、少なくとも内周側(コグ部の頂部)から、接着ゴム層及び圧縮ゴム層の界面とコグ底部との中央部までを含む領域(例えば、圧縮ゴム層の側面全体)までを未研磨部とするのが好ましい。接着ゴム層の側面は、目的に応じて、初期の摺動性を向上させる場合には研磨してもよいが、加速性能の安定性を高度に向上できる点からは、接着ゴム層の側面は研磨せずに、伸長ゴム層の側面のみ(伸張ゴム層の側面全体のみ)を研磨するのが好ましい。   In the present invention, the polishing portion to be polished in the polishing step may polish at least the side surface of the stretched rubber layer, and the side surface of the adhesive rubber layer and the side surface of the compressed rubber layer may be polished even if polished. Or either. In the case of polishing the side surface of the compressed rubber layer, it is preferable that at least the inner peripheral side surface (for example, the region including the entire cog portion) be an unpolished portion. In particular, as shown in FIG. It is preferable that the region from (the top of the cog portion) to the central portion of the interface between the adhesive rubber layer and the compressed rubber layer and the cog bottom portion (for example, the entire side surface of the compressed rubber layer) is an unpolished portion. Depending on the purpose, the side surface of the adhesive rubber layer may be polished in order to improve the initial slidability, but from the point that the stability of acceleration performance can be highly improved, the side surface of the adhesive rubber layer is It is preferable to polish only the side surface of the stretched rubber layer (only the entire side surface of the stretched rubber layer) without polishing.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例において、各物性における測定方法又は評価方法、実施例に用いた原料を以下に示す。なお、特にことわりのない限り、「部」及び「%」は質量基準である。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following examples, measurement methods or evaluation methods for each physical property, and raw materials used in the examples are shown below. Unless otherwise specified, “part” and “%” are based on mass.

(1)短繊維の平均突出高さ
ベルト幅方向と平行方向にベルトを切断し、この切断面を走査型電子顕微鏡(日本電子(株)製「JSM5900LV」)を用いて拡大観察して、側面より突出する短繊維(100本)の突出高さを測定し、100個の測定値を平均して平均突出高さを求めた。
(1) Average protruding height of short fibers A belt is cut in a direction parallel to the belt width direction, and this cut surface is enlarged and observed using a scanning electron microscope ("JSM5900LV" manufactured by JEOL Ltd.). The protruding heights of the more protruding short fibers (100 fibers) were measured, and the average protruding height was obtained by averaging 100 measured values.

(2)短繊維の密度
ベルト厚み方向と平行方向(短繊維配向方向に対し直角方向)にベルトを切断し、この切断面を走査型電子顕微鏡(日本電子(株)製「JSM5900LV」)を用いて拡大観察して、所定の面積(例えば1mm)に存在する短繊維の本数を数え、これを1cm当たりに換算して求めた。
(2) Density of short fibers The belt is cut in a direction parallel to the belt thickness direction (perpendicular to the direction of short fiber orientation), and this cut surface is scanned using a scanning electron microscope ("JSM5900LV" manufactured by JEOL Ltd.). The number of short fibers existing in a predetermined area (for example, 1 mm 2 ) was counted, and this was calculated by converting per 1 cm 2 .

(3)ベルト角度
ベルト角度は、接触型形状測定器((株)ミツトヨ製「CBH−1」)を用いてベルトのV形状をトレースし、その形状データを基に解析ソフトを用いてベルトの両側面がなす角度を測定した。
(3) Belt angle The belt angle is obtained by tracing the V shape of the belt using a contact-type shape measuring instrument ("CBH-1" manufactured by Mitutoyo Corporation) and using analysis software based on the shape data. The angle formed by both sides was measured.

(4)摩擦係数
ベルトの摩擦係数は、図11に示すように、切断したローエッジコグドVベルト61の一方の端部をロードセル62に固定し、他方の端部に3kgfの荷重63を載せ、プーリ64へのベルトの巻き付け角度を45°にしてベルト61をプーリ64に巻き付けた。そして、ロードセル62側のベルト61を30mm/分の速度で15秒程度引張り、摩擦伝動面の平均摩擦係数を測定した。なお、測定に際して、プーリ64は回転しないように固定した。この測定は、新品のベルトと下記条件で慣らし走行させた後のベルトについて行なった。
(4) Friction coefficient As shown in FIG. 11, the friction coefficient of the belt is such that one end of the cut low-edge cogged V-belt 61 is fixed to the load cell 62, and a load 63 of 3 kgf is placed on the other end. The belt 61 was wound around the pulley 64 by setting the winding angle of the belt around the pulley 64 to 45 °. The belt 61 on the load cell 62 side was pulled at a speed of 30 mm / min for about 15 seconds, and the average friction coefficient of the friction transmission surface was measured. In the measurement, the pulley 64 was fixed so as not to rotate. This measurement was performed on a new belt and a belt after running-in under the following conditions.

慣らし走行は、図12に示すように直径95mmの駆動(Dr.)プーリと、直径85mmの従動(Dn.)プーリにベルトを掛架し、駆動プーリの回転数5000rpm、従動プーリに3N・mの負荷を付与し、室温雰囲気下にてベルトを24時間走行させて行なった。   In the running-in, as shown in FIG. 12, a belt is hung on a driving (Dr.) pulley having a diameter of 95 mm and a driven (Dn.) Pulley having a diameter of 85 mm, the rotational speed of the driving pulley is 5000 rpm, and the driven pulley is 3 N · m. The belt was run for 24 hours in a room temperature atmosphere.

(5)変速回転数
125ccの二輪スクーターにローエッジコグドVベルトをセッティングし、駆動プーリの回転数を1500rpm(アイドル状態)から8000rpm(フルスロット)まで1秒間で急激に上昇させ、このときの変速回転数(図1のベルトが変速開始するときの駆動プーリの回転数)を測定した。変速回転数は新品のベルトと慣らし走行後のベルトについて測定し、新品と慣らし後の変速回転数の変化を求めた。この変化が小さいほどベルトの加速性能が安定して長期間維持されることを表す。
(5) Speed change speed A low-edge cogged V-belt is set on a 125cc two-wheeled scooter, and the drive pulley speed is rapidly increased from 1500 rpm (idle state) to 8000 rpm (full slot) in 1 second. The number of revolutions (the number of revolutions of the drive pulley when the belt of FIG. The speed change speed was measured for a new belt and a belt after running-in, and the change in the speed change speed after the new and running-in was determined. The smaller the change, the more stable the acceleration performance of the belt can be maintained for a long time.

(6)高速走行試験
この走行試験では、ベルトがプーリ上をプーリ半径方向外側に摺動させた状態で走行させたときのベルトの伝達効率を評価した。特に、駆動プーリの回転数が大きくなると、ベルトに遠心力が強く作用する。また、駆動プーリの緩み側(図12参照)の位置ではベルト張力が低く作用しており、前記遠心力との複合作用により、この位置でベルトはプーリ半径方向外側に飛び出そうとする。この飛び出しがスムーズに行なわれない、すなわちベルトの摩擦伝動面とプーリとの間に摩擦力が強く作用すると、その摩擦力によりベルトの伝動ロスが生じ、伝達効率が低下することになる。
(6) High-speed running test In this running test, the transmission efficiency of the belt when the belt was run while sliding on the pulley radially outward was evaluated. In particular, when the rotational speed of the drive pulley increases, centrifugal force acts strongly on the belt. Further, the belt tension acts low at a position on the loose side of the drive pulley (see FIG. 12), and the belt tends to jump outward in the pulley radial direction at this position due to the combined action with the centrifugal force. If this pop-out does not occur smoothly, that is, if a frictional force acts strongly between the belt's frictional transmission surface and the pulley, the frictional force causes a belt transmission loss, resulting in a decrease in transmission efficiency.

高速走行試験は、図12に示すように、直径95mmの駆動(Dr.)プーリ72と、直径85mmの従動(Dn.)プーリ73とからなる2軸走行試験機を用いて行なった。次に、各プーリ72,73にローエッジコグドVベルト(新品)71を掛架し、駆動プーリ72の回転数5000rpm、従動プーリ73に3N・mの負荷を付与し、室温雰囲気下にてベルト71を走行させた。そして、走行させて直ちに従動プーリ72の回転数を検出器より読取り、前記計算式より伝達効率を求めた。また、ベルト走行時の異音の有無を聴覚的に確認した。   As shown in FIG. 12, the high-speed running test was performed using a two-axis running test machine including a driving (Dr.) pulley 72 having a diameter of 95 mm and a driven (Dn.) Pulley 73 having a diameter of 85 mm. Next, a low-edge cogged V-belt (new) 71 is hung on each pulley 72, 73, the rotational speed of the driving pulley 72 is 5000 rpm, a load of 3 N · m is applied to the driven pulley 73, and the belt is run at room temperature. 71 was run. Then, after running, the rotational speed of the driven pulley 72 was read from the detector, and the transmission efficiency was obtained from the above formula. In addition, the presence or absence of abnormal noise during running of the belt was audibly confirmed.

(7)耐久走行試験
耐久走行試験は、図13に示すように、直径50mmの駆動(Dr.)プーリ82と、直径125mmの従動(Dn.)プーリ83とからなる2軸走行試験機を用いて行なった。次に、各プーリ82,83にローエッジコグドVベルト(新品)81を掛架し、駆動プーリ82の回転数5000rpm、従動プーリ83に10N・mの負荷を付与し、雰囲気温度80℃にてベルト81を400時間走行させた。ベルト81が切断などにより停止することなく、走行した時間を評価した。
(7) Endurance Running Test The endurance running test uses a two-axis running test machine comprising a driving (Dr.) pulley 82 having a diameter of 50 mm and a driven (Dn.) Pulley 83 having a diameter of 125 mm, as shown in FIG. It was done. Next, a low-edge cogged V-belt (new article) 81 is hung on each pulley 82, 83, the rotational speed of the driving pulley 82 is 5000 rpm, a load of 10 N · m is applied to the driven pulley 83, and the ambient temperature is 80 ° C. The belt 81 was run for 400 hours. The running time was evaluated without the belt 81 being stopped by cutting or the like.

(8)原料
アラミド短繊維:帝人テクノプロダクツ(株)製「コーネックス短繊維」、平均繊維長3mm、平均繊維径14μm
綿短繊維:デニムカット糸、平均繊維長6mm、平均繊維径13μm
ナフテン系オイル:DIC(株)製「RS700」
カーボンブラック:東海カーボン(株)製「シースト3」
老化防止剤:精工化学(株)製「ノンフレックスOD3」
加硫促進剤:テトラメチルチウラム・ジスルフィド(TMTD)
シリカ:東ソー・シリカ(株)製「Nipsil VN3」
心線:1,000デニールのPET繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で緒撚りしたトータルデニール6,000のコードを接着処理した繊維。
(8) Raw material Aramid short fiber: “Conex short fiber” manufactured by Teijin Techno Products Limited, average fiber length 3 mm, average fiber diameter 14 μm
Cotton short fiber: Denim cut yarn, average fiber length 6mm, average fiber diameter 13μm
Naphthenic oil: “RS700” manufactured by DIC Corporation
Carbon black: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
Anti-aging agent: “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
Vulcanization accelerator: Tetramethylthiuram disulfide (TMTD)
Silica: “Nipsil VN3” manufactured by Tosoh Silica Corporation
Core wire: A fiber obtained by bonding a cord of total denier 6,000 in which a PET fiber of 1,000 denier is twisted with a 2 × 3 twist structure and an upper twist coefficient of 3.0 and a lower twist coefficient of 3.0.

実施例1〜3及び比較例1〜3
(ゴム層の形成)
表1(圧縮ゴム層、伸張ゴム層)及び表2(接着ゴム層)のゴム組成物は、それぞれ、バンバリーミキサーなど公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して圧延ゴムシート(圧縮ゴム層用シート、伸張ゴム層用シート、接着ゴム層用シート)を作製した。表1の配合Aと配合Bは、短繊維の種類及びその配合量が異なる以外は同じ配合とした。
Examples 1-3 and Comparative Examples 1-3
(Formation of rubber layer)
The rubber compositions in Table 1 (compressed rubber layer, stretched rubber layer) and Table 2 (adhesive rubber layer) were each kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll. Rolled rubber sheets (compressed rubber layer sheet, stretch rubber layer sheet, adhesive rubber layer sheet) were prepared. Formulation A and Formulation B in Table 1 were the same except that the types of short fibers and the blending amounts thereof were different.

Figure 0005735371
Figure 0005735371

Figure 0005735371
Figure 0005735371

(ベルトの製造)
補強布(下布)と圧縮ゴム層用シート(未加硫ゴム)との積層体を、補強布を下にして歯部と溝部とを交互に配した平坦なコグ付き型に設置し、75℃でプレス加圧することによってコグ部を型付けしたコグパッド(完全には加硫しておらず、半加硫状態にある)を作製した。次に、このコグパッドの両端をコグ山部の頂部から垂直に切断した。
(Manufacture of belts)
75. Laminate of reinforcing cloth (lower cloth) and compressed rubber layer sheet (unvulcanized rubber) is placed on a flat cogged mold with teeth and grooves alternately arranged with the reinforcing cloth facing down. A cog pad (not completely vulcanized but in a semi-vulcanized state) with a cog part formed by press-pressing at 0 ° C. was produced. Next, both ends of the cog pad were cut vertically from the top of the cog crest.

円筒状の金型に歯部と溝部とを交互に配した内母型を被せ、この歯部と溝部に係合させてコグパッドを巻き付けてコグ山部の頂部でジョイントし、この巻き付けたコグパッドの上に接着ゴム層用シート(下接着ゴム:未加硫ゴム)を積層した後、心線を螺旋状にスピニングし、この上に接着ゴム層用シート(上接着ゴム:前記接着ゴム層用シートと同じ)、伸張ゴム層用シート(未加硫ゴム)、補強布(上布)を順次巻き付けて成形体を作製した。その後、ジャケットを被せて金型を加硫缶に設置し、温度160℃、時間20分で加硫してベルトスリーブを得た。このスリーブをカッターでV状に切断し、ベルト両側面の一部(背面側)もしくは全体を研磨、又は研磨せずに、図3に示す構造のベルト、すなわち、ベルト内周側にコグを有する変速ベルトであるローエッジコグドVベルト(サイズ:上幅22.0mm、厚み11.0mm、外周長800mm)を作製した。   Cover the inner die with teeth and grooves alternately on a cylindrical mold, engage the teeth and grooves, wrap a cog pad, and joint at the top of the cog crest. After laminating an adhesive rubber layer sheet (lower adhesive rubber: unvulcanized rubber), the core wire is spun into a spiral shape, and an adhesive rubber layer sheet (upper adhesive rubber: the adhesive rubber layer sheet) is formed thereon. And a stretched rubber layer sheet (unvulcanized rubber) and a reinforcing cloth (upper cloth) were sequentially wound to prepare a molded body. Thereafter, the jacket was put on and the mold was placed in a vulcanizing can and vulcanized at a temperature of 160 ° C. for 20 minutes to obtain a belt sleeve. This sleeve is cut into a V shape with a cutter, and a belt having a structure shown in FIG. 3, ie, a cog on the inner peripheral side of the belt, without polishing or polishing a part (back side) or the whole of both sides of the belt. A low edge cogged V-belt (size: upper width 22.0 mm, thickness 11.0 mm, outer peripheral length 800 mm) as a transmission belt was produced.

なお、実施例1は、接着ゴム層(心線含む)、伸張ゴム層、上布を研磨して、圧縮ゴム層は研磨しなかった。実施例2は、接着ゴム層を研磨しない以外は実施例1と同様である。実施例3は、伸張ゴム層及び圧縮ゴム層の配合が異なる以外は実施例2と同様である。一方、比較例1は、ベルト両側面全体(下布〜上布)を研磨する以外は実施例1と同様である。比較例2は、ベルト両側面を研磨しない以外は実施例1と同様である。比較例3は、ベルト角度を小さくする以外は比較例2と同様である。   In Example 1, the adhesive rubber layer (including the core wire), the stretched rubber layer, and the upper cloth were polished, and the compressed rubber layer was not polished. Example 2 is the same as Example 1 except that the adhesive rubber layer is not polished. Example 3 is the same as Example 2 except that the blending of the stretched rubber layer and the compressed rubber layer is different. On the other hand, Comparative Example 1 is the same as Example 1 except that the entire belt side surfaces (lower cloth to upper cloth) are polished. Comparative Example 2 is the same as Example 1 except that both sides of the belt are not polished. Comparative Example 3 is the same as Comparative Example 2 except that the belt angle is reduced.

なお、得られたベルトにおいて、実施例1、2、比較例3の伸張ゴム層(配合A)における短繊維の平均突出高さは150μm、密度は9.7万本/cm、実施例3の伸張ゴム層(配合B)における短繊維の平均突出高さは55μm、密度は12万本/cmであった。 In the obtained belt, the average protruding height of short fibers in the stretched rubber layers (formulation A) of Examples 1 and 2 and Comparative Example 3 was 150 μm, the density was 97,000 pieces / cm 2 , and Example 3 In the stretched rubber layer (Blend B), the average protruding height of short fibers was 55 μm, and the density was 120,000 fibers / cm 2 .

実施例及び比較例で得られたベルトの評価結果を表3に示す。   Table 3 shows the evaluation results of the belts obtained in the examples and comparative examples.

Figure 0005735371
Figure 0005735371

表3から明らかなように、実施例1〜3は比較例2に比べて新品時の摩擦係数が低いため、プーリとの摺動ロスが小さくなり伝達効率が高かった。また、実施例1〜3は圧縮ゴム層を研磨していないため、新品時と慣らし走行後とでベルトの摩擦係数の変化が小さく、変速回転数の変化は小さかった。これに対し、比較例1は、ベルト側面全体を研磨しているので、新品時の摩擦係数は実施例1〜3に比べて低く、伝達効率は高くなるが、慣らし走行後は短繊維の突出が磨耗してなくなるため、摩擦係数が高くなって新品時と慣らし走行後との差が大きくなり、変速回転数の変化が大きくなった。   As is apparent from Table 3, since Examples 1 to 3 had a lower coefficient of friction when compared with Comparative Example 2, the sliding loss with the pulley was reduced and the transmission efficiency was high. In Examples 1 to 3, since the compressed rubber layer was not polished, the change in the friction coefficient of the belt was small and the change in the transmission rotation speed was small between when new and after running-in. On the other hand, in Comparative Example 1, since the entire belt side surface is polished, the friction coefficient at the time of a new article is lower than that in Examples 1 to 3, and the transmission efficiency is increased, but after running-in, the short fibers protrude. As a result, the friction coefficient increased, the difference between the new product and after running-in increased, and the change in the speed of the transmission increased.

また、実施例1〜3を比較すると、接着ゴムまで研磨した実施例1は、新品時の摩擦係数が小さく、伝達効率は実施例2及び3に比べて良好であるが、慣らし後と新品時の摩擦係数の変化は大きく、実施例2及び3に比べて変速回転数の変化は大きい結果となった。実施例3は、綿短繊維がアラミド短繊維に比べて突出しにくいため摩擦係数は高くなったが、伝達効率や変速回転数の変化は実施例2と同等であった。   Further, comparing Examples 1 to 3, Example 1 polished to adhesive rubber has a small coefficient of friction when new and transmission efficiency is better than that of Examples 2 and 3, but after acclimation and when new. The change in the friction coefficient was large, and the change in the shift rotational speed was larger than in Examples 2 and 3. In Example 3, the cotton short fibers were less prone to protrude than the aramid short fibers, and thus the friction coefficient was high. However, the changes in transmission efficiency and shift speed were the same as in Example 2.

比較例2は非研磨であり、新品時の摩擦係数が高いため伝達効率は最も低くなった。比較例3はベルト角度がプーリ角度に比べて小さく、ベルト背面側がプーリと接触しないので摩擦係数や摺動ロスが小さくなって伝達効率は実施例1〜3と同等であった。しかし、ベルトの内周側がプーリと強く接触してベルトが変形したため、ベルトはプーリ半径方向内側に落ち込んでベルトのコグ先端部がプーリと接触して異音(コグピッチノイズ)が発生した。   Comparative Example 2 was non-polished and had the lowest transmission efficiency due to the high coefficient of friction when new. In Comparative Example 3, the belt angle was smaller than the pulley angle, and the belt rear surface did not contact the pulley, so the friction coefficient and sliding loss were reduced, and the transmission efficiency was the same as in Examples 1-3. However, since the inner peripheral side of the belt was in strong contact with the pulley and the belt was deformed, the belt fell inwardly in the pulley radial direction and the cog tip of the belt contacted the pulley, generating abnormal noise (cog pitch noise).

本発明の伝動用Vベルトは、ベルト走行中に変速比が無段階で変わる変速機に使用されるベルト(変速ベルト)に利用され、断面がV字形状であり、伝動ロスが求められる種々の摩擦伝動用Vベルト、例えば、断面がV字形状のローエッジベルト、ローエッジベルトの内周側又は内周側及び外周側の両方にコグを設けたローエッジコグドVベルト、Vリブドベルトなど、特に、ローエッジコグドVベルトに利用できる。   The transmission V-belt according to the present invention is used for a belt (transmission belt) used in a transmission in which the transmission ratio changes steplessly while the belt is running, has a V-shaped cross section, and requires various transmission losses. Friction power transmission V-belt, for example, low-edge belt with V-shaped cross-section, low-edge cogged V-belt provided with cogs on the inner peripheral side or both inner and outer peripheral sides of the low-edge belt, V-ribbed belt, etc. Can be used for Cogd V-belts.

1…伝動用Vベルト
2,6…補強布
3…伸張ゴム層
3a…突出短繊維
4…接着ゴム層
4a…心線
5…圧縮ゴム層
5a…短繊維
DESCRIPTION OF SYMBOLS 1 ... Transmission V belt 2,6 ... Reinforcement cloth 3 ... Stretch rubber layer 3a ... Protruding short fiber 4 ... Adhesive rubber layer 4a ... Core wire 5 ... Compression rubber layer 5a ... Short fiber

Claims (11)

ベルトの長手方向に心線を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えた伝動用Vベルトであって、
前記圧縮ゴム層及び前記伸張ゴム層に、短繊維がベルト幅方向に配向して埋設され、
少なくとも前記伸張ゴム層の側面で短繊維が突出し、かつ
前記圧縮ゴム層の側面が、前記伸張ゴム層の側面全体における短繊維の平均突出高さよりも短繊維の平均突出高さが低い平滑領域を有する伝動用Vベルト。
An adhesive rubber layer having a core wire embedded in the longitudinal direction of the belt; a compression rubber layer formed on one surface of the adhesive rubber layer; and an elastic rubber layer formed on the other surface of the adhesive rubber layer. A transmission V-belt,
Short fibers are embedded in the compressed rubber layer and the stretched rubber layer so as to be oriented in the belt width direction,
At least a side surface of the stretched rubber layer protrudes short fibers, and the side surface of the compressed rubber layer has a smooth region in which the average projecting height of short fibers is lower than the average projecting height of short fibers in the entire side surface of the stretched rubber layer. A transmission V-belt.
圧縮ゴム層の側面全体が平滑領域である請求項1記載の伝動用Vベルト。   The transmission V-belt according to claim 1, wherein the entire side surface of the compressed rubber layer is a smooth region. 圧縮ゴム層及び接着ゴム層の側面全体が平滑領域である請求項1又は2記載の伝動用Vベルト。   The transmission V-belt according to claim 1 or 2, wherein the entire side surfaces of the compressed rubber layer and the adhesive rubber layer are smooth regions. 平滑領域において、短繊維が突出していない請求項1〜3のいずれかに記載の伝動用Vベルト。   The transmission V-belt according to any one of claims 1 to 3, wherein the short fibers do not protrude in a smooth region. 平滑領域におけるベルト角度が、プーリ角度と略同一の角度であり、かつ伸張ゴム層におけるベルト角度がプーリ角度と略同一の角度又はプーリ角度よりも小さい角度である請求項1〜4のいずれかに記載の伝動用Vベルト。   The belt angle in the smooth region is substantially the same as the pulley angle, and the belt angle in the stretched rubber layer is substantially the same as the pulley angle or smaller than the pulley angle. The transmission V-belt described. ローエッジコグドVベルトで構成された変速ベルトである請求項1〜5のいずれかに記載の伝動用Vベルト。   The transmission V-belt according to any one of claims 1 to 5, wherein the transmission V-belt is a transmission belt constituted by a low-edge cogged V-belt. 伸張ゴム層、接着ゴム層及び圧縮ゴム層の側面のうち、少なくとも伸張ゴム層の側面を研磨する研磨工程を含む請求項1〜6のいずれかに記載の伝動用Vベルトの製造方法。   The method for producing a transmission V-belt according to any one of claims 1 to 6, further comprising a polishing step of polishing at least a side surface of the stretched rubber layer among the side surfaces of the stretched rubber layer, the adhesive rubber layer, and the compressed rubber layer. 圧縮ゴム層の側面のうち、少なくともベルト内周側の側面は研磨しない請求項7記載の製造方法。   The manufacturing method according to claim 7, wherein at least a side surface of the inner peripheral side of the belt among the side surfaces of the compressed rubber layer is not polished. 圧縮ゴム層の側面全体を研磨しない請求項7又は8記載の製造方法。   The manufacturing method according to claim 7 or 8, wherein the entire side surface of the compressed rubber layer is not polished. 伸張ゴム層の側面のみを研磨する請求項7〜9のいずれかに記載の製造方法。   The manufacturing method according to claim 7, wherein only the side surface of the stretched rubber layer is polished. 請求項1〜6のいずれかに記載の伝動用Vベルトを変速機に使用する方法。   A method of using the transmission V-belt according to claim 1 for a transmission.
JP2011161234A 2011-07-22 2011-07-22 Transmission V-belt and method for producing and using the same Active JP5735371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161234A JP5735371B2 (en) 2011-07-22 2011-07-22 Transmission V-belt and method for producing and using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161234A JP5735371B2 (en) 2011-07-22 2011-07-22 Transmission V-belt and method for producing and using the same

Publications (2)

Publication Number Publication Date
JP2013024349A JP2013024349A (en) 2013-02-04
JP5735371B2 true JP5735371B2 (en) 2015-06-17

Family

ID=47782945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161234A Active JP5735371B2 (en) 2011-07-22 2011-07-22 Transmission V-belt and method for producing and using the same

Country Status (1)

Country Link
JP (1) JP5735371B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104358824A (en) * 2014-10-27 2015-02-18 常州市武进长江滚针轴承有限公司 Synchronous conveying belt
JP6532416B2 (en) * 2015-02-27 2019-06-19 三ツ星ベルト株式会社 Transmission belt, method of manufacturing transmission belt, reinforcing cloth, and method of manufacturing reinforcing cloth
WO2016136975A1 (en) * 2015-02-27 2016-09-01 三ツ星ベルト株式会社 Transmission belt, method for manufacturing transmission belt, reinforcing fabric, and method for manufacturing reinforcing fabric
WO2017110784A1 (en) 2015-12-21 2017-06-29 三ツ星ベルト株式会社 Friction drive belt
WO2017110790A1 (en) 2015-12-22 2017-06-29 三ツ星ベルト株式会社 Friction-transmission belt and method for manufacturing same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582839A (en) * 1978-12-16 1980-06-21 Mitsuboshi Belting Ltd Power transmitting v-belt and its manufacturing method
JPS5949046U (en) * 1983-07-18 1984-03-31 デイコ・コ−ポレイシヨン elastic endless transmission belt
JPH0242913Y2 (en) * 1985-02-20 1990-11-15
JP2588832Y2 (en) * 1991-12-25 1999-01-20 三ツ星ベルト株式会社 V-belt for shifting
JPH109345A (en) * 1996-06-21 1998-01-13 Mitsuboshi Belting Ltd V-ribbed belt and manufacture the same
JPH1047437A (en) * 1996-07-31 1998-02-20 Mitsuboshi Belting Ltd Drive power transmission belt
JP3553371B2 (en) * 1998-05-26 2004-08-11 三ツ星ベルト株式会社 Transmission belt forming equipment
JP3068200U (en) * 1999-10-14 2000-04-28 三ツ星ベルト株式会社 Power transmission belt
JP2002013600A (en) * 2000-06-28 2002-01-18 Mitsuboshi Belting Ltd Power transmission belt driving device
JP4011997B2 (en) * 2002-07-08 2007-11-21 バンドー化学株式会社 Double cogged V belt
JP3934012B2 (en) * 2002-08-27 2007-06-20 三ツ星ベルト株式会社 Transmission belt manufacturing method
JP4813098B2 (en) * 2004-08-24 2011-11-09 三ツ星ベルト株式会社 Power transmission belt manufacturing method and bias cut device
JP2006124484A (en) * 2004-10-28 2006-05-18 Mitsuboshi Belting Ltd Method for producing bonded product of ethylene/alpha-olefin rubber composition and fiber and power transmission belt
JP2008232165A (en) * 2007-03-16 2008-10-02 Bando Chem Ind Ltd Cogged v-belt

Also Published As

Publication number Publication date
JP2013024349A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP6055430B2 (en) Transmission belt
CA2902421C (en) Power transmission belt and belt-type continuously variable transmission
JP5735371B2 (en) Transmission V-belt and method for producing and using the same
US10941506B2 (en) Plied cord, production method therefor, transmission belt, and method for using same
WO2015045255A1 (en) V-belt and production method therefor
WO2017110784A1 (en) Friction drive belt
CN108431450B (en) Friction transmission belt and method for manufacturing same
WO2017110790A1 (en) Friction-transmission belt and method for manufacturing same
US11867258B2 (en) V-ribbed belt
JP6650388B2 (en) Friction transmission belt
JP6650545B1 (en) Core wire for friction transmission belt, friction transmission belt, and method of manufacturing the same
WO2018074471A1 (en) Plied cord, production method therefor, transmission belt, and method for using same
JP7368082B2 (en) V-belt for power transmission
JP6563986B2 (en) Manufacturing method of V belt with cogs
WO2019160055A1 (en) V-ribbed belt and use thereof
JP6700091B2 (en) V-belt and continuously variable transmission using the same
JP6935000B2 (en) Transmission belt core wire and transmission belt and their manufacturing method
WO2019009339A1 (en) V-ribbed belt
WO2023210605A1 (en) Belt mechanism provided in bicycle continuously variable transmission
WO2023224019A1 (en) Raw edge cogged v-belt, method for using same, and belt transmission mechanism
WO2024004769A1 (en) Rubber composition for transmission belt, transmission belt, and method for manufacturing transmission belt
JP2023104898A (en) Transmission V-belt and its manufacturing method
WO2018043316A1 (en) Method for manufacturing cogged v-belts
WO2019111639A1 (en) Friction transmission belt, cord for same, and manufacturing method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5735371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250