WO2019111639A1 - Friction transmission belt, cord for same, and manufacturing method for same - Google Patents

Friction transmission belt, cord for same, and manufacturing method for same Download PDF

Info

Publication number
WO2019111639A1
WO2019111639A1 PCT/JP2018/041878 JP2018041878W WO2019111639A1 WO 2019111639 A1 WO2019111639 A1 WO 2019111639A1 JP 2018041878 W JP2018041878 W JP 2018041878W WO 2019111639 A1 WO2019111639 A1 WO 2019111639A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
cord
core
belt
sheath
Prior art date
Application number
PCT/JP2018/041878
Other languages
French (fr)
Japanese (ja)
Inventor
田村 昌史
武志 ▲辻▼
拓也 友田
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018201776A external-priority patent/JP6676725B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP18884992.1A priority Critical patent/EP3722636B1/en
Priority to US16/770,360 priority patent/US11879520B2/en
Publication of WO2019111639A1 publication Critical patent/WO2019111639A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/04Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics with a core of fibres or filaments arranged parallel to the centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a friction transmission belt (for example, a V-ribbed belt) including a predetermined twist cord as a core, a twist cord suitable for such a friction transmission belt, and a method of manufacturing them.
  • a friction transmission belt for example, a V-ribbed belt
  • a twist cord suitable for such a friction transmission belt and a method of manufacturing them.
  • belt-type ISG Integrated Starter Generator
  • high dynamic tension is generated in the accessory drive belt as compared with a normal engine without ISG. For example, assuming that the dynamic tension generated in the accessory drive belt without ISG installed is about 70 N / mm per 1 mm of belt width, the accessory drive belt loaded with the belt type ISG drive has a dynamic of about 100 N / mm Tension is generated.
  • auxiliary drive belts used in engines equipped with a belt type ISG drive are required to have high tensile elastic modulus in order to keep the belt elongation small even if high dynamic tension is applied.
  • a twist cord made of relatively high elastic modulus fiber such as polyester fiber or aramid fiber has been used, but the dynamic tension continues to increase. Elastic modulus is getting short.
  • Patent Document 1 In order to increase the tensile modulus of elasticity of the belt, it has been proposed to use a twisted cord made of carbon fiber having a modulus of elasticity higher than that of aramid fiber as a core wire, as disclosed in JP-A-61-129 433 (Patent Document 1). Discloses a power transmission belt using a carbon fiber twist cord as a tensile body.
  • the twisting cord is adjusted to an upper twist coefficient of 2 to 4 and treated with resorcinol-formalin-latex (RFL), and the bending fatigue resistance is improved by using the carbon yarn twisting cord. It is described that the belt elongation during running is small and the water resistance is improved.
  • Japanese Patent Application Publication No. 2004-535517 discloses a spiral transmission having a yarn composed of carbon fibers having a tensile elastic modulus in the range of about 50 to 350 GPa as a power transmission belt having an improved elongation resistance.
  • a belt comprising a cord tension member, wherein at least a portion of the carbon fiber is coated with a cord treatment composition comprising an elastomeric latex and a resorcinol-formaldehyde reaction product.
  • WO 2004/090224 discloses a reinforcing cord comprising a carbon fiber strand and a plurality of glass fiber strands arranged around the carbon fiber strand. It is done.
  • a carbon fiber strand of 400 tex is treated with an RFL treating solution
  • a glass fiber strand of 100 tex is treated with an RFL treating solution around the obtained carbon fiber strand, and nine twisted yarns are pretwisted in the S direction.
  • the cord is prepared by arranging the cords in the Z direction opposite to the above-mentioned ply twist direction to prepare a cord and applying a rubber-containing overcoat treatment agent to the cord to prepare a reinforcing cord .
  • the reinforcing cord is described to have sufficient tensile strength for reinforcing a rubber product and to be able to enhance dimensional stability and resistance to bending fatigue.
  • a rubber reinforcing cord comprising a core fiber made of high elastic modulus fiber and a plurality of strands made of glass fiber disposed around the core fiber.
  • the upper twist direction and the lower twist direction are opposite, the number of upper twist is 1 to 3 times / 25 mm, and the ratio of the number of lower twist to the number of upper twist is in the range of 1.5 to 2.5.
  • a core fiber of carbon fiber and a glass fiber strand are treated with a treatment liquid (including rubber, bismaleimide and carbon black), and the glass fiber strand is twisted in the S direction by 1.7 to 4.
  • Patent Document 5 Japanese Patent Laid-Open No. 2016-11736
  • Patent Document 5 includes a core yarn disposed at the center, and a sheath yarn that covers the entire outer peripheral surface of the core yarn and fixes the core yarn.
  • a toothed belt is disclosed, comprising a core wire, wherein the distance between the core wires is less than 40% of the diameter of the core wire.
  • a carbon fiber strand is subjected to RFL treatment to be a twisted yarn, and 12 sheath yarns in which three glass fiber bundles are subjected to RFL treatment and twisted around one core yarn of this carbon fiber are disposed.
  • a hybrid cord having a core-sheath structure was prepared by twisting, and the hybrid cord was coated with an adhesive.
  • this toothed belt it is described that the bending fatigue property of the core wire is improved even in the environment where water or oil adheres, and belt narrowing is possible.
  • Japanese Patent Application Laid-Open No. 61-192,943 (claim 1, [action] [effect of the invention]) Japanese Patent Publication No. 2004-535517 (claim 1, [0001] [0005]) WO 2004/090224 (Claim 1, page 2, line 21 to line 22, embodiment) WO 2009/063952 (Claim 1, [0012], Example) Japanese Patent Application Laid-Open No. 2016-11736 (claim 1, [0013], an embodiment)
  • an object of the present invention is a cord suitable for applications where high dynamic tension is generated, such as a belt type ISG drive mounted engine, a friction transmission belt (for example, a V-ribbed belt, etc.) provided with this cord and excellent in durability. And a method of manufacturing the cord and the friction transmission belt.
  • Another object of the present invention is to provide a cord capable of achieving high power transmissibility even if the tensile modulus is high and the belt width is small, a friction transmission belt (such as a V-ribbed belt) provided with this cord, and a method of manufacturing them. It is to do.
  • Still another object of the present invention is to provide a friction transmission belt (such as a V-ribbed belt) having high durability even with a small number of ribs, a cord suitable for such a friction transmission belt, and a method of manufacturing them.
  • a friction transmission belt such as a V-ribbed belt
  • a core yarn (or strand) containing high modulus fibers and a plurality of sheath yarns arranged around this core yarn and including low modulus fibers In a cord (or cord) provided with (or a strand), the ratio (diameter ratio) of the average diameter of the core yarn to the average diameter of the sheath yarn, the bending fatigue resistance of the friction transmission belt, the rubber composition, It has been found that it greatly affects the adhesion of the present invention, and completed the present invention.
  • the friction transmission belt of the present invention includes a core wire, and the core wire is disposed around a core yarn (strand) including high modulus fibers and a plurality of low modulus fibers.
  • the cord includes the core yarn and the sheath yarn disposed around the core yarn to form a twisted twist cord.
  • the total fineness and the average diameter of the sheath yarn are small, and the total fineness of the sheath yarn may be, for example, about 30 to 80 tex, and the average diameter of the sheath yarn is, for example, 0.13 to 0 It may be about 25 mm.
  • the sheath yarn may be a twisted (yarn-twisted) twisted yarn, and the core yarn may have no twist, and the number of twists is 1 // 10 cm or less It may be present (or may be about 0 to 1 twist per 10 cm).
  • the cord may also be a twisted (twisted) yarn cord.
  • the number of sheath yarns for one core yarn may be, for example, about 11 to 19.
  • the core wire may include the core wire of the S twist cord and the core wire of the Z twist cord embedded at predetermined intervals in the rubber layer.
  • the twisting direction of the upper twist of the core yarn and / or the sheath yarn and the upper twist of the cord may be the same.
  • the high modulus fibers may comprise carbon fibers and the low modulus fibers may comprise glass fibers.
  • An adhesive component may be attached to the surface of at least a portion of the high modulus fiber or the surface of at least a portion of the low modulus fiber.
  • a rubber component may be attached to the surface of at least a part of the cord.
  • the friction transmission belt may be a belt including a compression rubber layer (for example, a V-ribbed belt), and short fibers may protrude from the surface of the compression rubber layer.
  • the friction transmission belt (for example, a V-ribbed belt) may have a high tensile elastic modulus, for example, a tensile elastic modulus of about 240 to 500 N / (mm ⁇ %).
  • Such a friction transmission belt may be mounted on a power transmission mechanism generating high dynamic tension, for example, an engine mounted with a belt type ISG drive.
  • a dynamic tension of 85 N / mm or more may be exerted per 1 mm width of the belt.
  • the friction transmission belt can be manufactured by a conventional method using the core wire (or twist cord). For example, forming a rubber layer or sheet (for example, a laminate or laminated sheet including an adhesive rubber layer), which is formed of an unvulcanized rubber composition and in which the core is embedded, into a predetermined shape; The friction transmission belt can be manufactured through the steps of vulcanizing the molded body.
  • a rubber layer or sheet for example, a laminate or laminated sheet including an adhesive rubber layer
  • the friction transmission belt can be manufactured through the steps of vulcanizing the molded body.
  • the invention also encompasses the cord and the method of making the same.
  • a cord a plurality of the sheath yarns including the low elastic modulus fibers are disposed around the core yarn including the high elastic modulus fibers, and the cord is over-twisted, and the sheath with respect to the average diameter of the core yarns
  • the ratio of the mean diameter of the yarn is 0.2 to 0.4.
  • Such a cord is a sheath for an average diameter of the core yarn in a method of arranging a plurality of the sheath yarns including the low elastic modulus fiber around the core yarn containing the high elastic modulus fiber and performing an upper twist. It can be manufactured by setting the ratio of the average diameter of the yarn to 0.2 to 0.4.
  • the core yarn and the sheath yarn may be respectively subjected to adhesion treatment, and the upper-twisted cord may be coated with a rubber composition containing a rubber component.
  • a cord embedded in a rubber layer of a belt is referred to as a "core", but the core has a form in which the core yarn is surrounded by a plurality of sheath yarns like the cord. doing. Therefore, the core wire and the code may be used synonymously.
  • the numerical value range “XX to YY” is a meaning including the numerical value “XX” and the numerical value “YY”, that is, the numerical value “XX” or more and the numerical value “YY” or less.
  • the ratio of the average diameter of the sheath of the low modulus fiber to the average diameter of the core of the high modulus fiber is small, applications where high dynamic tension is generated such as a belt type ISG drive mounted engine (power transmission Also in the mechanism, power can be effectively transmitted with a narrow belt width, and the durability can be greatly improved. Further, since the tensile elastic modulus is also high, the durability can be improved even with a friction transmission belt having a small number of ribs (V-ribbed belt or the like).
  • FIG. 1 is a schematic cross-sectional view showing the form of a core wire (or twisted cord).
  • FIG. 2 is a schematic cross-sectional view showing an example of a V-ribbed belt as a friction transmission belt.
  • FIG. 3 is a schematic view showing a layout of a testing machine used for a bending fatigue test of the V-ribbed belt obtained in the example and the comparative example.
  • FIG. 4 is a schematic view showing the layout of a testing machine used for the endurance running test of the V-ribbed belt obtained in the example and the comparative example.
  • the core wire (or twist cord) suitably used for the friction transmission belt of the present invention includes a core thread containing high modulus fiber and a sheath thread containing low modulus fiber, and has a form of a twist cord. ing.
  • a plurality of sheath yarns 3 are disposed around the core yarn 2, and twisted (over-twisted) to be combined, and the core
  • the yarn 2 has a form (the core of the cord 1 is formed of the core yarn 2 and the sheath is formed of the sheath yarn 3) surrounded by a plurality of sheath yarns 3.
  • the high modulus fiber contained in the core yarn is effective mainly to improve the resistance to tensile load, so transmission can be performed even with a narrow belt width, and belt elongation is small even if high dynamic tension occurs. It is possible to keep.
  • the low elastic modulus fiber contained in the sheath yarn is mainly effective in improving the adhesion and reducing the shear stress, so that the interfacial peeling between the rubber composition and the cord can be suppressed, and the life of the belt can be improved.
  • the ratio of the average diameter of the core yarn and the sheath yarn is important, and the average diameter of the sheath yarn is made small,
  • the function of the core yarn and the sheath yarn can be effectively exhibited by reducing the ratio (D2 / D1) of the average diameter D2 of the sheath yarn to the average diameter D1 of the core yarn.
  • the ratio (D2 / D1) of the average diameter D2 of the sheath yarn to the average diameter D1 of the core yarn is 0.2 to 0.4 (eg, 0.23 to 0.39).
  • the ratio (D2 / D1) is preferably 0.25 to 0.38 (eg, 0.30 to 0.37), more preferably 0.32 to 0.37 (eg, 0.34 to 0.37). Or about 0.28 to 0.38 (eg, 0.32 to 0.36).
  • the core yarn and the sheath yarn are used at such a ratio (D2 / D1) of the average diameter, the bending fatigue resistance and the adhesiveness with the rubber composition can be compatible at a high level.
  • stress acts on the belt shear stress is concentrated between the rubber which is easy to be deformed and the cord which is hard to be deformed, and peeling is easily generated.
  • the sheath yarn having a low elastic modulus is positioned at the outer peripheral portion of the core wire, the core wire is more easily deformed than the core yarn alone, and it is possible to alleviate the concentration of shear stress.
  • the ratio (D2 / D1) is less than 0.2, the adhesiveness is lowered to cause delamination easily between the core and the rubber composition, and the durability of the belt is lowered.
  • the ratio (D2 / D1) exceeds 0.4, bending fatigue is promoted due to an increase in bending strain, and the durability is lowered.
  • the average diameters D1 and D2 of the core yarn and sheath yarn are randomly selected 30 core yarns and sheath yarns in the micrograph of the cross-section of the core yarn and sheath yarn or the cross-section of the belt in the width direction.
  • the major diameter and the minor diameter are measured to calculate the addition average diameter, and the total value of the average diameters calculated in this manner is divided by 30 to obtain an average.
  • the high elastic modulus fiber of the core yarn may be an inorganic or organic fiber having a high tensile elastic modulus, and the tensile elastic modulus of the high elastic modulus fiber is, for example, 200 to 900 GPa (for example, 200 to 800 GPa), preferably 210 to It may be about 500 GPa (eg, 220 to 300 GPa), more preferably 220 to 270 GPa (eg, 220 to 250 GPa).
  • the tensile modulus of elasticity of the fiber can be measured by measuring the load-elongation curve by the method described in JIS L 1013 (2010), and determining the average slope of the area under a load of 1000 MPa (the same applies hereinafter).
  • the core yarn contains high modulus fibers, the tensile modulus of the belt can be improved, and power can be transmitted with a narrow belt width even in applications where high dynamic tension is generated.
  • the tensile modulus of elasticity of the fiber is too low, the belt elongation becomes large and the slip becomes large, which may cause poor power transmission, generation of abnormal noise, and deterioration of durability due to heat generation.
  • the tensile modulus of elasticity of the fiber is too high, the tension fluctuation of the belt becomes large, and the durability may be lowered.
  • carbon fiber As such a high elastic modulus fiber, carbon fiber, PBO (poly paraphenylene benzo bis oxazole) fiber etc. can be illustrated, for example. These fibers can be used alone or in combination of two or more.
  • carbon fiber As the high modulus fiber, carbon fiber is preferable because it has a particularly high modulus. The use of carbon fiber can improve the durability with a smaller belt width even in applications where high dynamic tension is generated.
  • carbon fibers of the raw yarn include pitch-based carbon fibers, polyacrylonitrile (PAN) -based carbon fibers, phenol resin-based carbon fibers, cellulose-based carbon fibers, polyvinyl alcohol-based carbon fibers and the like.
  • PAN polyacrylonitrile
  • carbon fibers for example, Toray Industries, Inc. "Toreca (registered trademark)", Toho Tenax Corporation “Tenax (registered trademark)”, Mitsubishi Chemical Corporation “Dyaleed (registered trademark)” Can be used.
  • These carbon fibers can be used alone or in combination of two or more.
  • pitch-based carbon fibers and PAN-based carbon fibers are preferable, and PAN-based carbon fibers are particularly preferable.
  • the carbon fiber which is a raw yarn is usually a carbon multifilament yarn containing carbon fiber.
  • the carbon multifilament yarn may contain monofilament yarn of carbon fiber, and if necessary, monofilament yarn of fiber other than carbon fiber (for example, inorganic fiber such as glass fiber or organic fiber such as aramid fiber) May be included.
  • the proportion of carbon fibers may be 50% by mass or more (50 to 100% by mass), preferably 80% by mass or more, and more preferably 90% by mass or more in the whole monofilament yarn (multifilament yarn). , 100% by mass, and all monofilament yarns are composed of carbon fibers. If the proportion of carbon fibers is too small, the belt elongation will be large, and if a high dynamic tension occurs, the durability may be reduced.
  • the multifilament yarn may contain a plurality of monofilament yarns, for example, 100 to 50,000, preferably 1,000 to 30,000, and more preferably 5,000 to 20,000 (particularly 10,000 to 15,000) of monofilament yarns. It may be The average fineness of the monofilament yarn may be, for example, about 0.1 to 5 dtex, preferably about 0.3 to 3 dtex, and more preferably about 0.5 to 1 dtex.
  • the total fineness of the core yarn can be selected in the range in which a desired core diameter can be obtained, for example, 100 to 1000 tex (eg, 120 to 800 tex), preferably 150 to 700 tex (eg, 200 to 600 tex), more preferably 250 It may be about 500 to 500 tex (for example, 300 to 450 tex) or about 300 to 600 tex (for example, 350 to 550 tex).
  • a desired core diameter for example, 100 to 1000 tex (eg, 120 to 800 tex), preferably 150 to 700 tex (eg, 200 to 600 tex), more preferably 250 It may be about 500 to 500 tex (for example, 300 to 450 tex) or about 300 to 600 tex (for example, 350 to 550 tex).
  • the core diameter can be controlled to an appropriate range, and the tensile modulus of elasticity of the belt can be sufficiently increased. If the total fineness is too small, the core wire diameter may become too thin and the tensile modulus and tensile strength of the belt may be
  • the average diameter (average wire diameter) of the core yarn is, for example, 0.2 to 1 mm (for example, 0.25 to 0.95 mm), preferably 0.3 to 0.8 mm (for example, 0.35 to 0.75 mm) ), More preferably about 0.4 to 0.7 mm (for example, 0.4 to 0.65 mm), and preferably about 0.35 to 0.65 mm (for example, 0.37 to 0.63 mm). It may be. If the wire diameter of the core yarn is too small, the tensile modulus of elasticity of the belt may be reduced. If the wire diameter of the core yarn is too large, the bending fatigue resistance of the belt may be reduced.
  • the core yarn before doubling yarn may be a twisted yarn or a fiber bundle of non-twisted yarn, but the belt is preferably used even in applications where the tensile elastic modulus is increased and high dynamic tension is generated.
  • it is a fiber bundle of untwisted yarn or a twisted yarn having a twist number of 1/10 cm or less (or a twist number of 0 to 1/10 cm, or a twist number of 0 to 1 cm), preferably a untwisted yarn.
  • the non-twisted yarn includes a substantially untwisted yarn or fiber bundle having a twist number of 0.1 times / 10 cm or less.
  • the belt elongation can be suppressed to a low level, and the belt can be suitably used in applications where high dynamic tension is generated.
  • the number of core yarn twists is large, the elongation of the belt becomes large, which makes it difficult to apply to applications where high dynamic tension is generated.
  • the low modulus fiber forming the sheath yarn is a fiber having a low tensile modulus, for example, a tensile modulus of about 50 to 150 GPa (for example, 55 to 120 GPa), preferably about 60 to 100 GPa (for example, 60 to 80 GPa) It may be fiber.
  • a tensile modulus for example, a tensile modulus of about 50 to 150 GPa (for example, 55 to 120 GPa), preferably about 60 to 100 GPa (for example, 60 to 80 GPa) It may be fiber.
  • the low modulus fiber examples include glass fiber and organic fiber (aramid fiber, polyester fiber, nylon fiber, cellulose fiber, etc.). These fibers can be used alone or in combination of two or more.
  • glass fiber is preferable in terms of the balance of adhesion, tensile strength, elastic modulus and cost.
  • the glass fiber has a relatively high adhesiveness to the rubber composition, and thus not only has a high effect of improving the durability of the belt but also has a relatively high elastic modulus, so that the elastic modulus of the belt can be improved.
  • glass fiber of the raw yarn examples include alkali-free glass (E glass), high-strength glass (K, U, S glass) containing a large amount of silicon Si.
  • examples of commercial products of glass fiber include K glass fiber, U glass fiber (both manufactured by Nippon Sheet Glass Co., Ltd.), T glass fiber (manufactured by Nitto Boseki Co., Ltd.), R glass fiber (manufactured by Vetrotex), S glass fiber, S- 2 Glass fiber, ZENTRON glass fiber (all manufactured by Owens Corning Fiberglass) and the like.
  • high-strength glass (K glass fiber) is most preferable in that the tensile strength and elastic modulus of the twisted cord can be increased.
  • the glass fiber may be surface-treated with a silane coupling agent from the viewpoint of adhesion.
  • the glass fiber which is a raw yarn is usually a glass multifilament yarn containing glass fiber.
  • the glass multifilament yarn may contain monofilament yarn of glass fiber, and if necessary, monofilament yarn of fiber other than glass fiber (for example, inorganic fiber such as carbon fiber or organic fiber such as aramid fiber) May be included.
  • the proportion of the glass fiber may be 50% by mass or more (50 to 100% by mass), preferably 80% by mass or more, more preferably 90% by mass or more in the whole monofilament yarn (multifilament yarn). , 100% by mass, and all monofilament yarns are composed of glass fibers. If the proportion of glass fiber is too small, the adhesion and shear stress relaxation effect may be reduced, and the durability of the belt may be reduced.
  • the sheath yarn may contain a plurality of monofilament yarns.
  • the average diameter (diameter) of the monofilaments forming the sheath yarn is not particularly limited, and is usually about 6 to 9 ⁇ m.
  • the total fineness of the sheath yarn (glass multifilament yarn etc.) can be appropriately selected as long as the bending fatigue resistance and the adhesiveness can be compatible, and is, for example, 20 to 100 tex (for example, 25 to 90 tex), preferably 30 to 80 tex (for example, 30 to 75 tex), more preferably about 35 to 70 tex (eg, 50 to 70 tex).
  • the sheath yarn of such a total fineness When the sheath yarn of such a total fineness is used, the bending fatigue resistance and the adhesiveness with the rubber composition can be compatible at a high level. If the total fineness of the sheath yarn is too small, the adhesion is lowered and delamination tends to occur between the core wire and the rubber composition, and the durability of the belt may be lowered due to the reduction of the shear stress relaxation effect. is there. If the total fineness of the sheath yarn is too large, bending fatigue is promoted by the increase of bending strain, and the durability of the belt is reduced.
  • the average diameter of the sheath yarn is, for example, 0.13 to 0.25 mm (eg, 0.14 to 0.24 mm), preferably 0.15 to 0.23 mm (eg, 0.15 to 0.22 mm), and further Preferably, it may be about 0.19 to 0.22 mm, or about 0.17 to 0.24 mm (eg, 0.18 to 0.23 mm).
  • the use of a sheath yarn having such an average diameter makes it possible to achieve both bending fatigue resistance and adhesiveness with the rubber composition at a high level in the same manner as the fineness.
  • the sheath yarn may be a non-twisted yarn (a non-twisted fiber bundle), but in order to enhance the bending fatigue resistance and the shear stress relaxation effect, at least a sheath yarn of the core yarn and the sheath yarn is twisted. Is preferred. That is, at the time of bending, the sheath yarn located at the outer peripheral portion of the cord receives larger strain stress than the core yarn located at the central portion of the cord. Therefore, it is possible to absorb the strain stress at the time of bending and to improve the bending fatigue resistance and the shear stress relaxation effect by simultaneously twisting the sheath yarn alone in combination with the twist (upper twist) as the entire cord.
  • the number of lower twists of the sheath yarn can be appropriately selected as long as the above effects are sufficiently exhibited, and usually 3 to 15 times / 10 cm (eg 5 to 15 times / 10 cm), preferably 5 to 12 times / 10 cm For example, it may be about 6 to 10 times / 10 cm).
  • the core yarn (high elastic modulus fiber) and the sheath yarn (low elastic modulus fiber) are not necessarily required, but are each subjected to an adhesion treatment before twisting, and the core yarn (high elastic modulus fiber) and sheath yarn (low) It is preferable to attach (or coat) the adhesive component on the surface of at least a part (preferably almost the entire surface) of the elastic modulus fiber).
  • the adhesive component may be attached to the surface of at least a portion of the high modulus fiber and / or the low modulus fiber, the surface of at least a portion of the core yarn and / or the sheath yarn, for example, the high modulus fiber and It may be attached to substantially the entire low modulus fiber, or substantially the entire core yarn and sheath yarn.
  • the adhesion process is performed, the convergence of the fibers in the core yarn and the sheath yarn is improved, and it is possible to suppress heat loss of the core wire exposed in the width cut section of the belt, and to improve the durability.
  • the core yarn and the sheath yarn are treated with the same adhesive, the core yarn and the sheath yarn can be integrated when the belt is vulcanized, and the shear stress relaxation effect can be enhanced.
  • a conventional method can be used, and for example, treatment (for example, immersion treatment) with a treatment solution containing resorcinol-formalin-latex (RFL) or a treatment solution containing a polyisocyanate compound and drying may be used.
  • RFL treatment liquid may be, for example, a latex adhesive containing resorcin-formalin resin, a bismaleimide compound, a polyisocyanate compound, and the like.
  • the rubber of the latex may be a rubber having a functional group such as a carboxyl group, such as a nitrile rubber having a carboxyl group or a hydrogenated nitrile rubber.
  • the twisted cords forming the core wire have a form in which a plurality of sheath yarns are disposed around the core yarn and are twisted in an over-twisted manner.
  • the number of sheath yarns arranged around the core yarn can be selected from the range of about 10 to 20 according to one core yarn, and it is possible to achieve both bending fatigue resistance and adhesiveness with the rubber composition at a high level In order to achieve this, it may be about 11 to 19 (for example, 12 to 19), preferably about 13 to 18 (for example, 14 to 16), and 12 to 18 (for example, 13 to 17) ) May be.
  • the adhesion is lowered, delamination tends to occur between the core wire and the rubber composition, and the durability of the belt is reduced. If the number of sheath yarns is too large, the sheath yarns ride on each other to distort the shape of the core wire, or increase in bending strain promotes bending fatigue and reduces durability.
  • the twisted cord (or the upper twisted cord) forming the core wire is a single twist in which untwisted fiber bundles of sheath yarn are disposed around untwisted fiber bundles of the core yarn and twisted in one direction; It is also good.
  • a lower-twisted twisted yarn in particular, at least a twisted yarn of a sheath yarn
  • a sheath yarn is disposed around the core yarn, and a rung is twisted in the same direction as the lower twist direction.
  • the second twist may be a middle-twisted cord.
  • Preferred cords are twisted cords that are top-twisted in the same direction as or opposite to the first twist direction, in particular, those that are top-twisted in the same direction as the first twist direction.
  • the bending fatigue resistance is improved in the twisted cord in which the upper twisting direction and the lower twisting direction are opposite to each other in the same direction as the lower twisting direction, as compared with the twisted cord in which the upper twisting direction and the lower twisting direction are opposite.
  • the number of upper twists of the core wire can be selected, for example, in the range of about 3 to 15 times / 10 cm, usually 5 to 15 times / 10 cm (eg 5 to 14 times / 10 cm), more preferably May be about 6 to 12 times / 10 cm (eg, 6 to 10 times / 10 cm).
  • Such a twisted number of core wires (or twisted cords) can reduce the elongation while maintaining the bending fatigue resistance.
  • the number of twists of the core wire (or twist cord) is increased, the relaxation effect to shear stress can be enhanced, and the bending fatigue resistance can be improved.
  • the resistance to bending fatigue may decrease to reduce the durability of the belt, and if the number of twists of the core wire (or twist cord) is too large, the resistance Although it is excellent in bending fatigue resistance, there is a possibility that the tensile modulus of elasticity and the tensile strength decrease and the elongation also increases.
  • the average diameter (average wire diameter or core wire diameter) of the core wire (or upper twist cord) is, for example, 0.3 to 1.5 mm (eg, 0.4 to 1.4 mm), preferably 0.5 to 1 .3 mm (e.g., 0.6 to 1.2 mm), and more preferably 0.7 to 1.2 mm (e.g., 0.75 to 1.2 mm), or 0.65 to 1.25 mm (e.g. For example, it may be about 0.75 to 1.15 mm). If the core wire diameter (or twisted cord diameter) is too small, the tensile modulus of elasticity of the belt may be decreased. If the core wire diameter (or twisted cord diameter) is too large, the bending fatigue resistance of the belt may be reduced. There is.
  • the cord (twisted cord) is not necessarily required.
  • a rubber component for example, a rubber of an adhesive rubber layer to be described later
  • a part preferably substantially the whole of the twisted cord It is preferred to apply (or coat) the components).
  • the adhesion (or coating) of the rubber component is carried out by coating (or overcoating) the cord with a rubber composition containing the rubber component (for example, a rubber paste in which the rubber component is dissolved in a solvent such as toluene). It can do by doing. For example, after immersing the twisted cord in a rubber-containing composition (rubber paste), it may be dried, heat-treated, and coated.
  • the twist cord subjected to such a coating treatment can further improve the adhesion to rubber compared to a core wire obtained by subjecting the core yarn and / or the sheath yarn to only the adhesion treatment, and it is possible to the shear stress.
  • the relaxation effect can be enhanced and the durability of the belt can be improved.
  • Friction transmission belt In the present invention, high tensile modulus and resistance to bending fatigue and durability can be realized, so friction transmission belts such as flat belts, V-belts (wrapped V-belts, low-edge V-belts, low-edge cogged V-belts, V-ribbed belts) Etc. (especially, V-ribbed belt etc.). V-ribbed belts are preferred, especially in applications where high dynamic tension is generated.
  • Patent Document 2 exemplifies a V-belt, a multi-ribbed belt, and a toothed power transmission belt as a power transmission belt, no specific study is made on the V-ribbed belt.
  • the toothed power transmission belt that is specifically studied is significantly different from the V-ribbed belt in the power transmission mechanism. Therefore, the toothed belt and the friction transmission belt (such as the V-ribbed belt) have different applications, problems, and required strength levels, and the configuration of the toothed belt is not very useful in the friction transmission belt.
  • a friction transmission belt such as a V-ribbed belt may include the core (or twisted cord), and a plurality of the cords are usually embedded in a rubber layer (for example, an adhesive rubber layer) of the friction transmission belt.
  • the plurality of cords respectively extend in the longitudinal direction of the belt and are spaced apart from each other at a predetermined pitch in the widthwise direction of the belt.
  • the core pitch (Core pitch) The core pitch (the distance between the centers of two cords adjacent to each other in the belt) is preferably smaller because it can increase the tensile strength and tensile modulus of the belt. However, if the core wire pitch is too small, adjacent core wires may partially overlap (run up), or rubber may not easily flow between the core wires, which may reduce adhesion. In addition, there is a possibility that the bending fatigue resistance may be reduced by contact and rubbing between the core wires as the belt bends. Therefore, it is desirable that the core pitch be slightly larger than the core diameter.
  • the core pitch can be selected from a range larger than the core diameter by about 0.01 to 1 mm, and the core pitch is 0.05 to 0.8 mm (for example, 0.1 to 0.5 mm) than the core diameter. And more preferably 0.2 to 0.4 mm (especially 0.2 to 0.3 mm).
  • the core pitch is, for example, 0.5 to 2 mm (for example, 0.6 to 1.8 mm), preferably 0.7 to 1.7 mm (for example, 0.8 to 1.6 mm), More preferably, it may be about 0.8 to 1.5 mm (eg, 0.9 to 1.4 mm), and particularly about 0.85 to 1.5 mm (eg, 0.9 to 1.35 mm).
  • the cords may rub against each other as the belt bends to reduce the belt strength, or problems such as running on the core may occur at the time of manufacture. If the core pitch is too large, Even if fibers with high tensile modulus (such as carbon fibers) are used, the tensile modulus of the belt may be low.
  • cords of cords twisted in the same direction are separated by a predetermined distance (or
  • the core wire of the S twist cord and the core wire of the Z twist cord may be combined and buried.
  • the core of the S-strand cord and the core of the Z-strand cord may be embedded regularly (for example, at equal intervals) or irregularly at predetermined intervals, usually regularly For example, they may be buried alternately.
  • the straightness of the belt can be enhanced by embedding the core wire of the S twist cord and the core wire of the Z twist cord.
  • the untwisting torque of the core wire causes the belt to be strongly biased to the left or right with respect to the traveling direction.
  • the wear of the friction transmission surface and the belt end surface is promoted, and the durability decreases.
  • the core of the S twist cord and the core of the Z twist cord are embedded (in particular, alternately arranged and embedded), the untwisting torque of the core is offset and the straightness of the belt is enhanced, Durability can be improved.
  • V-ribbed belt The form of the V-ribbed belt is not particularly limited as long as it has a plurality of V-ribs extending in parallel to each other along the longitudinal direction of the belt, and for example, the form shown in FIG. 2 is exemplified.
  • FIG. 2 is a schematic cross-sectional view showing an example of the V-ribbed belt of the present invention.
  • the V-ribbed belt shown in FIG. 2 is an adhesive rubber layer in which a compression rubber layer 12 and a core (or twisted cord) 1 are embedded in the longitudinal direction of the belt sequentially from the lower surface (inner peripheral surface) to the upper surface (rear surface) of the belt.
  • a stretch layer 15 composed of a cover canvas (woven fabric, knitted fabric, non-woven fabric, etc.) or a rubber composition is laminated.
  • a plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compression rubber layer 12, and a plurality of V-rib portions 13 (in FIG. 2) shown in FIG. In this case, four of them are formed, and the two inclined surfaces (surfaces) of the V-rib portion 13 form a friction transmission surface and transmit power (friction transmission) in contact with the pulley.
  • a plurality of core wires (or twisted cords) 1 respectively extend in the longitudinal direction of the belt and are spaced apart from each other at a predetermined pitch in the width direction of the belt.
  • the form of the V-ribbed belt is not limited to the form shown in FIG. 2, and it is sufficient if at least a portion has a compressed rubber layer having a transmission surface capable of contacting the V-rib groove (V groove) of the pulley. , A tension layer, a compression rubber layer, and a core wire (or a twist cord) embedded along the longitudinal direction of the belt.
  • the core wire (or twisted cord) 1 may be embedded between the stretch layer 15 and the compressed rubber layer 12 without providing the adhesive rubber layer 14.
  • the adhesive rubber layer 14 is provided on either the compression rubber layer 12 or the stretch layer 15, and the core wire (or twist cord) 1 is provided between the adhesive rubber layer 14 (the compression rubber layer 12 side) and the stretch layer 15, Alternatively, it may be embedded between the adhesive rubber layer 14 (stretching layer 15 side) and the compressed rubber layer 12.
  • the compressed rubber layer 12 may be formed of the rubber composition described in detail below, and the adhesive rubber layer 14 may be formed of a conventional rubber composition used as an adhesive rubber layer.
  • the stretch layer 15 may be formed of a conventional cover canvas or rubber composition used as a stretch layer, and may not be formed of the same rubber composition as the compressed rubber layer 12.
  • the number of V-ribs (the number of ribs) is four in FIG. 2 and can be selected from the range of about 2 to 6.
  • the durability of the belt can be improved even if the number of ribs is small. It is a major feature that it can be improved, and the number of ribs is three to five, preferably four.
  • the number of ribs is three to five, preferably four.
  • by setting the number of ribs as small as about 3 to 5 it is possible to meet the demand for space saving and weight reduction. If the number of ribs is too small, even if carbon fibers are used, the tensile elastic modulus and tensile strength may be insufficient. If too large, the requirements for space saving and weight reduction may not be sufficiently satisfied.
  • V-ribbed belts are suitable for applications where high dynamic tension is generated, for example, in engines equipped with belt type ISG drive, high dynamic tension acts on the belt at engine start, and such start is frequent Repeated. Therefore, the V-ribbed belt is required to have higher tensile strength than a normal belt.
  • the tensile strength of the V-ribbed belt may be 420 N / mm or more (eg, 420 to 1000 N / mm), preferably 560 N / mm or more, and more preferably 620 N, as a value per 1 mm of belt width.
  • the friction transmission belt of the present invention (in particular, V-ribbed belt) has a high tensile elastic modulus, and the tensile elastic modulus is, for example, 240 to 500 N / (mm ⁇ %) (for example, 270 to 490 N / (mm ⁇ ). %), Preferably 300 to 480 N / (mm ⁇ %) (eg, 350 to 480 N / (mm ⁇ %)), more preferably 400 to 470 N / (mm ⁇ %) (eg, 420 to 450 N / (mm) ⁇ %) May be about.
  • the tensile elastic modulus of the belt When the tensile elastic modulus of the belt is small, the belt elongation becomes large and the slip becomes large, and there is a possibility that the power transmission failure, the generation of abnormal noise, and the deterioration of durability due to heat generation may occur. When the tensile modulus of elasticity of the belt is too large, the tension fluctuation of the belt becomes large, and the durability may be reduced.
  • the tensile strength and the tensile elastic modulus of the V-ribbed belt can be measured by the methods described in the examples described later.
  • the engine equipped with the belt type ISG drive may be an engine equipped with the belt type ISG drive provided with a tensioner on the back of the belt.
  • the friction transmission belt of the present invention has high durability and excellent power transmission even if the width of the belt is small. Therefore, the width of the belt is not particularly limited, and may be, for example, about 0.5 to 5 cm (for example, 0.7 to 4 cm), preferably about 0.8 to 3 cm (for example, 1 to 2 cm).
  • the compression rubber layer 12, the adhesive rubber layer 14 and the stretch layer 15 can be formed of a rubber composition containing a rubber component.
  • a rubber composition containing a rubber component.
  • excellent quietness and power transmission performance can be imparted
  • by forming the compression rubber layer 12 with a rubber composition excellent quietness and power transmission performance can be imparted, and by forming the compression rubber layer 12 and the adhesive rubber layer 14 with a rubber composition, existing components can be obtained.
  • the rubber component may be a vulcanizable or crosslinkable rubber, for example, diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile rubber Etc., ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber and the like. These rubber components can be used alone or in combination of two or more.
  • Preferred rubber components are ethylene- ⁇ -olefin elastomers (ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), etc.) and chloroprene rubber. Furthermore, ethylene- ⁇ -olefin elastomer (ethylene-propylene copolymer (EPM), which does not contain harmful halogen, has ozone resistance, heat resistance, cold resistance, weather resistance, and can reduce the weight of the belt. Particularly preferred are ethylene-propylene-diene terpolymers (EPDM) and the like.
  • EPM ethylene-propylene copolymer
  • EPDM ethylene-propylene-diene terpolymers
  • the proportion of the ethylene- ⁇ -olefin elastomer in the rubber component may be 50% by mass or more (particularly about 80 to 100% by mass), 100% by mass (Ethylene- ⁇ -olefin elastomer only) is preferred.
  • the rubber composition may further contain short fibers.
  • short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (eg, polyethylene terephthalate (eg, polyethylene terephthalate) PET) fiber, polytrimethylene terephthalate (PTT) fiber, polybutylene terephthalate (PBT) fiber, C 2-4 alkylene C 8-14 arylate fiber such as polyethylene naphthalate (PEN) fiber), vinylon fiber, polyvinyl alcohol Synthetic fibers such as fibers and polyparaphenylene benzobisoxazole (PBO) fibers; natural fibers such as cotton, hemp and wool; and inorganic fibers such as carbon fibers.
  • polyolefin fibers polyethylene fibers, polypropylene fibers, etc.
  • short fibers can be used alone or in combination of two or more.
  • the short fibers may be subjected to a conventional adhesion treatment (or surface treatment) in the same manner as the core yarn, the sheath yarn and the cord.
  • the friction transmission belt (particularly, V-ribbed belt) of the present invention can suppress wear of rubber and improve durability even under high dynamic tension when applied to applications where high dynamic tension is generated.
  • the compressed rubber layer and the stretch layer preferably contain short fibers, and it is particularly preferable that the short fibers protrude from the surfaces of the compressed rubber layer and the stretch layer (in particular, the compressed rubber layer).
  • a method of causing the short fibers to protrude from the surface of the compression rubber layer a method of embedding the short fibers in the compression rubber layer in a state where the short fibers protrude from the surface of the compression rubber layer, flocking the short fibers on the surface of the compression rubber layer And the like.
  • a friction transmission belt (particularly, a V-ribbed belt) including a compression rubber layer in which short fibers protrude from the surface and a stretch layer (particularly, a compression rubber layer)
  • the wear resistance of the compression rubber layer can be enhanced, and bending fatigue or peeling is caused. It is possible to prevent the compression rubber layer from being worn out and its durability being reduced before breakage occurs.
  • the rubber composition may further contain conventional additives.
  • additives include, for example, a vulcanizing agent or a crosslinking agent (or a crosslinking agent system) (such as a sulfur-based vulcanizing agent), a co-crosslinking agent (such as bismaleimides), a vulcanization aid or a vulcanization accelerator ( Thiuram accelerators etc.), vulcanization retarders, metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, copper oxide, aluminum oxide etc.), enhancers (eg carbon black and so on) , Silicon oxides such as hydrous silica, fillers (clay, calcium carbonate, talc, mica etc.), softeners (eg paraffin oils, oils such as naphthenic oils etc), processing agents or processing aids (stearin Acids, metal stearates, waxes, paraffins, fatty acid amides, etc., anti-aging agents (antioxidants, thermal anti-aging agents, flex
  • the metal oxide may act as a crosslinking agent.
  • the rubber composition forming the adhesive rubber layer 14 in particular may contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
  • the rubber compositions forming the compression rubber layer 12, the adhesive rubber layer 14 and the stretch layer 15 may be identical to one another or may be different from one another.
  • the short fibers contained in the compression rubber layer 12, the adhesive rubber layer 14 and the stretch layer 15 may be identical to one another or may be different from one another.
  • the stretch layer 15 may be formed of a cover canvas.
  • the cover canvas can be formed of, for example, a woven fabric, a wide angle canvas, a knitted fabric, a cloth material (preferably a woven fabric) such as a non-woven fabric and the like, and if necessary, an adhesion treatment, for example, treatment with an RFL solution (immersion treatment, etc. ) Or rubbing the adhesive rubber into the cloth material, or laminating (coating) the adhesive rubber and the cloth material, and then laminating on the compressed rubber layer and / or the adhesive rubber layer in the form described above. Good.
  • the stretch layer 15 may also be a stretch layer coated on the surface of the rubber layer with a cloth (such as the above-mentioned cover canvas).
  • a stretch layer is preferably applied to an engine equipped with a belt type ISG drive with a tensioner on the back of the belt.
  • a stretch layer applied to an engine equipped with a belt type ISG drive with a tensioner in addition to a stretch layer coated on the surface with a fabric, a stretch layer containing short fibers, a surface coated with a fabric and a stretch containing short fibers Layers are also preferred.
  • the durability can be improved even in a belt type ISG drive with tensioner, which is also required to have wear resistance to the stretch rubber layer.
  • a known or conventional method can be used to manufacture the friction drive belt of the present invention, and the core layer (or twist cord) may be embedded in the rubber layer instead of the conventional core line. That is, a step of forming a rubber layer or sheet (for example, a laminate or laminated sheet including an adhesive rubber layer), which is formed of an unvulcanized rubber composition and in which the core (or twist cord) is embedded, into a predetermined shape
  • a rubber layer or sheet for example, a laminate or laminated sheet including an adhesive rubber layer
  • the friction transmission belt can be manufactured, and after the vulcanization process, the vulcanized molded product is processed in the processing process (processing processes such as cutting and rib processing) You may process it.
  • the core wire (or twist cord) is embedded in the rubber layer, molded into a tubular shape with a mold, and vulcanized to form a sleeve, and the sleeve is cut to a predetermined width to form a friction transmission belt May be manufactured.
  • the V-ribbed belt has, for example, an unvulcanized rubber composition for each of the compression rubber layer 12, the adhesive rubber layer 14 in which the core wire (or twist cord) 1 is embedded, and the stretching layer 15.
  • the laminate can be formed into a cylinder, and the laminate can be formed into a cylindrical shape by a molding die, and vulcanized to form a sleeve, and the vulcanized sleeve can be cut to a predetermined width. More specifically, the V-ribbed belt can be manufactured by the following method.
  • the stretch layer sheet is wound around a cylindrical molding mold (mold or mold) having a smooth surface, and a core (or twisted cord) forming a core is spirally spun on this sheet, Further, a sheet for adhesive rubber layer and a sheet for compressed rubber layer are sequentially wound to prepare a molded body. Thereafter, the molding mold is accommodated in a vulcanizing can in a state where the molding jacket is covered from above the molding, and after vulcanization under predetermined vulcanization conditions, the molding is removed from the molding mold and cylindrical vulcanization is carried out. Get a rubber sleeve.
  • the outer surface (compressed rubber layer) of the vulcanized rubber sleeve is polished by a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut in the longitudinal direction of the belt by a predetermined width using a cutter. Finish to V-ribbed belt.
  • the V-ribbed belt provided with the compression rubber layer which has a rib part in an internal peripheral surface is obtained by reversing the cut belt.
  • the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed rubber layer) is pressed into the rib type and vulcanized. Then, after removing the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut by a predetermined width in the longitudinal direction of the belt using a cutter. Finished with a ribbed belt.
  • the laminate provided with the stretch layer, the core and the compressed rubber layer can be expanded at one time to obtain a sleeve (or V-ribbed belt) having a plurality of ribs.
  • TORAYCA registered trademark
  • T400HB tensile elastic modulus 230 GPa
  • single yarn fineness 0.67 dtex single yarn fineness 0.67 dtex
  • number of filaments 3000 total fineness 200 tex (Sheath yarn composition yarn)
  • Glass fiber "Micro Glass (registered trademark) high strength glass” manufactured by Nippon Sheet Glass Co., Ltd.
  • “phr” shows the mass part of the additive with respect to 100 mass parts of rubber
  • EPDM Dow DuPont “NORDEL® IP 3640”, Mooney viscosity 40 (100 ° C.) Carbon black HAF: “Siest (registered trademark) 3" manufactured by Tokai Carbon Co., Ltd.
  • Hydrous silica "Nipsil (registered trademark) VN 3" manufactured by Tosoh Silica Corporation, BET specific surface area 240 m 2 / g Resorcinol formaldehyde condensate: "Phenacolite Resin (B-18-S) (less than 20% by mass of resorcinol, less than 0.1% by mass of formalin) manufactured by INDSPEC Chemical Corporation”
  • Anti-aging agent SEIKO CHEMICAL Co., Ltd.
  • Non-flex (registered trademark) OD3 Vulcanization accelerator DM: di-2-benzothiazolyl disulfide polyamide short fiber: "66 nylon” manufactured by Asahi Kasei Co., Ltd.
  • Paraffin-based softener "Diana (registered trademark) process oil” manufactured by Idemitsu Kosan Co., Ltd.
  • Organic peroxide Kayaku Akzo Co., Ltd.
  • Percadox (registered trademark) 14RP” Cotton canvas with rubber: A treated canvas in which the adhesive rubber of Table 1 is rubbed into a canvas (weight 80 g / m 2 ) in which a 20th cotton thread is plain-woven at a thread density of 75/50 mm.
  • Example 1 First, a carbon fiber 1 having a total fineness of 400 tex was immersed in the adhesion treatment solution for 10 seconds and then dried at 150 ° C. for 2 minutes to produce a core yarn.
  • Example 2 Treated cords (treated S twist cord and treated Z twist cord) (diameter 1.) in the same manner as in Example 1 except that the total fineness of the glass fibers constituting the sheath yarn is 66 tex and the number of sheath yarns is 12. 10 mm).
  • Example 3 A treated cord (treated S twist cord and treated in the same manner as in Example 1 except that the carbon fibers constituting the core yarn are changed to carbon fiber 3 (total fineness 200 tex) and the number of sheath yarns is set to 12 Z twist cord) (diameter 0.78 mm) was obtained.
  • a Z twist single twist cord was also produced in the same manner as above except that the twist direction was set to the Z direction.
  • the obtained S twist and Z twist single twist cords were each immersed in the overcoat treatment solution for 5 seconds and then dried at 100 ° C. for 3 minutes to prepare treated cords (diameter 0.71 mm).
  • Comparative example 2 A treated cord (diameter 1.00 mm) was obtained in the same manner as in Comparative Example 1 except that the carbon fiber 1 was changed to a carbon fiber 2 (total fineness 800 tex).
  • Comparative example 3 Treated cords (treated S twist cord and treated Z twist cord) (diameter: 0.) in the same manner as in Example 1 except that the total fineness of the glass fibers constituting the sheath yarn is 22 tex and the number of sheath yarns is 20. 95 mm).
  • Comparative example 4 Treated cords (treated S twist cord and treated Z twist cord) (diameter 1.) in the same manner as in Example 1 except that the total fineness of the glass fibers constituting the sheath yarn is 99 tex and the number of sheath yarns is ten. 18 mm).
  • one-ply (one-ply) rubber-covered cotton canvas is wound around the outer periphery of a cylindrical molding mold having a smooth surface, and the non-added rubber composition shown in Table 1 is formed on the outside of this cotton canvas.
  • a sheet for bonding rubber layer of sulfur was wound.
  • the two treated cords S twist cords, with the treated cords of S twist and the treated cords of Z twist arranged in parallel at a predetermined pitch shown in Table 3 Z-twisted cord
  • an unvulcanized adhesive rubber layer sheet formed of the above rubber composition and an unvulcanized formed of the rubber composition shown in Table 2
  • the sheet for the compression rubber layer was wound in order.
  • the molding mold was placed in a vulcanizer and vulcanized in a state where the vulcanizing jacket was disposed outside the compression rubber layer sheet.
  • the cylindrical vulcanized rubber sleeve obtained by vulcanization is removed from the molding mold, and the compressed rubber layer of the vulcanized rubber sleeve is ground by a grinder to simultaneously form a plurality of V-shaped grooves, and then cylindrical vulcanized.
  • the V-ribbed belt (circumferential length 1100 mm) in which three ribs were formed was obtained by circumferentially cutting the rubber sleeve with a cutter and rounding it. In the obtained belt, in the cross-sectional view in the direction shown in FIG. 2, the treated cord of S twist as a core and the treated cord of Z twist were alternately arranged in parallel.
  • a V-ribbed belt is hung around each pulley of the tester, the number of revolutions of the drive pulley is 4900 rpm, the winding angle of the belt on the idler pulley is 120 °, the winding angle of the belt on the tension pulley is 90 °, and the load of the driven pulley
  • a constant load (559 N) was applied at 8.8 kW, and the belt was run for 200 hours at an ambient temperature of 120 ° C.
  • the tensile strength of the belt before and after traveling was measured, and the value converted to the tensile strength per rib and the strength retention are shown in Table 3. It can be determined that the higher the strength retention, the higher the bending fatigue resistance.
  • a V-ribbed belt is hung around each pulley of the tester, the number of revolutions of the drive pulley is 4900 rpm, the winding angle of the belt on the idler pulley is 120 °, the winding angle of the belt on the tension pulley is 90 °, and the load of the driven pulley
  • a constant load (810 N) was applied at 8.8 kW, and the belt was allowed to travel with an ambient temperature of 120 ° C. and an upper limit of 300 hours.
  • the belt after running is observed visually and with a microscope to check if any defects such as peeling or pop-out occur. If no defects occur, durability is regarded as no problem, and if defects are confirmed, the defects are evaluated. It recorded in Table 3.
  • the tensile modulus of elasticity of the V-ribbed belt obtained in Example 2 was 330 N / (mm ⁇ %).
  • Examples 1 to 3 had high strength retention compared with the comparative example, did not cause peeling or pop out in the high load endurance test, and had high durability.
  • Comparative Example 1 belt containing a single twist of carbon fiber
  • the tensile strength was low, and peeling occurred at the interface between the core wire and the adhesive rubber in the high load endurance test, and the durability was low.
  • Comparative Example 2 in which the fineness of the carbon fiber is made larger than that of Comparative Example 1, although the tensile strength before the bending fatigue test is high, the strength retention is low and the core wire protrudes from the side of the belt in the high load durability test (Pop out) occurred and durability was low.
  • Pop out high load durability test
  • Comparative Example 3 (a belt having a core-sheath structure as in the example, a fine diameter of the sheath yarn is small, and a cord including a core of a cord having a yarn diameter ratio of 0.18) has high strength retention and good bending fatigue resistance. However, in the high load endurance test, peeling occurred at the interface between the core wire and the adhesive rubber layer, and the adhesion could not be improved.
  • Comparative Example 4 a belt having a core-sheath structure as in the example, a large yarn fineness, and a cord including a cord having a cord diameter of 0.43), occurrence of peeling and popout in the high load durability test is Although the adhesion was good, the strength retention was low and the bending fatigue resistance could not be improved.
  • Example 1 total fineness of core yarn is 400 tex
  • resistance to bending fatigue and adhesiveness can be compatible, and durability is at a level at which there is no problem.
  • Example 3 the total fineness of the core yarn is as thin as 200 tex
  • the subsequent tensile strength was at a level comparable to that of Examples 1 and 2. Therefore, it is shown that the fineness of the core yarn can be appropriately selected in accordance with the required level of bending fatigue resistance.
  • the friction transmission belt (V-ribbed belt, etc.) of the present invention can be used as various power transmission belts, for example, V-ribbed belts used for driving accessories of automobile engines, but can transmit power with a narrow belt width and has excellent durability. Therefore, it can be particularly suitably used as a V-ribbed belt for driving an ISG mounted engine which generates high dynamic tension.

Abstract

The present invention pertains to a friction transmission belt that includes a core cable. The core cable includes a cord comprising: a core yarn containing high elastic-modulus fibers; and a plurality of sheath yarns that are disposed around the core yarn and that contain low elastic-modulus fibers. The cord is twisted and the proportion of the average diameter of the sheath yarn to the average diameter of the core yarn is 0.2 to 0.4.

Description

摩擦伝動ベルト、そのためのコード並びにそれらの製造方法Friction transmission belt, cord therefor and method for manufacturing them
 本発明は、心線として所定の撚りコードを含む摩擦伝動ベルト(例えば、Vリブドベルト)、このような摩擦伝動ベルトに適した撚りコード、並びにそれらの製造方法に関する。 The present invention relates to a friction transmission belt (for example, a V-ribbed belt) including a predetermined twist cord as a core, a twist cord suitable for such a friction transmission belt, and a method of manufacturing them.
 昨今、自動車の燃費規制の強化が進む中、エンジンの燃費改善策のひとつとして、アイドリングストップ機構を搭載した車両が増加している。そして、アイドリングストップ状態からのエンジン再起動において、オルタネータからVリブドベルトなどの補機駆動ベルトを介してクランクシャフトを駆動するベルト式ISG(Integrated Starter Generator)駆動が普及している。ベルト式ISG駆動においては、ISG非搭載の通常のエンジンに比べて、補機駆動ベルトに高い動的張力が発生する。例えば、ISG非搭載の補機駆動ベルトに発生する動的張力がベルト幅1mm当たり70N/mm程度であるとした場合、ベルト式ISG駆動を搭載した補機駆動ベルトでは100N/mm程度の動的張力が発生する。そのため、ベルト式ISG駆動を搭載したエンジンに用いられる補機駆動用ベルトには、高い動的張力が作用しても、ベルトの伸びを小さく保つために引張弾性率が高いことが求められている。従来、補機駆動に用いられるVリブドベルトの心線としては、ポリエステル繊維やアラミド繊維といった比較的弾性率の高い繊維からなる撚りコードが用いられてきたが、動的張力の増大が続くことによって、弾性率が不足してきている。高い動的張力に対応するために、リブ数を増やす(ベルト幅を広くする)対策も考えられるが、リブ数を増やした場合にはプーリ幅も増大するため、省スペースや軽量化の観点からは好ましくない。つまり、ベルトの引張弾性率を高めることで、少ないリブ数でも耐久性の高いVリブドベルトなどの摩擦伝動ベルトが求められている。 Recently, as the fuel efficiency regulations of automobiles are intensified, vehicles equipped with an idling stop mechanism are increasing as one of the measures for improving fuel efficiency of engines. And, in restarting the engine from the idling stop state, belt-type ISG (Integrated Starter Generator) drive for driving a crankshaft from an alternator via an accessory drive belt such as a V-ribbed belt has become widespread. In belt-type ISG drive, high dynamic tension is generated in the accessory drive belt as compared with a normal engine without ISG. For example, assuming that the dynamic tension generated in the accessory drive belt without ISG installed is about 70 N / mm per 1 mm of belt width, the accessory drive belt loaded with the belt type ISG drive has a dynamic of about 100 N / mm Tension is generated. Therefore, auxiliary drive belts used in engines equipped with a belt type ISG drive are required to have high tensile elastic modulus in order to keep the belt elongation small even if high dynamic tension is applied. . Conventionally, as a core wire of V-ribbed belt used for accessory drive, a twist cord made of relatively high elastic modulus fiber such as polyester fiber or aramid fiber has been used, but the dynamic tension continues to increase. Elastic modulus is getting short. In order to cope with high dynamic tension, it is conceivable to take measures to increase the number of ribs (make the belt width wider), but if the number of ribs is increased, the pulley width also increases, so from the viewpoint of space saving and weight reduction. Is not desirable. That is, by increasing the tensile elastic modulus of the belt, a friction transmission belt such as a V-ribbed belt having high durability even with a small number of ribs is required.
 ベルトの引張弾性率を高めるために、心線としてアラミド繊維よりも弾性率の高いカーボン繊維からなる撚りコードを用いることが提案され、日本国特開昭61-192943号公報(特許文献1)には、カーボン繊維の撚糸コードを抗張体として使用した動力伝動用ベルトが開示されている。この文献には、撚糸コードを上撚り係数2~4に調整し、レゾルシン-ホルマリン-ラテックス(RFL)処理することが記載され、カーボン繊維の撚糸コードを使用することで、耐屈曲疲労性が改善され、走行中のベルト伸びが小さく、耐水性が改善されることが記載されている。 In order to increase the tensile modulus of elasticity of the belt, it has been proposed to use a twisted cord made of carbon fiber having a modulus of elasticity higher than that of aramid fiber as a core wire, as disclosed in JP-A-61-129 433 (Patent Document 1). Discloses a power transmission belt using a carbon fiber twist cord as a tensile body. In this document, it is described that the twisting cord is adjusted to an upper twist coefficient of 2 to 4 and treated with resorcinol-formalin-latex (RFL), and the bending fatigue resistance is improved by using the carbon yarn twisting cord. It is described that the belt elongation during running is small and the water resistance is improved.
 日本国特表2004-535517号公報(特許文献2)には、改善された伸び抵抗を有する動力伝達用ベルトとして、約50~350GPaの範囲の引張弾性率を有する炭素繊維からなるヤーンを有する螺旋コードの引張部材を含み、前記炭素繊維の少なくとも一部分を、エラストマーラテックス及びレソルシノール-ホルムアルデヒド反応生成物を含むコード処理剤組成物で被覆したベルトが開示されている。この文献には、動力伝達用ベルトとして、V-ベルト、多リブ付ベルト、歯付動力伝達ベルトが例示されているものの、主に歯付きベルトについて記載されているとともに、実施例では、396テックスの炭素繊維コードを用いて歯付動力伝達ベルトを製造している。 Japanese Patent Application Publication No. 2004-535517 (patent document 2) discloses a spiral transmission having a yarn composed of carbon fibers having a tensile elastic modulus in the range of about 50 to 350 GPa as a power transmission belt having an improved elongation resistance. A belt is disclosed comprising a cord tension member, wherein at least a portion of the carbon fiber is coated with a cord treatment composition comprising an elastomeric latex and a resorcinol-formaldehyde reaction product. Although this document exemplifies V-belts, multi-ribbed belts, and toothed power transmission belts as power transmission belts, it mainly describes toothed belts, and in the embodiment, 396 tex The toothed power transmission belt is manufactured using the carbon fiber cord of
 しかし、カーボン繊維の撚糸コードは高い弾性率を示す一方で、耐屈曲疲労性が低いという側面を有する。すなわち、ベルトが使用中に繰り返し屈曲されると、カーボン繊維が切断し、強力が低下しやすい虞があった。このような問題に対して、国際公開第2004/090224(特許文献3)には、炭素繊維ストランドと、前記炭素繊維ストランドの周囲に配置された複数のガラス繊維ストランドとを含む補強用コードが開示されている。この文献には、400texの炭素繊維ストランドをRFL処理液で処理し、得られた炭素繊維ストランドの周囲に、100texのガラス繊維ストランドをRFL処理液で処理してS方向に下撚りした撚糸9本を配置して、上記下撚り方向とは逆のZ方向に上撚りしてコードを調製し、このコードにゴム含有オーバーコート処理剤を塗布して補強用コードを調製したことが記載されている。この補強用コードは、ゴム製品の補強に十分な引張強度を有するとともに、寸法安定性および耐屈曲疲労性を高めることができることが記載されている。 However, while the twisted cord of carbon fiber exhibits a high elastic modulus, it has an aspect that the resistance to bending fatigue is low. That is, when the belt is repeatedly bent during use, the carbon fibers may be cut, and the strength may be easily reduced. To address such problems, WO 2004/090224 discloses a reinforcing cord comprising a carbon fiber strand and a plurality of glass fiber strands arranged around the carbon fiber strand. It is done. In this document, a carbon fiber strand of 400 tex is treated with an RFL treating solution, and a glass fiber strand of 100 tex is treated with an RFL treating solution around the obtained carbon fiber strand, and nine twisted yarns are pretwisted in the S direction. It is described that the cord is prepared by arranging the cords in the Z direction opposite to the above-mentioned ply twist direction to prepare a cord and applying a rubber-containing overcoat treatment agent to the cord to prepare a reinforcing cord . The reinforcing cord is described to have sufficient tensile strength for reinforcing a rubber product and to be able to enhance dimensional stability and resistance to bending fatigue.
 また、国際公開第2009/063952(特許文献4)には、高弾性率繊維からなる芯繊維と、前記芯繊維の周囲に配置されたガラス繊維からなる複数本のストランドとを含むゴム補強用コードが開示されている。このコードにおいて、上撚り方向と下撚り方向が逆で、上撚り数が1~3回/25mmで、上撚り数に対する下撚り数の比が1.5~2.5の範囲内であることが規定されている。この文献には、炭素繊維の芯繊維と、ガラス繊維ストランドとを、処理液(ゴム、ビスマレイミド及びカーボンブラックを含む)で処理し、ガラス繊維ストランドをS方向に撚り数1.7~4.6回/25mmで下撚りし、この撚糸12本を、炭素繊維の芯繊維1本の周囲に配して、上記下撚り方向とは逆のZ方向に上撚り数1.7回/25mm又は2回/25mmで上撚りし、補強用コードの表面に処理液を塗布しゴム層を形成したことが記載されている。このようなゴム補強用コードは、高い耐屈曲疲労性と良好な引張特性とを両立できると記載されている。 Further, according to WO 2009/063952 (Patent Document 4), a rubber reinforcing cord comprising a core fiber made of high elastic modulus fiber and a plurality of strands made of glass fiber disposed around the core fiber. Is disclosed. In this cord, the upper twist direction and the lower twist direction are opposite, the number of upper twist is 1 to 3 times / 25 mm, and the ratio of the number of lower twist to the number of upper twist is in the range of 1.5 to 2.5. Is defined. In this document, a core fiber of carbon fiber and a glass fiber strand are treated with a treatment liquid (including rubber, bismaleimide and carbon black), and the glass fiber strand is twisted in the S direction by 1.7 to 4. 6 twists / 25 mm and twist 12 pieces of this twisted yarn around one core fiber of carbon fiber, and the number of twists 1.7 times / 25 mm or more in the Z direction opposite to the above-mentioned lower twist direction It is described that it was overtwisted twice / 25 mm and the treatment liquid was applied to the surface of the reinforcing cord to form a rubber layer. Such rubber reinforcing cords are described as being compatible with high bending fatigue resistance and good tensile properties.
 さらに、日本国特開2016-11736号公報(特許文献5)には、中央に配置された芯糸と、前記芯糸の外周面の全面を覆い、前記芯糸を固定する鞘糸とを備えた心線を備え、前記心線間の間隔が前記心線の直径の40%以下である歯付きベルトが開示されている。この文献には、炭素繊維ストランドをRFL処理して撚糸とし、この炭素繊維の芯糸1本の周囲に、3つのガラス繊維束をRFL処理して撚り合わせた鞘糸12本を配置して上撚りし、芯鞘構造のハイブリッド心線を調製したこと、このハイブリッド心線を接着剤で被覆したことが記載されている。この歯付きベルトでは、水や油が付着する環境においても心線の屈曲疲労性が向上し、ベルト細幅化が可能であると記載されている。 Furthermore, Japanese Patent Laid-Open No. 2016-11736 (Patent Document 5) includes a core yarn disposed at the center, and a sheath yarn that covers the entire outer peripheral surface of the core yarn and fixes the core yarn. A toothed belt is disclosed, comprising a core wire, wherein the distance between the core wires is less than 40% of the diameter of the core wire. In this document, a carbon fiber strand is subjected to RFL treatment to be a twisted yarn, and 12 sheath yarns in which three glass fiber bundles are subjected to RFL treatment and twisted around one core yarn of this carbon fiber are disposed. It is described that a hybrid cord having a core-sheath structure was prepared by twisting, and the hybrid cord was coated with an adhesive. In this toothed belt, it is described that the bending fatigue property of the core wire is improved even in the environment where water or oil adheres, and belt narrowing is possible.
 前記特許文献3~5に記載の補強用コード及びベルトでは、耐屈曲疲労性の一定の向上があるものの、それでもなお、ベルト式ISG駆動などの近年における厳しい使用条件においては十分ではない虞がある。従って、高い動的張力が作用しても、高い耐久性を発揮できる摩擦伝動ベルト、特に、ベルト幅が小さくても動力伝達性が高く、耐久性が改善された摩擦伝動ベルトが望まれている。 Although the reinforcing cords and belts described in Patent Documents 3 to 5 have a certain improvement in bending fatigue resistance, they may still not be sufficient under the recent severe use conditions such as belt type ISG drive. . Therefore, a friction transmission belt capable of exhibiting high durability even when high dynamic tension acts, in particular, a friction transmission belt having high power transmission and improved durability even if the belt width is small is desired. .
日本国特開昭61-192943号公報(請求項1、[作用][発明の効果])Japanese Patent Application Laid-Open No. 61-192,943 (claim 1, [action] [effect of the invention]) 日本国特表2004-535517号公報(請求項1、[0001][0005])Japanese Patent Publication No. 2004-535517 (claim 1, [0001] [0005]) 国際公開第2004/090224(請求項1、第2頁21行~22行、実施例)WO 2004/090224 (Claim 1, page 2, line 21 to line 22, embodiment) 国際公開第2009/063952(請求項1、[0012]、実施例)WO 2009/063952 (Claim 1, [0012], Example) 日本国特開2016-11736号公報(請求項1、[0013]、実施例)Japanese Patent Application Laid-Open No. 2016-11736 (claim 1, [0013], an embodiment)
 従って、本発明の目的は、ベルト式ISG駆動搭載エンジンなどのように高い動的張力が発生する用途に適したコード、このコードを備え、耐久性に優れる摩擦伝動ベルト(例えば、Vリブドベルトなど)、並びに前記コード及び摩擦伝動ベルトの製造方法を提供することにある。 Therefore, an object of the present invention is a cord suitable for applications where high dynamic tension is generated, such as a belt type ISG drive mounted engine, a friction transmission belt (for example, a V-ribbed belt, etc.) provided with this cord and excellent in durability. And a method of manufacturing the cord and the friction transmission belt.
 本発明の他の目的は、引張弾性率が高く、ベルト幅が小さくても高い動力伝達性を実現できるコード、このコードを備えた摩擦伝動ベルト(Vリブドベルトなど)、並びにそれらの製造方法を提供することにある。 Another object of the present invention is to provide a cord capable of achieving high power transmissibility even if the tensile modulus is high and the belt width is small, a friction transmission belt (such as a V-ribbed belt) provided with this cord, and a method of manufacturing them. It is to do.
 本発明のさらに他の目的は、少ないリブ数でも耐久性の高い摩擦伝動ベルト(Vリブドベルトなど)と、このような摩擦伝動ベルトに適したコード、並びにそれらの製造方法を提供することにある。 Still another object of the present invention is to provide a friction transmission belt (such as a V-ribbed belt) having high durability even with a small number of ribs, a cord suitable for such a friction transmission belt, and a method of manufacturing them.
 本発明者らは、前記課題を達成するため鋭意検討した結果、高弾性率繊維を含む芯糸(又はストランド)と、この芯糸の周囲に配され、低弾性率繊維を含む複数の鞘糸(又はストランド)とを備えたコード(又は心線)において、芯糸の平均直径と鞘糸の平均直径との割合(直径比)などが、摩擦伝動ベルトの耐屈曲疲労性、ゴム組成物との接着性に大きく影響することを見いだし、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a core yarn (or strand) containing high modulus fibers and a plurality of sheath yarns arranged around this core yarn and including low modulus fibers In a cord (or cord) provided with (or a strand), the ratio (diameter ratio) of the average diameter of the core yarn to the average diameter of the sheath yarn, the bending fatigue resistance of the friction transmission belt, the rubber composition, It has been found that it greatly affects the adhesion of the present invention, and completed the present invention.
 すなわち、本発明の摩擦伝動ベルトは、心線を含み、この心線が、高弾性率繊維を含む芯糸(ストランド)と、この芯糸の周囲に配され、低弾性率繊維を含む複数の鞘糸(ストランド)とを含むコードを含んでおり、芯糸の平均直径D1に対する鞘糸の平均直径D2の比率(D2/D1)が0.2~0.4(すなわち、0.2以上0.4以下)である。前記コードは、前記芯糸と、この芯糸の周囲に配置された前記鞘糸とを含み、上撚りされた撚糸コードを形成している。 That is, the friction transmission belt of the present invention includes a core wire, and the core wire is disposed around a core yarn (strand) including high modulus fibers and a plurality of low modulus fibers. And a cord including a sheath yarn (strand), wherein the ratio (D2 / D1) of the average diameter D2 of the sheath yarn to the average diameter D1 of the core yarn is 0.2 to 0.4 (ie 0.2 or more and 0) .4 or less). The cord includes the core yarn and the sheath yarn disposed around the core yarn to form a twisted twist cord.
 本発明において、通常、鞘糸の総繊度及び平均直径は小さく、鞘糸の総繊度は、例えば、30~80tex程度であってもよく、鞘糸の平均直径は、例えば、0.13~0.25mm程度であってもよい。芯糸及び鞘糸のうち、少なくとも鞘糸は撚りが施された(下撚りされた)撚糸であってもよく、芯糸は、撚りがなくてもよく、撚り数は1回/10cm以下であってもよい(又は撚り数0~1回/10cm程度であってもよい)。コードも撚りが施された(上撚りされた)撚糸コードであってもよい。芯糸1本に対する鞘糸の数は、例えば、11~19本程度であってもよい。心線は、ゴム層に所定の間隔をおいて埋設されたS撚りコードの心線とZ撚りコードの心線とを含んでいてもよい。また、芯糸及び/又は鞘糸の下撚りと、コードの上撚りとの撚り方向は同じであってもよい。さらに、高弾性率繊維はカーボン繊維を含んでいてもよく、低弾性率繊維はガラス繊維を含んでいてもよい。高弾性率繊維の少なくとも一部の表面又は低弾性率繊維の少なくとも一部の表面には、接着成分が付着していてもよい。さらには、コードの少なくとも一部の表面にはゴム成分が付着していてもよい。 In the present invention, generally, the total fineness and the average diameter of the sheath yarn are small, and the total fineness of the sheath yarn may be, for example, about 30 to 80 tex, and the average diameter of the sheath yarn is, for example, 0.13 to 0 It may be about 25 mm. Of the core yarn and the sheath yarn, at least the sheath yarn may be a twisted (yarn-twisted) twisted yarn, and the core yarn may have no twist, and the number of twists is 1 // 10 cm or less It may be present (or may be about 0 to 1 twist per 10 cm). The cord may also be a twisted (twisted) yarn cord. The number of sheath yarns for one core yarn may be, for example, about 11 to 19. The core wire may include the core wire of the S twist cord and the core wire of the Z twist cord embedded at predetermined intervals in the rubber layer. In addition, the twisting direction of the upper twist of the core yarn and / or the sheath yarn and the upper twist of the cord may be the same. Furthermore, the high modulus fibers may comprise carbon fibers and the low modulus fibers may comprise glass fibers. An adhesive component may be attached to the surface of at least a portion of the high modulus fiber or the surface of at least a portion of the low modulus fiber. Furthermore, a rubber component may be attached to the surface of at least a part of the cord.
 さらに、摩擦伝動ベルトは、圧縮ゴム層を含むベルト(例えば、Vリブドベルト)であってもよく、圧縮ゴム層の表面からは短繊維が突出していてもよい。摩擦伝動ベルト(例えば、Vリブドベルト)は、高い引張弾性率、例えば、240~500N/(mm・%)程度の引張弾性率を有していてもよい。 Furthermore, the friction transmission belt may be a belt including a compression rubber layer (for example, a V-ribbed belt), and short fibers may protrude from the surface of the compression rubber layer. The friction transmission belt (for example, a V-ribbed belt) may have a high tensile elastic modulus, for example, a tensile elastic modulus of about 240 to 500 N / (mm ·%).
 このような摩擦伝動ベルトは、高い動的張力が発生する動力伝達機構、例えば、ベルト式ISG駆動搭載のエンジンに装着してもよい。このような、動力伝達機構では、ベルト1mm幅当たり、85N/mm以上の動的張力が作用してもよい。 Such a friction transmission belt may be mounted on a power transmission mechanism generating high dynamic tension, for example, an engine mounted with a belt type ISG drive. In such a power transmission mechanism, a dynamic tension of 85 N / mm or more may be exerted per 1 mm width of the belt.
 摩擦伝動ベルトは、前記心線(又は撚りコード)を用い、慣用の方法で製造できる。例えば、未加硫ゴム組成物で形成され、前記心線が埋設されたゴム層又はシート(例えば、接着ゴム層を含む積層体又は積層シート)を所定の形状に成形する工程と、成形された成形体を加硫する工程とを経ることにより、摩擦伝動ベルトを製造できる。 The friction transmission belt can be manufactured by a conventional method using the core wire (or twist cord). For example, forming a rubber layer or sheet (for example, a laminate or laminated sheet including an adhesive rubber layer), which is formed of an unvulcanized rubber composition and in which the core is embedded, into a predetermined shape; The friction transmission belt can be manufactured through the steps of vulcanizing the molded body.
 本発明は、前記コード及びその製造方法も包含する。前記コードは、前記高弾性率繊維を含む前記芯糸の周囲に、前記低弾性率繊維を含む複数の前記鞘糸が配置されて、上撚りされており、前記芯糸の平均直径に対する前記鞘糸の平均直径の比率が、0.2~0.4である。このようなコードは、前記高弾性率繊維を含む前記芯糸の周囲に、前記低弾性率繊維を含む複数の前記鞘糸を配置して、上撚りする方法において、芯糸の平均直径に対する鞘糸の平均直径の比率を0.2~0.4とすることにより製造できる。なお、前記芯糸及び鞘糸は、それぞれ接着処理してもよく、上撚りしたコードは、ゴム成分を含むゴム組成物でコート処理してもよい。 The invention also encompasses the cord and the method of making the same. In the cord, a plurality of the sheath yarns including the low elastic modulus fibers are disposed around the core yarn including the high elastic modulus fibers, and the cord is over-twisted, and the sheath with respect to the average diameter of the core yarns The ratio of the mean diameter of the yarn is 0.2 to 0.4. Such a cord is a sheath for an average diameter of the core yarn in a method of arranging a plurality of the sheath yarns including the low elastic modulus fiber around the core yarn containing the high elastic modulus fiber and performing an upper twist. It can be manufactured by setting the ratio of the average diameter of the yarn to 0.2 to 0.4. The core yarn and the sheath yarn may be respectively subjected to adhesion treatment, and the upper-twisted cord may be coated with a rubber composition containing a rubber component.
 なお、本明細書中、ベルトのゴム層に埋設されたコードを「心線」と称するが、心線は、コードと同様に、芯糸の周囲が複数の鞘糸で取り囲まれた形態を有している。そのため、心線とコードとを同義に用いる場合がある。また、数値範囲「XX~YY」は、数値「XX」と数値「YY」とを含む意味、すなわち、数値「XX」以上であり、かつ数値「YY」以下であることを意味する。 In the present specification, a cord embedded in a rubber layer of a belt is referred to as a "core", but the core has a form in which the core yarn is surrounded by a plurality of sheath yarns like the cord. doing. Therefore, the core wire and the code may be used synonymously. Further, the numerical value range “XX to YY” is a meaning including the numerical value “XX” and the numerical value “YY”, that is, the numerical value “XX” or more and the numerical value “YY” or less.
 本発明では、高弾性率繊維の芯糸の平均直径に対する低弾性率繊維の鞘糸の平均直径の比率が小さいため、ベルト式ISG駆動搭載エンジンなどの高い動的張力が発生する用途(動力伝達機構)においても、狭いベルト幅で動力を有効に伝達でき、耐久性も大きく向上できる。また、引張弾性率も高いため、少ないリブ数の摩擦伝動ベルト(Vリブドベルトなど)でも耐久性を改善できる。 In the present invention, since the ratio of the average diameter of the sheath of the low modulus fiber to the average diameter of the core of the high modulus fiber is small, applications where high dynamic tension is generated such as a belt type ISG drive mounted engine (power transmission Also in the mechanism, power can be effectively transmitted with a narrow belt width, and the durability can be greatly improved. Further, since the tensile elastic modulus is also high, the durability can be improved even with a friction transmission belt having a small number of ribs (V-ribbed belt or the like).
図1は、心線(又は撚りコード)の形態を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing the form of a core wire (or twisted cord). 図2は、摩擦伝動ベルトとしてのVリブドベルトの一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a V-ribbed belt as a friction transmission belt. 図3は、実施例及び比較例で得られたVリブドベルトの屈曲疲労試験に用いた試験機のレイアウトを示す概略図である。FIG. 3 is a schematic view showing a layout of a testing machine used for a bending fatigue test of the V-ribbed belt obtained in the example and the comparative example. 図4は、実施例及び比較例で得られたVリブドベルトの耐久走行試験に用いた試験機のレイアウトを示す概略図である。FIG. 4 is a schematic view showing the layout of a testing machine used for the endurance running test of the V-ribbed belt obtained in the example and the comparative example.
 本発明の摩擦伝動ベルトの一例を以下に説明する。
 [撚りコード又は合糸及びその製造方法]
 本発明の摩擦伝動ベルトに好適に使用される心線(又は撚りコード)は、高弾性率繊維を含む芯糸と、低弾性率繊維を含む鞘糸とを含み、撚りコードの形態を有している。例えば、図1に示すように、前記心線(又は撚りコード)1は、芯糸2の周囲に複数の鞘糸3が配置され、撚りがかけられ(上撚りされ)て合糸され、芯糸2の周囲が複数の鞘糸3で取り囲まれた形態(コード1の芯部が芯糸2で形成され、鞘部が鞘糸3で形成された形態)を有している。芯糸に含まれる高弾性率繊維は、主に引張荷重に対する抵抗性を向上させるのに有効であり、そのため狭いベルト幅でも伝動が可能となり、高い動的張力が発生してもベルト伸びを小さく保つことが可能となる。鞘糸に含まれる低弾性率繊維は、主に接着性の向上やせん断応力緩和に有効であり、そのためゴム組成物と心線との界面剥離を抑制でき、ベルトの寿命を向上できる。
An example of the friction transmission belt of the present invention will be described below.
[Twist cord or yarn and method for producing it]
The core wire (or twist cord) suitably used for the friction transmission belt of the present invention includes a core thread containing high modulus fiber and a sheath thread containing low modulus fiber, and has a form of a twist cord. ing. For example, as shown in FIG. 1, in the core wire (or twist cord) 1, a plurality of sheath yarns 3 are disposed around the core yarn 2, and twisted (over-twisted) to be combined, and the core The yarn 2 has a form (the core of the cord 1 is formed of the core yarn 2 and the sheath is formed of the sheath yarn 3) surrounded by a plurality of sheath yarns 3. The high modulus fiber contained in the core yarn is effective mainly to improve the resistance to tensile load, so transmission can be performed even with a narrow belt width, and belt elongation is small even if high dynamic tension occurs. It is possible to keep. The low elastic modulus fiber contained in the sheath yarn is mainly effective in improving the adhesion and reducing the shear stress, so that the interfacial peeling between the rubber composition and the cord can be suppressed, and the life of the belt can be improved.
 本発明において、これらの芯糸及び鞘糸の機能を最大限に発揮させるためには、芯糸と鞘糸との平均直径の比が重要であり、鞘糸の平均直径を細径とし、前記芯糸の平均直径D1に対する前記鞘糸の平均直径D2の比(D2/D1)を小さくすることにより、芯糸及び鞘糸の機能を有効に発揮できる。前記芯糸の平均直径D1に対する前記鞘糸の平均直径D2の比(D2/D1)は、0.2~0.4(例えば、0.23~0.39)である。上記比率(D2/D1)は、好ましくは0.25~0.38(例えば、0.30~0.37)、より好ましくは0.32~0.37(例えば、0.34~0.37)程度であってもよく、0.28~0.38(例えば、0.32~0.36)程度であってもよい。このような平均直径の比率(D2/D1)で芯糸と鞘糸とを用いると、耐屈曲疲労性やゴム組成物との接着性を高い次元で両立できる。なお、ベルトに応力が作用すると、変形しやすいゴムと変形しにくい心線との間には、せん断応力が集中して、剥離が発生しやすい。しかし、心線の外周部に弾性率の低い鞘糸が位置するため、芯糸単独に比べて心線が変形しやすくなり、せん断応力が集中するのを緩和できる。なお、上記比率(D2/D1)が0.2未満であると、接着性が低下して心線とゴム組成物との間で層間剥離が生じやすくなり、ベルトの耐久性が低下し、上記比率(D2/D1)が0.4を超えると、曲げ歪の増大により屈曲疲労が促進され、耐久性が低下する。 In the present invention, in order to maximize the function of the core yarn and the sheath yarn, the ratio of the average diameter of the core yarn and the sheath yarn is important, and the average diameter of the sheath yarn is made small, The function of the core yarn and the sheath yarn can be effectively exhibited by reducing the ratio (D2 / D1) of the average diameter D2 of the sheath yarn to the average diameter D1 of the core yarn. The ratio (D2 / D1) of the average diameter D2 of the sheath yarn to the average diameter D1 of the core yarn is 0.2 to 0.4 (eg, 0.23 to 0.39). The ratio (D2 / D1) is preferably 0.25 to 0.38 (eg, 0.30 to 0.37), more preferably 0.32 to 0.37 (eg, 0.34 to 0.37). Or about 0.28 to 0.38 (eg, 0.32 to 0.36). When the core yarn and the sheath yarn are used at such a ratio (D2 / D1) of the average diameter, the bending fatigue resistance and the adhesiveness with the rubber composition can be compatible at a high level. In addition, when stress acts on the belt, shear stress is concentrated between the rubber which is easy to be deformed and the cord which is hard to be deformed, and peeling is easily generated. However, since the sheath yarn having a low elastic modulus is positioned at the outer peripheral portion of the core wire, the core wire is more easily deformed than the core yarn alone, and it is possible to alleviate the concentration of shear stress. When the ratio (D2 / D1) is less than 0.2, the adhesiveness is lowered to cause delamination easily between the core and the rubber composition, and the durability of the belt is lowered. When the ratio (D2 / D1) exceeds 0.4, bending fatigue is promoted due to an increase in bending strain, and the durability is lowered.
 なお、芯糸及び鞘糸の平均直径D1及びD2は、芯糸及び鞘糸の断面若しくはベルトの幅方向の断面の顕微鏡写真において、ランダムに芯糸及び鞘糸30本を選択し、それぞれの糸について長径及び短径を測定して加算平均径を算出し、このようにして算出した平均径の合計値を30で除して平均することにより求めることができる。 The average diameters D1 and D2 of the core yarn and sheath yarn are randomly selected 30 core yarns and sheath yarns in the micrograph of the cross-section of the core yarn and sheath yarn or the cross-section of the belt in the width direction. The major diameter and the minor diameter are measured to calculate the addition average diameter, and the total value of the average diameters calculated in this manner is divided by 30 to obtain an average.
 (芯糸)
 芯糸の高弾性率繊維は、引張弾性率の高い無機又は有機繊維であればよく、高弾性率繊維の引張弾性率は、例えば、200~900GPa(例えば、200~800GPa)、好ましくは210~500GPa(例えば、220~300GPa)、さらに好ましくは220~270GPa(例えば、220~250GPa)程度であってもよい。なお、繊維の引張弾性率は、JIS L 1013(2010)に記載の方法で荷重―伸び曲線を測定し、荷重1000MPa以下の領域の平均傾斜を求める方法で測定できる(以下、同じ)。芯糸が高弾性率繊維を含むため、ベルトの引張弾性率を向上でき、高い動的張力が発生する用途においても、狭いベルト幅で動力伝達が可能となる。繊維の引張弾性率が低すぎると、ベルト伸びが大きくなってスリップが大きくなり、動力伝達不良、異音の発生、発熱による耐久性の低下が生じる虞がある。逆に繊維の引張弾性率が高すぎると、ベルトの張力変動が大きくなり、耐久性が低下する虞がある。
(Core thread)
The high elastic modulus fiber of the core yarn may be an inorganic or organic fiber having a high tensile elastic modulus, and the tensile elastic modulus of the high elastic modulus fiber is, for example, 200 to 900 GPa (for example, 200 to 800 GPa), preferably 210 to It may be about 500 GPa (eg, 220 to 300 GPa), more preferably 220 to 270 GPa (eg, 220 to 250 GPa). The tensile modulus of elasticity of the fiber can be measured by measuring the load-elongation curve by the method described in JIS L 1013 (2010), and determining the average slope of the area under a load of 1000 MPa (the same applies hereinafter). Since the core yarn contains high modulus fibers, the tensile modulus of the belt can be improved, and power can be transmitted with a narrow belt width even in applications where high dynamic tension is generated. When the tensile modulus of elasticity of the fiber is too low, the belt elongation becomes large and the slip becomes large, which may cause poor power transmission, generation of abnormal noise, and deterioration of durability due to heat generation. On the contrary, if the tensile modulus of elasticity of the fiber is too high, the tension fluctuation of the belt becomes large, and the durability may be lowered.
 このような高弾性率繊維としては、例えば、カーボン繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維などが例示できる。それらの繊維は単独で又は二種以上組み合わせて使用できる。高弾性率繊維としては、特に高い弾性率を有することから、カーボン繊維が好ましい。カーボン繊維を用いると、高い動的張力が発生する用途においても、より小さなベルト幅で耐久性を向上できる。 As such a high elastic modulus fiber, carbon fiber, PBO (poly paraphenylene benzo bis oxazole) fiber etc. can be illustrated, for example. These fibers can be used alone or in combination of two or more. As the high modulus fiber, carbon fiber is preferable because it has a particularly high modulus. The use of carbon fiber can improve the durability with a smaller belt width even in applications where high dynamic tension is generated.
 原糸のカーボン繊維(炭素繊維)としては、例えば、ピッチ系カーボン繊維、ポリアクリロニトリル(PAN)系カーボン繊維、フェノール樹脂系カーボン繊維、セルロース系カーボン繊維、ポリビニルアルコール系カーボン繊維などが挙げられる。カーボン繊維の市販品としては、例えば、東レ(株)製「トレカ(登録商標)」、東邦テナックス(株)製「テナックス(登録商標)」、三菱ケミカル(株)製「ダイアリード(登録商標)」などを利用できる。これらのカーボン繊維は、単独で又は二種以上組み合わせて使用できる。これらのカーボン繊維のうち、ピッチ系カーボン繊維、PAN系カーボン繊維が好ましく、PAN系カーボン繊維が特に好ましい。 Examples of carbon fibers of the raw yarn (carbon fibers) include pitch-based carbon fibers, polyacrylonitrile (PAN) -based carbon fibers, phenol resin-based carbon fibers, cellulose-based carbon fibers, polyvinyl alcohol-based carbon fibers and the like. As a commercial item of carbon fiber, for example, Toray Industries, Inc. "Toreca (registered trademark)", Toho Tenax Corporation "Tenax (registered trademark)", Mitsubishi Chemical Corporation "Dyaleed (registered trademark)" Can be used. These carbon fibers can be used alone or in combination of two or more. Among these carbon fibers, pitch-based carbon fibers and PAN-based carbon fibers are preferable, and PAN-based carbon fibers are particularly preferable.
 原糸であるカーボン繊維は、通常、カーボン繊維を含むカーボンマルチフィラメント糸である。カーボンマルチフィラメント糸は、カーボン繊維のモノフィラメント糸を含んでいればよく、必要であれば、カーボン繊維以外の繊維(例えば、ガラス繊維などの無機繊維やアラミド繊維などの有機繊維など)のモノフィラメント糸を含んでいてもよい。カーボン繊維の割合は、モノフィラメント糸全体(マルチフィラメント糸)中、50質量%以上(50~100質量%)であればよく、好ましくは80質量%以上、さらに好ましくは90質量%以上であり、通常、100質量%であり、全モノフィラメント糸がカーボン繊維で構成されている。カーボン繊維の割合が少なすぎると、ベルト伸びが大きくなり、高い動的張力が発生すると、耐久性が低下する虞がある。 The carbon fiber which is a raw yarn is usually a carbon multifilament yarn containing carbon fiber. The carbon multifilament yarn may contain monofilament yarn of carbon fiber, and if necessary, monofilament yarn of fiber other than carbon fiber (for example, inorganic fiber such as glass fiber or organic fiber such as aramid fiber) May be included. The proportion of carbon fibers may be 50% by mass or more (50 to 100% by mass), preferably 80% by mass or more, and more preferably 90% by mass or more in the whole monofilament yarn (multifilament yarn). , 100% by mass, and all monofilament yarns are composed of carbon fibers. If the proportion of carbon fibers is too small, the belt elongation will be large, and if a high dynamic tension occurs, the durability may be reduced.
 マルチフィラメント糸は、複数のモノフィラメント糸を含んでいればよく、例えば100~50000本、好ましくは1000~30000本、さらに好ましくは5000~20000本(特に10000~15000本)程度のモノフィラメント糸を含んでいてもよい。モノフィラメント糸の平均繊度は、例えば0.1~5dtex、好ましくは0.3~3dtex、さらに好ましくは0.5~1dtex程度であってもよい。 The multifilament yarn may contain a plurality of monofilament yarns, for example, 100 to 50,000, preferably 1,000 to 30,000, and more preferably 5,000 to 20,000 (particularly 10,000 to 15,000) of monofilament yarns. It may be The average fineness of the monofilament yarn may be, for example, about 0.1 to 5 dtex, preferably about 0.3 to 3 dtex, and more preferably about 0.5 to 1 dtex.
 芯糸の総繊度は、所望の心線径が得られる範囲で選定でき、例えば、100~1000tex(例えば、120~800tex)、好ましくは150~700tex(例えば、200~600tex)、さらに好ましくは250~500tex(例えば、300~450tex)程度であってもよく、300~600tex(例えば、350~550tex)程度であってもよい。芯糸の総繊度をこのような範囲に調整すると、心線径を適切な範囲にコントロールでき、ベルトの引張弾性率を十分に高めることができる。総繊度が小さすぎると、心線径が細くなり過ぎてベルトの引張弾性率や引張強力が低下する虞がある。総繊度が大きすぎると、心線径が太くなり過ぎて耐屈曲疲労性が低下する虞がある。 The total fineness of the core yarn can be selected in the range in which a desired core diameter can be obtained, for example, 100 to 1000 tex (eg, 120 to 800 tex), preferably 150 to 700 tex (eg, 200 to 600 tex), more preferably 250 It may be about 500 to 500 tex (for example, 300 to 450 tex) or about 300 to 600 tex (for example, 350 to 550 tex). By adjusting the total fineness of the core yarn to such a range, the core diameter can be controlled to an appropriate range, and the tensile modulus of elasticity of the belt can be sufficiently increased. If the total fineness is too small, the core wire diameter may become too thin and the tensile modulus and tensile strength of the belt may be reduced. If the total fineness is too large, the core diameter may become too large and the bending fatigue resistance may decrease.
 芯糸の平均直径(平均線径)は、例えば、0.2~1mm(例えば、0.25~0.95mm)、好ましくは0.3~0.8mm(例えば、0.35~0.75mm)、さらに好ましくは0.4~0.7mm(例えば、0.4~0.65mm)程度であってもよく、0.35~0.65mm(例えば、0.37~0.63mm)程度であってもよい。芯糸の線径が小さすぎると、ベルトの引張弾性率が低下する虞があり、芯糸の線径が大きすぎると、ベルトの耐屈曲疲労性が低下する虞がある。 The average diameter (average wire diameter) of the core yarn is, for example, 0.2 to 1 mm (for example, 0.25 to 0.95 mm), preferably 0.3 to 0.8 mm (for example, 0.35 to 0.75 mm) ), More preferably about 0.4 to 0.7 mm (for example, 0.4 to 0.65 mm), and preferably about 0.35 to 0.65 mm (for example, 0.37 to 0.63 mm). It may be. If the wire diameter of the core yarn is too small, the tensile modulus of elasticity of the belt may be reduced. If the wire diameter of the core yarn is too large, the bending fatigue resistance of the belt may be reduced.
 合糸(上撚り)前の芯糸は、撚糸であってもよく、無撚糸の繊維束であってもよいが、引張弾性率を高め、高い動的張力が発生する用途でもベルトを好適に用いるためには、無撚糸の繊維束または撚り数が1回/10cm以下の撚糸(又は撚り数0~1回/10cmの無撚糸又は撚糸)、好ましくは無撚糸の繊維束である。なお、無撚糸とは、撚り数が0.1回/10cm以下の実質的に無撚りの糸又は繊維束を含む。このような無撚り又は撚り数が少ない芯糸では、ベルトの伸びを小さく抑えることができ、高い動的張力が発生する用途にベルトを好適に使用できる。芯糸の撚り数が多いと、ベルトの伸びが大きくなり、高い動的張力が発生する用途への適用が難しくなる。 The core yarn before doubling yarn (upper twist) may be a twisted yarn or a fiber bundle of non-twisted yarn, but the belt is preferably used even in applications where the tensile elastic modulus is increased and high dynamic tension is generated. For use, it is a fiber bundle of untwisted yarn or a twisted yarn having a twist number of 1/10 cm or less (or a twist number of 0 to 1/10 cm, or a twist number of 0 to 1 cm), preferably a untwisted yarn. The non-twisted yarn includes a substantially untwisted yarn or fiber bundle having a twist number of 0.1 times / 10 cm or less. With such a non-twisted core thread or a small number of twists, the belt elongation can be suppressed to a low level, and the belt can be suitably used in applications where high dynamic tension is generated. When the number of core yarn twists is large, the elongation of the belt becomes large, which makes it difficult to apply to applications where high dynamic tension is generated.
 (鞘糸)
 鞘糸を形成する低弾性率繊維は、引張弾性率の低い繊維、例えば、引張弾性率が、50~150GPa(例えば、55~120GPa)、好ましくは60~100GPa(例えば、60~80GPa)程度の繊維であってもよい。低弾性率繊維の鞘糸を芯糸の周囲に配することにより、耐屈曲疲労性、ゴム組成物との接着性、せん断応力緩和効果が高まり、ベルトの耐久性を向上できる。
(Sheaf)
The low modulus fiber forming the sheath yarn is a fiber having a low tensile modulus, for example, a tensile modulus of about 50 to 150 GPa (for example, 55 to 120 GPa), preferably about 60 to 100 GPa (for example, 60 to 80 GPa) It may be fiber. By arranging the sheath yarn of the low elastic modulus fiber around the core yarn, bending fatigue resistance, adhesion to the rubber composition, shear stress relaxation effect can be enhanced, and the durability of the belt can be improved.
 低弾性率繊維としては、例えば、ガラス繊維、有機繊維(アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維など)が例示できる。これら繊維は単独で又は二種以上組み合わせて使用できる。低弾性率繊維としては、接着性、引張強度、弾性率、コストのバランスからガラス繊維が好ましい。ガラス繊維は、ゴム組成物との接着性が比較的高いため、ベルトの耐久性を向上する効果が高いだけでなく、弾性率も比較的高いため、ベルトの弾性率を向上できる。 Examples of the low modulus fiber include glass fiber and organic fiber (aramid fiber, polyester fiber, nylon fiber, cellulose fiber, etc.). These fibers can be used alone or in combination of two or more. As the low elastic modulus fiber, glass fiber is preferable in terms of the balance of adhesion, tensile strength, elastic modulus and cost. The glass fiber has a relatively high adhesiveness to the rubber composition, and thus not only has a high effect of improving the durability of the belt but also has a relatively high elastic modulus, so that the elastic modulus of the belt can be improved.
 原糸のガラス繊維としては、例えば、無アルカリガラス(Eガラス)、ケイ素Si成分の多い高強度ガラス(K、U、Sガラス)などが挙げられる。ガラス繊維の市販品としては、例えば、Kガラス繊維、Uガラス繊維(共に日本板硝子社製)、Tガラス繊維(日東紡績社製)、Rガラス繊維(Vetrotex社製)、Sガラス繊維、S-2ガラス繊維、ZENTRONガラス繊維(すべてOwens Corning Fiberglass社製)等があげられる。これらのガラス繊維の中でも、撚りコードの引張強度及び弾性率を高くできる点から、高強度ガラス(Kガラス繊維)が最も好ましい。また、ガラス繊維は、接着性の点からシランカップリング剤で表面処理されていてもよい。 Examples of the glass fiber of the raw yarn include alkali-free glass (E glass), high-strength glass (K, U, S glass) containing a large amount of silicon Si. Examples of commercial products of glass fiber include K glass fiber, U glass fiber (both manufactured by Nippon Sheet Glass Co., Ltd.), T glass fiber (manufactured by Nitto Boseki Co., Ltd.), R glass fiber (manufactured by Vetrotex), S glass fiber, S- 2 Glass fiber, ZENTRON glass fiber (all manufactured by Owens Corning Fiberglass) and the like. Among these glass fibers, high-strength glass (K glass fiber) is most preferable in that the tensile strength and elastic modulus of the twisted cord can be increased. The glass fiber may be surface-treated with a silane coupling agent from the viewpoint of adhesion.
 原糸であるガラス繊維は、通常、ガラス繊維を含むガラスマルチフィラメント糸である。ガラスマルチフィラメント糸は、ガラス繊維のモノフィラメント糸を含んでいればよく、必要であれば、ガラス繊維以外の繊維(例えば、カーボン繊維などの無機繊維やアラミド繊維などの有機繊維など)のモノフィラメント糸を含んでいてもよい。ガラス繊維の割合は、モノフィラメント糸全体(マルチフィラメント糸)中、50質量%以上(50~100質量%)であればよく、好ましくは80質量%以上、さらに好ましくは90質量%以上であり、通常、100質量%であり、全モノフィラメント糸がガラス繊維で構成されている。ガラス繊維の割合が少なすぎると、接着性やせん断応力緩和効果が低下し、ベルトの耐久性が低下する虞がある。 The glass fiber which is a raw yarn is usually a glass multifilament yarn containing glass fiber. The glass multifilament yarn may contain monofilament yarn of glass fiber, and if necessary, monofilament yarn of fiber other than glass fiber (for example, inorganic fiber such as carbon fiber or organic fiber such as aramid fiber) May be included. The proportion of the glass fiber may be 50% by mass or more (50 to 100% by mass), preferably 80% by mass or more, more preferably 90% by mass or more in the whole monofilament yarn (multifilament yarn). , 100% by mass, and all monofilament yarns are composed of glass fibers. If the proportion of glass fiber is too small, the adhesion and shear stress relaxation effect may be reduced, and the durability of the belt may be reduced.
 鞘糸(ガラスマルチフィラメント糸など)は、複数のモノフィラメント糸を含んでいればよい。鞘糸を形成するモノフィラメントの平均径(直径)は特に制限されず、通常、6~9μm程度である。鞘糸(ガラスマルチフィラメント糸など)の総繊度は、耐屈曲疲労性及び接着性を両立できる範囲で適宜選択でき、例えば、20~100tex(例えば、25~90tex)、好ましくは30~80tex(例えば、30~75tex)、さらに好ましくは35~70tex(例えば、50~70tex)程度であってもよい。このような総繊度の鞘糸を用いると、耐屈曲疲労性やゴム組成物との接着性を高い次元で両立できる。鞘糸の総繊度が小さすぎると、接着性が低下して心線とゴム組成物との間で層間剥離が起こりやすくなるとともに、せん断応力緩和効果の低下によりベルトの耐久性が低下する虞がある。鞘糸の総繊度が大きすぎると、曲げ歪の増大により屈曲疲労が促進され、ベルトの耐久性が低下する。 The sheath yarn (glass multifilament yarn, etc.) may contain a plurality of monofilament yarns. The average diameter (diameter) of the monofilaments forming the sheath yarn is not particularly limited, and is usually about 6 to 9 μm. The total fineness of the sheath yarn (glass multifilament yarn etc.) can be appropriately selected as long as the bending fatigue resistance and the adhesiveness can be compatible, and is, for example, 20 to 100 tex (for example, 25 to 90 tex), preferably 30 to 80 tex (for example, 30 to 75 tex), more preferably about 35 to 70 tex (eg, 50 to 70 tex). When the sheath yarn of such a total fineness is used, the bending fatigue resistance and the adhesiveness with the rubber composition can be compatible at a high level. If the total fineness of the sheath yarn is too small, the adhesion is lowered and delamination tends to occur between the core wire and the rubber composition, and the durability of the belt may be lowered due to the reduction of the shear stress relaxation effect. is there. If the total fineness of the sheath yarn is too large, bending fatigue is promoted by the increase of bending strain, and the durability of the belt is reduced.
 鞘糸の平均直径は、例えば、0.13~0.25mm(例えば、0.14~0.24mm)、好ましくは0.15~0.23mm(例えば、0.15~0.22mm)、さらに好ましくは0.19~0.22mm程度であってもよく、0.17~0.24mm(例えば、0.18~0.23mm)程度であってもよい。このような平均直径の鞘糸を用いると、上記繊度と同様に、耐屈曲疲労性とゴム組成物との接着性を高い次元で両立できる。 The average diameter of the sheath yarn is, for example, 0.13 to 0.25 mm (eg, 0.14 to 0.24 mm), preferably 0.15 to 0.23 mm (eg, 0.15 to 0.22 mm), and further Preferably, it may be about 0.19 to 0.22 mm, or about 0.17 to 0.24 mm (eg, 0.18 to 0.23 mm). The use of a sheath yarn having such an average diameter makes it possible to achieve both bending fatigue resistance and adhesiveness with the rubber composition at a high level in the same manner as the fineness.
 鞘糸は、無撚糸(無撚りの繊維束)であってもよいが、耐屈曲疲労性及びせん断応力緩和効果を高めるため、芯糸及び鞘糸のうち、少なくとも鞘糸が下撚りされた撚糸であるのが好ましい。すなわち、コードの外周部に位置する鞘糸は、屈曲時においてコードの中心部に位置する芯糸よりも大きな歪み応力を受けることになる。そのため、コード全体としての撚り(上撚り)と合わせて、鞘糸単独でも下撚りすることにより、屈曲時の歪み応力を吸収でき、耐屈曲疲労性及びせん断応力緩和効果を向上できる。鞘糸の下撚り数は、上記効果が十分に発揮される範囲で適宜選択でき、通常、3~15回/10cm(例えば、5~15回/10cm)、好ましくは5~12回/10cm(例えば、6~10回/10cm)程度であってもよい。 The sheath yarn may be a non-twisted yarn (a non-twisted fiber bundle), but in order to enhance the bending fatigue resistance and the shear stress relaxation effect, at least a sheath yarn of the core yarn and the sheath yarn is twisted. Is preferred. That is, at the time of bending, the sheath yarn located at the outer peripheral portion of the cord receives larger strain stress than the core yarn located at the central portion of the cord. Therefore, it is possible to absorb the strain stress at the time of bending and to improve the bending fatigue resistance and the shear stress relaxation effect by simultaneously twisting the sheath yarn alone in combination with the twist (upper twist) as the entire cord. The number of lower twists of the sheath yarn can be appropriately selected as long as the above effects are sufficiently exhibited, and usually 3 to 15 times / 10 cm (eg 5 to 15 times / 10 cm), preferably 5 to 12 times / 10 cm For example, it may be about 6 to 10 times / 10 cm).
 (接着処理)
 前記芯糸(高弾性率繊維)及び鞘糸(低弾性率繊維)は、必ずしも必要ではないが、上撚り前にそれぞれ接着処理を施し、前記芯糸(高弾性率繊維)及び鞘糸(低弾性率繊維)の少なくとも一部(好ましくはほぼ全体)の表面に、接着成分を付着(又は被覆)させるのが好ましい。接着成分は、高弾性率繊維及び/又は低弾性率繊維の少なくとも一部の表面、前記芯糸及び/又は鞘糸の少なくとも一部の表面に付着させればよく、例えば、高弾性率繊維及び低弾性率繊維のほぼ全体、又は前記芯糸及び鞘糸のほぼ全体に付着させてもよい。接着処理を施すと、芯糸及び鞘糸中の繊維同士の集束性が向上して、ベルトの幅カット断面に露出する心線のホツレを抑制でき、耐久性を向上できる。また、芯糸及び鞘糸を同じ接着剤で処理すると、ベルトの加硫時に芯糸と鞘糸を一体化でき、せん断応力緩和効果を高めることができる。
(Adhesive treatment)
The core yarn (high elastic modulus fiber) and the sheath yarn (low elastic modulus fiber) are not necessarily required, but are each subjected to an adhesion treatment before twisting, and the core yarn (high elastic modulus fiber) and sheath yarn (low) It is preferable to attach (or coat) the adhesive component on the surface of at least a part (preferably almost the entire surface) of the elastic modulus fiber). The adhesive component may be attached to the surface of at least a portion of the high modulus fiber and / or the low modulus fiber, the surface of at least a portion of the core yarn and / or the sheath yarn, for example, the high modulus fiber and It may be attached to substantially the entire low modulus fiber, or substantially the entire core yarn and sheath yarn. When the adhesion process is performed, the convergence of the fibers in the core yarn and the sheath yarn is improved, and it is possible to suppress heat loss of the core wire exposed in the width cut section of the belt, and to improve the durability. In addition, when the core yarn and the sheath yarn are treated with the same adhesive, the core yarn and the sheath yarn can be integrated when the belt is vulcanized, and the shear stress relaxation effect can be enhanced.
 接着処理としては、慣用の方法が利用でき、例えば、レゾルシン-ホルマリン-ラテックス(RFL)処理液や、ポリイソシアネート化合物を含む処理液で処理(例えば、浸漬処理)し、乾燥することにより行うことができる。RFL処理液は、例えば、レゾルシン-ホルマリン樹脂、ビスマレイミド化合物、ポリイソシアネート化合物などを含むラテックス系接着剤であってもよい。また、ラテックスのゴムは、カルボキシル基などの官能基を有するゴム、例えば、カルボキシル基を有するニトリルゴム又は水素化ニトリルゴムなどであってもよい。 As the adhesion treatment, a conventional method can be used, and for example, treatment (for example, immersion treatment) with a treatment solution containing resorcinol-formalin-latex (RFL) or a treatment solution containing a polyisocyanate compound and drying may be used. it can. The RFL treatment liquid may be, for example, a latex adhesive containing resorcin-formalin resin, a bismaleimide compound, a polyisocyanate compound, and the like. The rubber of the latex may be a rubber having a functional group such as a carboxyl group, such as a nitrile rubber having a carboxyl group or a hydrogenated nitrile rubber.
 [心線(又は撚りコード又は合糸)の形態]
 心線を形成する撚りコードは、芯糸の周囲に、複数の鞘糸が配置され、上撚りされた形態を有している。芯糸の周囲に配される鞘糸の本数は、芯糸1本に応じて、10~20本程度の範囲から選択でき、耐屈曲疲労性やゴム組成物との接着性を高い次元で両立するためには、11~19本(例えば、12~19本)、好ましくは13~18本(例えば、14~16本)程度であってもよく、12~18本(例えば、13~17本)程度であってもよい。鞘糸の本数が少なすぎると、接着性が低下して心線とゴム組成物との間で層間剥離が起こりやすくなり、ベルトの耐久性が低下する。鞘糸の本数が多すぎると、鞘糸同士が乗り上げて心線の形状が歪になったり、曲げ歪の増大により屈曲疲労が促進され、耐久性が低下する。
[Form of core wire (or twist cord or double yarn)]
The twisted cords forming the core wire have a form in which a plurality of sheath yarns are disposed around the core yarn and are twisted in an over-twisted manner. The number of sheath yarns arranged around the core yarn can be selected from the range of about 10 to 20 according to one core yarn, and it is possible to achieve both bending fatigue resistance and adhesiveness with the rubber composition at a high level In order to achieve this, it may be about 11 to 19 (for example, 12 to 19), preferably about 13 to 18 (for example, 14 to 16), and 12 to 18 (for example, 13 to 17) ) May be. If the number of sheath yarns is too small, the adhesion is lowered, delamination tends to occur between the core wire and the rubber composition, and the durability of the belt is reduced. If the number of sheath yarns is too large, the sheath yarns ride on each other to distort the shape of the core wire, or increase in bending strain promotes bending fatigue and reduces durability.
 心線を形成する撚りコード(又は上撚りコード)は、芯糸の無撚りの繊維束の周囲に、鞘糸の無撚りの繊維束を配置して一方向に撚った片撚りであってもよい。また、芯糸及び/又は鞘糸として、下撚りした撚糸(特に、少なくとも鞘糸の撚糸)を用い、芯糸の周囲に鞘糸を配置して、下撚り方向と同じ方向に上撚りしたラング撚り、下撚り方向と反対方向に上撚りした諸撚り、さらには、下撚りと上撚りに加えて、中撚りしたコードであってもよい。好ましい心線(撚りコード)は、下撚り方向と同じ方向又は反対方向に上撚りした撚りコード、特に、下撚り方向と同じ方向に上撚りした撚りコードである。上撚り方向と下撚り方向とが逆である撚りコードと比較して、下撚り方向と同じ方向に上撚りした撚りコードでは、耐屈曲疲労性が向上する。 The twisted cord (or the upper twisted cord) forming the core wire is a single twist in which untwisted fiber bundles of sheath yarn are disposed around untwisted fiber bundles of the core yarn and twisted in one direction; It is also good. In addition, as a core yarn and / or a sheath yarn, a lower-twisted twisted yarn (in particular, at least a twisted yarn of a sheath yarn) is used, a sheath yarn is disposed around the core yarn, and a rung is twisted in the same direction as the lower twist direction. In addition to the first twist and the second twist, the second twist may be a middle-twisted cord. Preferred cords (twisted cords) are twisted cords that are top-twisted in the same direction as or opposite to the first twist direction, in particular, those that are top-twisted in the same direction as the first twist direction. The bending fatigue resistance is improved in the twisted cord in which the upper twisting direction and the lower twisting direction are opposite to each other in the same direction as the lower twisting direction, as compared with the twisted cord in which the upper twisting direction and the lower twisting direction are opposite.
 心線(又は上撚りコード)の上撚り数は、例えば、3~15回/10cm程度の範囲から選択でき、通常、5~15回/10cm(例えば、5~14回/10cm)、さらに好ましくは6~12回/10cm(例えば、6~10回/10cm)程度であってもよい。このような撚り数の心線(又は撚りコード)は、耐屈曲疲労性を保ったまま伸びを小さくすることができる。心線(又は撚りコード)の撚り数を多くすると、せん断応力に対する緩和効果を高めることができ、耐屈曲疲労性を改善できる。心線(又は撚りコード)の撚り数が少なすぎると、耐屈曲疲労性が低下してベルトの耐久性が低下する虞があり、心線(又は撚りコード)の撚り数が多すぎると、耐屈曲疲労性には優れるものの、引張弾性率や引張強力が低下するとともに、伸びも大きくなる虞がある。 The number of upper twists of the core wire (or the upper twist cord) can be selected, for example, in the range of about 3 to 15 times / 10 cm, usually 5 to 15 times / 10 cm (eg 5 to 14 times / 10 cm), more preferably May be about 6 to 12 times / 10 cm (eg, 6 to 10 times / 10 cm). Such a twisted number of core wires (or twisted cords) can reduce the elongation while maintaining the bending fatigue resistance. When the number of twists of the core wire (or twist cord) is increased, the relaxation effect to shear stress can be enhanced, and the bending fatigue resistance can be improved. If the number of twists of the core wire (or twist cord) is too small, the resistance to bending fatigue may decrease to reduce the durability of the belt, and if the number of twists of the core wire (or twist cord) is too large, the resistance Although it is excellent in bending fatigue resistance, there is a possibility that the tensile modulus of elasticity and the tensile strength decrease and the elongation also increases.
 心線(又は上撚りコード)の平均直径(平均線径又は心線径)は、例えば、0.3~1.5mm(例えば、0.4~1.4mm)、好ましくは0.5~1.3mm(例えば、0.6~1.2mm)、さらに好ましくは0.7~1.2mm(例えば、0.75~1.2mm)程度であってもよく、0.65~1.25mm(例えば、0.75~1.15mm)程度であってもよい。心線径(又は撚りコード径)が小さすぎると、ベルトの引張弾性率が低下する虞があり、心線径(又は撚りコード径)が大きすぎると、ベルトの耐屈曲疲労性が低下する虞がある。 The average diameter (average wire diameter or core wire diameter) of the core wire (or upper twist cord) is, for example, 0.3 to 1.5 mm (eg, 0.4 to 1.4 mm), preferably 0.5 to 1 .3 mm (e.g., 0.6 to 1.2 mm), and more preferably 0.7 to 1.2 mm (e.g., 0.75 to 1.2 mm), or 0.65 to 1.25 mm (e.g. For example, it may be about 0.75 to 1.15 mm). If the core wire diameter (or twisted cord diameter) is too small, the tensile modulus of elasticity of the belt may be decreased. If the core wire diameter (or twisted cord diameter) is too large, the bending fatigue resistance of the belt may be reduced. There is.
 (コート処理)
 前記のように、芯糸及び/又は鞘糸の接着処理により、繊維間、芯糸-鞘糸間、及び心線とゴムとの接着性を改善できるため、コード(撚りコード)には、必ずしも接着処理を施す必要はないが、鞘糸と芯糸とを合わせて上撚りした前記撚りコードの少なくとも一部(好ましくはほぼ全体)の表面に、ゴム成分(例えば、後述する接着ゴム層のゴム成分など)を付着(又は被覆)させるのが好ましい。このゴム成分の付着(又は被覆)は、ゴム成分を含むゴム組成物(例えば、ゴム成分をトルエンなどの溶媒に溶解したゴム糊など)を用いて、前記コードを、コート(又はオーバーコート)処理することにより行うことができる。例えば、撚りコードをゴム含有組成物(ゴム糊)に浸漬した後、乾燥して熱処理してコート処理してもよい。このようなコート処理が施された前記撚りコードでは、前記芯糸及び/又は鞘糸に接着処理だけを施した心線に比べて、ゴムとの接着性をさらに高めることができ、せん断応力に対する緩和効果を高め、ベルトの耐久性を向上できる。
(Coating process)
As described above, since the adhesion between the fibers, between the core yarn and the sheath yarn, and between the core and the rubber can be improved by the adhesion treatment of the core yarn and / or the sheath yarn, the cord (twisted cord) is not necessarily required. Although it is not necessary to perform adhesion processing, a rubber component (for example, a rubber of an adhesive rubber layer to be described later) is formed on the surface of at least a part (preferably substantially the whole) of the twisted cord It is preferred to apply (or coat) the components). The adhesion (or coating) of the rubber component is carried out by coating (or overcoating) the cord with a rubber composition containing the rubber component (for example, a rubber paste in which the rubber component is dissolved in a solvent such as toluene). It can do by doing. For example, after immersing the twisted cord in a rubber-containing composition (rubber paste), it may be dried, heat-treated, and coated. The twist cord subjected to such a coating treatment can further improve the adhesion to rubber compared to a core wire obtained by subjecting the core yarn and / or the sheath yarn to only the adhesion treatment, and it is possible to the shear stress. The relaxation effect can be enhanced and the durability of the belt can be improved.
 [摩擦伝動ベルト]
 本発明では、高い引張弾性率及び耐屈曲疲労性、並びに耐久性を実現できるため、摩擦伝動ベルト、例えば、平ベルト、Vベルト(ラップドVベルト、ローエッジVベルト、ローエッジコグドVベルト、Vリブドベルトなど(特に、Vリブドベルトなど))に好適に適用される。特に、高い動的張力が発生する用途では、Vリブドベルトが好ましい。なお、前記特許文献2には、動力伝達用ベルトとして、V-ベルト、多リブ付ベルト、歯付動力伝達ベルトが例示されているものの、Vリブドベルトについては具体的な検討がなされていない。また、具体的に検討されている歯付動力伝達ベルトは、Vリブドベルトとは動力伝達機構が大きく異なる。そのため、歯付きベルトと摩擦伝動ベルト(Vリブドベルトなど)とは、用途や課題、要求される強度レベルが異なり、歯付きベルトの構成は、摩擦伝動ベルトではあまり参考にならない。
Friction transmission belt
In the present invention, high tensile modulus and resistance to bending fatigue and durability can be realized, so friction transmission belts such as flat belts, V-belts (wrapped V-belts, low-edge V-belts, low-edge cogged V-belts, V-ribbed belts) Etc. (especially, V-ribbed belt etc.). V-ribbed belts are preferred, especially in applications where high dynamic tension is generated. Although Patent Document 2 exemplifies a V-belt, a multi-ribbed belt, and a toothed power transmission belt as a power transmission belt, no specific study is made on the V-ribbed belt. In addition, the toothed power transmission belt that is specifically studied is significantly different from the V-ribbed belt in the power transmission mechanism. Therefore, the toothed belt and the friction transmission belt (such as the V-ribbed belt) have different applications, problems, and required strength levels, and the configuration of the toothed belt is not very useful in the friction transmission belt.
 Vリブドベルトなどの摩擦伝動ベルトは前記心線(又は撚りコード)を含んでいればよく、通常、複数の前記コードが、摩擦伝動ベルトのゴム層(例えば、接着ゴム層)に埋設されている。複数のコードは、ベルト長手方向にそれぞれ延在し、かつベルト幅方向に所定のピッチで互いに離隔して配置されている。 A friction transmission belt such as a V-ribbed belt may include the core (or twisted cord), and a plurality of the cords are usually embedded in a rubber layer (for example, an adhesive rubber layer) of the friction transmission belt. The plurality of cords respectively extend in the longitudinal direction of the belt and are spaced apart from each other at a predetermined pitch in the widthwise direction of the belt.
 (心線ピッチ)
 心線ピッチ(ベルト中で隣り合う2本のコードの中心間の距離)は、ベルトの引張強力や引張弾性率を高めることができるため、小さい方が好ましい。ただし、心線ピッチが小さすぎると、隣接する心線が一部重複し(乗り上げ)易くなったり、心線間にゴムが流れ込みにくくなるので接着力が低下する虞がある。また、ベルトの屈曲に伴って心線同士が接触して擦れることにより、耐屈曲疲労性の低下を招く虞がある。そのため、心線ピッチは心線径よりも少しだけ大きいのが望ましい。
(Core pitch)
The core pitch (the distance between the centers of two cords adjacent to each other in the belt) is preferably smaller because it can increase the tensile strength and tensile modulus of the belt. However, if the core wire pitch is too small, adjacent core wires may partially overlap (run up), or rubber may not easily flow between the core wires, which may reduce adhesion. In addition, there is a possibility that the bending fatigue resistance may be reduced by contact and rubbing between the core wires as the belt bends. Therefore, it is desirable that the core pitch be slightly larger than the core diameter.
 心線ピッチは、心線径よりも0.01~1mm程度大きい範囲から選択でき、心線ピッチは、心線径よりも、0.05~0.8mm(例えば、0.1~0.5mm)、さらに好ましくは0.2~0.4mm(特に0.2~0.3mm)程度大きくてもよい。具体的には、心線ピッチは、例えば、0.5~2mm(例えば、0.6~1.8mm)、好ましくは0.7~1.7mm(例えば、0.8~1.6mm)、さらに好ましくは0.8~1.5mm(例えば、0.9~1.4mm)、特に0.85~1.5mm(例えば、0.9~1.35mm)程度であってもよい。心線ピッチが小さすぎると、ベルトの屈曲に伴って心線同士が擦れてベルト強力が低下したり、製造時に心線乗り上げなどの不具合が発生する虞があり、心線ピッチが大きすぎると、引張弾性率の高い繊維(カーボン繊維など)を使用してもベルトの引張弾性率は低くなる虞がある。 The core pitch can be selected from a range larger than the core diameter by about 0.01 to 1 mm, and the core pitch is 0.05 to 0.8 mm (for example, 0.1 to 0.5 mm) than the core diameter. And more preferably 0.2 to 0.4 mm (especially 0.2 to 0.3 mm). Specifically, the core pitch is, for example, 0.5 to 2 mm (for example, 0.6 to 1.8 mm), preferably 0.7 to 1.7 mm (for example, 0.8 to 1.6 mm), More preferably, it may be about 0.8 to 1.5 mm (eg, 0.9 to 1.4 mm), and particularly about 0.85 to 1.5 mm (eg, 0.9 to 1.35 mm). If the core pitch is too small, the cords may rub against each other as the belt bends to reduce the belt strength, or problems such as running on the core may occur at the time of manufacture. If the core pitch is too large, Even if fibers with high tensile modulus (such as carbon fibers) are used, the tensile modulus of the belt may be low.
 なお、複数の心線は、同じ方向に上撚りされたコード(例えば、S方向に上撚りされたS撚りコード、Z方向に上撚りされたZ撚りコード)の心線を所定の間隔(又は所定のピッチ)で埋設してもよく、S撚りコードの心線とZ撚りコードの心線とを組み合わせて埋設してもよい。例えば、S撚りコードの心線とZ撚りコードの心線とを、所定の間隔毎に規則的(例えば、等間隔毎)に又は不規則的に埋設してもよく、通常、規則的に、例えば、交互に埋設してもよい。S撚りコードの心線とZ撚りコードの心線とを埋設すると、ベルトの直進性を高めることができる。すなわち、心線として、S撚りコードの心線のみ、又はZ撚りコードの心線のみを埋設すると、心線の解撚トルクにより、ベルトが走行方向に対して左右いずれか一方に片寄る性質が強くなり、片寄り走行になると、摩擦伝動面やベルト端面の摩耗が促進されて、耐久性が低下する。これに対して、S撚りコードの心線とZ撚りコードの心線とを埋設(特に交互に配置して埋設)すると、心線の解撚トルクが相殺されて、ベルトの直進性が高まり、耐久性を向上できる。 In addition, as for the plurality of cords, cords of cords twisted in the same direction (for example, S-twist cords twisted in the S direction, Z-twist cords twisted in the Z direction) are separated by a predetermined distance (or The core wire of the S twist cord and the core wire of the Z twist cord may be combined and buried. For example, the core of the S-strand cord and the core of the Z-strand cord may be embedded regularly (for example, at equal intervals) or irregularly at predetermined intervals, usually regularly For example, they may be buried alternately. The straightness of the belt can be enhanced by embedding the core wire of the S twist cord and the core wire of the Z twist cord. That is, when only the core wire of the S twist cord or only the core wire of the Z twist cord is embedded as a core wire, the untwisting torque of the core wire causes the belt to be strongly biased to the left or right with respect to the traveling direction. When the vehicle travels in an offset direction, the wear of the friction transmission surface and the belt end surface is promoted, and the durability decreases. On the other hand, when the core of the S twist cord and the core of the Z twist cord are embedded (in particular, alternately arranged and embedded), the untwisting torque of the core is offset and the straightness of the belt is enhanced, Durability can be improved.
 前記摩擦伝動ベルトの詳細を、Vリブドベルトを例にとって説明すると、以下の通りである。 The details of the friction transmission belt will be described below, taking the V-ribbed belt as an example.
 [Vリブドベルト]
 Vリブドベルトの形態は、ベルト長手方向に沿って互いに平行に延びる複数のVリブ部を有していれば、特に制限されず、例えば、図2に示す形態が例示される。図2は本発明のVリブドベルトの一例を示す概略断面図である。図2に示されるVリブドベルトは、ベルト下面(内周面)からベルト上面(背面)に向かって順に、圧縮ゴム層12、ベルト長手方向に心線(又は撚りコード)1を埋設した接着ゴム層14、カバー帆布(織物、編物、不織布など)又はゴム組成物で構成された伸張層15を積層した形態を有している。圧縮ゴム層12には、ベルト長手方向に伸びる複数の断面V字状の溝が形成され、この溝の間には断面V字形(逆台形)の複数のVリブ部13(図2に示す例では4個)が形成されており、このVリブ部13の二つの傾斜面(表面)が摩擦伝動面を形成し、プーリと接して動力を伝達(摩擦伝動)する。接着ゴム層14内には、複数の心線(又は撚りコード)1が、ベルト長手方向にそれぞれ延在し、かつベルト幅方向に所定のピッチで互いに離隔して配置されている。
[V-ribbed belt]
The form of the V-ribbed belt is not particularly limited as long as it has a plurality of V-ribs extending in parallel to each other along the longitudinal direction of the belt, and for example, the form shown in FIG. 2 is exemplified. FIG. 2 is a schematic cross-sectional view showing an example of the V-ribbed belt of the present invention. The V-ribbed belt shown in FIG. 2 is an adhesive rubber layer in which a compression rubber layer 12 and a core (or twisted cord) 1 are embedded in the longitudinal direction of the belt sequentially from the lower surface (inner peripheral surface) to the upper surface (rear surface) of the belt. 14 has a form in which a stretch layer 15 composed of a cover canvas (woven fabric, knitted fabric, non-woven fabric, etc.) or a rubber composition is laminated. A plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compression rubber layer 12, and a plurality of V-rib portions 13 (in FIG. 2) shown in FIG. In this case, four of them are formed, and the two inclined surfaces (surfaces) of the V-rib portion 13 form a friction transmission surface and transmit power (friction transmission) in contact with the pulley. In the adhesive rubber layer 14, a plurality of core wires (or twisted cords) 1 respectively extend in the longitudinal direction of the belt and are spaced apart from each other at a predetermined pitch in the width direction of the belt.
 Vリブドベルトの形態は図2に示す形態に限定されず、少なくとも一部がプーリのVリブ溝部(V溝部)と接触可能な伝動面を有する圧縮ゴム層を備えていればよく、典型的には、伸張層と圧縮ゴム層と、その間にベルト長手方向に沿って埋設される心線(又は撚りコード)とを備えていればよい。本発明のVリブドベルトにおいて、例えば、接着ゴム層14を設けることなく伸張層15と圧縮ゴム層12との間に心線(又は撚りコード)1を埋設してもよい。さらに、接着ゴム層14を圧縮ゴム層12又は伸張層15のいずれか一方に設け、心線(又は撚りコード)1を接着ゴム層14(圧縮ゴム層12側)と伸張層15との間、もしくは接着ゴム層14(伸張層15側)と圧縮ゴム層12との間に埋設する形態であってもよい。 The form of the V-ribbed belt is not limited to the form shown in FIG. 2, and it is sufficient if at least a portion has a compressed rubber layer having a transmission surface capable of contacting the V-rib groove (V groove) of the pulley. , A tension layer, a compression rubber layer, and a core wire (or a twist cord) embedded along the longitudinal direction of the belt. In the V-ribbed belt of the present invention, for example, the core wire (or twisted cord) 1 may be embedded between the stretch layer 15 and the compressed rubber layer 12 without providing the adhesive rubber layer 14. Furthermore, the adhesive rubber layer 14 is provided on either the compression rubber layer 12 or the stretch layer 15, and the core wire (or twist cord) 1 is provided between the adhesive rubber layer 14 (the compression rubber layer 12 side) and the stretch layer 15, Alternatively, it may be embedded between the adhesive rubber layer 14 (stretching layer 15 side) and the compressed rubber layer 12.
 なお、少なくとも前記圧縮ゴム層12が以下に詳細に説明するゴム組成物で形成されていればよく、前記接着ゴム層14は接着ゴム層として利用される慣用のゴム組成物で形成されていればよく、前記伸張層15は伸張層として利用される慣用のカバー帆布又はゴム組成物で形成されていればよく、前記圧縮ゴム層12と同一のゴム組成物で形成されていなくてもよい。 In addition, at least the compressed rubber layer 12 may be formed of the rubber composition described in detail below, and the adhesive rubber layer 14 may be formed of a conventional rubber composition used as an adhesive rubber layer. Preferably, the stretch layer 15 may be formed of a conventional cover canvas or rubber composition used as a stretch layer, and may not be formed of the same rubber composition as the compressed rubber layer 12.
 Vリブドベルトにおいて、Vリブの数(リブ数)は、図2では4個であり、2~6個程度の範囲から選択できるが、本発明では、リブ数が少なくても、ベルトの耐久性を向上できることが大きな特徴であり、リブ数は、3~5個、好ましくは4個である。本発明では、3~5個程度の少ないリブ数とすることにより、省スペースや軽量化の要求に応えることができる。リブ数が少なすぎると、カーボン繊維を用いても引張弾性率や引張強力が不足する虞があり、逆に多すぎると、省スペースや軽量化の要求を十分に満足できない虞がある。 In the V-ribbed belt, the number of V-ribs (the number of ribs) is four in FIG. 2 and can be selected from the range of about 2 to 6. However, in the present invention, the durability of the belt can be improved even if the number of ribs is small. It is a major feature that it can be improved, and the number of ribs is three to five, preferably four. In the present invention, by setting the number of ribs as small as about 3 to 5, it is possible to meet the demand for space saving and weight reduction. If the number of ribs is too small, even if carbon fibers are used, the tensile elastic modulus and tensile strength may be insufficient. If too large, the requirements for space saving and weight reduction may not be sufficiently satisfied.
 Vリブドベルトは、高い動的張力が発生する用途に適しており、例えば、ベルト式ISG駆動を搭載したエンジンでは、エンジンの始動でベルトに高い動的張力が作用し、しかもこのような始動が頻繁に繰り返される。そのため、Vリブドベルトには、通常のベルトよりも高い引張強力が要求される。このような用途において、Vリブドベルトの引張強力は、ベルト幅1mm当たりの値として、420N/mm以上(例えば420~1000N/mm)であってもよく、好ましくは560N/mm以上、さらに好ましくは620N/mm以上(特に680N/mm以上)であってもよく、特に高い動的張力発生する用途では、好ましくは750~1000N/mm(特に800~900N/mm)であってもよい。ベルトの引張強力がこのような範囲に調整されていると、ベルトに高い動的張力が作用しても、切断することなく十分な耐久性を示す。 V-ribbed belts are suitable for applications where high dynamic tension is generated, for example, in engines equipped with belt type ISG drive, high dynamic tension acts on the belt at engine start, and such start is frequent Repeated. Therefore, the V-ribbed belt is required to have higher tensile strength than a normal belt. In such applications, the tensile strength of the V-ribbed belt may be 420 N / mm or more (eg, 420 to 1000 N / mm), preferably 560 N / mm or more, and more preferably 620 N, as a value per 1 mm of belt width. / Mm or more (especially 680 N / mm or more), preferably 750 to 1000 N / mm (especially 800 to 900 N / mm), especially for applications with high dynamic tension generation. When the tensile strength of the belt is adjusted to such a range, even if a high dynamic tension acts on the belt, it shows sufficient durability without cutting.
 本発明の摩擦伝動ベルト(特に、Vリブドベルト)は、高い引張弾性率を有しており、引張弾性率は、例えば、240~500N/(mm・%)(例えば、270~490N/(mm・%))、好ましくは300~480N/(mm・%)(例えば、350~480N/(mm・%))、さらに好ましくは400~470N/(mm・%)(例えば、420~450N/(mm・%))程度であってもよい。ベルトの引張弾性率が小さいと、ベルト伸びが大きくなってスリップが大きくなり、動力伝達不良、異音の発生、発熱による耐久性の低下が起こる虞がある。ベルトの引張弾性率が大きすぎると、ベルトの張力変動が大きくなり、耐久性が低下する虞がある。  The friction transmission belt of the present invention (in particular, V-ribbed belt) has a high tensile elastic modulus, and the tensile elastic modulus is, for example, 240 to 500 N / (mm ·%) (for example, 270 to 490 N / (mm ···). %), Preferably 300 to 480 N / (mm ·%) (eg, 350 to 480 N / (mm ·%)), more preferably 400 to 470 N / (mm ·%) (eg, 420 to 450 N / (mm)・%) May be about. When the tensile elastic modulus of the belt is small, the belt elongation becomes large and the slip becomes large, and there is a possibility that the power transmission failure, the generation of abnormal noise, and the deterioration of durability due to heat generation may occur. When the tensile modulus of elasticity of the belt is too large, the tension fluctuation of the belt becomes large, and the durability may be reduced.
 なお、本明細書及び特許請求の範囲において、Vリブドベルトの引張強力及び引張弾性率は、後述する実施例に記載の方法で測定できる。 In the present specification and claims, the tensile strength and the tensile elastic modulus of the V-ribbed belt can be measured by the methods described in the examples described later.
 摩擦伝動ベルト(特に、Vリブドベルト)が好適に適用(装着)されるベルト式ISG駆動を搭載したエンジンとしては、例えば、ベルト1mm幅当たり、85N/mm以上(例えば90~120N/mm程度)の動的張力が作用するエンジンであってもよい。このような厳しい条件下でも、本発明の摩擦伝動ベルト(特に、Vリブドベルト)による効果がより一層有効に発揮される。なお、ベルト式ISG駆動を搭載したエンジンは、ベルト背面にテンショナーを備えたベルト式ISG駆動を搭載したエンジンであってもよい。 As an engine equipped with a belt type ISG drive to which a friction transmission belt (especially V-ribbed belt) is suitably applied (mounted), for example, 85 N / mm or more (for example, about 90 to 120 N / mm) per 1 mm width of belt It may be an engine on which dynamic tension acts. Even under such severe conditions, the effects of the friction transmission belt (particularly, V-ribbed belt) of the present invention are more effectively exhibited. The engine equipped with the belt type ISG drive may be an engine equipped with the belt type ISG drive provided with a tensioner on the back of the belt.
 本発明の摩擦伝動ベルトは特に、ベルト幅が小さくても、高い耐久性を有し、動力伝達性に優れている。そのため、ベルト幅は特に制限されず、例えば、0.5~5cm(例えば、0.7~4cm)、好ましくは0.8~3cm(例えば、1~2cm)程度であってもよい。 In particular, the friction transmission belt of the present invention has high durability and excellent power transmission even if the width of the belt is small. Therefore, the width of the belt is not particularly limited, and may be, for example, about 0.5 to 5 cm (for example, 0.7 to 4 cm), preferably about 0.8 to 3 cm (for example, 1 to 2 cm).
 (ゴム組成物)
 圧縮ゴム層12、接着ゴム層14及び伸張層15は、ゴム成分を含むゴム組成物で形成できる。特に、圧縮ゴム層12をゴム組成物で形成することにより、優れた静粛性、動力伝達性能を付与できるとともに、圧縮ゴム層12や接着ゴム層14をゴム組成物で形成することにより、既存の方法を用いて、心線(又は撚りコード)1との接着処理を行うことが可能となる。
(Rubber composition)
The compression rubber layer 12, the adhesive rubber layer 14 and the stretch layer 15 can be formed of a rubber composition containing a rubber component. In particular, by forming the compression rubber layer 12 with a rubber composition, excellent quietness and power transmission performance can be imparted, and by forming the compression rubber layer 12 and the adhesive rubber layer 14 with a rubber composition, existing components can be obtained. Using the method, it is possible to carry out an adhesion process with the core wire (or twist cord) 1.
 ゴム成分としては、加硫又は架橋可能なゴム、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム等)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが挙げられる。これらのゴム成分は、単独で又は二種以上組み合わせて使用できる。好ましいゴム成分は、エチレン-α-オレフィンエラストマー(エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)等)、及び、クロロプレンゴムである。さらに、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性、耐候性を有し、ベルト重量を低減できる点から、エチレン-α-オレフィンエラストマー(エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)等)が特に好ましい。ゴム成分がエチレン-α-オレフィンエラストマーを含む組成物において、ゴム成分中のエチレン-α-オレフィンエラストマーの割合は50質量%以上(特に80~100質量%程度)であってもよく、100質量%(エチレン-α-オレフィンエラストマーのみ)が好ましい。 The rubber component may be a vulcanizable or crosslinkable rubber, for example, diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile rubber Etc., ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber and the like. These rubber components can be used alone or in combination of two or more. Preferred rubber components are ethylene-α-olefin elastomers (ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), etc.) and chloroprene rubber. Furthermore, ethylene-α-olefin elastomer (ethylene-propylene copolymer (EPM), which does not contain harmful halogen, has ozone resistance, heat resistance, cold resistance, weather resistance, and can reduce the weight of the belt. Particularly preferred are ethylene-propylene-diene terpolymers (EPDM) and the like. In a composition in which the rubber component contains an ethylene-α-olefin elastomer, the proportion of the ethylene-α-olefin elastomer in the rubber component may be 50% by mass or more (particularly about 80 to 100% by mass), 100% by mass (Ethylene-α-olefin elastomer only) is preferred.
 ゴム組成物は、さらに短繊維を含んでいてもよい。短繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維等)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維等)、ポリアルキレンアリレート系繊維(例えば、ポリエチレンテレフタレート(PET)繊維、ポリトリメチレンテレフタレート(PTT)繊維、ポリブチレンテレフタレート(PBT)繊維、ポリエチレンナフタレート(PEN)繊維等のC2-4アルキレンC8-14アリレート系繊維)、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維等の合成繊維;綿、麻、羊毛等の天然繊維;炭素繊維等の無機繊維等が挙げられる。これらの短繊維は、単独で又は二種以上組み合わせて使用できる。ゴム組成物中での分散性や接着性を向上させるため、短繊維には、芯糸、鞘糸、コードと同様に、慣用の接着処理(又は表面処理)を施してもよい。 The rubber composition may further contain short fibers. Examples of short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (eg, polyethylene terephthalate (eg, polyethylene terephthalate) PET) fiber, polytrimethylene terephthalate (PTT) fiber, polybutylene terephthalate (PBT) fiber, C 2-4 alkylene C 8-14 arylate fiber such as polyethylene naphthalate (PEN) fiber), vinylon fiber, polyvinyl alcohol Synthetic fibers such as fibers and polyparaphenylene benzobisoxazole (PBO) fibers; natural fibers such as cotton, hemp and wool; and inorganic fibers such as carbon fibers. These short fibers can be used alone or in combination of two or more. In order to improve the dispersibility and adhesion in the rubber composition, the short fibers may be subjected to a conventional adhesion treatment (or surface treatment) in the same manner as the core yarn, the sheath yarn and the cord.
 特に、本発明の摩擦伝動ベルト(特に、Vリブドベルト)は、高い動的張力が発生する用途に適用する場合、高い動的張力に対してもゴムの摩耗を抑制し、耐久性を向上できる点から、圧縮ゴム層及び伸張層は短繊維を含むのが好ましく、圧縮ゴム層及び伸張層(特に圧縮ゴム層)の表面から、短繊維が突出しているのが特に好ましい。圧縮ゴム層の表面から短繊維を突出させる方法としては、圧縮ゴム層の表面から短繊維が突出した状態で短繊維を圧縮ゴム層中に埋設させる方法、圧縮ゴム層の表面に短繊維を植毛する方法などが挙げられる。表面から短繊維が突出した圧縮ゴム層及び伸張層(特に圧縮ゴム層)を含む摩擦伝動ベルト(特に、Vリブドベルト)では、圧縮ゴム層の耐摩耗性を高めることができ、屈曲疲労や剥離による破損が起こる前に圧縮ゴム層が摩耗して耐久性が低下するのを防止できる。 In particular, the friction transmission belt (particularly, V-ribbed belt) of the present invention can suppress wear of rubber and improve durability even under high dynamic tension when applied to applications where high dynamic tension is generated. Therefore, the compressed rubber layer and the stretch layer preferably contain short fibers, and it is particularly preferable that the short fibers protrude from the surfaces of the compressed rubber layer and the stretch layer (in particular, the compressed rubber layer). As a method of causing the short fibers to protrude from the surface of the compression rubber layer, a method of embedding the short fibers in the compression rubber layer in a state where the short fibers protrude from the surface of the compression rubber layer, flocking the short fibers on the surface of the compression rubber layer And the like. In a friction transmission belt (particularly, a V-ribbed belt) including a compression rubber layer in which short fibers protrude from the surface and a stretch layer (particularly, a compression rubber layer), the wear resistance of the compression rubber layer can be enhanced, and bending fatigue or peeling is caused. It is possible to prevent the compression rubber layer from being worn out and its durability being reduced before breakage occurs.
 ゴム組成物は、慣用の添加剤をさらに含んでいてもよい。慣用の添加剤としては、例えば、加硫剤又は架橋剤(又は架橋剤系)(硫黄系加硫剤等)、共架橋剤(ビスマレイミド類等)、加硫助剤又は加硫促進剤(チウラム系促進剤等)、加硫遅延剤、金属酸化物(酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウム等)、増強剤(例えば、カーボンブラックや、含水シリカ等の酸化ケイ素)、充填剤(クレー、炭酸カルシウム、タルク、マイカ等)、軟化剤(例えば、パラフィンオイルや、ナフテン系オイル等のオイル類等)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイド等)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止剤、オゾン劣化防止剤等)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤等)、安定剤(紫外線吸収剤、熱安定剤等)、難燃剤、帯電防止剤等が挙げられる。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。なお、金属酸化物は架橋剤として作用してもよい。また、特に接着ゴム層14を形成するゴム組成物は、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂等)を含んでいてもよい。 The rubber composition may further contain conventional additives. Commonly used additives include, for example, a vulcanizing agent or a crosslinking agent (or a crosslinking agent system) (such as a sulfur-based vulcanizing agent), a co-crosslinking agent (such as bismaleimides), a vulcanization aid or a vulcanization accelerator ( Thiuram accelerators etc.), vulcanization retarders, metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, copper oxide, aluminum oxide etc.), enhancers (eg carbon black and so on) , Silicon oxides such as hydrous silica, fillers (clay, calcium carbonate, talc, mica etc.), softeners (eg paraffin oils, oils such as naphthenic oils etc), processing agents or processing aids (stearin Acids, metal stearates, waxes, paraffins, fatty acid amides, etc., anti-aging agents (antioxidants, thermal anti-aging agents, flex crack inhibitors, anti-ozonants, etc.), colorants, tackifiers , Plasticizers, coupling agents (silane coupling agent, etc.), stabilizers (UV absorbers, heat stabilizers, etc.), flame retardants, antistatic agents and the like. These additives may be used alone or in combination of two or more. The metal oxide may act as a crosslinking agent. In addition, the rubber composition forming the adhesive rubber layer 14 in particular may contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
 圧縮ゴム層12、接着ゴム層14及び伸張層15を形成するゴム組成物は、互いに同一であってもよく、互いに異なってもよい。同様に、圧縮ゴム層12、接着ゴム層14及び伸張層15に含まれる短繊維も、互いに同一であってもよく、互いに異なってもよい。 The rubber compositions forming the compression rubber layer 12, the adhesive rubber layer 14 and the stretch layer 15 may be identical to one another or may be different from one another. Similarly, the short fibers contained in the compression rubber layer 12, the adhesive rubber layer 14 and the stretch layer 15 may be identical to one another or may be different from one another.
 (カバー帆布)
 伸張層15は、カバー帆布で形成してもよい。カバー帆布は、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)などで形成でき、必要であれば、接着処理、例えば、RFL液で処理(浸漬処理など)したり、接着ゴムを前記布材にすり込むフリクションや、前記接着ゴムと前記布材との積層(コーティング)をした後、前記の形態で圧縮ゴム層及び/又は接着ゴム層に積層してもよい。
(Cover canvas)
The stretch layer 15 may be formed of a cover canvas. The cover canvas can be formed of, for example, a woven fabric, a wide angle canvas, a knitted fabric, a cloth material (preferably a woven fabric) such as a non-woven fabric and the like, and if necessary, an adhesion treatment, for example, treatment with an RFL solution (immersion treatment, etc. ) Or rubbing the adhesive rubber into the cloth material, or laminating (coating) the adhesive rubber and the cloth material, and then laminating on the compressed rubber layer and / or the adhesive rubber layer in the form described above. Good.
 また、伸張層15は、ゴム層の表面に布帛(前記カバー帆布など)で被覆された伸張層であってもよい。このような伸張層は、ベルト背面にテンショナーを備えたベルト式ISG駆動を搭載したエンジンに適用するのが好ましい。テンショナー付きベルト式ISG駆動を搭載したエンジンに適用する伸張層としては、表面が布帛で被覆された伸張層の他、短繊維を含む伸張層、表面が布帛で被覆され、かつ短繊維を含む伸張層も好ましい。これらの伸張層を適用すると、伸張ゴム層にも耐摩耗性が要求されるテンショナー付きベルト式ISG駆動においても耐久性を向上できる。 The stretch layer 15 may also be a stretch layer coated on the surface of the rubber layer with a cloth (such as the above-mentioned cover canvas). Such a stretch layer is preferably applied to an engine equipped with a belt type ISG drive with a tensioner on the back of the belt. As a stretch layer applied to an engine equipped with a belt type ISG drive with a tensioner, in addition to a stretch layer coated on the surface with a fabric, a stretch layer containing short fibers, a surface coated with a fabric and a stretch containing short fibers Layers are also preferred. By applying these stretch layers, the durability can be improved even in a belt type ISG drive with tensioner, which is also required to have wear resistance to the stretch rubber layer.
 [摩擦伝動ベルトの製造方法]
 本発明の摩擦伝動ベルトの製造には、公知又は慣用の方法が利用でき、ゴム層に従来の心線に代えて前記心線(又は撚りコード)を埋設させればよい。すなわち、未加硫ゴム組成物で形成され、前記心線(又は撚りコード)が埋設されたゴム層又はシート(例えば、接着ゴム層を含む積層体又は積層シート)を所定の形状に成形する工程と、成形された成形体を加硫する工程とを経ることにより、摩擦伝動ベルトを製造でき、加硫工程の後、加硫成形体を加工工程(カッティング加工、リブ加工などの加工工程)で加工してもよい。例えば、前記ゴム層に前記心線(又は撚りコード)を埋設し、成形型で筒状に成形し、加硫してスリーブを形成し、このスリーブを所定幅にカッティングすることにより、摩擦伝動ベルトを製造してもよい。例えば、摩擦伝動ベルトのうち、Vリブドベルトは、例えば、圧縮ゴム層12と、心線(又は撚りコード)1が埋設された接着ゴム層14と、伸張層15とを、それぞれ未加硫ゴム組成物で形成して積層し、この積層体を成形型で筒状に成形し、加硫してスリーブを成形し、この加硫スリーブを所定幅にカッティングすることにより形成できる。より詳細には、以下の方法でVリブドベルトを製造できる。
[Method of manufacturing friction transmission belt]
A known or conventional method can be used to manufacture the friction drive belt of the present invention, and the core layer (or twist cord) may be embedded in the rubber layer instead of the conventional core line. That is, a step of forming a rubber layer or sheet (for example, a laminate or laminated sheet including an adhesive rubber layer), which is formed of an unvulcanized rubber composition and in which the core (or twist cord) is embedded, into a predetermined shape By passing through the process of vulcanizing the molded product and the molded product, the friction transmission belt can be manufactured, and after the vulcanization process, the vulcanized molded product is processed in the processing process (processing processes such as cutting and rib processing) You may process it. For example, the core wire (or twist cord) is embedded in the rubber layer, molded into a tubular shape with a mold, and vulcanized to form a sleeve, and the sleeve is cut to a predetermined width to form a friction transmission belt May be manufactured. For example, among the friction transmission belts, the V-ribbed belt has, for example, an unvulcanized rubber composition for each of the compression rubber layer 12, the adhesive rubber layer 14 in which the core wire (or twist cord) 1 is embedded, and the stretching layer 15. The laminate can be formed into a cylinder, and the laminate can be formed into a cylindrical shape by a molding die, and vulcanized to form a sleeve, and the vulcanized sleeve can be cut to a predetermined width. More specifically, the V-ribbed belt can be manufactured by the following method.
 (第1の製造方法)
 先ず、表面が平滑な円筒状の成形モールド(金型又は成形型)に伸張層用シートを巻きつけ、このシート上に芯体を形成する心線(又は撚りコード)を螺旋状にスピニングし、さらに接着ゴム層用シート、圧縮ゴム層用シートを順次巻き付けて成形体を作製する。その後、加硫用ジャケットを成形体の上から被せた状態で成形モールドを加硫缶内に収容し、所定の加硫条件で加硫した後、成形モールドから脱型して筒状の加硫ゴムスリーブを得る。そして、この加硫ゴムスリーブの外表面(圧縮ゴム層)を研削ホイールにより研磨して複数のリブを形成した後、カッターを用いてこの加硫ゴムスリーブを所定の幅でベルト長手方向にカットしてVリブドベルトに仕上げる。なお、カットしたベルトを反転させることにより、内周面にリブ部を有する圧縮ゴム層を備えたVリブドベルトが得られる。
(First manufacturing method)
First, the stretch layer sheet is wound around a cylindrical molding mold (mold or mold) having a smooth surface, and a core (or twisted cord) forming a core is spirally spun on this sheet, Further, a sheet for adhesive rubber layer and a sheet for compressed rubber layer are sequentially wound to prepare a molded body. Thereafter, the molding mold is accommodated in a vulcanizing can in a state where the molding jacket is covered from above the molding, and after vulcanization under predetermined vulcanization conditions, the molding is removed from the molding mold and cylindrical vulcanization is carried out. Get a rubber sleeve. Then, the outer surface (compressed rubber layer) of the vulcanized rubber sleeve is polished by a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut in the longitudinal direction of the belt by a predetermined width using a cutter. Finish to V-ribbed belt. In addition, the V-ribbed belt provided with the compression rubber layer which has a rib part in an internal peripheral surface is obtained by reversing the cut belt.
 (第2の製造方法)
 先ず、内型として外周面に可撓性ジャケットを装着した円筒状内型を用い、外周面の可撓性ジャケットに伸張層用シートを巻きつけ、このシート上に芯体を形成する心線(又は撚りコード)を螺旋状にスピニングし、さらに圧縮ゴム層用シートを巻き付けて積層体を作製する。次に、前記内型に装着可能な外型として、内周面に複数のリブ型が刻設された筒状外型を用い、この外型内に、前記積層体が巻き付けられた内型を、同心円状に設置する。その後、可撓性ジャケットを外型の内周面(リブ型)に向かって膨張させて積層体(圧縮ゴム層)をリブ型に圧入し、加硫する。そして、外型より内型を抜き取り、複数のリブを有する加硫ゴムスリーブを外型から脱型した後、カッターを用いて、加硫ゴムスリーブを所定の幅でベルト長手方向にカットしてVリブドベルトに仕上げる。この第2の製造方法では、伸張層、芯体、圧縮ゴム層を備えた積層体を一度に膨張させて複数のリブを有するスリーブ(又はVリブドベルト)に仕上げることができる。
(Second manufacturing method)
First, using a cylindrical inner mold having a flexible jacket attached to the outer peripheral surface as the inner mold, the stretch layer sheet is wound around the flexible jacket on the outer peripheral surface, and a core wire is formed on this sheet (core Alternatively, the twist cords) are helically spun, and the compressed rubber layer sheet is wound to produce a laminate. Next, as an outer mold that can be attached to the inner mold, a cylindrical outer mold in which a plurality of rib molds are engraved on the inner circumferential surface is used, and the inner mold in which the laminate is wound is housed in the outer mold. , Installed concentrically. Thereafter, the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed rubber layer) is pressed into the rib type and vulcanized. Then, after removing the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut by a predetermined width in the longitudinal direction of the belt using a cutter. Finished with a ribbed belt. In this second manufacturing method, the laminate provided with the stretch layer, the core and the compressed rubber layer can be expanded at one time to obtain a sleeve (or V-ribbed belt) having a plurality of ribs.
 (第3の製造方法)
 第2の製造方法に関連して、例えば、日本国特開2004-82702号公報に開示される方法(圧縮ゴム層のみを膨張させて予備成形体(半加硫状態)とし、次いで伸張層と芯体とを膨張させて前記予備成形体に圧着し、加硫一体化してVリブドベルトに仕上げる方法)を採用してもよい。
(Third manufacturing method)
In relation to the second manufacturing method, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2004-82702 (in which only the compressed rubber layer is expanded into a preformed body (semi-vulcanized state), and then a stretching layer A method may be employed in which the core body is expanded, pressure-bonded to the preform, and vulcanization integration is performed to complete the V-ribbed belt).
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be described in more detail based on examples given below, but the present invention is not limited by these examples.
 [原料・配合]
 (芯糸構成原糸)
 カーボン繊維1:東レ(株)製「トレカ(登録商標)T400HB」、引張弾性率230GPa、単糸繊度0.67dtex、フィラメント数6000、総繊度400tex
 カーボン繊維2:東レ(株)製「トレカ(登録商標)T700SC」、引張弾性率230GPa、単糸繊度0.67dtex、フィラメント数12000、総繊度800tex
 カーボン繊維3:東レ(株)製「トレカ(登録商標)T400HB」、引張弾性率230GPa、単糸繊度0.67dtex、フィラメント数3000、総繊度200tex
 (鞘糸構成原糸)
 ガラス繊維:日本板硝子(株)製「マイクログラス(登録商標)高強度ガラス」。
[Raw materials / blending]
(Core yarn composition raw yarn)
Carbon fiber 1: Toray Industries, Inc. "TORAYCA (registered trademark) T400HB", tensile modulus of elasticity 230 GPa, single yarn fineness 0.67 dtex, number of filaments 6000, total fineness 400 tex
Carbon fiber 2: Toray Industries, Inc. "TORAYCA (registered trademark) T700SC", tensile elastic modulus 230 GPa, single yarn fineness 0.67 dtex, filament number 12000, total fineness 800 tex
Carbon fiber 3: Toray Industries, Inc. "TORAYCA (registered trademark) T400HB", tensile elastic modulus 230 GPa, single yarn fineness 0.67 dtex, number of filaments 3000, total fineness 200 tex
(Sheath yarn composition yarn)
Glass fiber: "Micro Glass (registered trademark) high strength glass" manufactured by Nippon Sheet Glass Co., Ltd.
 (接着処理液)
 カルボキシル変性水素化ニトリルゴムラテックスを主成分とし、固形分で4,4’-ビスマレイミドジフェニルメタン25質量部/100質量部(phr)、ブロックドポリイソシアネート25質量部/100質量部(phr)を含む水性混合液。全固形分濃度20質量%。なお、「phr」は、固形分換算で、ゴム100質量部に対する添加剤の質量部を示す。
(Adhesive treatment solution)
Carboxyl-modified hydrogenated nitrile rubber latex as a main component, in solid content, contains 25 parts by mass of 4,4'-bismaleimidodiphenylmethane / 100 parts by mass (phr), 25 parts by mass of blocked polyisocyanate / 100 parts by mass (phr) Aqueous mixture. Total solid concentration 20% by mass. In addition, "phr" shows the mass part of the additive with respect to 100 mass parts of rubber | gum in conversion of solid content.
 (オーバーコート処理液)
 ロード社製接着剤「ケムロック233X」のトルエン希釈液、固形分濃度10質量%。
(Overcoat treatment solution)
A diluted solution of Tolue's adhesive “Kemlock 233X” in toluene, solid concentration 10% by mass.
 (ベルト構成原料)
 EPDM:ダウ・デュポン社製「NORDEL(登録商標)IP3640」、ムーニー粘度40(100℃)
 カーボンブラックHAF:東海カーボン(株)製「シースト(登録商標)3」
 含水シリカ:東ソー・シリカ(株)製「Nipsil(登録商標)VN3」、BET比表面積240m/g
 レゾルシン・ホルムアルデヒド縮合物:INDSPEC Chemical Corporation社製「Phenacolite Resin(B-18-S)(レゾルシノール20質量%未満、ホルマリン0.1質量%未満)」
 老化防止剤:精工化学(株)製「ノンフレックス(登録商標)OD3」
 加硫促進剤DM:ジ-2-ベンゾチアゾリルジスルフィド
 ポリアミド短繊維:旭化成(株)製「66ナイロン」
 パラフィン系軟化剤:出光興産(株)製「ダイアナ(登録商標)プロセスオイル」
 有機過酸化物:化薬アクゾ(株)製「パーカドックス(登録商標)14RP」
 ゴム付綿帆布:20番手の綿糸を糸密度75本/50mmで平織りした帆布(目付け280g/m)に表1の接着ゴムをすり込んだ処理帆布。
(Belt component material)
EPDM: Dow DuPont “NORDEL® IP 3640”, Mooney viscosity 40 (100 ° C.)
Carbon black HAF: "Siest (registered trademark) 3" manufactured by Tokai Carbon Co., Ltd.
Hydrous silica: "Nipsil (registered trademark) VN 3" manufactured by Tosoh Silica Corporation, BET specific surface area 240 m 2 / g
Resorcinol formaldehyde condensate: "Phenacolite Resin (B-18-S) (less than 20% by mass of resorcinol, less than 0.1% by mass of formalin) manufactured by INDSPEC Chemical Corporation"
Anti-aging agent: SEIKO CHEMICAL Co., Ltd. "non-flex (registered trademark) OD3"
Vulcanization accelerator DM: di-2-benzothiazolyl disulfide polyamide short fiber: "66 nylon" manufactured by Asahi Kasei Co., Ltd.
Paraffin-based softener: "Diana (registered trademark) process oil" manufactured by Idemitsu Kosan Co., Ltd.
Organic peroxide: Kayaku Akzo Co., Ltd. "Percadox (registered trademark) 14RP"
Cotton canvas with rubber: A treated canvas in which the adhesive rubber of Table 1 is rubbed into a canvas (weight 80 g / m 2 ) in which a 20th cotton thread is plain-woven at a thread density of 75/50 mm.
 [心線の作製]
 実施例1
 まず、総繊度400texのカーボン繊維1を、接着処理液に10秒間浸漬した後、150℃で2分間乾燥して芯糸を作製した。
[Preparation of core wire]
Example 1
First, a carbon fiber 1 having a total fineness of 400 tex was immersed in the adhesion treatment solution for 10 seconds and then dried at 150 ° C. for 2 minutes to produce a core yarn.
 また、総繊度33texのガラス繊維を、接着処理液に10秒間浸漬した後、150℃で1分間乾燥し、さらにS方向に8回/10cmの撚りをかけて(下撚りし)鞘糸を作製した。接着処理した芯糸の周囲に、鞘糸16本を配置して、S方向に撚り数8回/10cmで撚り合わせて(上撚りして)、芯鞘構造を有するS撚りコードを作製した。一方、下撚り及び上撚りの撚り方向をZ方向にする以外、上記と同様にして、Z撚りコードも作製した。 In addition, after immersing a glass fiber with a total fineness of 33 tex in the adhesion treatment solution for 10 seconds, it is dried at 150 ° C. for 1 minute, and further twisted 8 times / 10 cm in the S direction to produce a sheath yarn (bottom twist) did. Sixteen sheath yarns were disposed around the adhesively treated core yarn, and twisted in the S direction at 8 twists / 10 cm (upper twist) to produce an S-twist cord having a core-sheath structure. On the other hand, Z twist cords were also produced in the same manner as described above except that the twist direction of the first twist and the upper twist was set to the Z direction.
 得られたS撚り及びZ撚りの撚りコードを、それぞれオーバーコート処理液に5秒間浸漬した後、100℃で3分間乾燥して、それぞれ、処理コード(処理S撚りコード及び処理Z撚りコード)(直径0.99mm)を作製した。 After immersing the obtained S twist and Z twist twist cords in the overcoat treatment solution for 5 seconds, respectively, they are dried at 100 ° C. for 3 minutes, and treated cords (treated S twist cord and treated Z twist cord) ( A diameter of 0.99 mm) was produced.
 実施例2
 鞘糸を構成するガラス繊維の総繊度を66tex、鞘糸の本数を12本とする以外は、実施例1と同様にして、処理コード(処理S撚りコード及び処理Z撚りコード)(直径1.10mm)を得た。
Example 2
Treated cords (treated S twist cord and treated Z twist cord) (diameter 1.) in the same manner as in Example 1 except that the total fineness of the glass fibers constituting the sheath yarn is 66 tex and the number of sheath yarns is 12. 10 mm).
 実施例3
 芯糸を構成するカーボン繊維をカーボン繊維3(総繊度200tex)に変更するとともに、鞘糸の本数を12本とする以外は、実施例1と同様にして、処理コード(処理S撚りコード及び処理Z撚りコード)(直径0.78mm)を得た。
Example 3
A treated cord (treated S twist cord and treated in the same manner as in Example 1 except that the carbon fibers constituting the core yarn are changed to carbon fiber 3 (total fineness 200 tex) and the number of sheath yarns is set to 12 Z twist cord) (diameter 0.78 mm) was obtained.
 比較例1
 まず、総繊度400texのカーボン繊維1を、接着処理液に10秒間浸漬した後、150℃で2分間乾燥し、S方向に8回/10cmの撚りをかけて片撚りコードを作製した。 
Comparative Example 1
First, a carbon fiber 1 having a total fineness of 400 tex was immersed in the adhesion treatment solution for 10 seconds, dried at 150 ° C. for 2 minutes, and twisted for 8 times / 10 cm in the S direction to produce a single twist cord.
 一方、撚り方向をZ方向にする以外は上記と同様にして、Z撚りの片撚りコードも作製した。 On the other hand, a Z twist single twist cord was also produced in the same manner as above except that the twist direction was set to the Z direction.
 得られたS撚り及びZ撚りの片撚りコードを、それぞれオーバーコート処理液に5秒間浸漬した後100℃で3分間乾燥して、処理コード(直径0.71mm)を作製した。 The obtained S twist and Z twist single twist cords were each immersed in the overcoat treatment solution for 5 seconds and then dried at 100 ° C. for 3 minutes to prepare treated cords (diameter 0.71 mm).
 比較例2
 カーボン繊維1をカーボン繊維2(総繊度800tex)に変更する以外は、比較例1と同様にして、処理コード(直径1.00mm)を得た。
Comparative example 2
A treated cord (diameter 1.00 mm) was obtained in the same manner as in Comparative Example 1 except that the carbon fiber 1 was changed to a carbon fiber 2 (total fineness 800 tex).
 比較例3
 鞘糸を構成するガラス繊維の総繊度を22tex、鞘糸の本数を20本とする以外は、実施例1と同様にして、処理コード(処理S撚りコード及び処理Z撚りコード)(直径0.95mm)を得た。
Comparative example 3
Treated cords (treated S twist cord and treated Z twist cord) (diameter: 0.) in the same manner as in Example 1 except that the total fineness of the glass fibers constituting the sheath yarn is 22 tex and the number of sheath yarns is 20. 95 mm).
 比較例4
 鞘糸を構成するガラス繊維の総繊度を99tex、鞘糸の本数を10本とする以外は、実施例1と同様にして、処理コード(処理S撚りコード及び処理Z撚りコード)(直径1.18mm)を得た。
Comparative example 4
Treated cords (treated S twist cord and treated Z twist cord) (diameter 1.) in the same manner as in Example 1 except that the total fineness of the glass fibers constituting the sheath yarn is 99 tex and the number of sheath yarns is ten. 18 mm).
 [ベルトの作製]
 まず、表面が平滑な円筒状の成形モールドの外周に、1プライ(1枚重ね)のゴム付綿帆布を巻き付け、この綿帆布の外側に、表1に示すゴム組成物で形成された未加硫の接着ゴム層用シートを巻き付けた。次に、接着ゴム層用シートの上に、S撚りの処理コードとZ撚りの処理コードとを表3に示す所定のピッチで並列に配置した状態で、2本の処理コード(S撚りコード、Z撚りコード)をらせん状にスピニングして巻き付け、さらにこの上に、前記ゴム組成物で形成された未加硫の接着ゴム層用シート及び表2に示すゴム組成物で形成された未加硫の圧縮ゴム層用シートを順に巻き付けた。圧縮ゴム層用シートの外側に加硫用ジャケットを配置した状態で、成形モールドを加硫缶に入れて加硫した。加硫して得られた筒状の加硫ゴムスリーブを成形モールドから取り出し、加硫ゴムスリーブの圧縮ゴム層をグラインダーにより研削して複数のV字状溝を同時に形成した後、円筒状加硫ゴムスリーブをカッターで周方向に切断して輪切りすることによって、3つのリブを形成したVリブドベルト(周長1100mm)を得た。得られたベルトは、図2に示す方向の断面図では、心線としてのS撚りの処理コードとZ撚りの処理コードとが交互に並列していた。
[Production of belt]
First, one-ply (one-ply) rubber-covered cotton canvas is wound around the outer periphery of a cylindrical molding mold having a smooth surface, and the non-added rubber composition shown in Table 1 is formed on the outside of this cotton canvas. A sheet for bonding rubber layer of sulfur was wound. Next, on the adhesive rubber layer sheet, the two treated cords (S twist cords, with the treated cords of S twist and the treated cords of Z twist arranged in parallel at a predetermined pitch shown in Table 3 Z-twisted cord) is helically spun and wound, and further, an unvulcanized adhesive rubber layer sheet formed of the above rubber composition and an unvulcanized formed of the rubber composition shown in Table 2 The sheet for the compression rubber layer was wound in order. The molding mold was placed in a vulcanizer and vulcanized in a state where the vulcanizing jacket was disposed outside the compression rubber layer sheet. The cylindrical vulcanized rubber sleeve obtained by vulcanization is removed from the molding mold, and the compressed rubber layer of the vulcanized rubber sleeve is ground by a grinder to simultaneously form a plurality of V-shaped grooves, and then cylindrical vulcanized. The V-ribbed belt (circumferential length 1100 mm) in which three ribs were formed was obtained by circumferentially cutting the rubber sleeve with a cutter and rounding it. In the obtained belt, in the cross-sectional view in the direction shown in FIG. 2, the treated cord of S twist as a core and the treated cord of Z twist were alternately arranged in parallel.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [屈曲疲労試験]
 直径120mmの駆動プーリ(Dr.)、直径45mmのテンションプーリ(Ten.)、直径120mmの従動プーリ(Dn.)、直径85mmのアイドラープーリ(IDL.)を順に配した試験機を用いて行った(図3に試験機のレイアウトを示す)。試験機の各プーリにVリブドベルトを掛架し、駆動プーリの回転数を4900rpm、アイドラープーリへのベルトの巻き付け角度を120°、テンションプーリへのベルトの巻き付け角度を90°、従動プーリの負荷を8.8kWとし、一定荷重(559N)を付与して雰囲気温度120℃で200時間ベルトを走行させた。走行前後のベルト引張強さを測定し、1リブ当たりの引張強さに変換した値と、強力保持率を表3に示す。強力保持率が高い程、耐屈曲疲労性が高いと判断できる。
[Bending fatigue test]
The test was performed using a testing machine in which a drive pulley (Dr.) with a diameter of 120 mm, a tension pulley (Ten.) With a diameter of 45 mm, a driven pulley (Dn.) With a diameter of 120 mm, and an idler pulley (IDL.) With a diameter of 85 mm were arranged in order. (Figure 3 shows the layout of the tester). A V-ribbed belt is hung around each pulley of the tester, the number of revolutions of the drive pulley is 4900 rpm, the winding angle of the belt on the idler pulley is 120 °, the winding angle of the belt on the tension pulley is 90 °, and the load of the driven pulley A constant load (559 N) was applied at 8.8 kW, and the belt was run for 200 hours at an ambient temperature of 120 ° C. The tensile strength of the belt before and after traveling was measured, and the value converted to the tensile strength per rib and the strength retention are shown in Table 3. It can be determined that the higher the strength retention, the higher the bending fatigue resistance.
 高負荷耐久試験[耐久走行試験(走行寿命)]
 直径120mmの駆動プーリ(Dr.)、直径45mmのテンションプーリ(Ten.)、直径120mmの従動プーリ(Dn.)、直径80mmのアイドラープーリ(IDL.)を順に配した試験機を用いて行った(図4に試験機のレイアウトを示す)。試験機の各プーリにVリブドベルトを掛架し、駆動プーリの回転数を4900rpm、アイドラープーリへのベルトの巻き付け角度を120°、テンションプーリへのベルトの巻き付け角度を90°、従動プーリの負荷を8.8kWとし、一定荷重(810N)を付与して雰囲気温度120℃で300時間を上限としてベルトを走行させた。走行後のベルトを目視及びマイクロスコープで観察し、剥離やポップアウトなどの不具合の発生がないか調べ、不具合の発生がなければ耐久性は問題なしとし、不具合が確認された場合はその不具合を表3に記した。
High load endurance test [durability running test (running life)]
The test was performed using a testing machine in which a drive pulley (Dr.) with a diameter of 120 mm, a tension pulley (Ten.) With a diameter of 45 mm, a driven pulley (Dn.) With a diameter of 120 mm, and an idler pulley (IDL.) With a diameter of 80 mm were arranged in order. (Figure 4 shows the layout of the tester). A V-ribbed belt is hung around each pulley of the tester, the number of revolutions of the drive pulley is 4900 rpm, the winding angle of the belt on the idler pulley is 120 °, the winding angle of the belt on the tension pulley is 90 °, and the load of the driven pulley A constant load (810 N) was applied at 8.8 kW, and the belt was allowed to travel with an ambient temperature of 120 ° C. and an upper limit of 300 hours. The belt after running is observed visually and with a microscope to check if any defects such as peeling or pop-out occur. If no defects occur, durability is regarded as no problem, and if defects are confirmed, the defects are evaluated. It recorded in Table 3.
 [引張強力]
 得られたVリブドベルトを万能試験機((株)島津製作所製「UH-200kNX」)を用いて、引張速度50mm/分の条件で引張り、Vリブドベルトの破断時の強力(引張強さ)を測定した。また、屈曲疲労試験後にもVリブドベルトの破断時の強力(引張強さ)を測定し、強力の保持率を算出した。
[Tensile strength]
The obtained V-ribbed belt is pulled at a tensile speed of 50 mm / min using a universal testing machine (“UH-200 kNX” manufactured by Shimadzu Corporation), and the strength (tensile strength) at break of the V-ribbed belt is measured. did. The strength (tensile strength) at break of the V-ribbed belt was also measured after the bending fatigue test to calculate the strength retention rate.
 [引張弾性率]
 オートグラフ((株)島津製作所製「AGS-J10kN」)の下側固定部と上側ロードセル連結部に一対の平プーリ(直径75mm)を取り付け、Vリブドベルトの背面側が平プーリと接するように、Vリブドベルトを平プーリに掛けた。次に、上側平プーリを上昇させて、Vリブドベルトが緩まない程度に応力(約14N/mm)を掛けた。この状態にある上側平プーリの位置を初期位置とし、50mm/分の速度で上側平プーリを上昇させて、Vリブドベルトの応力が170N/mmに到達後、直ちに上側平プーリを下降させて、初期位置まで戻した。この初期位置からの上昇と下降を再び行い、2回目に測定された応力-歪み曲線において比較的直線関係にある領域(85~140N/mm)の直線の傾き(平均傾斜)をVリブドベルトの引張弾性率として算出した。 
[Tensile modulus]
Attach a pair of flat pulleys (75 mm in diameter) to the lower fixed part and the upper load cell connection part of Autograph ("AGS-J10kN" manufactured by Shimadzu Corp.) so that the back side of the V-ribbed belt contacts the flat pulley The ribbed belt was hung on a flat pulley. Next, the upper flat pulley was raised to apply stress (about 14 N / mm) to the extent that the V-ribbed belt did not loosen. With the position of the upper flat pulley in this state as the initial position, raise the upper flat pulley at a speed of 50 mm / min, and immediately lower the upper flat pulley after the stress of the V-ribbed belt reaches 170 N / mm. It returned to the position. The slope (average slope) of the region (85 to 140 N / mm) in a relatively linear relationship in the second measurement of the stress-strain curve is again performed by raising and lowering from the initial position again, and the tension of the V-ribbed belt is measured. Calculated as elastic modulus.
 評価結果を表3に示す。 The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、実施例2で得られたVリブドベルトの引張弾性率は330N/(mm・%)であった。 The tensile modulus of elasticity of the V-ribbed belt obtained in Example 2 was 330 N / (mm ·%).
 実施例1~3は、比較例と比べて強力保持率が高く、高負荷耐久試験において剥離やポップアウトの発生がなく、耐久性が高かった。 Examples 1 to 3 had high strength retention compared with the comparative example, did not cause peeling or pop out in the high load endurance test, and had high durability.
 一方、比較例1(カーボン繊維の単体撚糸を含むベルト)では、引張強さが低い水準であり、高負荷耐久試験において心線と接着ゴムとの界面に剥離が発生し、耐久性が低かった。また、比較例1に対してカーボン繊維の繊度を大きくした比較例2では、屈曲疲労試験前の引張強力は高いものの、強力保持率は低く、高負荷耐久試験においてベルト側面からの心線の飛び出し(ポップアウト)が発生し、耐久性が低かった。このように、カーボン繊維単体の撚糸では、耐屈曲疲労性、及び接着性の双方を改善できなかった。 On the other hand, in Comparative Example 1 (belt containing a single twist of carbon fiber), the tensile strength was low, and peeling occurred at the interface between the core wire and the adhesive rubber in the high load endurance test, and the durability was low. . In addition, in Comparative Example 2 in which the fineness of the carbon fiber is made larger than that of Comparative Example 1, although the tensile strength before the bending fatigue test is high, the strength retention is low and the core wire protrudes from the side of the belt in the high load durability test (Pop out) occurred and durability was low. Thus, in the case of a single carbon fiber twisting yarn, it was not possible to improve both the bending fatigue resistance and the adhesion.
 比較例3(実施例と同じく芯鞘構造を備え、鞘糸の繊度が小さく、糸径比0.18のコードの心線を含むベルト)は、強力保持率は高く耐屈曲疲労性は良好であるものの、高負荷耐久試験において心線と接着ゴム層との界面に剥離が発生し、接着性を改善できなかった。 Comparative Example 3 (a belt having a core-sheath structure as in the example, a fine diameter of the sheath yarn is small, and a cord including a core of a cord having a yarn diameter ratio of 0.18) has high strength retention and good bending fatigue resistance. However, in the high load endurance test, peeling occurred at the interface between the core wire and the adhesive rubber layer, and the adhesion could not be improved.
 比較例4(実施例と同じく芯鞘構造を備え、糸の繊度が大きく、糸径比0.43のコードの心線を含むベルト)では、高負荷耐久試験においては剥離やポップアウトの発生はなく接着性は良好であるものの、強力保持率が低く耐屈曲疲労性を改善できなかった。 In Comparative Example 4 (a belt having a core-sheath structure as in the example, a large yarn fineness, and a cord including a cord having a cord diameter of 0.43), occurrence of peeling and popout in the high load durability test is Although the adhesion was good, the strength retention was low and the bending fatigue resistance could not be improved.
 なお、実施例1及び2(芯糸の総繊度が400tex)は、耐屈曲疲労性と接着性とが両立でき、耐久性も問題のないレベルであった。実施例3(芯糸の総繊度が200texと細い)は、他の実施例と比較して屈曲疲労試験前の引張強さがやや低いものの、耐屈曲疲労性が特に優れており、屈曲疲労試験後の引張強さは、実施例1及び2と比較しても遜色のないレベルであった。そのため、芯糸の繊度は、要求される耐屈曲疲労性のレベルに応じて、適宜選択できることを示している。 In Examples 1 and 2 (total fineness of core yarn is 400 tex), resistance to bending fatigue and adhesiveness can be compatible, and durability is at a level at which there is no problem. Example 3 (the total fineness of the core yarn is as thin as 200 tex) has a slightly lower tensile strength before the bending fatigue test compared to the other examples, but is particularly excellent in the bending fatigue resistance, and the bending fatigue test The subsequent tensile strength was at a level comparable to that of Examples 1 and 2. Therefore, it is shown that the fineness of the core yarn can be appropriately selected in accordance with the required level of bending fatigue resistance.
 本発明の摩擦伝動ベルト(Vリブドベルトなど)は、種々の動力伝動ベルト、例えば、自動車エンジンの補機駆動に用いられるVリブドベルトとして利用できるが、狭いベルト幅で動力を伝達でき、耐久性に優れるため、高い動的張力が発生するISG搭載エンジンを駆動するためのVリブドベルトとして特に好適に利用できる。 The friction transmission belt (V-ribbed belt, etc.) of the present invention can be used as various power transmission belts, for example, V-ribbed belts used for driving accessories of automobile engines, but can transmit power with a narrow belt width and has excellent durability. Therefore, it can be particularly suitably used as a V-ribbed belt for driving an ISG mounted engine which generates high dynamic tension.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2017年12月7日出願の日本国特許出願2017-235161号及び2018年10月26日出願の日本国特許出願2018-201776号に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2017-235161 filed on Dec. 7, 2017 and Japanese Patent Application No. 2018-017176 filed on October 26, 2018, the contents of which are incorporated herein by reference. It is captured.
 1…心線(又は撚りコード)
 2…芯糸
 3…鞘糸
 12…圧縮ゴム層
 13…Vリブ部
 14…接着ゴム層
 15…伸張層
1 ... core wire (or twist cord)
2 Core thread 3 Sheath thread 12 Compression rubber layer 13 V-rib portion 14 Bonding rubber layer 15 Stretch layer

Claims (15)

  1.  心線を含む摩擦伝動ベルトであって、前記心線が、高弾性率繊維を含む芯糸と、この芯糸の周囲に配され、かつ低弾性率繊維を含む複数の鞘糸とを含むコードを含み、前記コードは上撚りされており、前記芯糸の平均直径に対する前記鞘糸の平均直径の比率が0.2~0.4である、摩擦伝動ベルト。 A friction transmission belt comprising a core wire, wherein the core wire comprises a core yarn comprising a high modulus fiber and a plurality of sheath yarns disposed around the core yarn and comprising a low modulus fiber. The friction transmission belt, wherein the cord is over-twisted, and the ratio of the average diameter of the sheath yarn to the average diameter of the core yarn is 0.2 to 0.4.
  2.  鞘糸の総繊度が、30~80texである請求項1に記載の摩擦伝動ベルト。 The friction transmission belt according to claim 1, wherein the total fineness of the sheath yarn is 30 to 80 tex.
  3.  鞘糸の平均直径が、0.13~0.25mmである請求項1又は2に記載の摩擦伝動ベルト。 The friction transmission belt according to claim 1 or 2, wherein the sheath yarn has an average diameter of 0.13 to 0.25 mm.
  4.  前記鞘糸が下撚りされた撚糸であり、コードが、芯糸1本に対して鞘糸11~19本が上撚りされた撚糸コードである請求項1~3のいずれか一項に記載の摩擦伝動ベルト。 The twisted yarn according to any one of claims 1 to 3, wherein the sheath yarn is a twisted yarn having a lower twist, and the cord is a twisted yarn cord in which 11 to 19 sheath yarns are twisted with respect to one core yarn. Friction transmission belt.
  5.  心線が、ゴム層に所定の間隔をおいて埋設されたS撚りコードの心線とZ撚りコードの心線とを含む請求項1~4のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 4, wherein the core wire includes a core wire of an S twist cord and a core wire of a Z twist cord embedded at a predetermined distance in the rubber layer.
  6.  下撚りと上撚りとの撚り方向が同じである請求項4又は5記載の摩擦伝動ベルト。 The friction transmission belt according to claim 4 or 5, wherein twist directions of the first twist and the second twist are the same.
  7.  高弾性率繊維がカーボン繊維を含み、低弾性率繊維がガラス繊維を含む請求項1~6のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 6, wherein the high modulus fiber comprises carbon fiber and the low modulus fiber comprises glass fiber.
  8.  高弾性率繊維の少なくとも一部の表面又は低弾性率繊維の少なくとも一部の表面に接着成分が付着し、コードの少なくとも一部の表面にゴム成分が付着している請求項1~7のいずれか一項に記載の摩擦伝動ベルト。 The adhesive component adheres to the surface of at least a portion of the high modulus fiber or the surface of at least a portion of the low modulus fiber, and the rubber component adheres to the surface of at least a portion of the cord. The friction transmission belt according to any one of the preceding claims.
  9.  Vリブドベルトである請求項1~8のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 8, which is a V-ribbed belt.
  10.  引張弾性率240~500N/(mm・%)を有する請求項1~9のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 9, having a tensile elastic modulus of 240 to 500 N / (mm ·%).
  11.  ベルト1mm幅当たり、85N/mm以上の動的張力が作用するベルト式ISG駆動搭載のエンジンに装着される請求項1~10のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 10 mounted on a belt-type ISG drive mounted engine in which a dynamic tension of 85 N / mm or more acts per 1 mm width of the belt.
  12.  未加硫ゴム組成物で形成され、心線が埋設されたゴムシートを所定の形状に成形する工程と、成形された成形体を加硫する工程とを経ることにより、摩擦伝動ベルトを製造する方法であって、前記心線として、高弾性率繊維を含む芯糸の周囲に、低弾性率繊維を含む複数の鞘糸が配置されて、上撚りされており、芯糸の平均直径に対する鞘糸の平均直径の比率が0.2~0.4であるコードを含む心線を用いる、摩擦伝動ベルトの製造方法。 A friction drive belt is manufactured by the steps of forming a rubber sheet formed of an unvulcanized rubber composition and having a core embedded therein into a predetermined shape and vulcanizing the formed product. In the method, a plurality of sheath yarns containing low elastic modulus fibers are arranged around the core yarn containing high elastic modulus fibers as the core wire, and are twisted in a sheath, with respect to the average diameter of the core yarns. A method of manufacturing a friction transmission belt using a core wire containing a cord having a ratio of average yarn diameter of 0.2 to 0.4.
  13.  高弾性率繊維を含む芯糸の周囲に、低弾性率繊維を含む複数の鞘糸が配置されて、上撚りされたコードであって、芯糸の平均直径に対する鞘糸の平均直径の比率が0.2~0.4である、コード。 A plurality of sheath yarns containing low modulus fibers are arranged around a core yarn comprising high modulus fibers, and it is a top-twisted cord, wherein the ratio of the average diameter of the sheath yarn to the average diameter of the core yarns is The code is 0.2-0.4.
  14.  高弾性率繊維を含む芯糸の周囲に、低弾性率繊維を含む複数の鞘糸を配置して、上撚りしてコードを製造する方法であって、芯糸の平均直径に対する鞘糸の平均直径の比率を0.2~0.4とする、コードの製造方法。 A method of producing a cord by arranging a plurality of sheath yarns containing low elastic modulus fibers around a core yarn containing high elastic modulus fibers, and producing a cord, wherein the average of sheath yarns relative to the average diameter of the core yarns A method of producing a cord, wherein the diameter ratio is 0.2 to 0.4.
  15.  芯糸及び鞘糸を、それぞれ接着処理し、上撚りしたコードを、ゴム成分を含むゴム組成物でコート処理する請求項14記載のコードの製造方法。 The method for producing a cord according to claim 14, wherein the core yarn and the sheath yarn are respectively subjected to an adhesion treatment, and the over-twisted cord is coated with a rubber composition containing a rubber component.
PCT/JP2018/041878 2017-12-07 2018-11-12 Friction transmission belt, cord for same, and manufacturing method for same WO2019111639A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18884992.1A EP3722636B1 (en) 2017-12-07 2018-11-12 Friction transmission belt
US16/770,360 US11879520B2 (en) 2017-12-07 2018-11-12 Friction transmission belt, cord for same, and manufacturing method for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017235161 2017-12-07
JP2017-235161 2017-12-07
JP2018201776A JP6676725B2 (en) 2017-12-07 2018-10-26 Friction transmission belt, cord therefor, and method of manufacturing them
JP2018-201776 2018-10-26

Publications (1)

Publication Number Publication Date
WO2019111639A1 true WO2019111639A1 (en) 2019-06-13

Family

ID=66751378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041878 WO2019111639A1 (en) 2017-12-07 2018-11-12 Friction transmission belt, cord for same, and manufacturing method for same

Country Status (1)

Country Link
WO (1) WO2019111639A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192943A (en) 1985-02-20 1986-08-27 Mitsuboshi Belting Ltd Power transmitting belt
JPH07127689A (en) * 1993-10-28 1995-05-16 Mitsuboshi Belting Ltd Toothed belt
JPH09126278A (en) * 1995-10-30 1997-05-13 Bando Chem Ind Ltd Toothed belt
JP2004082702A (en) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd Transmission belt and its manufacturing method
WO2004090224A1 (en) 2003-04-09 2004-10-21 Nippon Sheet Glass Company, Limited Reinforcing cord for reinforcing rubber and rubber product using the same
JP2004535517A (en) 2001-01-12 2004-11-25 ザ ゲイツ コーポレイション Low elongation power transmission belt
JP2005009658A (en) * 2003-05-27 2005-01-13 Mitsuboshi Belting Ltd Toothed belt
WO2005061766A1 (en) * 2003-12-18 2005-07-07 Nippon Sheet Glass Company, Limited Rubber reinforcing cord and rubber product using same
WO2009063952A1 (en) 2007-11-15 2009-05-22 Nippon Sheet Glass Company, Limited Reinforcement cord and rubber product employing the same
JP2016011736A (en) 2014-06-30 2016-01-21 ゲイツ・ユニッタ・アジア株式会社 Toothed belt
JP2018201776A (en) 2017-06-01 2018-12-27 株式会社平和 Game machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192943A (en) 1985-02-20 1986-08-27 Mitsuboshi Belting Ltd Power transmitting belt
JPH07127689A (en) * 1993-10-28 1995-05-16 Mitsuboshi Belting Ltd Toothed belt
JPH09126278A (en) * 1995-10-30 1997-05-13 Bando Chem Ind Ltd Toothed belt
JP2004535517A (en) 2001-01-12 2004-11-25 ザ ゲイツ コーポレイション Low elongation power transmission belt
JP2004082702A (en) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd Transmission belt and its manufacturing method
WO2004090224A1 (en) 2003-04-09 2004-10-21 Nippon Sheet Glass Company, Limited Reinforcing cord for reinforcing rubber and rubber product using the same
JP2005009658A (en) * 2003-05-27 2005-01-13 Mitsuboshi Belting Ltd Toothed belt
WO2005061766A1 (en) * 2003-12-18 2005-07-07 Nippon Sheet Glass Company, Limited Rubber reinforcing cord and rubber product using same
WO2009063952A1 (en) 2007-11-15 2009-05-22 Nippon Sheet Glass Company, Limited Reinforcement cord and rubber product employing the same
JP2016011736A (en) 2014-06-30 2016-01-21 ゲイツ・ユニッタ・アジア株式会社 Toothed belt
JP2018201776A (en) 2017-06-01 2018-12-27 株式会社平和 Game machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722636A4 *

Similar Documents

Publication Publication Date Title
JP6612827B2 (en) Various twisted cords, manufacturing method thereof, transmission belt and usage method thereof
JP6640921B2 (en) V-ribbed belt and method of manufacturing the same
JP6748131B2 (en) Helical tooth belt transmission
JP6650545B1 (en) Core wire for friction transmission belt, friction transmission belt, and method of manufacturing the same
JP6676725B2 (en) Friction transmission belt, cord therefor, and method of manufacturing them
WO2018074471A1 (en) Plied cord, production method therefor, transmission belt, and method for using same
JP6748152B2 (en) V-ribbed belt
WO2018235755A1 (en) V-ribbed belt and method for manufacturing same
EP3650731B1 (en) V-ribbed belt
WO2019111639A1 (en) Friction transmission belt, cord for same, and manufacturing method for same
EP3971331A1 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt
JP7121174B2 (en) CORE WIRE FOR TRANSMISSION BELT, TRANSMISSION BELT AND METHOD OF MANUFACTURING THEM
US20230037131A1 (en) Core Wire for Drive Belt, Drive Belt, and Method for Manufacturing Core Wire and Drive Belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884992

Country of ref document: EP

Effective date: 20200707