JP5734830B2 - Fuel pool heat transport equipment - Google Patents

Fuel pool heat transport equipment Download PDF

Info

Publication number
JP5734830B2
JP5734830B2 JP2011283730A JP2011283730A JP5734830B2 JP 5734830 B2 JP5734830 B2 JP 5734830B2 JP 2011283730 A JP2011283730 A JP 2011283730A JP 2011283730 A JP2011283730 A JP 2011283730A JP 5734830 B2 JP5734830 B2 JP 5734830B2
Authority
JP
Japan
Prior art keywords
pipe
heat
fuel pool
transport device
heat transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011283730A
Other languages
Japanese (ja)
Other versions
JP2013133989A (en
Inventor
覚 阿部
覚 阿部
洋介 平田
洋介 平田
直路 柳澤
直路 柳澤
史人 篠崎
史人 篠崎
裕太 小松
裕太 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011283730A priority Critical patent/JP5734830B2/en
Publication of JP2013133989A publication Critical patent/JP2013133989A/en
Application granted granted Critical
Publication of JP5734830B2 publication Critical patent/JP5734830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、高温の貯留液を冷却するための熱輸送装置に関し、特に、使用済み燃料を貯蔵する原子力プラントの燃料プールに用いられる熱輸送装置に関する。   The present invention relates to a heat transport device for cooling a hot stored liquid, and more particularly to a heat transport device used in a fuel pool of a nuclear power plant that stores spent fuel.

本発明は高温の貯留液を冷却するための熱輸送装置に関するが、ここでは使用済み燃料を貯蔵する原子力プラントの燃料プールに適用した例を説明する。
従来の使用済み燃料を貯蔵する原子力プラントの燃料プールの冷却装置を図7により説明する。図7は原子力プラントの建屋31内に設けられ、使用済み核燃料33を保管する燃料プールの模式図である。
The present invention relates to a heat transport device for cooling a hot stored liquid. Here, an example applied to a fuel pool of a nuclear power plant for storing spent fuel will be described.
A conventional cooling system for a fuel pool of a nuclear power plant for storing spent fuel will be described with reference to FIG. FIG. 7 is a schematic diagram of a fuel pool that is provided in the building 31 of the nuclear power plant and stores the spent nuclear fuel 33.

原子炉で使用された使用済み燃料33は、原子炉建屋31内に設置されている燃料プール32に保管される。使用済み燃料33からの発生熱(崩壊熱)により燃料プール32内のプール水34の温度が上昇するが、このプール水34はスキマサージタンク35に流入し、ポンプ36により熱交換器37で発生熱が除熱された後、貯蔵プール32に再び戻される。なお、熱交換器37で除去した発生熱は、熱交換器37の2次系から海中等に放出される(図示せず)。   The spent fuel 33 used in the nuclear reactor is stored in a fuel pool 32 installed in the nuclear reactor building 31. The temperature of the pool water 34 in the fuel pool 32 rises due to the heat generated from the spent fuel 33 (decay heat). This pool water 34 flows into the skimmer surge tank 35 and is generated in the heat exchanger 37 by the pump 36. After the heat is removed, it is returned to the storage pool 32 again. The generated heat removed by the heat exchanger 37 is released from the secondary system of the heat exchanger 37 into the sea or the like (not shown).

このように、従来の使用済み燃料プール32では、プール水34をポンプ36に代表される動的機器により熱交換器37を介して循環させることにより冷却している。したがって、何らかの原因で電源が喪失した場合にはプール水34を冷却できなくなり、崩壊熱によりプール水34の温度は上昇する。電源が復旧できない状況が続くと、蒸発による燃料プールの水位低下や、最終的には冷却水の喪失に至り、使用済み燃料が損傷する可能性が大きくなる。   As described above, the conventional spent fuel pool 32 is cooled by circulating the pool water 34 through the heat exchanger 37 by a dynamic device represented by the pump 36. Accordingly, when the power source is lost for some reason, the pool water 34 cannot be cooled, and the temperature of the pool water 34 rises due to decay heat. If the power supply cannot be restored, the water level of the fuel pool will decrease due to evaporation, and eventually the cooling water will be lost, increasing the possibility of damage to spent fuel.

このため、仮に津波等により全交流電源、海水冷却機能及び使用済み燃料プールの冷却機能の3つの機能を全て喪失したとしても、炉心損傷や使用済み燃料の損傷を防止し、放射性物質の放出を抑制しつつ冷却機能を回復することができる冷却装置が求められている。このうち、使用済み燃料プールの冷却については、既設の冷却系の喪失を想定し、外部動力が利用不可の状況においても、プール水を冷却できる装置が求められている。   For this reason, even if all three functions of all AC power supply, seawater cooling function and spent fuel pool cooling function are lost due to tsunami etc., core damage and spent fuel damage are prevented, and radioactive materials are released. There is a demand for a cooling device that can recover the cooling function while suppressing the temperature. Among these, regarding the cooling of the spent fuel pool, assuming the loss of the existing cooling system, a device capable of cooling the pool water is required even in a situation where external power is not available.

ところで、一般の民生機器又は産業機器の分野では、外部動力を使用しない冷却手段として従来からヒートシンクや循環流体の密度差で生じる熱対流を利用した熱輸送装置が知られている(特許文献1)。また、高発熱量用の冷却機器では、ヒートパイプを組み合わせた装置も用いられている。   By the way, in the field of general consumer equipment or industrial equipment, as a cooling means that does not use external power, a heat transport device that uses heat convection generated by a density difference between a heat sink and a circulating fluid is conventionally known (Patent Document 1). . In addition, in a cooling device for high calorific value, a device combined with a heat pipe is also used.

特開2005−283014号公報JP 2005-283014 A

ところで、外部動力を使用しない熱輸送装置としてヒートパイプによる熱輸送装置を用いた場合、ヒートパイプの一方はプール水に直接接触させ、他方は燃料プールの上方に設置されるが、その際、ヒートパイプを支持具や固定具により燃料プールの側壁等に固定する必要がある。しかしながら、地震や経年劣化により支持具や固定具が破損、落下したり、それにともなってヒートパイプも破損する可能性があり、その場合はヒートパイプによる冷却機能が失われるという課題があった。   By the way, when a heat transport device using a heat pipe is used as a heat transport device that does not use external power, one of the heat pipes is in direct contact with the pool water and the other is installed above the fuel pool. It is necessary to fix the pipe to the side wall of the fuel pool with a support or a fixture. However, there is a possibility that the support tool and the fixing tool may be damaged or dropped due to an earthquake or aged deterioration, and the heat pipe may be damaged accordingly. In this case, the cooling function by the heat pipe is lost.

本発明は、上記本課題を解決するためになされもので、外部動力を使用せずに、長期にわたって安定的に燃料プール水を冷却することができる燃料プールの熱輸送装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel pool heat transport device that can cool fuel pool water stably over a long period of time without using external power. And

上記課題を解決するために、本発明の実施形態に係る燃料プールの熱輸送装置は、水面下で燃料プールのプール水からの熱を受熱する上昇管と、前記燃料プールの水面上に配置され前記上昇管の上端部に接続された上部連通管と、前記上昇管の下端部に接続された下部連通管と、前記上部連通管と下部連通管に接続された下降管と、前記上昇管の上方側と前記下降管の下方側を覆う断熱部と、を有する燃料プールの熱輸送装置であって、前記熱輸送装置が燃料プールの水面に浮かぶように、前記断熱部の比重を前記プール水の比重よりも小さくしたことを特徴とする。   In order to solve the above problems, a fuel pool heat transport device according to an embodiment of the present invention is disposed on the water surface of the fuel pool and a riser pipe that receives heat from the pool water of the fuel pool under the water surface. An upper communication pipe connected to the upper end of the riser, a lower communication pipe connected to the lower end of the riser, a downcomer connected to the upper communication pipe and the lower communication pipe, and A heat transport device for a fuel pool having an upper side and a heat insulation portion covering the lower side of the downcomer, wherein the specific gravity of the heat insulation portion is set to the pool water so that the heat transport device floats on the water surface of the fuel pool. It is characterized by being smaller than the specific gravity.

また、本発明の実施形態に係る燃料プールの熱輸送装置は、水面下で燃料プールのプール水からの熱を受熱する上昇管と、前記燃料プールの水面上に配置され前記上昇管の上端部に接続された上部連通管と、前記上昇管の下端部に接続された下部連通管と、前記上昇管の上方側と前記上部連通管を覆う断熱部と、前記燃料プールの外部に設置され前記上部連通管と下部連通管に接続された冷却器と、を有する燃料プールの熱輸送装置であって、前記熱輸送装置が燃料プールの水面に浮かぶように、前記断熱部の比重を前記プール水の比重よりも小さくしたことを特徴とする。   Further, the fuel pool heat transport device according to the embodiment of the present invention includes a rising pipe that receives heat from the pool water of the fuel pool under the water surface, and an upper end portion of the rising pipe that is disposed on the water surface of the fuel pool. An upper communication pipe connected to the lower pipe, a lower communication pipe connected to the lower end of the riser pipe, a heat insulating part covering the upper side of the riser pipe and the upper communication pipe, and installed outside the fuel pool. A heat transport device for a fuel pool having an upper communication pipe and a cooler connected to the lower communication pipe, wherein the specific gravity of the heat insulating portion is set to the pool water so that the heat transport device floats on the water surface of the fuel pool. It is characterized by being smaller than the specific gravity.

本発明によれば、外部動力を使用せずに、長期にわたって安定的に燃料プール水を冷却することができる。   According to the present invention, the fuel pool water can be stably cooled over a long period of time without using external power.

第1の実施形態に係る燃料プールの熱輸送装置の断面図。Sectional drawing of the heat transport apparatus of the fuel pool which concerns on 1st Embodiment. 第1の実施形態に係る燃料プールの熱輸送装置の変形例を示す図。The figure which shows the modification of the heat transport apparatus of the fuel pool which concerns on 1st Embodiment. 第2の実施形態に係る燃料プールの熱輸送装置の断面図。Sectional drawing of the heat transport apparatus of the fuel pool which concerns on 2nd Embodiment. 第3の実施形態に係る燃料プールの熱輸送装置の断面図。Sectional drawing of the heat transport apparatus of the fuel pool which concerns on 3rd Embodiment. 第4の実施形態に係る燃料プールの熱輸送装置の断面図。Sectional drawing of the heat transport apparatus of the fuel pool which concerns on 4th Embodiment. 第5の実施形態に係る燃料プールの熱輸送装置の断面図。Sectional drawing of the heat transport apparatus of the fuel pool which concerns on 5th Embodiment. 従来の燃料プールの冷却装置の構成図。The block diagram of the conventional cooling device of a fuel pool.

以下、本発明に係る燃料プールの熱輸送装置の実施形態を、図面を参照して説明する。   Embodiments of a fuel pool heat transport device according to the present invention will be described below with reference to the drawings.

[第1の実施形態]
第1の実施形態に係る熱輸送装置を図1及び図2により説明する。
(構成)
第1の実施形態に係る熱輸送装置10は、図1に示すように、下方側が水面下にありプール水6からの熱を受熱する上昇管1と、水面上に露出している上昇管1の上端部に接続され周囲の雰囲気により冷却される上部連通管3と、上昇管1の下端部に接続された下部連通管4と、上部連通管3で液相となった凝縮水を下部連通管4に導く下降管2と、上昇管1の上方側と下降管2の下方側を覆う断熱部5とから構成される。各配管として、矩形、円形または楕円形等の断面形状を有する配管が用いられる。
[First Embodiment]
A heat transport device according to a first embodiment will be described with reference to FIGS. 1 and 2.
(Constitution)
As shown in FIG. 1, the heat transport device 10 according to the first embodiment includes a rising pipe 1 that is below the water surface and receives heat from the pool water 6, and a rising pipe 1 that is exposed on the water surface. The upper communication pipe 3 connected to the upper end of the pipe and cooled by the ambient atmosphere, the lower communication pipe 4 connected to the lower end of the riser 1, and the condensed water that has become a liquid phase in the upper communication pipe 3 The down pipe 2 is guided to the pipe 4, and the heat insulating portion 5 covers the upper side of the up pipe 1 and the lower side of the down pipe 2. As each pipe, a pipe having a cross-sectional shape such as a rectangle, a circle, or an ellipse is used.

断熱部5はプール水よりも比重が小さい部材が用いられる。例えば、比重の小さい断熱性の樹脂又は多孔性のセラミック(アルミナ、シリカ等)、断熱材からなる中空の環状部材、あるいは断熱塗料を塗布した中空の環状部材、等が用いられる。これにより、断熱部5は断熱機能とフロートの機能を有する。
この熱輸送装置10を燃料プール32内に配置したときに、熱輸送装置10は断熱部5の浮力により燃料プール32の水面に浮かぶことになる。
A member having a specific gravity smaller than that of the pool water is used for the heat insulating portion 5. For example, a heat insulating resin or porous ceramic (alumina, silica, etc.) having a small specific gravity, a hollow annular member made of a heat insulating material, or a hollow annular member coated with a heat insulating paint, or the like is used. Thereby, the heat insulation part 5 has a heat insulation function and a float function.
When the heat transport device 10 is arranged in the fuel pool 32, the heat transport device 10 floats on the water surface of the fuel pool 32 due to the buoyancy of the heat insulating portion 5.

上昇管1では、断熱部5は水面直上の高温雰囲気からの熱を受熱しないように水面上に露出した上昇管1の大部分を覆い、水面下では高温のプール水6からの受熱を妨げないように上昇管1をできるだけ露出させるように配置される。また、下降管2では、下降管2を下降する液体の再蒸発を防ぐため、断熱部5は水面下の下降管2の大部分を覆うよう配置される。
このように、上昇管1及び下降管2に設置される断熱部5の長さ、容積は、上記のような受熱状態及び浮遊状態になるように適宜調整される。
In the ascending pipe 1, the heat insulating part 5 covers most of the ascending pipe 1 exposed on the water surface so as not to receive heat from the high temperature atmosphere immediately above the water surface, and does not hinder heat reception from the hot pool water 6 below the water surface. Thus, it arrange | positions so that the ascending pipe | tube 1 may be exposed as much as possible. In the downcomer 2, the heat insulating portion 5 is disposed so as to cover most of the downcomer 2 below the water surface in order to prevent re-evaporation of the liquid descending the downcomer 2.
Thus, the length and volume of the heat insulation part 5 installed in the riser 1 and the downfall 2 are appropriately adjusted so as to be in the heat receiving state and the floating state as described above.

本実施形態では熱輸送装置10内の熱輸送媒体として水が用いられ、装置稼動前に飽和蒸気圧を所望の圧力になるように調整されている。水は入手が容易であり、仮に配管が破損した場合においても、周囲に及ぼす影響は小さい。また、飽和蒸気圧を装置稼動前に調整することで、装置の稼動開始温度を変更し、熱輸送効率を最適に調整することができる。
なお、熱輸送媒体として水以外の媒体を使用できることはもちろんである。
In the present embodiment, water is used as a heat transport medium in the heat transport apparatus 10, and the saturated vapor pressure is adjusted to a desired pressure before the apparatus is operated. Water is easily available, and even if the piping is damaged, the influence on the surroundings is small. Further, by adjusting the saturated vapor pressure before the operation of the apparatus, it is possible to change the operation start temperature of the apparatus and optimally adjust the heat transport efficiency.
Of course, a medium other than water can be used as the heat transport medium.

また、図1の例では、上昇管1及び下降管2がそれぞれ1本、2本の例で説明したが、これに限定されず適宜増減可能である。例えば、図2に示す変形例では、下降管2が3本設けられ、また、断熱部5が一体化された構成となっている。これにより熱輸送効率をさらに向上させることができる。   Further, in the example of FIG. 1, the example of one and two ascending pipes 1 and two descending pipes 2 has been described, but the present invention is not limited to this and can be increased or decreased as appropriate. For example, in the modification shown in FIG. 2, three downcomers 2 are provided, and the heat insulating portion 5 is integrated. Thereby, heat transport efficiency can further be improved.

(作用)
このように構成された熱輸送装置10において、上昇管1の下方部及び下部連通管4はプール水6の熱を受熱し内部の液体は沸騰して気相になり上昇管1内を上昇して上部連通管3に導かれる。上部連通管3では、周囲の雰囲気温度により冷却され、蒸気は冷却され凝縮し液相に変化する。凝縮水は下降管2を下降し下部連通管4に導かれ、再度、プール水6の熱を受熱して沸騰する。なお、図1の11は受熱状況、12は放熱状況を示す熱フローである。
(Function)
In the heat transport device 10 configured as described above, the lower part of the riser pipe 1 and the lower communication pipe 4 receive the heat of the pool water 6, and the liquid inside boils into a gas phase and rises in the riser pipe 1. To the upper communication pipe 3. The upper communication pipe 3 is cooled by the ambient temperature, and the steam is cooled and condensed to change into a liquid phase. Condensed water descends down the downcomer 2 and is guided to the lower communication tube 4 to receive the heat of the pool water 6 and boils again. In addition, 11 of FIG. 1 is a heat receiving condition, 12 is a heat flow which shows a thermal radiation condition.

本熱輸送装置10はこのサイクルを繰り返すことにより、燃料プール32のプール水6を能動的な装置を用いることなく、受動的な装置によって長期的にかつ効率的に冷却することができる。また、本熱輸送装置10は燃料プール32に浮遊した状態で使用するため、本熱輸送装置10を燃料プール壁等に支持具や固定具を用いて固定する必要がなく、支持具や固定具の損傷によって熱輸送装置が機能不全となることはない。   By repeating this cycle, the heat transport device 10 can cool the pool water 6 in the fuel pool 32 in a long-term and efficient manner using a passive device without using an active device. Further, since the heat transport device 10 is used in a state of floating in the fuel pool 32, it is not necessary to fix the heat transport device 10 to the fuel pool wall or the like by using a support or a fixture. Damage to the heat transport device will not cause malfunction.

(効果)
本第1の実施形態によれば、熱輸送装置10を燃料プール32の水面に浮遊させて使用するので、支持具や固定具等を用いる必要がない。その結果、地震時や経年劣化による支持部材等の脱落、破損により熱輸送装置が損傷を受けることがないため、燃料プール32のプール水6を長期にわたって安定的に冷却することができる。
(effect)
According to the first embodiment, since the heat transport device 10 is used while being floated on the water surface of the fuel pool 32, it is not necessary to use a support or a fixture. As a result, the heat transport device is not damaged due to dropping or breakage of the support member or the like due to an earthquake or aging deterioration, and thus the pool water 6 of the fuel pool 32 can be stably cooled over a long period of time.

なお、本熱輸送装置10は原子力プラントの事故時に燃料プール32に投入してもよいが、通常時においてもプール水6の冷却に使用することができる。
また、下降管2に設置される断熱部5で必要な浮力が得られれば、上昇管1に断熱部を設置しなくともよい。
In addition, although this heat transport apparatus 10 may be thrown into the fuel pool 32 at the time of the accident of a nuclear power plant, it can be used for cooling the pool water 6 also at the normal time.
Further, if the necessary heat buoyancy is obtained by the heat insulating portion 5 installed in the downcomer 2, it is not necessary to install the heat insulating portion in the ascending pipe 1.

[第2の実施形態]
第2の実施形態に係る熱輸送装置を図3により説明する。
本第2の実施形態に係る熱輸送装置10では、上昇管1の断面形状を上方に向かうにしたがい拡大させる構成としている。これにより下降管2内で液相が気相に変化する場合の体積膨張を吸収し、蒸気の上方への流れを促進し、熱輸送能力を向上させることができる。
[Second Embodiment]
A heat transport apparatus according to the second embodiment will be described with reference to FIG.
In the heat transport device 10 according to the second embodiment, the cross-sectional shape of the riser 1 is increased as it goes upward. Thereby, the volume expansion in the case where the liquid phase changes to the gas phase in the downcomer 2 can be absorbed, the upward flow of steam can be promoted, and the heat transport capability can be improved.

なお、図3の例では、水面上にある上昇管1の上方部を拡大した構成としているが、これに限定されず、上昇管1全体を下方から上方に向けて拡大する構成としてもよい。   In addition, in the example of FIG. 3, although it has set as the structure which expanded the upper part of the riser 1 on a water surface, it is not limited to this, It is good also as a structure which expands the whole riser 1 toward upper direction from the downward direction.

[第3の実施形態]
第3の実施形態に係る熱輸送装置を図4により説明する。
本第3の実施形態に係る熱輸送装置10は、複数の上昇管1及び下降管2を環状に配置した構成としている。
[Third Embodiment]
A heat transport device according to a third embodiment will be described with reference to FIG.
The heat transport apparatus 10 according to the third embodiment has a configuration in which a plurality of ascending pipes 1 and descending pipes 2 are annularly arranged.

本熱輸送装置10は、図4に示すように、複数の上方管1を環状に外側に配置し、複数の下降管2をその内側に環状に配置し、さらに、それぞれの上下端部に円環状の上部連通管3a、3bと下部連通管4a、4bを接続し、さらに上部連通管3a及び3bと下部連通管4a及び4bを放射状の連通配管3c、4cにより接続している。また、複数の上昇管1及び下降管2にはそれぞれ断熱部5が設けられている。   As shown in FIG. 4, the heat transport device 10 has a plurality of upper pipes 1 arranged annularly on the outside, a plurality of descending pipes 2 arranged annularly on the inside, and a circular shape at each upper and lower end portion. The annular upper communication pipes 3a and 3b and the lower communication pipes 4a and 4b are connected, and the upper communication pipes 3a and 3b and the lower communication pipes 4a and 4b are connected by radial communication pipes 3c and 4c. Each of the plurality of ascending pipes 1 and descending pipes 2 is provided with a heat insulating portion 5.

本第3の実施形態によれば、複数の上昇管1及び下降管2を環状に配置したことにより、熱輸送装置の重心が中心近傍となり、熱輸送装置はより安定して浮遊することができるため、熱輸送装置の安定性、熱効率をさらに向上させることが可能となる。   According to the third embodiment, the plurality of ascending pipes 1 and descending pipes 2 are annularly arranged, so that the center of gravity of the heat transport device is near the center, and the heat transport device can float more stably. Therefore, it becomes possible to further improve the stability and thermal efficiency of the heat transport device.

[第4の実施形態]
第4の実施形態に係る熱輸送装置を図5により説明する。
[Fourth Embodiment]
A heat transport device according to a fourth embodiment will be described with reference to FIG.

(構成)
第4の実施形態に係る熱輸送装置10は、複数の上昇管1の少なくとも水面上に露出している上方部と上部連通管3を断熱部5で覆い、上昇管1の下方部で発生した蒸気を上部連通管3及び配管21を介して燃料プール32の外部に設けられた冷却器7に導く構成としている。また、冷却器7で液相となった凝縮水は配管22を介して下部連通管4に導かれる。
(Constitution)
The heat transport device 10 according to the fourth embodiment covers the upper part and the upper communication pipe 3 exposed at least on the water surface of the plurality of rising pipes 1 with the heat insulating part 5, and is generated in the lower part of the rising pipe 1. The vapor is guided to the cooler 7 provided outside the fuel pool 32 through the upper communication pipe 3 and the pipe 21. Further, the condensed water that has become a liquid phase in the cooler 7 is guided to the lower communication pipe 4 via the pipe 22.

上昇管1及び上部連通管3に設置される断熱部5の長さ、幅、容積は、上昇管1が効率的に熱を受熱できるように、また、熱輸送装置が安定して浮遊できるように適宜調整される。
また、冷却器7は、例えばオペレーションフロア等の建屋内の適切な場所又は建屋外に設けられる。また、冷却器7は複数設けてもよい。
The length, width, and volume of the heat insulating portion 5 installed in the rising pipe 1 and the upper communication pipe 3 are set so that the rising pipe 1 can receive heat efficiently and the heat transport device can float stably. Is adjusted as appropriate.
Moreover, the cooler 7 is provided in a suitable place in a building such as an operation floor or outside the building. A plurality of coolers 7 may be provided.

なお、配管21、22は、燃料プール32の水面の揺動による熱輸送装置の動きに追随できるように、例えば配管の少なくとも一部にベローズや弾性部材等の伸縮可能な部材を用いることが望ましい(図示せず)。   For the pipes 21 and 22, for example, it is desirable to use an extendable member such as a bellows or an elastic member for at least a part of the pipe so that the movement of the heat transport device due to the fluctuation of the water surface of the fuel pool 32 can be followed. (Not shown).

(作用)
このように構成された熱輸送装置10において、上昇管1の下方部及び下部連通管4はプール水の熱を受熱し内部の液体は沸騰して気相になり上昇管1内を上昇して上部連通管3及び配管21を介して冷却器7に導かれる。冷却器7では、周囲の雰囲気温度により冷却され、蒸気は冷却され凝縮し液相に変化する。凝縮水は配管22を介して下部連通管4に導かれ、再度、プール水の熱を受熱して沸騰する。
(Function)
In the heat transport device 10 configured as described above, the lower part of the riser pipe 1 and the lower communication pipe 4 receive the heat of the pool water, the liquid inside boils into a gas phase and rises in the riser pipe 1. It is led to the cooler 7 through the upper communication pipe 3 and the pipe 21. The cooler 7 is cooled by the ambient temperature, and the steam is cooled and condensed to change into a liquid phase. The condensed water is guided to the lower communication pipe 4 through the pipe 22 and again receives the heat of the pool water to boil.

本熱輸送装置10はこのサイクルを繰り返すことにより、燃料プール32のプール水6を能動的な装置を用いることなく、受動的な装置によって長期的にかつ効率的に冷却することができる。   By repeating this cycle, the heat transport device 10 can cool the pool water 6 in the fuel pool 32 in a long-term and efficient manner using a passive device without using an active device.

また、本熱輸送装置10は燃料プール6に浮遊した状態で使用するため、熱輸送装置10を燃料プール壁等に支持具や固定具を用いて固定する必要がなく、支持具や固定具の損傷によって熱輸送装置が機能不全となることはない。   Further, since the heat transport device 10 is used in a state of floating in the fuel pool 6, it is not necessary to fix the heat transport device 10 to the fuel pool wall or the like using a support or a fixture. Damage does not cause the heat transport device to malfunction.

(効果)
本第4の実施形態によれば、燃料プールの外部に冷却器を設置したことにより冷却効率をさらに向上させることができるとともに、燃料プールに投入する熱輸送装置の重量を軽減することが可能となる。
なお、本第4の実施形態に係る冷却器を、上記第1乃至第3の実施形態の熱輸送装置に適用してもよい。
(effect)
According to the fourth embodiment, it is possible to further improve the cooling efficiency by installing the cooler outside the fuel pool, and to reduce the weight of the heat transport device that is put into the fuel pool. Become.
Note that the cooler according to the fourth embodiment may be applied to the heat transport apparatus of the first to third embodiments.

[第5の実施形態]
第5の実施形態に係る熱輸送装置を図6により説明する。
第5の実施形態に係る熱輸送装置10は、上昇管と下降管の機能を有する単管のヒートパイプ8から構成される。
[Fifth Embodiment]
A heat transport device according to a fifth embodiment will be described with reference to FIG.
The heat transport apparatus 10 according to the fifth embodiment is constituted by a single pipe heat pipe 8 having functions of an ascending pipe and a descending pipe.

ヒートパイプ8は、下方部でプール水6の熱を受熱し内部の液体は沸騰して蒸気になり、ヒートパイプ8の上部まで上昇し、そこで周囲雰囲気により冷却され凝縮水は重力によりヒートパイプ8の下方部に下降し、再度、プール水6の熱を受熱して沸騰する。ヒートパイプ8に設けられる断熱部5の長さ、幅、容積は、ヒートパイプ8が効率的に熱を受熱できるように、また、ヒートパイプ8からなる熱輸送装置10が安定して浮遊できるように適宜調整される。   The heat pipe 8 receives the heat of the pool water 6 at the lower part, and the liquid inside boiles to become vapor and rises to the upper part of the heat pipe 8, where it is cooled by the surrounding atmosphere, and the condensed water is heated by the gravity. , And receives the heat of the pool water 6 again to boil. The length, width, and volume of the heat insulating portion 5 provided in the heat pipe 8 are such that the heat pipe 8 can receive heat efficiently, and the heat transport device 10 including the heat pipe 8 can stably float. Is adjusted as appropriate.

また、燃料プール6に投入されるヒートパイプ8の本数は、使用済み燃料の発熱状態に応じて適宜増減する。
本第5の実施形態によれば、単管のヒートパイプ8を用いたことにより、コンパクトかつ低コストでの熱輸送装置10を提供することができる。
Further, the number of heat pipes 8 charged into the fuel pool 6 is appropriately increased or decreased according to the heat generation state of the spent fuel.
According to the fifth embodiment, the use of the single pipe heat pipe 8 makes it possible to provide a compact and low-cost heat transport device 10.

以上、本発明の実施形態を説明したが、本熱輸送装置は燃料プールの冷却に限定されることはなく、他の種々の分野において容器内の高温の液体を冷却する場合に適用できることはもちろんである。   Although the embodiment of the present invention has been described above, the present heat transport device is not limited to the cooling of the fuel pool, and of course can be applied to the case of cooling the hot liquid in the container in various other fields. It is.

また、上述した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、組み合わせ、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   The above-described embodiments are presented as examples, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, combinations, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…上昇管、2…下降管、3、3a、3b…上部連通管、4、4a、4b…下部連通管、3c、4c…連通配管、5…断熱部、6…プール水、7…冷却器、8…ヒートパイプ、10…熱輸送装置、21…配管、22…配管、31…建屋、32…燃料プール、33…使用済み燃料、34…プール水、35…スキマサージタンク、36…ポンプ、37…熱交換器。   DESCRIPTION OF SYMBOLS 1 ... Rising pipe, 2 ... Downcomer pipe, 3, 3a, 3b ... Upper communication pipe, 4, 4a, 4b ... Lower communication pipe, 3c, 4c ... Communication pipe, 5 ... Heat insulation part, 6 ... Pool water, 7 ... Cooling 8 ... Heat pipe, 10 ... Heat transport device, 21 ... Piping, 22 ... Piping, 31 ... Building, 32 ... Fuel pool, 33 ... Spent fuel, 34 ... Pool water, 35 ... Skimmer surge tank, 36 ... Pump 37 ... Heat exchanger.

Claims (7)

水面下で燃料プールのプール水からの熱を受熱する上昇管と、前記燃料プールの水面上に配置され前記上昇管の上端部に接続された上部連通管と、前記上昇管の下端部に接続された下部連通管と、前記上部連通管と下部連通管に接続された下降管と、前記上昇管の上方側と前記下降管の下方側を覆う断熱部と、を有する燃料プールの熱輸送装置であって、
前記熱輸送装置が燃料プールの水面に浮かぶように、前記断熱部の比重を前記プール水の比重よりも小さくしたことを特徴とする燃料プールの熱輸送装置。
A riser pipe that receives heat from the pool water of the fuel pool under the water surface, an upper communication pipe that is disposed on the water surface of the fuel pool and connected to the upper end part of the riser pipe, and is connected to the lower end part of the riser pipe And a heat transfer device for a fuel pool, comprising: a lower communication pipe, a lower pipe connected to the upper communication pipe and the lower communication pipe, and a heat insulating portion covering an upper side of the rise pipe and a lower side of the down pipe Because
The heat transport device for a fuel pool, wherein the specific gravity of the heat insulating portion is made smaller than the specific gravity of the pool water so that the heat transport device floats on the water surface of the fuel pool.
前記断熱部は断熱性の樹脂又は多孔性のセラミック、断熱性又は断熱塗料を塗布した中空の環状部材からなることを特徴とする請求項1記載の燃料プールの熱輸送装置。   2. The fuel pool heat transport device according to claim 1, wherein the heat insulating portion is formed of a hollow annular member coated with heat insulating resin or porous ceramic, or heat insulating or heat insulating paint. 前記上昇管及び下降管が複数設けられていることを特徴とする請求項1又は2記載の燃料プールの熱輸送装置。   The fuel pool heat transport device according to claim 1, wherein a plurality of the rising pipes and the down pipes are provided. 前記上昇管の断面形状が上方に向かって拡大していることを特徴とする請求項1乃至3いずれかに記載の燃料プールの熱輸送装置。   4. The heat transport device for a fuel pool according to claim 1, wherein a cross-sectional shape of the riser pipe is expanded upward. 5. 前記上昇管及び下降管の上端部にそれぞれ環状の上部連通管を接続するとともに当該上部連通管同士を連通配管により接続し、かつ、前記上昇管及び下降管の下端部にそれぞれ環状の上部連通管を接続するとともに当該下部連通管同士を連通配管により接続したことを特徴とする請求項1乃至4いずれかに記載の燃料プールの熱輸送装置。   An annular upper communication pipe is connected to the upper ends of the ascending pipe and the down pipe, and the upper communication pipes are connected to each other by a communication pipe, and an annular upper communication pipe is connected to the lower ends of the ascending pipe and the down pipe, respectively. 5. The fuel pool heat transport device according to claim 1, wherein the lower communication pipes are connected to each other by a communication pipe. 水面下で燃料プールのプール水からの熱を受熱する上昇管と、前記燃料プールの水面上に配置され前記上昇管の上端部に接続された上部連通管と、前記上昇管の下端部に接続された下部連通管と、前記上昇管の上方側と前記上部連通管を覆う断熱部と、前記燃料プールの外部に設置され前記上部連通管と下部連通管に接続された冷却器と、を有する燃料プールの熱輸送装置であって、
前記熱輸送装置が燃料プールの水面に浮かぶように、前記断熱部の比重を前記プール水の比重よりも小さくしたことを特徴とする燃料プールの熱輸送装置。
A riser pipe that receives heat from the pool water of the fuel pool under the water surface, an upper communication pipe that is disposed on the water surface of the fuel pool and connected to the upper end part of the riser pipe, and is connected to the lower end part of the riser pipe A lower communication pipe, a heat insulating portion covering the upper communication pipe and the upper communication pipe, and a cooler installed outside the fuel pool and connected to the upper communication pipe and the lower communication pipe. A fuel pool heat transport device,
The heat transport device for a fuel pool, wherein the specific gravity of the heat insulating portion is made smaller than the specific gravity of the pool water so that the heat transport device floats on the water surface of the fuel pool.
前記冷却器と前記上部連通管及び下部連通管とを接続する配管の少なくとも一部を伸縮可能な部材により構成したことを特徴とする請求項6記載の燃料プールの熱輸送装置。   7. The fuel pool heat transport device according to claim 6, wherein at least a part of a pipe connecting the cooler and the upper communication pipe and the lower communication pipe is formed of an extendable member.
JP2011283730A 2011-12-26 2011-12-26 Fuel pool heat transport equipment Expired - Fee Related JP5734830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011283730A JP5734830B2 (en) 2011-12-26 2011-12-26 Fuel pool heat transport equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283730A JP5734830B2 (en) 2011-12-26 2011-12-26 Fuel pool heat transport equipment

Publications (2)

Publication Number Publication Date
JP2013133989A JP2013133989A (en) 2013-07-08
JP5734830B2 true JP5734830B2 (en) 2015-06-17

Family

ID=48910801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283730A Expired - Fee Related JP5734830B2 (en) 2011-12-26 2011-12-26 Fuel pool heat transport equipment

Country Status (1)

Country Link
JP (1) JP5734830B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804643B1 (en) * 2015-12-30 2017-12-05 한국해양과학기술원 Device to prevent liquid temperature stratification inside CO2 temporary storage tank of carbon dioxide capture and storage
CN110462749B (en) * 2017-03-17 2024-03-19 法马通股份有限公司 Nuclear plant with fuel pool and corresponding cooling module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535454A (en) * 1976-07-05 1978-01-19 Toshiba Corp Heat pipe
DE2823376B1 (en) * 1978-05-29 1979-09-13 Kraftwerk Union Ag Storage for nuclear reactor fuel elements
DE3014289A1 (en) * 1980-04-15 1981-10-22 Hoechst Ag, 6000 Frankfurt METHOD FOR REMOVING THE DEGREASING HEAT OF RADIOACTIVE SUBSTANCES
JPH0631701B2 (en) * 1987-02-25 1994-04-27 宏 大田 Heat cycle equipment
JPS63145462U (en) * 1987-03-16 1988-09-26
JP4771964B2 (en) * 2007-01-15 2011-09-14 財団法人若狭湾エネルギー研究センター Loop type heat pipe
JP5185878B2 (en) * 2009-04-14 2013-04-17 株式会社フジクラ Drifting type sea ice cooling promotion device

Also Published As

Publication number Publication date
JP2013133989A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
US10720249B2 (en) Passive reactor cooling system
KR101940197B1 (en) Heat removal system and method for use with a nuclear reactor
KR101743910B1 (en) Passive reactor cooling system
CN107210071B (en) Passive heat removal system inside containment
KR102159794B1 (en) Steam generator for a nuclear reactor
KR101665353B1 (en) Passive reactor containment protection system
JP2012230079A (en) Nuclear power plant, fuel pool water cooling apparatus, and fuel pool water cooling method
JP2015508486A (en) Emergency reactor core cooling system (ECCS) using closed heat transfer path
JP2010236885A (en) Cooling structure of reactor containment vessel
JP6395802B2 (en) Reactor system and method
JP5734830B2 (en) Fuel pool heat transport equipment
US10629312B2 (en) Light water reactor with condensing steam generator
KR101743911B1 (en) Loss-of-coolant accident reactor cooling system
JP2013072879A (en) Condensation chamber cooling system
JP2009139005A (en) Cooler and cooling apparatus including the cooler
JP6771402B2 (en) Nuclear plant
US20160099080A1 (en) Nuclear fuel element corrugated plenum holddown device
KR101815958B1 (en) Passive containment cooling system for pressurized water reactor using phase-change material
JP2012230030A (en) Static water supply device for spent fuel pool
US20240266083A1 (en) Nuclear steam supply and start-up system, passively-cooled spent nuclear fuel pool system and method therefor, component cooling water system for nuclear power plant, passive reactor cooling system, steam generator for nuclear steam supply system
HUE032359T2 (en) Storage pool cooling module
JP2015183952A (en) Heat transfer device
JP2013224779A (en) Heat transporting device
JP2013245982A (en) Cooling structure for reactor container
JP2020139900A (en) Cooling device of suppression pool and cooling method of suppression pool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R151 Written notification of patent or utility model registration

Ref document number: 5734830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees