JP5734215B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP5734215B2
JP5734215B2 JP2012018009A JP2012018009A JP5734215B2 JP 5734215 B2 JP5734215 B2 JP 5734215B2 JP 2012018009 A JP2012018009 A JP 2012018009A JP 2012018009 A JP2012018009 A JP 2012018009A JP 5734215 B2 JP5734215 B2 JP 5734215B2
Authority
JP
Japan
Prior art keywords
insulating film
fuel cell
solid oxide
oxide fuel
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012018009A
Other languages
Japanese (ja)
Other versions
JP2013157254A (en
Inventor
峰明 松本
峰明 松本
佃 洋
洋 佃
一剛 森
一剛 森
冨田 和男
和男 冨田
吉田 慎
慎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012018009A priority Critical patent/JP5734215B2/en
Publication of JP2013157254A publication Critical patent/JP2013157254A/en
Application granted granted Critical
Publication of JP5734215B2 publication Critical patent/JP5734215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体電解質型燃料電池用絶縁膜材料、固体電解質型燃料電池セル、固体電解質型燃料電池、並びに固体電解質型燃料電池の製造方法に関するものである。   The present invention relates to an insulating film material for a solid oxide fuel cell, a solid electrolyte fuel cell, a solid electrolyte fuel cell, and a method for manufacturing a solid oxide fuel cell.

固体電解質型燃料電池(SOFC)は、燃料極に燃料ガスを、空気極に酸素を含む流体(空気)を供給することで発電がなされる電池である(特許文献1参照)。   A solid oxide fuel cell (SOFC) is a battery that generates power by supplying a fuel gas to a fuel electrode and a fluid (air) containing oxygen to an air electrode (see Patent Document 1).

円筒横縞型SOFCのセルは、例えば、多孔質の基体管を有し、該基体管の外周面上に、燃料極、固体電解質及び空気極が順に積層された単電池膜を備える。単電池膜は、基体管の長手方向に沿って複数形成され、隣接する単電池膜同士は、インターコネクタを介して電気的に接続されている。   The cell of the cylindrical horizontal stripe type SOFC has, for example, a porous base tube, and a single cell membrane in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the outer peripheral surface of the base tube. A plurality of unit cell membranes are formed along the longitudinal direction of the base tube, and adjacent unit cell membranes are electrically connected to each other via an interconnector.

円筒横縞型のSOFCセルは、複数本単位でひとつのカートリッジを構成する。このカートリッジにおいて、複数のセルの端部は金属製の支持部材に設けられた穴と接着固定される。セルは、セラミック性部材を介在させた上で接着させることで支持部材の間の絶縁性と気密性を確保して固定支持される。   Cylindrical horizontal stripe-type SOFC cells constitute one cartridge in units of plural. In this cartridge, the ends of the plurality of cells are bonded and fixed to holes provided in a metal support member. The cell is fixed and supported while ensuring insulation and airtightness between the support members by adhering the ceramic member.

ところで、基体管は、漏洩電流の抑制の観点から絶縁体とすることが望ましい。しかし、基体管は、焼結時における亀裂の発生などを防止する目的で、燃料極と熱膨張係数を同じか、またはそれ以下に設定する必要がある。また、基体管は、燃料ガスや酸素が通過する必要があることから、所定の気孔率を確保する必要がある。そのため、焼結材料として、鉄族金属の酸化物(例えば、酸化ニッケル)を含有させる必要があり、結果として基体管は導電性を有することとなる。このことにより、従来の固体酸化物型燃料電池では、発電素子から基体管へ流れる漏洩電流が発生し、非通電時における燃料の消費、通電時における燃料使用量の増加を招き、発電効率が低下してしまうという問題があると考えられていた。   By the way, it is desirable that the base tube be an insulator from the viewpoint of suppressing leakage current. However, the base tube needs to have the same or lower thermal expansion coefficient as that of the fuel electrode for the purpose of preventing the occurrence of cracks during sintering. In addition, since the fuel gas and oxygen need to pass through the base tube, it is necessary to ensure a predetermined porosity. Therefore, it is necessary to contain an iron group metal oxide (for example, nickel oxide) as the sintered material, and as a result, the base tube has conductivity. As a result, in the conventional solid oxide fuel cell, a leakage current flowing from the power generation element to the base tube is generated, resulting in consumption of fuel during non-energization and an increase in fuel consumption during energization, resulting in a decrease in power generation efficiency. It was thought that there was a problem of doing.

このような問題を解決するものとして、例えば、下記特許文献2に記載されたものがある。この特許文献2に記載された燃料電池は、燃料ガス流路が軸長方向に形成された柱状の支持体の表面に、燃料極、固体電解質、空気極を積層してなる発電素子を軸長方向に所定間隔をおいて複数個設け、複数の発電素子をそれぞれインターコネクタで直列に接続して構成し、支持体を、鉄族金属及び/または鉄族金属の酸化物と、無機粉末とを主成分とする多孔質な支持体基部の表面に、支持体基部と発電素子とを電気的に絶縁する多孔質な絶縁層を設けて構成している。   As what solves such a problem, there exists a thing described in the following patent document 2, for example. In the fuel cell described in Patent Document 2, a power generation element in which a fuel electrode, a solid electrolyte, and an air electrode are stacked on the surface of a columnar support body in which a fuel gas flow path is formed in the axial direction is axially long. A plurality of power generating elements are connected in series by interconnectors, and the support is made of an iron group metal and / or an iron group metal oxide and an inorganic powder. A porous insulating layer that electrically insulates the support base from the power generating element is provided on the surface of the porous support base as a main component.

特開平4−215258号公報JP-A-4-215258 特開2004−179071号公報JP 2004-179071 A

基体管と素子間を絶縁する為の絶縁膜材料は、燃料電池の単素子を構成する各機能材料および基体管材料との焼結時における収縮量や応力を考慮する必要があり、絶縁膜としての機能性と生産性を両立させる最適な材料を選択しないと発電素子自体の特性に問題が生じる。また、絶縁膜の膜厚を厚くすると発電素子の各機能膜材料の層間に隙間が発生しやすくなり、セルの内外の緻密性が低下し、ガスリーク等が発生しやすくなり、セル外周面から空気ガスのリークによる、ロバスト性の低下の問題が生じる。   The insulating film material for insulating between the base tube and the element needs to consider the amount of shrinkage and stress at the time of sintering with each functional material constituting the single element of the fuel cell and the base tube material. Unless an optimal material that satisfies both the functionality and productivity of the power generation device is selected, problems arise in the characteristics of the power generation element itself. In addition, when the insulating film is thickened, gaps are easily generated between the layers of the functional film materials of the power generation element, the internal and external denseness of the cell is reduced, gas leaks are likely to occur, and air flows from the outer peripheral surface of the cell. There arises a problem of deterioration of robustness due to gas leakage.

基体管は、CaO安定化ZrO(CSZ)などからなり、酸素イオン透過性を有する。そのため、燃料電池として発電する高温の状態では、基体管が導電性を有することが判明している。その結果、複数の単電池間のインターコネクタによる導電とは別に、基体管において漏洩電流が発生し、セルの発電効率を低下させるという問題が生じる。
また、固体電解質はY安定化ZrO(YSZ)からなるが、気体管の軸方向において隣り合う燃料極の間には、固体電解質が配置されることとなり、この電解質を伝って漏洩電流が発生する。
また、セルの端部の金属支持部材との固定部分は、絶縁性とガスリークに対する気密性を確保する為にセラミック性部材を介在させて接着することで固定支持していたが、セラミック性部材を複数本のセルに取り付ける作業取り付ける作業は多大な時間を要するという問題が生じる。
The base tube is made of CaO stabilized ZrO 2 (CSZ) or the like and has oxygen ion permeability. Therefore, it has been found that the base tube has conductivity in a high temperature state where power is generated as a fuel cell. As a result, in addition to the conduction by the interconnector between the plurality of single cells, a leakage current is generated in the base tube, resulting in a problem of reducing the power generation efficiency of the cell.
The solid electrolyte is made of Y 2 O 3 stabilized ZrO 2 (YSZ). However, a solid electrolyte is disposed between adjacent fuel electrodes in the axial direction of the gas pipe, and leaks through this electrolyte. Electric current is generated.
In addition, the fixed portion of the cell end with the metal support member was fixed and supported by interposing a ceramic member in order to ensure insulation and gas tightness against gas leakage. Attaching to a plurality of cells A problem arises that the attaching operation requires a great deal of time.

本発明は、このような事情に鑑みてなされたものであって、漏洩電流の発生を防止してセルの発電効率低下を抑制し、絶縁性を確保できる絶縁膜材料を用いた固体電解質型燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a solid electrolyte fuel using an insulating film material that can prevent generation of leakage current, suppress reduction in power generation efficiency of a cell, and ensure insulation. An object is to provide a battery.

上記課題を解決するために、本発明は、SrZrOと、Alとを含み、前記Alの含有量が、前記SrZrOに対してmol%以上15mol%以下である固体電解質型燃料電池用絶縁膜材料を提供する。 In order to solve the above-mentioned problem, the present invention includes SrZrO 3 and Al 2 O 3, and the content of the Al 2 O 3 is 3 mol% or more and 15 mol% or less with respect to the SrZrO 3 . An insulating film material for an electrolyte fuel cell is provided.

上記発明によれば、SrZrOの絶縁材料に上記範囲のAlを含有させることで、SrZrO単体で構成される絶縁膜と比較して、絶縁膜の焼結収縮挙動を改善し、熱膨張係数を増大させることができる。それにより、絶縁膜の特性の制御、例えば、緻密化や膜厚の制御などが可能となる。 According to the above invention, the SrZrO 3 insulating material contains Al 2 O 3 in the above range, thereby improving the sintering shrinkage behavior of the insulating film as compared with the insulating film composed of SrZrO 3 alone. The thermal expansion coefficient can be increased. This makes it possible to control the characteristics of the insulating film, such as densification and film thickness control.

SrZrOに、所定量のAlを含有させた絶縁膜材料を焼成させると、SrZrOと、Alとが反応し、SrAl1219(マグネトプランタイト構造)が析出する。その結果、母相の組成がZrOリッチ側にシフトし、焼結性が向上する。Alの含有量が少なすぎると、焼結収縮挙動の改善効果が小さくなる。
Alの含有量が多すぎると、第三相としてZrOが析出し、絶縁膜の抵抗の劣化及び相変態などの問題が生じる。よって、Alの含有量は、mol%以上5mol%以下とされる。
The SrZrO 3, when the firing of the insulating film material containing Al 2 O 3 of a predetermined amount, and SrZrO 3, reacts with Al 2 O 3, SrAl 12 O 19 ( magnetoplumbite tight structure) is precipitated. As a result, the composition of the parent phase is shifted to the ZrO 2 rich side, and the sinterability is improved. When the content of Al 2 O 3 is too small, the effect of improving the sintering shrinkage behavior is reduced.
When the content of Al 2 O 3 is too large, ZrO 2 is deposited as a third phase, there is a problem such as degradation and phase transformation in the resistance of the insulating film. Therefore, the content of Al 2 O 3 is 3 mol% or more and 5 mol% or less.

また、本発明は、多孔質材料からなる基体管と、該基体管の外周面上に燃料極と固体電解質と空気極とが順に積層されてなる複数の単電池膜と、隣接する単電池膜同士を電気的に接続するインターコネクタと、を備えた固体電解質型燃料電池セルであって、前記基体管と燃料極との間、又は燃料極間に、請求項1に記載の固体電解質型燃料電池用絶縁膜材料を焼結させてなる絶縁膜を介在させた固体電解質型燃料電池セルを提供する。   The present invention also provides a base tube made of a porous material, a plurality of unit cell membranes in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the outer peripheral surface of the base tube, and adjacent unit cell membranes. A solid oxide fuel cell comprising an interconnector for electrically connecting each other, wherein the solid electrolyte fuel cell according to claim 1 is provided between the base tube and the fuel electrode or between the fuel electrodes. Provided is a solid oxide fuel cell having an insulating film formed by sintering a battery insulating film material.

基体管と燃料極との間、又は燃料極間に絶縁膜を介在させることで、基体管や電解質を介した漏洩電流を防止することができる。それにより、固体電解質型燃料電池セルの発電効率の低下を抑制することが可能となる。   By interposing an insulating film between the base tube and the fuel electrode or between the fuel electrodes, leakage current through the base tube and the electrolyte can be prevented. As a result, it is possible to suppress a decrease in power generation efficiency of the solid oxide fuel cells.

また、本発明は、上記の固体電解質型燃料電池セルを複数有するとともに、複数の前記固体電解質型燃料電池セルの少なくとも一端部が金属部材を貫通し、該金属部材が複数の前記固体電解質型燃料電池セルを固定支持する固体電解質型燃料電池であって、固体電解質型燃料電池セルと金属部材との間に、上記の固体電解質型燃料電池用絶縁膜材料を焼結させてなる絶縁膜を介して接触している固体電解質型燃料電池を提供する。 In addition, the present invention includes a plurality of the solid oxide fuel cells described above, and at least one end of the plurality of solid electrolyte fuel cells penetrates a metal member, and the metal member includes a plurality of the solid electrolyte fuel cells. A solid oxide fuel cell for fixing and supporting a battery cell, wherein an insulating film formed by sintering the above-described insulating film material for a solid oxide fuel cell is interposed between the solid oxide fuel cell and a metal member. A solid oxide fuel cell in contact with each other.

固体電解質型燃料電池セルと金属部材との間に絶縁膜を設けることで、固体電解質型燃料電池セルに形成される導電性のリード電極と金属部材とを電気的絶縁すると共に、固体電解質型燃料電池セルの内外に供給される空気および燃料ガスに対するシール性も確保することができるため、固体電解質型燃料電池セルで発電された電気を効率よく集電すると共に、簡易な構造でガスシール性も確保できるため組立作業性が向上する。   By providing an insulating film between the solid oxide fuel cell and the metal member, the conductive lead electrode formed on the solid electrolyte fuel cell and the metal member are electrically insulated from each other, and the solid electrolyte fuel is provided. Since the sealing performance against the air and fuel gas supplied to the inside and outside of the battery cell can be secured, the electricity generated by the solid oxide fuel cell is efficiently collected, and the gas sealing performance is also achieved with a simple structure. As a result, assembly workability is improved.

また、本発明は、多孔質材料からなる基体管と、該基体管の外周面上に燃料極と固体電解質と空気極とが順に積層されてなる複数の単電池膜と、隣接する複数の単電池膜を電気的に接続するインターコネクタと、を備えた固体電解質型燃料電池セルの製造方法であって、SrZrOと、Alからなり、前記Alの含有量が、前記SrZrOに対してmol%以上15mol%以下である固体電解質型燃料電池用絶縁膜材料をスラリー化させて基体管上に塗布する工程と、前記燃料極の材料をスラリー化させて前記基体管上に塗布した固体電解質型燃料電池用絶縁膜材料の上に塗布する工程と、前記基体管に塗布した前記固体電解質型燃料電池用絶縁膜材料及び前記燃料極の材料を共焼結させる工程と、を備える固体電解質型燃料電池セルの製造方法を提供する。 The present invention also includes a base tube made of a porous material, a plurality of unit cell membranes in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the outer peripheral surface of the base tube, and a plurality of adjacent unit cells. a method of manufacturing a solid oxide fuel cell comprising a interconnector for electrically connecting the cell membrane, and SrZrO 3, consists Al 2 O 3 Prefecture, the content of the Al 2 O 3 is, Slurry and apply a solid oxide fuel cell insulating film material of 3 mol% or more and 15 mol% or less with respect to the SrZrO 3 on a substrate tube; and slurry the fuel electrode material to form the substrate A step of coating on the insulating film material for a solid oxide fuel cell applied on the tube, and a step of co-sintering the insulating film material for the solid oxide fuel cell and the material of the fuel electrode applied to the base tube And comprising To provide a method of manufacturing oxide fuel cell.

上記発明によれば、SrZrOの絶縁材料に上記範囲のAlを含有させることで、SrZrO単体で構成される絶縁膜と比較して、絶縁膜の焼結収縮挙動を改善し、熱膨張係数を増大させることができる。それにより、絶縁膜の特性の制御、例えば、緻密化(気孔率)や膜厚の制御などが可能となる。 According to the above invention, the SrZrO 3 insulating material contains Al 2 O 3 in the above range, thereby improving the sintering shrinkage behavior of the insulating film as compared with the insulating film composed of SrZrO 3 alone. The thermal expansion coefficient can be increased. This makes it possible to control the characteristics of the insulating film, for example, densification (porosity), film thickness control, and the like.

Alの含有量が少なすぎると、焼結収縮挙動の改善効果が小さくなる。
Alの含有量が多すぎると、第三相としてZrOが析出し、絶縁膜の抵抗の劣化及び相変態などの問題が生じる。よって、Alの含有量は、mol%以上5mol%以下とされる。
When the content of Al 2 O 3 is too small, the effect of improving the sintering shrinkage behavior is reduced.
When the content of Al 2 O 3 is too large, ZrO 2 is deposited as a third phase, there is a problem such as degradation and phase transformation in the resistance of the insulating film. Therefore, the content of Al 2 O 3 is 3 mol% or more and 5 mol% or less.

基体管と燃料極との間、及び燃料極間に上記絶縁膜材料を焼結させた絶縁膜を介在させることで、基体管や電解質を介した漏洩電流を防止することができる。それにより、固体電解質型燃料電池セルの発電効率の低下を抑制することが可能となる。   By interposing the insulating film obtained by sintering the insulating film material between the base tube and the fuel electrode and between the fuel electrodes, leakage current through the base tube and the electrolyte can be prevented. As a result, it is possible to suppress a decrease in power generation efficiency of the solid oxide fuel cells.

また、基体管端部に絶縁膜材料を塗布した場合には、固体電解質型燃料電池セルの両端部を、絶縁膜を介して金属部材に貫通した状態で支持させることが可能となる。それにより、固体電解質型燃料電池セルを金属部材と電気的に隔離することができるため、単電池膜の絶縁性を確保する機能を付与することができる。   Further, when an insulating film material is applied to the end portion of the base tube, both end portions of the solid oxide fuel cell can be supported while penetrating the metal member through the insulating film. Thereby, since the solid oxide fuel cell can be electrically isolated from the metal member, it is possible to provide a function of ensuring the insulation of the unit cell membrane.

本発明によれば、SrZrOの絶縁材料に所定量のAlを含有させることで、焼結性に優れた絶縁膜材料となる。該絶縁材料を焼結させてなる絶縁膜を基体管と燃料極との間に介在させることで、基体管を介した漏洩電流を防止し、固体電解質型燃料電池セルの発電効率低下を抑制できる。さらに、本発明の絶縁膜をセルの端部に位置する金属部材との固定部分に介在させて接着固定することで、絶縁性と気密性を確保できる固体電解質型燃料電池を実現することができる。 According to the present invention, by incorporating the Al 2 O 3 of a predetermined amount of insulating material SrZrO 3, an excellent insulating film material in the sintering property. By interposing an insulating film formed by sintering the insulating material between the base tube and the fuel electrode, leakage current through the base tube can be prevented, and a decrease in power generation efficiency of the solid oxide fuel cell can be suppressed. . Furthermore, by interposing and fixing the insulating film of the present invention in a fixed portion with the metal member located at the end of the cell, a solid oxide fuel cell capable of ensuring insulation and airtightness can be realized. .

本実施形態に係る円筒型の固体電解質型燃料電池セルの部分断面図である。It is a fragmentary sectional view of the cylindrical solid oxide fuel cell concerning this embodiment. 本実施形態に係る固体電解質型燃料電池セルの部分断面図である。It is a fragmentary sectional view of the solid oxide fuel cell concerning this embodiment. 図2に示す固体電解質型燃料電池カートリッジの上側の端部を拡大した図である。FIG. 3 is an enlarged view of an upper end portion of the solid oxide fuel cell cartridge shown in FIG. 2. SrZrO+0mol%Alを用いた試験片の走査型電子顕微鏡写真である。SrZrO is a scanning electron micrograph of the 3 + 0mol% Al 2 O 3 test pieces were used. SrZrO+5mol%Alを用いた試験片の走査型電子顕微鏡写真である。SrZrO is a scanning electron micrograph of the test piece using the 3 + 5mol% Al 2 O 3 . 各材料の焼結収縮挙動を示す図である。It is a figure which shows the sintering shrinkage | contraction behavior of each material.

以下に、本発明は、固体電解質型燃料電池用絶縁膜材料、固体電解質型燃料電池セル、固体電解質型燃料電池、並びに固体電解質型燃料電池セルの製造方法に関するものである。   The present invention relates to an insulating film material for a solid oxide fuel cell, a solid electrolyte fuel cell, a solid electrolyte fuel cell, and a method for manufacturing a solid oxide fuel cell.

図1は、本実施形態に係る円筒型の固体電解質型燃料電池セルの部分断面図である。固体電解質型燃料電池セル(以降、セルと略す)1は、多孔質基体管2上に、基体管側から順に燃料極3、固体電解質4、空気極5を積層された単電池膜6が形成されている。単電池膜6は基体管2の中央部分に長手方向に沿って複数形成されており、隣接する単電池膜同士がインターコネクタ7で電気的に直列に接続されている。本実施形態では、基体管2と燃料極3との間には、絶縁膜8が介在している。また、隣あう燃料極の間には、絶縁膜9が介在している。   FIG. 1 is a partial cross-sectional view of a cylindrical solid oxide fuel cell according to the present embodiment. A solid electrolyte fuel cell (hereinafter abbreviated as a cell) 1 is formed with a unit cell membrane 6 in which a fuel electrode 3, a solid electrolyte 4, and an air electrode 5 are laminated on a porous substrate tube 2 in this order from the substrate tube side. Has been. A plurality of unit cell membranes 6 are formed in the central portion of the base tube 2 along the longitudinal direction, and adjacent unit cell membranes are electrically connected in series by an interconnector 7. In the present embodiment, an insulating film 8 is interposed between the base tube 2 and the fuel electrode 3. An insulating film 9 is interposed between adjacent fuel electrodes.

基体管2はカルシア安定化ジルコニア(CSZ)などの多孔質材料からなる。基体管2の熱膨張係数は、10ppm/K〜11ppm/Kとされる。
燃料極3は、ニッケル(Ni)とジルコニア系電解質材料との複合材で構成されている。複合材としては、例えば、Ni/イットリア安定化ジルコニア(YSZ)が用いられる。燃料極3の熱膨張係数は、11ppm/K〜12ppm/Kとされる。
The base tube 2 is made of a porous material such as calcia stabilized zirconia (CSZ). The thermal expansion coefficient of the base tube 2 is 10 ppm / K to 11 ppm / K.
The fuel electrode 3 is composed of a composite material of nickel (Ni) and a zirconia-based electrolyte material. For example, Ni / yttria stabilized zirconia (YSZ) is used as the composite material. The thermal expansion coefficient of the fuel electrode 3 is 11 ppm / K to 12 ppm / K.

固体電解質4は、電子絶縁性であり、ガスを通さない気密性と高温での高いイオン透過性とを有することが求められる。そのため、固体電解質4には、主としてYSZが用いられる。
空気極5は、ランタンストロンチウム系の材料で形成され、空気から酸素イオンを生成するものとされる。
The solid electrolyte 4 is electronically insulating and is required to have gas tightness that does not allow gas to pass and high ion permeability at high temperatures. Therefore, YSZ is mainly used for the solid electrolyte 4.
The air electrode 5 is formed of a lanthanum strontium-based material and generates oxygen ions from the air.

インターコネクタ7は、チタン酸ストロンチウム系などのM1−xTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で表される導電性ペロブスカイト型酸化物から構成され、燃料ガスと空気とが混合しないように緻密な膜となっている。 The interconnector 7 is composed of a conductive perovskite oxide represented by M 1-x L x TiO 3 (M is an alkaline earth metal element, L is a lanthanoid element) such as strontium titanate, and the like. It is a dense film so that it does not mix with air.

絶縁膜8及び絶縁膜9は、SrZrOと、Alとを含む固体電解質型燃料電池用絶縁膜材料を焼結させてなる膜とされる。固体電解質型燃料電池用絶縁膜材料において、Alの含有量は、SrZrOに対して0.01mol%以上15mol%以下、好ましくは0.5mol%以上5mol%以下とされる。絶縁膜8の熱膨張係数は、9.5ppm/K以上11.5ppm/K以下とされる。絶縁膜8の使用温度(900℃以上)での抵抗値は10Ω・cm以上とされる。絶縁膜8及び絶縁膜9の気孔率は絶縁膜の気孔率は、70%〜100%の範囲とされるが、絶縁膜8は燃料が透過できる程度の多孔質であり、絶縁膜9は緻密膜となるよう、Al量を調整することが好ましい。絶縁膜の膜厚は、10μm〜500μmとされる。 The insulating film 8 and the insulating film 9 are films formed by sintering a solid oxide fuel cell insulating film material containing SrZrO 3 and Al 2 O 3 . In the insulating film material for a solid oxide fuel cell, the content of Al 2 O 3 is 0.01 mol% or more and 15 mol% or less, preferably 0.5 mol% or more and 5 mol% or less with respect to SrZrO 3 . The thermal expansion coefficient of the insulating film 8 is 9.5 ppm / K or more and 11.5 ppm / K or less. The resistance value of the insulating film 8 at the use temperature (900 ° C. or higher) is set to 10 4 Ω · cm or higher. The porosity of the insulating film 8 and the insulating film 9 is such that the porosity of the insulating film is in the range of 70% to 100%, but the insulating film 8 is porous so that fuel can permeate, and the insulating film 9 is dense. It is preferable to adjust the amount of Al 2 O 3 so as to form a film. The thickness of the insulating film is 10 μm to 500 μm.

絶縁膜8は、更に、セル1の端部にも設けられていることが好ましく、端部において絶縁膜はリード膜の表面に形成されている。端部とは、複数の単電池膜6よりも端側とされる。   The insulating film 8 is also preferably provided at the end of the cell 1, and the insulating film is formed on the surface of the lead film at the end. The end is defined as an end side with respect to the plurality of unit cell films 6.

図2に、本実施形態に係る固体電解質型燃料電池カートリッジ10の概略構成図を示す。
固体電解質型燃料電池(SOFC)カートリッジ10内には、複数のセル1、上部金属部材11、下部金属部材12、及び断熱体13,14が配置されている。
FIG. 2 shows a schematic configuration diagram of the solid oxide fuel cell cartridge 10 according to the present embodiment.
In a solid oxide fuel cell (SOFC) cartridge 10, a plurality of cells 1, an upper metal member 11, a lower metal member 12, and heat insulators 13 and 14 are arranged.

複数のセル1の各端部は、それぞれ上部金属部材11及び下部金属部材12に貫通した状態で固定支持されている。   Each end portion of the plurality of cells 1 is fixedly supported while penetrating through the upper metal member 11 and the lower metal member 12, respectively.

図3は図2に示す固体電解質型燃料電池カートリッジ10の上側の端部を拡大した図面である。固体電解質型燃料電池カートリッジ10の上側の端部は、セル1と、上部金属部材11と、の境界は絶縁膜8を介して接着剤により接着固定することで気密にシールされている。接着剤としては適切な耐熱性と接着強度を有する無機系接着剤などが用いられる。   FIG. 3 is an enlarged view of the upper end portion of the solid oxide fuel cell cartridge 10 shown in FIG. The upper end of the solid oxide fuel cell cartridge 10 is hermetically sealed by bonding and fixing the boundary between the cell 1 and the upper metal member 11 with an adhesive via the insulating film 8. As the adhesive, an inorganic adhesive having appropriate heat resistance and adhesive strength is used.

上部金属部材11及び下部金属部材12は、例えば、Crが配合された鋼種などの金属からなる。セル1の端部に絶縁膜8を設ける場合には、セル1が絶縁膜8を介して上部金属部材11及び下部金属部材12に支持されている。上部金属部材11および下部金属部材12は、セル1と接着する部分がセルの長軸方向に向かって窄む形状となっており、セルと金属部材(上部金属部材11および下部金属部材12)は、金属部材の窄み部分のセルと近接する部分で接合している。金属部材の窄み部分はセルに対して、上下どちらの方向であっても良い。   The upper metal member 11 and the lower metal member 12 are made of a metal such as a steel type mixed with Cr, for example. When the insulating film 8 is provided at the end of the cell 1, the cell 1 is supported by the upper metal member 11 and the lower metal member 12 through the insulating film 8. The upper metal member 11 and the lower metal member 12 have a shape in which a portion to be bonded to the cell 1 is narrowed toward the long axis direction of the cell, and the cell and the metal member (the upper metal member 11 and the lower metal member 12) are The metal member is joined at a portion close to the cell of the narrowed portion of the metal member. The constricted portion of the metal member may be either up or down with respect to the cell.

断熱体13,14は、直列接続された複数の単電池膜6の端部と、上部金属部材11または下部金属部材12との間にそれぞれ配置されている。断熱体13,14は、断熱性を有する材料から形成されている。断熱体13,14は、セルの単電池膜側と、上部金属部材または下部金属部材側とを通気可能に分離している。断熱材13と断熱材14との間には、複数の単電池膜6が収められた発電室15が形成されている。図2において、下部金属部材12と断熱材14との間には、セル1の外側へ空気を供給可能な空気供給経路16が形成されている。上部金属部材11と断熱材13との間には空気排出経路17が形成され、発電室内に供給された空気を発電室内から外部へ排出できるよう設けられている。   The heat insulators 13 and 14 are respectively disposed between the end portions of the plurality of unit cell films 6 connected in series and the upper metal member 11 or the lower metal member 12. The heat insulators 13 and 14 are formed of a material having heat insulating properties. The heat insulators 13 and 14 separate the cell side of the cell from the upper metal member or the lower metal member side so as to allow ventilation. Between the heat insulating material 13 and the heat insulating material 14, a power generation chamber 15 in which a plurality of single cell membranes 6 are accommodated is formed. In FIG. 2, an air supply path 16 capable of supplying air to the outside of the cell 1 is formed between the lower metal member 12 and the heat insulating material 14. An air discharge path 17 is formed between the upper metal member 11 and the heat insulating material 13 so as to be able to discharge the air supplied into the power generation chamber from the power generation chamber to the outside.

上部金属部材11のセル上端部側には、燃料供給経路18が形成されている。燃料供給経路18は、セル内を通って燃料を含む流体(燃料ガス)が供給可能とされる。下部金属部材12のセル下端部側には、燃料排出経路19が形成されている。燃料排出経路19は、発電室内のセル1に供給された燃料ガスを発電室内から外部へ排出可能とされる。   A fuel supply path 18 is formed on the upper end portion side of the upper metal member 11. The fuel supply path 18 can supply a fluid (fuel gas) containing fuel through the cell. A fuel discharge path 19 is formed on the cell lower end side of the lower metal member 12. The fuel discharge path 19 can discharge the fuel gas supplied to the cell 1 in the power generation chamber from the power generation chamber to the outside.

上部金属部材11及び下部金属部材12は、セルの内外に供給される流体を分離する機能も有している。その為に、セル1と金属部材11および12の固定支持部分は絶縁膜と金属部材との接合部分に配置された接着層により気密に接合されている。この構造を採用としたとしても、従来のセラミック部材を用いた接合と比較しても、ガスのリークが発生しにくく、組立作業性を向上させた構造としている。   The upper metal member 11 and the lower metal member 12 also have a function of separating fluid supplied to the inside and outside of the cell. For this purpose, the fixed support portions of the cell 1 and the metal members 11 and 12 are hermetically joined by an adhesive layer disposed at the joint portion between the insulating film and the metal member. Even if this structure is adopted, gas leakage is less likely to occur and the assembly workability is improved compared to conventional bonding using a ceramic member.

以下に、セルの製造方法について説明する。
まず、カルシア安定化ジルコニア(CSZ)などを主とする多孔質材料を、押出成形法により管状に成形し、乾燥させたものを基体管とする。
Below, the manufacturing method of a cell is demonstrated.
First, a porous material mainly composed of calcia-stabilized zirconia (CSZ) or the like is formed into a tubular shape by an extrusion molding method and dried to obtain a base tube.

次いで、絶縁膜材料に溶媒を添加してスラリー化し、スクリーン印刷法により該スラリーを基体管上に塗布する。絶縁膜材料を塗布する場所は、基体管全面、もしくは燃料極に接する箇所である。また、絶縁膜材料は、更に、セルの端部に塗布されても良い。絶縁膜材料は、例えば、SrZrO及びAlを所定量秤量し、ボールミルを用いた湿式混合法で適宜混合した後、乾燥させた混合粉末とされる。 Next, a solvent is added to the insulating film material to form a slurry, and the slurry is applied onto the substrate tube by a screen printing method. The place where the insulating film material is applied is the whole surface of the base tube or the place in contact with the fuel electrode. The insulating film material may be further applied to the end of the cell. As the insulating film material, for example, a predetermined amount of SrZrO 3 and Al 2 O 3 are weighed, mixed appropriately by a wet mixing method using a ball mill, and then dried mixed powder.

次いで、燃料極の材質として、例えば、NiO及びYSZを所定の混合比で混合させた混合粉末に、溶媒を添加して、3本ローラを用いて混合しスラリー化する。また、固体電解質、及びインターコネクタの材質として、各材料を同様にスラリー化する。
スクリーン印刷法により各スラリーを基体管上に順次成膜して乾燥させた後に、電気炉などを用いて所定の焼結条件で熱処理する。
Next, as a material for the fuel electrode, for example, a solvent is added to a mixed powder obtained by mixing NiO and YSZ at a predetermined mixing ratio, and the mixture is made into a slurry by using three rollers. Moreover, each material is similarly slurried as a material of a solid electrolyte and an interconnector.
Each slurry is sequentially formed on the substrate tube by the screen printing method, dried, and then heat-treated under a predetermined sintering condition using an electric furnace or the like.

次いで、空気極の材料を燃料極のなどの材質と同様にスラリー化する。空気極用のスラリーを、固体電解質及びインターコネクタを覆うように塗布する。塗布は、スクリーン印刷法によって行われる。上記で塗布した空気極用のスラリーを乾燥させた後、電気炉によって所定の焼結温度で基体管を熱処理する。   Next, the air electrode material is slurried in the same manner as the fuel electrode material. A slurry for the air electrode is applied so as to cover the solid electrolyte and the interconnector. The application is performed by a screen printing method. After drying the slurry for an air electrode applied as described above, the base tube is heat-treated at a predetermined sintering temperature by an electric furnace.

次に、本実施形態に係る製造方法で製造したセルを用いた固体電解質型燃料電池モジュールの作用について説明する。モジュール本体の発電室内を作動温度(約900〜1000℃)に加熱し、燃料供給経路に水素などの燃料ガスを供給すると共に、空気供給経路に空気を供給する。燃料供給経路に供給された燃料ガスは、セルの上端側から内部に流入する。空気供給経路に供給した空気は、発電室内に流入する。   Next, the operation of the solid oxide fuel cell module using the cell manufactured by the manufacturing method according to the present embodiment will be described. The power generation chamber of the module body is heated to an operating temperature (about 900 to 1000 ° C.), and fuel gas such as hydrogen is supplied to the fuel supply path and air is supplied to the air supply path. The fuel gas supplied to the fuel supply path flows into the cell from the upper end side of the cell. The air supplied to the air supply path flows into the power generation chamber.

燃料ガスが多孔質性の基体管を透過して単電池膜の燃料極に供給される。空気(酸素)が空気極に接触すると、該単電池膜が水素と空気(酸素)とを電気化学的に反応させて電力を発生させ、当該電力が図示しない集電部材を介して外部へ送り出されるようになっている。本実施形態によれば、基体管と燃料極との間には絶縁膜が介在しているため、上記で発生した電力が基体管を介して逆流することを防止できる。   The fuel gas passes through the porous substrate tube and is supplied to the fuel electrode of the single cell membrane. When the air (oxygen) comes into contact with the air electrode, the cell membrane reacts electrochemically with hydrogen and air (oxygen) to generate electric power, and the electric power is sent to the outside through a current collecting member (not shown). It is supposed to be. According to this embodiment, since the insulating film is interposed between the base tube and the fuel electrode, it is possible to prevent the power generated above from flowing back through the base tube.

なお、発電に供された後の残燃料ガスは、セルの下端から燃料排出経路に流入し、外部へと排出される。一方、発電に供された後の残空気は、空気排出経路を介して外部へと排出される。   The remaining fuel gas after being used for power generation flows into the fuel discharge path from the lower end of the cell and is discharged to the outside. On the other hand, the remaining air after being subjected to power generation is discharged to the outside through an air discharge path.

なお、上記実施形態において円筒型の固体電解質型燃料電池セルを用いて説明したが、本発明は水蒸気電解セルへの適用した場合にも同様の効果を得ることができる。   In addition, although it demonstrated using the cylindrical solid electrolyte type fuel battery cell in the said embodiment, the same effect can be acquired also when this invention is applied to a steam electrolysis cell.

(1)気孔率、抵抗、熱膨張係数の測定
出発原料として、SrZrO及びAlを用いた。各原料を所定量秤量し、ボールミルを用いた湿式混合法で10時間混合した後、乾燥させたものを絶縁膜材料とした。AlはSrZrOに対して0mol%(Al非含有)、0.5mol%、1mol%、3mol%、5mol%、10mol%または15mol%混合した。各絶縁膜材料を成形し、大気中にて1400℃、4時間の条件で焼成し、絶縁膜の試験片を作製した。
(1) Measurement of porosity, resistance, and thermal expansion coefficient SrZrO 3 and Al 2 O 3 were used as starting materials. A predetermined amount of each raw material was weighed, mixed for 10 hours by a wet mixing method using a ball mill, and then dried to obtain an insulating film material. Al 2 O 3 was mixed with 0 mol% (not containing Al 2 O 3 ), 0.5 mol%, 1 mol%, 3 mol%, 5 mol%, 10 mol%, or 15 mol% with respect to SrZrO 3 . Each insulating film material was molded and fired in the atmosphere at 1400 ° C. for 4 hours to produce a test piece of the insulating film.

上記試験片を用い、気孔率、電気抵抗、及び熱膨張係数を測定した。
気孔率は、アルキメデス法により測定した。電気抵抗は、4端子法により測定した。熱膨張係数は、熱膨張計により算出した。結果を表1に示す。
Using the test piece, the porosity, electrical resistance, and thermal expansion coefficient were measured.
The porosity was measured by Archimedes method. The electrical resistance was measured by the 4-terminal method. The thermal expansion coefficient was calculated with a thermal dilatometer. The results are shown in Table 1.

Figure 0005734215
Figure 0005734215

SrZrOにAlを含有させた絶縁膜材料を焼結してなる絶縁膜は、SrZrO単体の絶縁膜材料を用いた場合よりも気孔率が減少した。特に、Alを3mol%、以上含有させた場合には、気孔率は大きく減少した。 An insulating film on SrZrO 3 formed by sintering the insulating film material containing Al 2 O 3 had a porosity of decreased than with SrZrO 3 single insulating film material. In particular, when Al 2 O 3 was contained in an amount of 3 mol% or more, the porosity was greatly reduced.

電気抵抗は、Alを〜10mol%含有させてもほとんど変化しなかった。SrZrOにAlを含有させた絶縁膜材料を焼結させると、第2相であるSrAl1219が生成される。Alの含有量が多すぎると、第3層であるZrOの生成量が増加する。ZrOは導電性の相変態であるため、絶縁膜としてZrOの増加は好ましくない。よって、Alの含有量は、15mol%以下が好ましい。 The electrical resistance hardly changed even when Al 2 O 3 was contained in an amount of 10 mol%. When the insulating film material containing Al 2 O 3 in SrZrO 3 is sintered, SrAl 12 O 19 as the second phase is generated. When the content of Al 2 O 3 is too large, the amount of ZrO 2 is a third layer is increased. Since ZrO 2 is a conductive phase transformation, an increase in ZrO 2 as an insulating film is not preferable. Therefore, the content of Al 2 O 3 is preferably 15 mol% or less.

熱膨張係数は、Alの含有量の増加に伴い、やや大きくなった。これにより、Alを含有させることによって、絶縁膜の熱膨張係数を基体管と同程度でき、基体管との共焼結に適したものとできることが確認された。 The thermal expansion coefficient slightly increased with an increase in the content of Al 2 O 3 . Thus, it was confirmed that by containing Al 2 O 3 , the thermal expansion coefficient of the insulating film can be approximately the same as that of the base tube and can be suitable for co-sintering with the base tube.

(2)組織表面の観察
上記で作製した試験片の組織表面を走査型電子顕微鏡にて観察した。図4は、絶縁膜材料としてSrZrO+0mol%Alを用いた試験片の走査型電子顕微鏡写真(×10,000)である。同図において黒い部分20は、気孔である。図5は、絶縁膜材料としてSrZrO+5mol%Alを用いた試験片の走査型電子顕微鏡写真(×10,000)である。同図において黒い部分21はSrAl1219(マグネトプランタイト構造)である。
(2) Observation of tissue surface The tissue surface of the test piece prepared above was observed with a scanning electron microscope. FIG. 4 is a scanning electron micrograph (× 10,000) of a test piece using SrZrO 3 +0 mol% Al 2 O 3 as an insulating film material. In the figure, black portions 20 are pores. FIG. 5 is a scanning electron micrograph (× 10,000) of a test piece using SrZrO 3 +5 mol% Al 2 O 3 as an insulating film material. In the figure, the black portion 21 is SrAl 12 O 19 (magnetoplantite structure).

図4及び図5によれば、SrZrOにAlを含有させて焼結させることにより、気孔が減少し、緻密な絶縁膜となる。また、表1及び図4によれば、SrZrOにAlを含有させることにより、焼結性が大きく向上することがわかった。 According to FIGS. 4 and 5, pores are reduced by forming Al 2 O 3 in SrZrO 3 and sintering, and a dense insulating film is obtained. Further, according to Table 1 and FIG. 4, by incorporating Al 2 O 3 in SrZrO 3, it was found that sinterability is greatly improved.

(3)焼結収縮挙動の測定
絶縁膜材料としてSrZrO+0mol%Al、SrZrO+0.5mol%Al、SrZrO+1mol%Al、SrZrO+3mol%Al、SrZrO+5mol%Al、またはSrZrO+15mol%Alを使用し、各材料の焼結収縮挙動を測定した。焼結収縮挙動の測定は,押し棒式熱膨張計(例えば,(株)リガク製,横型熱膨張計TMA8360型)を用いた。測定は,常温から10℃/minで1400℃まで昇温させた後、この温度で4時間保持した温度プロファイルで実施した。
(3) Measurement of sintering shrinkage behavior As insulating film materials, SrZrO 3 +0 mol% Al 2 O 3 , SrZrO 3 +0.5 mol% Al 2 O 3 , SrZrO 3 +1 mol% Al 2 O 3 , SrZrO 3 +3 mol% Al 2 O 3 uses SrZrO 3 + 5mol% Al 2 O 3 or SrZrO 3 + 15mol% Al 2 O 3,, was measured sintering shrinkage behavior of each material. For the measurement of the sintering shrinkage behavior, a push rod type thermal dilatometer (for example, a lateral thermal dilatometer TMA8360 manufactured by Rigaku Corporation) was used. The measurement was carried out using a temperature profile in which the temperature was raised from room temperature to 1400 ° C. at 10 ° C./min and then kept at this temperature for 4 hours.

図6に、各材料の焼結収縮挙動を示す。同図において、横軸は温度及び昇温後の保持時間、縦軸は熱膨張率である。   FIG. 6 shows the sintering shrinkage behavior of each material. In the figure, the horizontal axis represents the temperature and the holding time after the temperature rise, and the vertical axis represents the coefficient of thermal expansion.

図6によれば、Alを含有させることで、より収縮する傾向を示した。特に、Alを3mol%〜15mol%含有させることで、焼結性は大きく向上した。また、Alを含有させた絶縁膜材料は、基体管材料と収縮挙動が近くなり、共焼結が可能となった。 According to FIG. 6, by the inclusion of Al 2 O 3, it showed a tendency to more shrinkage. In particular, the sinterability was greatly improved by containing 3 mol% to 15 mol% of Al 2 O 3 . Further, the insulating film material containing Al 2 O 3 has a shrinkage behavior close to that of the base tube material, and can be co-sintered.

(4)成膜性評価試験
出発原料として、SrZrO及びAlを用いた。各原料を所定量秤量し、ボールミルを用いた湿式混合法で10時間混合した後、乾燥させたものを絶縁膜材料とした。AlはSrZrOに対して0mol%(Al非含有)、0.5mol%、1mol%、3mol%、または5mol%混合した。各絶縁膜材料をスラリー化し、スクリーン印刷法により該スラリーをCaO安定化ZrOからなる基体管上に塗布した。この基体管を大気中にて1400℃、4時間の条件で共焼結し、成膜性を評価した。焼結後の絶縁膜は、目視でも剥離はなく、また膜の断面を電子顕微鏡で観察した結果、界面の密着性にも問題がないことが確認された。
(4) Film-formability evaluation test SrZrO 3 and Al 2 O 3 were used as starting materials. A predetermined amount of each raw material was weighed, mixed for 10 hours by a wet mixing method using a ball mill, and then dried to obtain an insulating film material. Al 2 O 3 was mixed with 0 mol% (not containing Al 2 O 3 ), 0.5 mol%, 1 mol%, 3 mol%, or 5 mol% with respect to SrZrO 3 . Each insulating film material was slurried, and the slurry was applied onto a substrate tube made of CaO-stabilized ZrO 2 by screen printing. This base tube was co-sintered in the atmosphere at 1400 ° C. for 4 hours to evaluate the film formability. The sintered insulating film was not peeled off visually, and the cross section of the film was observed with an electron microscope. As a result, it was confirmed that there was no problem with the adhesion at the interface.

上記試験によれば、SrZrOにAlを含有させた絶縁膜材料を焼結させた絶縁膜は、良好な成膜性が確認された。 According to the above test, it was confirmed that the insulating film obtained by sintering the insulating film material containing Al 2 O 3 in SrZrO 3 has good film formability.

1 セル(固体電解質型燃料電池セル)
2 基体管
3 燃料極
4 固体電解質
5 空気極
6 単電池膜
7 インターコネクタ
8 絶縁膜(燃料極と基体管の間)
9 絶縁膜(燃料極間)
10 固体電解質型燃料電池モジュール
11 上部金属部材
12 下部金属部材
13,14 断熱体
15 発電室
16 空気供給経路
17 空気排出経路
18 燃料供給経路
19 燃料排出経路
20 気孔
21 SrAl1219
1 cell (solid oxide fuel cell)
2 Base tube 3 Fuel electrode 4 Solid electrolyte 5 Air electrode 6 Single cell membrane 7 Interconnector 8 Insulating membrane (between fuel electrode and substrate tube)
9 Insulating film (between fuel electrodes)
DESCRIPTION OF SYMBOLS 10 Solid oxide fuel cell module 11 Upper metal member 12 Lower metal members 13 and 14 Heat insulator 15 Power generation chamber 16 Air supply path 17 Air discharge path 18 Fuel supply path 19 Fuel discharge path 20 Pore 21 SrAl 12 O 19

Claims (5)

SrZrOと、Alとからなり、
前記Alの含有量が、前記SrZrOに対して3mol%以上15mol%以下である固体電解質型燃料電池用絶縁膜材料。
Consisting of SrZrO 3 and Al 2 O 3 ,
An insulating film material for a solid oxide fuel cell, wherein the content of Al 2 O 3 is 3 mol% or more and 15 mol% or less with respect to the SrZrO 3 .
多孔質材料からなる基体管と、該基体管の外周面上に燃料極と固体電解質と空気極とが順に積層されてなる複数の単電池膜と、隣接する単電池膜同士を電気的に接続するインターコネクタと、を備えた固体電解質型燃料電池セルであって、
前記基体管と前記燃料極との間に、請求項1に記載の固体電解質型燃料電池用絶縁膜材料を焼結させてなる絶縁膜を介在させた固体電解質型燃料電池セル。
A base tube made of a porous material, a plurality of unit cell membranes in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the outer peripheral surface of the substrate tube, and adjacent unit cell membranes are electrically connected to each other An interconnector, and a solid oxide fuel cell comprising:
Wherein between the substrate tube and the fuel electrode, the solid electrolyte type fuel cell of the solid oxide fuel cell insulating film material is interposed an insulating film formed by sintering according to claim 1.
多孔質材料からなる基体管と、該基体管の外周面上に燃料極と固体電解質と空気極とが順に積層されてなる複数の単電池膜と、隣接する単電池膜同士を電気的に接続するインターコネクタと、を備えた固体電解質型燃料電池セルであって、
前記燃料極間に、請求項1に記載の固体電解質型燃料電池用絶縁膜材料を焼結させてなる絶縁膜を介在させた固体電解質型燃料電池セル。
A base tube made of a porous material, a plurality of unit cell membranes in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the outer peripheral surface of the substrate tube, and adjacent unit cell membranes are electrically connected to each other An interconnector, and a solid oxide fuel cell comprising:
A solid oxide fuel cell having an insulating film formed by sintering the insulating film material for a solid oxide fuel cell according to claim 1 interposed between the fuel electrodes.
多孔質材料からなる基体管と、該基体管の外周面上に燃料極と固体電解質と空気極とが順に積層されてなる複数の単電池膜と、隣接する単電池膜同士を電気的に接続するインターコネクタと、を備えた固体電解質型燃料電池セルを複数有するとともに、複数の前記固体電解質型燃料電池セルの少なくとも一端部が金属部材を貫通し、該金属部材が複数の前記固体電解質型燃料電池セルを固定支持する燃料電池であって、
前記固体電解質型燃料電池セルと前記金属部材との間に、請求項1に記載の固体電解質型燃料電池用絶縁膜材料を焼結させてなる絶縁膜を介して接合している固体電解質型燃料電池。
A base tube made of a porous material, a plurality of unit cell membranes in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the outer peripheral surface of the substrate tube, and adjacent unit cell membranes are electrically connected to each other with a plurality and the interconnector, the solid oxide fuel cell having a to at least one end of the plurality of the solid oxide fuel cell units through the metal member, wherein the metal member is plural solid oxide fuel A fuel cell for fixing and supporting battery cells,
The solid electrolyte fuel which joined between the said solid oxide fuel cell and the said metal member through the insulating film formed by sintering the insulating film material for solid electrolyte fuel cells of Claim 1 battery.
多孔質材料からなる基体管と、該基体管の外周面上に燃料極と固体電解質と空気極とが順に積層されてなる複数の単電池膜と、隣接する複数の単電池膜を電気的に接続するインターコネクタと、を備えた固体電解質型燃料電池セルの製造方法であって、
SrZrOと、Alとからなり、前記Alの含有量が、前記SrZrOに対して3mol%以上15mol%以下である固体電解質型燃料電池用絶縁膜材料をスラリー化させて前記基体管上に塗布する工程と、
前記燃料極の材料をスラリー化させて前記基体管上に塗布した固体電解質型燃料電池用絶縁膜材料の上に塗布する工程と、
前記基体管に塗布した前記固体電解質型燃料電池用絶縁膜材料及び前記燃料極の材料を共焼結させる工程と、
を備える固体電解質型燃料電池セルの製造方法。
A base tube made of a porous material, a plurality of unit cell membranes in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the outer peripheral surface of the base tube, and a plurality of adjacent unit cell membranes electrically An interconnector to be connected, and a manufacturing method of a solid oxide fuel cell comprising:
A solid oxide fuel cell insulating film material comprising SrZrO 3 and Al 2 O 3 and having a content of Al 2 O 3 of 3 mol% or more and 15 mol% or less with respect to SrZrO 3 is slurried. a step of applying onto the substrate tube,
Applying the slurry of the fuel electrode material onto the insulating film material for a solid oxide fuel cell applied onto the base tube; and
Co-sintering the insulating film material for a solid oxide fuel cell applied to the substrate tube and the fuel electrode material; and
A method for manufacturing a solid oxide fuel cell.
JP2012018009A 2012-01-31 2012-01-31 Solid oxide fuel cell Active JP5734215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012018009A JP5734215B2 (en) 2012-01-31 2012-01-31 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018009A JP5734215B2 (en) 2012-01-31 2012-01-31 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2013157254A JP2013157254A (en) 2013-08-15
JP5734215B2 true JP5734215B2 (en) 2015-06-17

Family

ID=49052217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018009A Active JP5734215B2 (en) 2012-01-31 2012-01-31 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5734215B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654765B2 (en) * 2014-09-30 2020-02-26 森村Sofcテクノロジー株式会社 Solid oxide fuel cell stack
JP6712118B2 (en) * 2014-09-30 2020-06-17 森村Sofcテクノロジー株式会社 Solid oxide fuel cell stack
JP7267155B2 (en) * 2018-09-12 2023-05-01 三井金属鉱業株式会社 Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide
JP7267154B2 (en) * 2018-09-12 2023-05-01 三井金属鉱業株式会社 Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide
JP7267156B2 (en) * 2019-03-27 2023-05-01 三井金属鉱業株式会社 Ion-conducting oxide and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130380A (en) * 1993-11-02 1995-05-19 Mitsubishi Heavy Ind Ltd Cylindrical lateral stripe type solid electrolyte electrolytic cell and manufacture thereof
JPH07130385A (en) * 1993-11-04 1995-05-19 Mitsubishi Heavy Ind Ltd Cylindrical lateral band type solid electrolyte electrolytic cell
JPH07135017A (en) * 1993-11-08 1995-05-23 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell and its manufacture
ATE528812T1 (en) * 2007-08-31 2011-10-15 Univ Denmark Tech Dtu REMOVAL OF IMPURITY PHASES FROM ELECTROCHEMICAL DEVICES

Also Published As

Publication number Publication date
JP2013157254A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP4853979B2 (en) Fuel cell
JP5839756B1 (en) Fuel cell stack structure
JP5804894B2 (en) Fuel cell
KR101869305B1 (en) Cell, cell stacker, module, and module storage device
JP5734215B2 (en) Solid oxide fuel cell
JP2014029838A (en) Junction body in which power generation sections of solid oxide fuel cell are electrically connected
JP2010231918A (en) Fuel battery cell, fuel battery cell stack device, fuel cell module, and fuel cell device
JP5622754B2 (en) Method for producing solid oxide fuel cell and solid oxide fuel cell
JP2013093305A (en) Fuel cell
JP5281950B2 (en) Horizontally-striped fuel cell stack, manufacturing method thereof, and fuel cell
JP5294649B2 (en) Cell stack and fuel cell module
JP5455271B1 (en) Fuel cell
JP6803437B2 (en) Cell, cell stack device, module and module storage device
JP4901996B2 (en) Fuel cell
JP6585407B2 (en) Cell, cell stack device, module, and module storage device
JP5314511B2 (en) Material for solid electrolyte fuel cell interconnector, solid electrolyte fuel cell, and solid electrolyte fuel cell
JP2014146541A (en) Solid oxide fuel cell
JP6166151B2 (en) Cell, cell stack device, module, and module storage device
JP4881479B2 (en) Fuel cell
JP2014132534A (en) Stack structure for fuel battery
JP5455270B1 (en) Fuel cell
JP5455268B1 (en) Fuel cell
JP5455267B1 (en) Fuel cell
JP6518755B1 (en) Fuel electrode of solid oxide fuel cell, laminate, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150414

R150 Certificate of patent or registration of utility model

Ref document number: 5734215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350