JP5733184B2 - Negative electrode carbon material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the negative electrode carbon material - Google Patents

Negative electrode carbon material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the negative electrode carbon material Download PDF

Info

Publication number
JP5733184B2
JP5733184B2 JP2011265824A JP2011265824A JP5733184B2 JP 5733184 B2 JP5733184 B2 JP 5733184B2 JP 2011265824 A JP2011265824 A JP 2011265824A JP 2011265824 A JP2011265824 A JP 2011265824A JP 5733184 B2 JP5733184 B2 JP 5733184B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon material
electrolyte secondary
secondary battery
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011265824A
Other languages
Japanese (ja)
Other versions
JP2013118138A (en
Inventor
周平 吉田
周平 吉田
智樹 山根
智樹 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011265824A priority Critical patent/JP5733184B2/en
Publication of JP2013118138A publication Critical patent/JP2013118138A/en
Application granted granted Critical
Publication of JP5733184B2 publication Critical patent/JP5733184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用の負極炭素材料、及びその負極炭素材料を用いた非水電解質二次電池、並びにその負極炭素材料の製造方法に関するものである。   The present invention relates to a negative electrode carbon material for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery using the negative electrode carbon material, and a method for producing the negative electrode carbon material.

ノート型パソコン、携帯電話などの携帯型電子機器の急速な市場拡大に伴い、これらに用いるための、エネルギー密度が大きく、充放電サイクル特性に優れた小型大容量の二次電池への要求が高まっている。この要求に応えるためにリチウムイオン等のアルカリ金属イオンを荷電担体として用い、その荷電粒子による電荷授受に伴う電気化学反応を利用した非水電解質二次電池が開発されている。   Along with the rapid market expansion of portable electronic devices such as notebook computers and mobile phones, there is an increasing demand for small and large capacity secondary batteries with high energy density and excellent charge / discharge cycle characteristics. ing. In order to meet this demand, a non-aqueous electrolyte secondary battery using an alkali metal ion such as lithium ion as a charge carrier and utilizing an electrochemical reaction accompanying charge transfer by the charged particles has been developed.

ここで、電気自動車などに適用される非水電解質二次電池は車両に想定される耐久年数に合わせて10年以上の耐久性をもつことが望まれる。これらの電池においては荷電担体であるリチウムが不可逆的に消費されて容量が低下することが問題となる。例えば、負極上において生起する溶媒還元反応に伴ってLiが消費されて失活することが知られている。   Here, the non-aqueous electrolyte secondary battery applied to an electric vehicle or the like is desired to have a durability of 10 years or more in accordance with the durable life assumed for the vehicle. In these batteries, lithium, which is a charge carrier, is irreversibly consumed, resulting in a problem that the capacity is reduced. For example, it is known that Li is consumed and deactivated along with the solvent reduction reaction that occurs on the negative electrode.

上記課題を解決する従来技術としては、芯材炭素材料の結晶のエッジ部分の一部または全部が、被覆形成用炭素材料により被覆されており、ほぼ球状乃至楕円体状であり、粉砕面を有しないことを特徴とする焼成した二層炭素材料が開示されている(特許文献1)。   As a conventional technique for solving the above-mentioned problems, a part or all of the edge portion of the core carbon material crystal is coated with a carbon material for coating formation, is substantially spherical or elliptical, and has a pulverized surface. A fired double-layer carbon material is disclosed (Patent Document 1).

また、 正極及び負極がリチウムを吸蔵放出可能な単体又は化合物からなり、少なくとも負極を構成する前記単体又は化合物をフッ素化剤と接触させた後に、重合性有機物、有機金属化合物、有機電解質及び無機電解質から選ばれる少なくとも一種と反応させることにより、アルゴンレーザーラマンスペクトルにおける1570〜1620cm−1のピーク強度(IA)に対する1350〜1370cm−1のピーク強度(IB)の比であるR値(IB/IA)が0.18以上、2.00以下となるようにグラフト化物が形成されてなることを特徴とするリチウムイオン電池用負極材料、及び当該負極材料を用いることを特徴とするリチウムイオン二次電池が開示されている(特許文献2)。 Further, the positive electrode and the negative electrode are composed of a simple substance or a compound capable of occluding and releasing lithium, and at least the simple substance or the compound constituting the negative electrode is contacted with a fluorinating agent, and then a polymerizable organic substance, an organometallic compound, an organic electrolyte, and an inorganic electrolyte. at least by reacting with one, R value is the ratio of the peak intensity of 1350 -1 to the peak intensity of 1570~1620Cm -1 in an argon laser Raman spectrum (IA) (IB) is selected from (IB / IA) A negative electrode material for a lithium ion battery, characterized in that a grafted product is formed so as to be 0.18 or more and 2.00 or less, and a lithium ion secondary battery using the negative electrode material It is disclosed (Patent Document 2).

更に、酸性溶液及びアルカリ溶液のうちの少なくとも一方に浸漬されたのち熱処理されたリチウムを吸蔵・脱離可能な負極材料が開示されている(特許文献3)。   Furthermore, a negative electrode material capable of inserting and extracting lithium that has been immersed in at least one of an acidic solution and an alkaline solution and then heat-treated is disclosed (Patent Document 3).

特開平11−310405号公報JP 11-310405 A 特開2001−110407号公報JP 2001-110407 A 特開2004−200115号公報JP 2004-200115 A

特許文献1の二層炭素材料を非水電解質二次電池の負極に採用すると、充放電に伴う膨張収縮により皮膜が剥離し、負極材の活性面が新たに露出する問題がある。新たな活性面が露出すると、電解液との反応が新たに進行し、Liの消費が進行する。単純に比表面積を小さくすることにより活性面が新生する面積を抑えようとすると、Liの受け入れ性が低下して充分な電池性能が発揮できない。   When the double-layer carbon material of Patent Document 1 is employed for the negative electrode of a non-aqueous electrolyte secondary battery, there is a problem that the coating peels off due to expansion and contraction associated with charge and discharge, and the active surface of the negative electrode material is newly exposed. When a new active surface is exposed, the reaction with the electrolytic solution newly proceeds and the consumption of Li proceeds. If it is attempted to suppress the area where the active surface is renewed by simply reducing the specific surface area, the acceptability of Li is lowered and sufficient battery performance cannot be exhibited.

特許文献2のリチウムイオン二次電池では、残存フッ素によりLiFやHFなどのフッ素化合物が生成し、ガス発生が生じるだけで無く、表面積が増大しており、本来、Li失活が起こりにくいベーサル面でもLi失活が生じることとなって耐久性能が低下する問題があった。   In the lithium ion secondary battery of Patent Document 2, a fluorine compound such as LiF or HF is generated by residual fluorine, and not only gas is generated, but also the surface area is increased, and a basal surface that is inherently unlikely to deactivate Li. However, there was a problem in that durability was lowered due to Li deactivation.

特許文献3の負極材料は酸性官能基を表面に修飾し、液周りを向上させることを特徴としている。官能基付与に起因した抵抗増大や、官能基と電解液との反応に起因する初回容量低下・耐久性低下が生じる問題があるが、その点については言及がない。つまり、表面官能基や電解液の性質や反応に顧みて、最適な修飾量や修飾形態についての検討がなされていない。また、酸性溶液やアルカリ溶液を用いた酸化処理は黒鉛結晶内に酸やアルカリが侵入して黒鉛層間化合物が生成するため、その後の熱処理でエッジ部での割れなどの劣化が生じ比表面積の増加、すなわち新たな活性面の生成が生じるおそれがある。   The negative electrode material of Patent Document 3 is characterized in that an acidic functional group is modified on the surface to improve the periphery of the liquid. There are problems that increase in resistance due to functional group addition and decrease in initial capacity and durability due to reaction between the functional group and the electrolytic solution occur, but there is no mention of this point. That is, the optimum modification amount and modification form have not been studied in consideration of the properties and reactions of the surface functional groups and the electrolytic solution. In addition, oxidation treatment using an acid solution or an alkali solution causes acid and alkali to penetrate into the graphite crystal to form a graphite intercalation compound, and subsequent heat treatment causes degradation such as cracks at the edge, increasing the specific surface area. That is, a new active surface may be generated.

本発明は上記実情に鑑み完成されたものであり、耐久特性と出力特性とについて優れている非水電解質二次電池を提供可能な非水電解質二次電池用の負極炭素材料及びその負極炭素材料を採用した非水電解質二次電池並びにその負極炭素材料の製造方法を提供することを解決すべき課題とする。   The present invention has been completed in view of the above circumstances, and a negative electrode carbon material for a non-aqueous electrolyte secondary battery capable of providing a non-aqueous electrolyte secondary battery excellent in durability characteristics and output characteristics, and the negative electrode carbon material It is a problem to be solved to provide a non-aqueous electrolyte secondary battery adopting the above and a method for producing the negative electrode carbon material.

(1)上記課題を解決する本発明の非水電解質二次電池用の負極炭素材料は、黒鉛とその黒鉛を構成する黒鉛結晶の一部乃至全部を被覆するピッチ由来の低結晶炭素とからなる炭素材と、前記炭素材の表面に結合し酸素原子を含む電子求引性基と、を有することを特徴とする。 (1) A negative electrode carbon material for a non-aqueous electrolyte secondary battery of the present invention that solves the above-mentioned problems comprises graphite and low-crystal carbon derived from pitch that covers a part or all of the graphite crystals constituting the graphite. It has a carbon material and an electron withdrawing group which is bonded to the surface of the carbon material and contains an oxygen atom.

表面に電子求引性基を導入することにより、その電子求引性基を起点に負極表面における皮膜形成を進行させることが可能になって均一な皮膜が形成できる。均一な皮膜が形成されるとLiイオンの伝導も円滑に進行することとなる。ここで、均一な皮膜の形成は黒鉛からなる炭素材料について、電池反応の繰り返しに伴い進行する膨張と収縮とで印加されるストレスにより亀裂などが入って活性面が新生してLiイオンの消費(容量の低下)につながるおそれがあるが、黒鉛結晶の周りを低結晶性炭素にて被覆しているために、膨張・収縮に伴うストレスが緩和されて活性面の新生を防止することができる。低結晶性炭素はそれだけで黒鉛の周りを被覆すると充放電に伴い破壊しやすく破壊の試行により新生面の生成が生じるおそれがあるため容量の低下が生じたり、その表面におけるLiイオンの抵抗になるおそれがあったりするが、電子求引性基に由来する表面に均一な皮膜が形成できるため、膨張・収縮により印加されるストレス抑制という有利な効果のみを選択的に享受することが可能になる。   By introducing an electron withdrawing group on the surface, it becomes possible to advance the film formation on the negative electrode surface starting from the electron withdrawing group, and a uniform film can be formed. When a uniform film is formed, the conduction of Li ions also proceeds smoothly. Here, the formation of a uniform film is about the carbon material made of graphite, the active surface is renewed due to the stress applied by the expansion and contraction that progresses with the repetition of the battery reaction, and the consumption of Li ions ( However, since the graphite crystal is covered with low crystalline carbon, the stress associated with expansion / contraction is relieved and the renewal of the active surface can be prevented. Low crystalline carbon alone can easily break down during charge and discharge when it is coated around graphite, which can lead to the formation of a new surface due to the trial of destruction, which can lead to a decrease in capacity or resistance to Li ions on the surface. However, since a uniform film can be formed on the surface derived from the electron withdrawing group, it is possible to selectively enjoy only the advantageous effect of suppressing stress applied by expansion / contraction.

上記(1)の構成について、以下に示す(2)〜(5)の構成を単独で又は任意に組み合わせて追加採用することが好ましい態様として例示できる。
(2)前記非水電解質二次電池は電解質中にオキサラト錯体を含む。オキサラト錯体は電解質中に含有させることにより電池内における副反応を抑制することができるため、その添加が検討されている。ここでオキサラト錯体は電解質中においてリチウム塩として存在するが、還元電位が低い上に、アニオンとして電子が非局在化しており汎用されているリチウム塩と比べて不安定である。表面に導入されている電子求引性基はオキサラト錯体のリチウム塩を選択的に固定化することができるため、安定性向上の高い効果の発現が期待できる。
(3)表面の炭素原子に対する酸素原子の数の比であるO/Cが0.01〜0.10であり、表面から100nmの深さでの前記O/Cの値は0.002以下である。O/Cの値は電子求引性基(酸素原子を含む)の導入量の増加に伴い大きくなる値であり、その値を規定することにより表面への電子求引性基の好ましい導入量を規定することができる。
(4)単位表面積(1cm)当たりの全細孔容積(孔径3nm以上の細孔)が0.015mL以下である。全細孔容積が小さいほど表面積も小さく、更には結晶の割れが進行する起点も少なくなって負極炭素材料の安定性が向上する。
(5)(110)面のX線回折ピーク強度I(110)に対する(002)面のX線回折ピーク強度I(002)であるI(002)/I(110)が50以下である。黒鉛結晶の結晶粒子において、I(002)は厚み方向の拡がりに関連し、I(110)は面方向の拡がりに関連する値であり、その比I(002)/I(110)は粒子の配向性の指標となる値である。I(002)/I(110)が小さくなると配向性は小さくなり、エッジ比率が小さくなっていることを意味する。電子求引性基は黒鉛結晶などの端末エッジ面の結晶性が低い箇所から選択的に導入されていくため、エッジ比率の制御は電子求引性基の導入形態に影響を与えることになる。I(002)/I(110)をこの範囲に制御することにより電子求引性基の導入の程度を好ましい範囲にすることができる。
(6)上記課題を解決する本発明の非水電解質二次電池は、上述した負極炭素材料を活物質として含有する負極と、正極とを有する。高性能な負極炭素材料を活物質として含有することによって高い性能を持つ非水電解質二次電池を提供することが可能になる。
(7)上記課題を解決する非水電解質二次電池用の負極炭素材料の製造方法は、ピッチにて被覆した黒鉛を300℃から500℃の温度範囲の非酸化雰囲気下で焼成する脱タール工程と、500℃から1000℃の範囲の非酸化雰囲気下で焼成する高温焼成工程と、酸素原子を含む電子求引性基の前駆体を気相にて接触させて100℃〜500℃の温度範囲で焼成する電子求引性基導入工程と、を有することを特徴とする。
About the structure of said (1), it can illustrate as a preferable aspect that the structure of (2)-(5) shown below is additionally employ | adopted individually or in arbitrary combinations.
(2) The non-aqueous electrolyte secondary battery includes an oxalato complex in the electrolyte. Addition of the oxalato complex has been studied because it can suppress side reactions in the battery by being contained in the electrolyte. Here, the oxalato complex is present as a lithium salt in the electrolyte, but has a low reduction potential and delocalizes electrons as anions, which is unstable compared to a commonly used lithium salt. Since the electron withdrawing group introduced on the surface can selectively fix the lithium salt of the oxalato complex, it can be expected to exhibit a high stability improvement effect.
(3) O / C, which is the ratio of the number of oxygen atoms to carbon atoms on the surface, is 0.01 to 0.10, and the value of O / C at a depth of 100 nm from the surface is 0.002 or less. is there. The value of O / C is a value that increases as the amount of introduction of electron withdrawing groups (including oxygen atoms) increases, and by defining the value, the preferred amount of introduction of electron withdrawing groups to the surface is reduced. Can be prescribed.
(4) The total pore volume (pores having a pore diameter of 3 nm or more) per unit surface area (1 cm 2 ) is 0.015 mL or less. The smaller the total pore volume is, the smaller the surface area is, and furthermore, the starting point at which crystal cracks progress is reduced, and the stability of the negative electrode carbon material is improved.
(5) I (002) / I (110), which is the X-ray diffraction peak intensity I (002) of the (002) plane with respect to the X-ray diffraction peak intensity I (110) of the (110) plane, is 50 or less. In the crystal grains of graphite crystals, I (002) is related to the spread in the thickness direction, I (110) is a value related to the spread in the plane direction, and the ratio I (002) / I (110) is It is a value that serves as an index of orientation. When I (002) / I (110) is small, the orientation is small, which means that the edge ratio is small. Since the electron withdrawing group is selectively introduced from a portion where the crystallinity of the terminal edge surface such as graphite crystal is low, the control of the edge ratio affects the introduction form of the electron withdrawing group. By controlling I (002) / I (110) within this range, the degree of introduction of the electron withdrawing group can be within a preferable range.
(6) The non-aqueous electrolyte secondary battery of the present invention that solves the above problems includes a negative electrode containing the above-described negative electrode carbon material as an active material, and a positive electrode. By including a high performance negative electrode carbon material as an active material, it is possible to provide a non-aqueous electrolyte secondary battery having high performance.
(7) A method for producing a negative electrode carbon material for a non-aqueous electrolyte secondary battery that solves the above-mentioned problem is a detarring step in which graphite coated with pitch is fired in a non-oxidizing atmosphere in a temperature range of 300 ° C to 500 ° C. And a high temperature baking step of baking in a non-oxidizing atmosphere in the range of 500 ° C. to 1000 ° C., and a precursor of an electron withdrawing group containing oxygen atoms in a gas phase, and a temperature range of 100 ° C. to 500 ° C. And an electron-attracting group introduction step of firing at.

脱タール工程及びその後の高温焼成工程にて黒鉛結晶の周りに低結晶性炭素の層を形成することができる。その後の電子求引性基導入工程を行うことにより電子求引性基を導入することができる。   A low crystalline carbon layer can be formed around the graphite crystal in the detarring step and the subsequent high-temperature firing step. An electron withdrawing group can be introduced by performing a subsequent electron withdrawing group introduction step.

本願発明の非水電解質二次電池用の負極炭素材料及びその負極炭素材料を負極の活物質に採用した非水電解質二次電池について実施形態に基づき好ましい態様を詳述する。本実施形態の非水電解質二次電池はリチウムイオンを荷電担体として採用するリチウム二次電池を例に挙げて説明を行う。
(非水電解質二次電池用の負極炭素材料)
本実施形態の負極炭素材料は、炭素材とその炭素材の表面に結合した電子求引性基とを有する。本実施形態の負極炭素材料の形態は特に限定しないが、粒子状であることが望ましい。また、本実施形態の負極炭素材料は、単位表面積当たりの全細孔容積(3nm以上の孔の体積)が0.15mL以下であることが望ましい。細孔容積は窒素ガス吸着法、表面積(比表面積)はBET3点法にて測定する。また、本実施形態の負極炭素材料はX線回折ピーク解析を行ったときに、(110)面のX線回折ピーク強度I(110)に対する(002)面のX線回折ピーク強度I(002)であるI(002)/I(110)が50以下であることが望ましく、40以下であることが特に望ましい。
A preferred embodiment of the negative electrode carbon material for a nonaqueous electrolyte secondary battery of the present invention and a nonaqueous electrolyte secondary battery employing the negative electrode carbon material as an active material for a negative electrode will be described in detail based on the embodiments. The nonaqueous electrolyte secondary battery of this embodiment will be described by taking a lithium secondary battery that employs lithium ions as a charge carrier as an example.
(Negative carbon material for non-aqueous electrolyte secondary battery)
The negative electrode carbon material of this embodiment has a carbon material and an electron withdrawing group bonded to the surface of the carbon material. The form of the negative electrode carbon material of the present embodiment is not particularly limited, but is preferably particulate. Moreover, as for the negative electrode carbon material of this embodiment, it is desirable that the total pore volume per unit surface area (3 nm or more pore volume) is 0.15 mL or less. The pore volume is measured by the nitrogen gas adsorption method, and the surface area (specific surface area) is measured by the BET three-point method. In addition, the X-ray diffraction peak intensity I (002) of the (002) plane with respect to the (110) plane X-ray diffraction peak intensity I (110) of the negative electrode carbon material of the present embodiment when X-ray diffraction peak analysis was performed. I (002) / I (110) is preferably 50 or less, and particularly preferably 40 or less.

炭素材は黒鉛とその黒鉛結晶の周りに存在する低結晶炭素とからなる。低結晶性炭素はピッチを原料として形成されたものであり、粒子状とした黒鉛結晶とピッチとを共存させた状態で非酸化雰囲気下の焼成を行うことで黒鉛結晶の粒子の周り結晶性の低い低結晶性炭素からなる層を形成することができる。黒鉛は特に限定しないが天然黒鉛を採用することが望ましい。   The carbon material is composed of graphite and low crystalline carbon existing around the graphite crystal. Low crystalline carbon is formed using pitch as a raw material, and is fired in a non-oxidizing atmosphere in the presence of a particulate graphite crystal and pitch in a coexisting state. A layer of low low crystalline carbon can be formed. Although graphite is not particularly limited, it is desirable to employ natural graphite.

黒鉛結晶と低結晶性炭素とは化学的に結合していることが望ましい。なお低結晶性炭素は黒鉛結晶の粒子の表面の少なくとも一部を被覆するものであれば充分である。   It is desirable that the graphite crystal and the low crystalline carbon are chemically bonded. The low crystalline carbon is sufficient if it covers at least part of the surface of the graphite crystal particles.

黒鉛結晶と、低結晶性炭素との存在比は特に限定しないが、低結晶性炭素は負極炭素材料の全体の質量を基準として0.5%〜10%程度の含有量にすることが望ましく、1.0%〜4.5%程度の含有量にすることが更に望ましい。   The abundance ratio between the graphite crystal and the low crystalline carbon is not particularly limited, but the low crystalline carbon is desirably contained in a content of about 0.5% to 10% based on the total mass of the negative electrode carbon material, It is further desirable to make the content about 1.0% to 4.5%.

電子求引性基は炭素材の表面に導入されており、炭素材の黒鉛のエッジ部の一部乃至全部に結合されていることが望ましい。なお、電子求引性基が表面に導入されているとは、表面から5nm以上の厚みで電子求引性基が導入されている場合である。
電子求引性基は表面から100nm以下の厚みであることが望ましい。電子求引性基の厚みの上限は80nmが例示できる。また電子求引性基の厚みの下限は10nm、15nmが例示できる。電子求引性基の厚みの測定方法の一例としては(酸素原子の数)/(炭素原子の数)(O/C)の値が0.002超である部分の厚みを測定し、その厚みが電子求引性基の導入されている厚みであるとする方法が挙げられる。O/Cの値はTEMやXPSによるデプス分析によって測定できる。
The electron withdrawing group is introduced on the surface of the carbon material, and is desirably bonded to part or all of the edge portion of the graphite of the carbon material. The term “electron-withdrawing group is introduced on the surface” means that the electron-withdrawing group is introduced with a thickness of 5 nm or more from the surface.
The electron withdrawing group is desirably 100 nm or less in thickness from the surface. An example of the upper limit of the thickness of the electron withdrawing group is 80 nm. Further, the lower limit of the thickness of the electron withdrawing group can be exemplified by 10 nm and 15 nm. As an example of a method for measuring the thickness of the electron withdrawing group, the thickness of the portion where (number of oxygen atoms) / (number of carbon atoms) (O / C) is greater than 0.002 is measured, and the thickness is measured. Is a thickness in which an electron withdrawing group is introduced. The value of O / C can be measured by depth analysis using TEM or XPS.

どのような官能基が電子求引性基であるか否かは炭素材の表面に結合したときの性状で判断される。具体的にはカルボキシル基、カルボニル基、水酸基、ラクトン基、ケトン基などが例示でき、炭素材の表面に酸素が導入されているかどうかで簡易的に判断することができる(導入されていれば電子求引性基が導入されていると判断することができる)。これらの官能基を導入する方法としては酸素原子を含有する前駆体(好ましくはガス状の前駆体)の存在下で加熱処理(焼成)を行う方法が例示できる。酸素原子を含有する前駆体としては酸素、二酸化炭素、一酸化炭素、亜酸化窒素の他、炭酸エステルなどの有機化合物の揮発成分などが例示できる。
(非水電解質二次電池用の負極炭素材料の製造方法)
本実施形態の負極炭素材料の製造方法は、脱タール工程と高温焼成工程と電子求引性基導入工程とを有する。
・脱タール工程:脱タール工程はピッチにて被覆された黒鉛を300℃〜500℃の範囲内の温度で加熱して焼成する工程である。この温度範囲で加熱することでピッチ中の揮発成分を除去できる(焼成)。
What functional group is an electron-withdrawing group is determined by the properties when bonded to the surface of the carbon material. Specifically, a carboxyl group, a carbonyl group, a hydroxyl group, a lactone group, a ketone group, etc. can be exemplified, and it can be easily judged whether oxygen is introduced into the surface of the carbon material (if it is introduced, an electron It can be determined that an attractive group has been introduced). Examples of a method for introducing these functional groups include a method of performing a heat treatment (firing) in the presence of a precursor containing oxygen atoms (preferably a gaseous precursor). Examples of the precursor containing an oxygen atom include oxygen, carbon dioxide, carbon monoxide, nitrous oxide, and volatile components of organic compounds such as carbonates.
(Method for producing negative electrode carbon material for nonaqueous electrolyte secondary battery)
The manufacturing method of the negative electrode carbon material of this embodiment has a detarring process, a high temperature baking process, and an electron withdrawing group introduction process.
Detarring step: The detarring step is a step of heating and baking graphite coated with pitch at a temperature within a range of 300 ° C to 500 ° C. By heating in this temperature range, volatile components in the pitch can be removed (firing).

加熱の雰囲気は非酸化雰囲気とする。ここで非酸化雰囲気とは完全に酸化物質を含有しないことで判断することができるのはもちろんであるが、生成物を分析した結果、生成物が酸化分解されていないこと(特にピッチ由来の炭素成分が残存していること。後述する高温焼成工程においては低結晶性炭素が残存していること。更には黒鉛結晶の結晶構造が大きく乱れずに残存していること。)により判断しても良い。   The heating atmosphere is a non-oxidizing atmosphere. Of course, the non-oxidizing atmosphere can be judged by completely not containing an oxidizing substance, but as a result of analyzing the product, the product is not oxidatively decomposed (particularly pitch-derived carbon). The component remains, low crystalline carbon remains in the high-temperature firing process described later, and the crystal structure of the graphite crystal remains largely undisturbed. good.

加熱時間としては特に限定しないが、3時間〜15時間程度の範囲内で行うことができる。加熱温度及び加熱時間を決定する望ましい指標としては望む程度にタールを除去できるまでの時間として判断することができる。   Although it does not specifically limit as heating time, It can carry out within the range of about 3 hours-15 hours. A desirable index for determining the heating temperature and the heating time can be determined as the time until tar can be removed to a desired extent.

本工程における「ピッチにて被覆した黒鉛」とはピッチと黒鉛とを単純に混合した状態を含む。ピッチによる黒鉛の被覆の程度を変えることにより、低結晶性炭素の被覆の程度を制御することができる。なお、低結晶性炭素による黒鉛の被覆は黒鉛の周り全体が隙間なく被覆されていることは必ずしも必要ではない。
・高温焼成工程:高温焼成工程は500℃から1000℃の範囲の非酸化雰囲気下で焼成する工程である。この温度範囲で加熱することでピッチ由来の炭素成分を黒鉛の表面にて強固に結合することができる。非酸化雰囲気については脱タール工程にて説明した通りである。
The “graphite coated with pitch” in this step includes a state in which pitch and graphite are simply mixed. By changing the degree of coating of graphite by pitch, the degree of coating of low crystalline carbon can be controlled. It should be noted that it is not always necessary for the graphite coating with low crystalline carbon to be entirely covered with no gaps.
High temperature firing step: The high temperature firing step is a step of firing in a non-oxidizing atmosphere in the range of 500 ° C to 1000 ° C. By heating in this temperature range, the pitch-derived carbon component can be firmly bonded on the surface of the graphite. The non-oxidizing atmosphere is as described in the detarring step.

加熱時間としては特に限定しないが、3時間〜15時間程度の範囲内で行うことができる。加熱温度及び加熱時間としては黒鉛結晶の周りに存在する低結晶性炭素が生成することを指標として決定することができる。
・電子求引性基導入工程:酸素原子を含む電子求引性基の前駆体を気相にて接触させて100℃〜500℃の温度範囲で加熱する工程である。酸素原子を含む前駆体としては負極炭素材料の欄にて説明したものがそのまま利用できるため更なる説明は省略する。ここで前駆体を混合する量としては加熱温度、加熱時間によって適正範囲が変化する値で有り、本工程後における黒鉛結晶由来の部分における結晶構造の乱れが少なくなるように設定することが望ましい。
Although it does not specifically limit as heating time, It can carry out within the range of about 3 hours-15 hours. The heating temperature and heating time can be determined by using as an index that low crystalline carbon existing around the graphite crystal is generated.
Electron-withdrawing group introduction step: This is a step in which an electron-withdrawing group precursor containing an oxygen atom is brought into contact in the gas phase and heated in a temperature range of 100 ° C to 500 ° C. Since the precursor described in the column of the negative electrode carbon material can be used as it is as the precursor containing oxygen atoms, further explanation is omitted. Here, the amount of the precursor to be mixed is a value in which an appropriate range changes depending on the heating temperature and the heating time, and it is desirable to set the amount of disorder of the crystal structure in the portion derived from the graphite crystal after this step.

加熱温度としては黒鉛の結晶構造を保ったまま電子求引性基を導入することができることが望ましい。   As the heating temperature, it is desirable that the electron withdrawing group can be introduced while maintaining the crystal structure of graphite.

加熱時間としては特に限定しないが、0.5時間〜5時間程度の範囲内で行うことができる。   Although it does not specifically limit as heating time, It can carry out within the range of about 0.5 hour-5 hours.

前駆体の添加割合、加熱温度、及び加熱時間としては、前述したように黒鉛結晶由来の部分の結晶構造の乱れが少なくなるようにすると共に、炭素材の周りに必要な厚みで電子求引性基が導入できることを指標として決定することができる。
(非水電解質二次電池)
本実施形態の非水電解質二次電池は上述した負極炭素材料を負極活物質として含有する負極と正極と非水電解質とその他必要に応じて採用できる部材とを有する。
As described above, the addition ratio of the precursor, the heating temperature, and the heating time are such that the disorder of the crystal structure of the portion derived from the graphite crystal is reduced, and the electron withdrawing property is obtained with a necessary thickness around the carbon material. It can be determined as an indicator that a group can be introduced.
(Non-aqueous electrolyte secondary battery)
The nonaqueous electrolyte secondary battery of the present embodiment includes a negative electrode containing the above-described negative electrode carbon material as a negative electrode active material, a positive electrode, a nonaqueous electrolyte, and other members that can be used as necessary.

正極は、リチウムイオンを充電時には放出し、かつ放電時には吸蔵することができる正極活物質を備えていれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。特に、正極活物質、導電材及び結着材を混合して得られた合材が集電体に塗布されて活物質層を形成するものを用いることが好ましい。   The positive electrode is not particularly limited in its material configuration as long as it has a positive electrode active material that can release lithium ions during charging and can be occluded during discharging. it can. In particular, it is preferable to use a material in which a mixture obtained by mixing a positive electrode active material, a conductive material, and a binder is applied to a current collector to form an active material layer.

正極活物質としては特に限定しないが、リチウム含有遷移金属酸化物が例示できる。リチウム含有遷移金属酸化物は、Liを脱挿入できる材料であり、層状構造又はスピネル構造のリチウム−金属複合酸化物が例示できる。具体的にはLi1−ZFePO、Li1−ZNiO、Li1−ZMnO、Li1−ZMn、Li1−ZCoO、Li1−ZCoMnNi(1−x−y)などがあり、それらのうちの1種以上含むことができる。この例示におけるZは0以上1未満、x及びyは0以上1以下の数を示す。各々にLi、Mg、Al、又はCo、Ti、Nb、Cr等の遷移金属を添加又は置換した材料等であってもよい。また、これらのリチウム−金属複合酸化物を単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。また、導電性高分子材料やラジカルを有する材料などを混在させることもできる。 Although it does not specifically limit as a positive electrode active material, A lithium containing transition metal oxide can be illustrated. The lithium-containing transition metal oxide is a material capable of removing and inserting Li + , and can be exemplified by a lithium-metal composite oxide having a layered structure or a spinel structure. Specifically, Li 1 -Z FePO 4 , Li 1 -Z NiO 2 , Li 1 -Z MnO 2 , Li 1 -Z Mn 2 O 4 , Li 1 -Z CoO 2 , Li 1 -Z Co x Mn y Ni (1-xy) O 2 and the like, and one or more of them can be included. In this illustration, Z is a number from 0 to less than 1, and x and y are numbers from 0 to 1. A material obtained by adding or substituting a transition metal such as Li, Mg, Al, or Co, Ti, Nb, or Cr may be used. Moreover, not only these lithium-metal composite oxides are used alone, but also a plurality of them can be mixed and used. In addition, a conductive polymer material, a material having a radical, or the like can be mixed.

正極活物質としては、LiMnPO、LiFePO、LiFePO7、LiFeSiO、LiMn、LiCoO、LiNiO等のリチウム及び遷移金属の複合酸化物がより好ましい。すなわち、電子とリチウムイオンの拡散性能に優れるなど活物質としての性能に優れているため、高い充放電効率と良好なサイクル特性とを有する電池が得られる。特に、オリビン型リン酸(LiMnPOやLiFePOなど)を採用することが望ましい。オリビン型リン酸は上限電位4.0V程度で使用されることが多く、通常の使用条件下においても低LUMO支持塩が分解消費されるおそれを少なくすることができる。 As the positive electrode active material, composite oxides of lithium and transition metals such as LiMnPO 4 , LiFePO 4 , Li 2 FeP 2 O 7, Li 2 FeSiO 4 , LiMn 2 O 4 , LiCoO 2 , LiNiO 2 are more preferable. That is, since it has excellent performance as an active material such as excellent diffusion performance of electrons and lithium ions, a battery having high charge / discharge efficiency and good cycle characteristics can be obtained. In particular, it is desirable to employ olivine-type phosphoric acid (such as LiMnPO 4 and LiFePO 4 ). The olivine-type phosphoric acid is often used at an upper limit potential of about 4.0 V, and the possibility that the low LUMO support salt is decomposed and consumed can be reduced even under normal use conditions.

結着剤は、活物質粒子をつなぎ止める作用を有する。結着剤としては、有機系結着剤や、無機系結着剤を用いることができ、例えば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース等の化合物をあげることができる。   The binder has an action of holding the active material particles. As the binder, organic binders and inorganic binders can be used. For example, compounds such as polyvinylidene fluoride (PVDF), polyvinylidene chloride, polytetrafluoroethylene (PTFE), carboxymethyl cellulose, and the like. Can give.

導電材は、正極の電気伝導性を確保する作用を有する。導電材としては、例えば、カーボンブラック、アセチレンブラック(AB)、黒鉛等の炭素物質の1種又は2種以上の混合したものをあげることができる。   The conductive material has an action of ensuring the electrical conductivity of the positive electrode. Examples of the conductive material include one or a mixture of two or more carbon materials such as carbon black, acetylene black (AB), and graphite.

また、正極の集電体としては、例えば、アルミニウム、ステンレスなどの金属を加工したもの、例えば板状に加工した箔、網、パンチドメタル、フォームメタルなどを用いることができる。   Further, as the current collector of the positive electrode, for example, a material obtained by processing a metal such as aluminum or stainless steel, for example, a foil processed into a plate shape, a net, a punched metal, a foam metal, or the like can be used.

負極は、本実施形態の負極炭素材料を活物質として含有する。そしてその他にも活物質としてリチウムイオンを充電時には吸蔵し、かつ放電時には放出することができる材料を含有できる。例えば金属リチウム、合金系材料、炭素系材料などであり、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。これらの負極活物質及び結着剤を混合して得られた合材が集電体に塗布されて活物質層を形成する。   The negative electrode contains the negative electrode carbon material of the present embodiment as an active material. In addition, a lithium ion can be stored as an active material during charging and can be released during discharging. For example, it is metallic lithium, an alloy-based material, a carbon-based material, and the like, and is not particularly limited by the material configuration, and a known material configuration can be used. A composite material obtained by mixing these negative electrode active materials and a binder is applied to a current collector to form an active material layer.

結着剤は、活物質粒子をつなぎ止める作用を有する。結着剤としては、有機系結着剤や、無機系結着剤を用いることができ、例えば、PVDF、ポリ塩化ビニリデン、PTFE、カルボキシメチルセルロース等の化合物をあげることができる。   The binder has an action of holding the active material particles. As the binder, an organic binder or an inorganic binder can be used, and examples thereof include PVDF, polyvinylidene chloride, PTFE, carboxymethylcellulose, and the like.

負極の集電体としては、例えば、銅、ニッケルなどを加工したもの、例えば板状に加工した部材である、箔、網、パンチドメタル、フォームメタルなどを用いることができる。   As the current collector for the negative electrode, for example, a material obtained by processing copper, nickel, or the like, for example, a foil, net, punched metal, foam metal, or the like processed into a plate shape can be used.

非水電解質は液体状、ゲル状などその形態は問わない。液体状の非水電解質としては支持塩とその支持塩を溶解する有機溶媒とを含むものや、更にイオン液体を含むものが例示できる。有機溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、及びジエチルカーボネート(DEC)は酸化分解電位が4.3V以上と高く非水電解質の溶媒として採用することで非水電解質二次電池の安定性が高まることになる。   The nonaqueous electrolyte may be in any form such as liquid or gel. Examples of the liquid non-aqueous electrolyte include those containing a supporting salt and an organic solvent that dissolves the supporting salt, and those containing an ionic liquid. As an organic solvent, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) have a high oxidative decomposition potential of 4.3 V or higher and are non-aqueous electrolytes. By adopting as a solvent, the stability of the non-aqueous electrolyte secondary battery is increased.

これらの溶媒の他にも、非水電解質二次電池の電解液に通常用いられる有機溶媒が採用できる。例えば、上述のカーボネート以外のカーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニルカーボネート(VC)、及びそれらの混合溶媒が採用できる。これらの溶媒に支持塩を溶解させることで電解質として作用させることができる。   In addition to these solvents, organic solvents that are commonly used in electrolyte solutions for nonaqueous electrolyte secondary batteries can be employed. For example, carbonates other than the carbonates described above, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds, and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, vinyl carbonate (VC), and a mixed solvent thereof can be employed. It is possible to act as an electrolyte by dissolving the supporting salt in these solvents.

支持塩としては六フッ化リン酸リチウム、LiPF、LiBF、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiSbF、LiSCN、LiClO、LiAlCl、NaClO、NaBF、NaI、これらの誘導体等の塩化合物が例示できる。これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiN(FSO、LiN(CFSO)(CSO)、LiCFSOの誘導体、LiN(CFSOの誘導体及びLiC(CFSOの誘導体からなる群から選ばれる1種以上の塩を用いることが、電気特性の観点からは好ましい。 The supporting salt is lithium hexafluorophosphate, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSCN, LiClO 4 , Salt compounds such as LiAlCl 4 , NaClO 4 , NaBF 4 , NaI, and derivatives thereof. Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 One or more selected from the group consisting of a derivative of SO 2 ) (C 4 F 9 SO 2 ), a derivative of LiCF 3 SO 3, a derivative of LiN (CF 3 SO 2 ) 2 and a derivative of LiC (CF 3 SO 2 ) 3 It is preferable to use a salt from the viewpoint of electrical characteristics.

そして、非水電解質はゲル化剤を含有させることによりゲル状にすることもできる。   And a nonaqueous electrolyte can also be made into a gel form by containing a gelatinizer.

また、前述の有機溶媒に加えるか又は代えて、非水電解質二次電池に用いることができるイオン液体を採用することもできる。イオン液体のカチオン成分としては、N−メチル−N−プロピルピペリジニウムや、ジメチルエチルメトキシアンモニウムカチオン等が挙げられ、アニオン成分としは、BF4−、N(SOCF2−等が挙げられる。 In addition, an ionic liquid that can be used in a nonaqueous electrolyte secondary battery can be employed instead of or in addition to the organic solvent described above. Examples of the cation component of the ionic liquid include N-methyl-N-propylpiperidinium and dimethylethylmethoxyammonium cation. Examples of the anion component include BF 4− , N (SO 2 CF 3 ) 2−, and the like. Can be mentioned.

本実施形態の非水電解質二次電池はその他必要に応じて選択される部材を有することができる。そのような部材としては、セパレータ、ケースなどが例示できる。セパレータは正負極間に介装され、電気的な絶縁作用とイオン伝導作用とを両立する部材である。採用した非水電解質が液状である場合にはセパレータは、その非水電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔質膜が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極の面積よりも更に大きい形態を採用することが好ましい。ケースはこれらの電池を構成する部材を収納する部材である。非水電解質二次電池は水分により影響を受けやすいので水分の透過性が低い材料からケースを構成することが望ましい。   The nonaqueous electrolyte secondary battery of this embodiment can have other members selected as necessary. Examples of such a member include a separator and a case. The separator is interposed between the positive and negative electrodes and is a member that achieves both electrical insulation and ion conduction. When the employed non-aqueous electrolyte is liquid, the separator also plays a role of holding the non-aqueous electrolyte. Examples of the separator include a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene or polypropylene). Furthermore, it is preferable that the separator adopts a form larger than the area of the positive electrode and the negative electrode for the purpose of ensuring insulation between the positive electrode and the negative electrode. The case is a member that houses members constituting these batteries. Since the nonaqueous electrolyte secondary battery is easily affected by moisture, it is desirable to form the case from a material having low moisture permeability.

本発明の非水電解質二次電池について実施例に基づき以下詳細に説明を行う。
・試験例の負極炭素材料の製造
表1に示す構成をもつ負極炭素材料を製造した。試験例1−1〜1−4及び試験例2−3,2−4の負極材料では天然黒鉛98質量部とピッチ2質量部とを混合後、窒素雰囲気下400℃にて8時間焼成した(脱タール工程)。その後、窒素雰囲気下700℃にて5時間焼成した(高温焼成工程)。その結果、表面に低結晶性炭素からなる層が形成された。その後、二酸化炭素を0.4体積%含有する空気中にて200℃にて2時間焼成した(電子求引性基導入工程)。このようして製造した負極炭素材料を試験例1−1の負極炭素材料とした。
The nonaqueous electrolyte secondary battery of the present invention will be described in detail below based on examples.
-Manufacture of the negative electrode carbon material of a test example The negative electrode carbon material which has the structure shown in Table 1 was manufactured. In the negative electrode materials of Test Examples 1-1 to 1-4 and Test Examples 2-3 and 2-4, 98 parts by mass of natural graphite and 2 parts by mass of pitch were mixed and then fired at 400 ° C. for 8 hours in a nitrogen atmosphere ( Detarring step). Then, it baked at 700 degreeC under nitrogen atmosphere for 5 hours (high temperature baking process). As a result, a layer made of low crystalline carbon was formed on the surface. Then, it baked at 200 degreeC in the air containing 0.4 volume% of carbon dioxide for 2 hours (electron withdrawing group introduction | transduction process). The negative electrode carbon material thus produced was used as the negative electrode carbon material of Test Example 1-1.

試験例1−2〜1−4及び試験例2−3,2−4については電子求引性基導入工程における処理温度と処理時間を変えることにより電子求引性基の厚みを変化させた。具体的には試験例1−2が処理温度200℃、3時間焼成、試験例1−3が処理温度200℃、 5時間焼成、試験例1−4が処理温度500℃、3時間焼成、試験例2−3が処理温度200℃、0.5時間焼成、試験例2−4が処理温度500℃、5時間焼成とした。その結果、表1に示す厚みの電子求引性基が導入された負極炭素材料が得られた。   In Test Examples 1-2 to 1-4 and Test Examples 2-3 and 2-4, the thickness of the electron withdrawing group was changed by changing the treatment temperature and the treatment time in the electron withdrawing group introduction step. Specifically, Test Example 1-2 was fired at a treatment temperature of 200 ° C. for 3 hours, Test Example 1-3 was fired at a treatment temperature of 200 ° C. for 5 hours, and Test Example 1-4 was fired at a treatment temperature of 500 ° C. for 3 hours. Example 2-3 was fired at a treatment temperature of 200 ° C. for 0.5 hour, and Test Example 2-4 was fired at a treatment temperature of 500 ° C. for 5 hours. As a result, a negative electrode carbon material having an electron withdrawing group having a thickness shown in Table 1 was obtained.

試験例2−1については試験例1−1における電子求引性基導入工程に供する前の材料をそのまま採用した。従って表面に電子求引性基は導入されていない。   For Test Example 2-1, the material before the electron withdrawing group introduction step in Test Example 1-1 was used as it was. Accordingly, no electron withdrawing group is introduced on the surface.

試験例2−2については天然黒鉛に対して二酸化炭素を2体積%含有する空気中にて処理温度350℃にて5時間焼成した(電子求引性基導入工程)。従って、低結晶性炭素は有していない。   Test Example 2-2 was fired for 5 hours at a treatment temperature of 350 ° C. in air containing 2% by volume of carbon dioxide with respect to natural graphite (electron-withdrawing group introduction step). Therefore, it has no low crystalline carbon.

これらの試験例の負極炭素材料についてO/Cの値のデプス分析(表面におけるO/Cの値とO/Cの値が0.002以上である層の厚み)と単位表面積当たりの細孔容積の値を測定した。結果を表1に示す。
・試験電池の製造
試験例1−1〜1−4及び2−1〜2−4の試験電池をそれぞれ作成した。各試験電池は、表1に示す構成要素(それぞれ対応する負極炭素材料)を組み合わせて作成した。試験例1−1の試験電池を例として製造方法を説明するが、他の試験電池も同様に製造した。
Depth analysis of O / C values (the O / C value on the surface and the thickness of the layer having an O / C value of 0.002 or more) and the pore volume per unit surface area for the negative electrode carbon materials of these test examples The value of was measured. The results are shown in Table 1.
-Manufacture of test batteries Test batteries 1-1 to 1-4 and 2-1 to 2-4 were prepared, respectively. Each test battery was prepared by combining the components shown in Table 1 (corresponding negative electrode carbon materials, respectively). Although the manufacturing method will be described by taking the test battery of Test Example 1-1 as an example, other test batteries were manufactured in the same manner.

試験例1−1の試験電池は、組成式LiFePOで表されるリチウム複合酸化物を正極活物質として用い、グラファイトを負極活物質として用いたリチウム二次電池である。 The test battery of Test Example 1-1 is a lithium secondary battery using a lithium composite oxide represented by the composition formula LiFePO 4 as a positive electrode active material and graphite as a negative electrode active material.

正極は以下のように製造した。まず、上記正極活物質を80質量部と、導電材としてのアセチレンブラック(AB)を10質量部と、結着材としてのPVdF10質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合材を得た。この正極合材を厚さ15μmのアルミニウム箔製正極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の正極を作製した。この正極を帯状に切断して正極板とした。正極板の一部から正極合材を掻き取って正極の電池リードを接合した。   The positive electrode was manufactured as follows. First, 80 parts by mass of the positive electrode active material, 10 parts by mass of acetylene black (AB) as a conductive material, and 10 parts by mass of PVdF as a binder are mixed, and an appropriate amount of N-methyl-2-pyrrolidone is added. By adding and kneading, a paste-like positive electrode mixture was obtained. This positive electrode mixture was applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 μm, dried, and a sheet-like positive electrode was produced through a pressing process. This positive electrode was cut into a strip shape to obtain a positive electrode plate. The positive electrode mixture was scraped from a part of the positive electrode plate, and the positive battery lead was joined.

負極は、試験例1−1の負極炭素材料を98質量部と、結着材としてのカルボキシメチルセルロース(CMC)を1質量部と結着材としてのスチレンブタジエンゴム(SBR)を1質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の負極合材を得た。この負極合材を厚さ10μmの銅箔製負極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の負極を作製した。この負極を帯状に切断して負極板とした。負極板の一部から負極合材を掻き取って負極の電池リードを接合した。   The negative electrode is 98 parts by mass of the negative electrode carbon material of Test Example 1-1, 1 part by mass of carboxymethyl cellulose (CMC) as a binder, and 1 part by mass of styrene butadiene rubber (SBR) as a binder. After mixing, an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like negative electrode mixture. This negative electrode mixture was applied to both sides of a copper foil negative electrode current collector having a thickness of 10 μm, dried, and subjected to a pressing step to produce a sheet-like negative electrode. This negative electrode was cut into a strip shape to obtain a negative electrode plate. The negative electrode mixture was scraped from a part of the negative electrode plate, and the battery lead of the negative electrode was joined.

これらの正負極板に対してセパレータ(ポリエチレン製:厚み15μm)を間に介装し扁平型に巻回して巻回型の電極体(発電要素:25Ah)を形成した。電極体の最外周はセパレータで巻回して周囲との絶縁を確保した。そして正負極それぞれの電池リードには幅が100mmの電極端子を溶接して接続した。この電極端子は、正極ではアルミニウム、負極では銅製の端子本体とその表面を被覆する可塑性樹脂層(ポリプロピレン製:100 μm)とから構成されたものを採用した。   A separator (made of polyethylene: thickness 15 μm) was interposed between these positive and negative electrode plates, and wound into a flat type to form a wound type electrode body (power generation element: 25 Ah). The outermost periphery of the electrode body was wound with a separator to ensure insulation from the surroundings. Then, electrode terminals having a width of 100 mm were connected to the battery leads of the positive and negative electrodes by welding. As the electrode terminal, one composed of a terminal body made of aluminum for the positive electrode and a copper resin body (polypropylene: 100 μm) covering the surface thereof was adopted for the negative electrode.

非水電解質はエチレンカーボネート(EC):ジメチルカーボネート(DMC):エチルメチルカーボネート(EMC)が30:30:40の割合になるように混合した混合溶媒に対して、LiPFを10質量%、VCを2質量%で溶解させたものを用いた。 The non-aqueous electrolyte is 10% by mass of LiPF 6 with respect to a mixed solvent in which ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) is mixed at a ratio of 30:30:40, VC In which 2% by mass was dissolved was used.

電池ケースはラミネート外装体を採用した。   The battery case adopted a laminate outer package.

電池を製造した後、コンディショニングを行ったものを試験に供した。コンディショニングは非水電解質を注液後、SOC10%まで充電を行うことでガスを発生させた。発生したガスを抜いた後に完全にラミネート外装体の周囲を熱融着により密封した後、端子電圧2V〜4Vの範囲で充放電を2回繰り返した。その後、60℃で36時間保持した。
・サイクル試験(耐久特性評価)
各試験電池についてコンディショニングを行った後、雰囲気温度60℃で、CC−CV充電(1/3C、4.0V)及びCC放電(2.0Vまで)を1サイクルとして300サイクル充放電を行い、1回目の充電容量(初期容量)に対する容量維持率(容量劣化の程度:発電要素の劣化の程度)を算出した。容量維持率は試験電池2−1の容量維持率を100としたときの相対値として算出し表1に示した。この値は高い方が耐久特性に優れている。
After the battery was manufactured, the conditioned one was used for testing. In the conditioning, after injecting the non-aqueous electrolyte, gas was generated by charging to SOC 10%. After the generated gas was removed, the periphery of the laminate outer package was completely sealed by thermal fusion, and then charging and discharging were repeated twice in the terminal voltage range of 2V to 4V. Then, it hold | maintained at 60 degreeC for 36 hours.
・ Cycle test (endurance characteristics evaluation)
After conditioning each test battery, at an ambient temperature of 60 ° C., charge / discharge 300 cycles with CC-CV charge (1 / 3C, 4.0V) and CC discharge (up to 2.0V) as one cycle. The capacity maintenance ratio (the degree of capacity deterioration: the degree of deterioration of the power generation element) with respect to the charge capacity (initial capacity) of the second time was calculated. The capacity retention rate was calculated as a relative value when the capacity retention rate of the test battery 2-1 was 100, and is shown in Table 1. The higher this value, the better the durability.

また、耐久試験後の出力特性を測定した。出力特性の測定はSOC60%の状態で1C,2C、3C、5C、10Cで30秒間放電を行ったときの10秒後の電圧傾きから抵抗値として求めた。試験電池2−1における値を100としたときの相対値として表1に示した。この値は小さい方が出力特性に優れている。   Further, the output characteristics after the durability test were measured. The measurement of the output characteristics was obtained as a resistance value from a voltage gradient after 10 seconds when discharging was performed at 1C, 2C, 3C, 5C, and 10C for 30 seconds in a state of SOC 60%. The relative values when the value in the test battery 2-1 is 100 are shown in Table 1. The smaller this value, the better the output characteristics.

Figure 0005733184
Figure 0005733184

表1より明らかなように、黒鉛の周りを低結晶性炭素にて被覆した試験例2−1の負極炭素材料をもつ試験電池2−1を基準として考えると、電子求引性基を導入するのみで低結晶性炭素からなる層で被覆していない試験電池2−2では出力特性の改善は認められたものの耐久特性が低下することが分かった。   As is apparent from Table 1, when the test battery 2-1 having the negative electrode carbon material of Test Example 2-1 in which graphite is coated with low crystalline carbon is considered as a reference, an electron withdrawing group is introduced. In the test battery 2-2 which was not coated with a layer made of low crystalline carbon alone, it was found that although the output characteristics were improved, the durability characteristics were lowered.

それに対して、低結晶性炭素からなる層を形成し且つ表面に電子求引性基を導入している試験電池1−1〜1−4及び試験電池2−3、2−4では耐久特性について改善がなされていることが分かった。更に、試験電池1−1〜1−4では出力特性・耐久特性の双方について改善がなされていることが明らかになり、官能基(電子求引性基)の厚みは100nm以下が優れ(試験電池2−4と他の試験電池との比較より考察)、単位表面積当たりの細孔容積の値は0.015mLであることが望ましい(試験電池2−3と他の試験電池との比較より考察)ことが分かった。
・黒鉛の結晶性が電池性能に与える影響について
以下に示す黒鉛材料を用いた以外は試験例1−2と同様の方法にて負極炭素材料を製造し、それぞれ試験例1−5及び2−5の負極炭素材料とした。試験例1−5では黒鉛とケッチェンブラックとアセチレンブラックとを92:5:3の比で混合の後、減圧加熱(200℃)、2時間処理を行い、試験例2−5では黒鉛とケッチェンブラックとアセチレンブラックとを98:1:1の比で混合したものを用いた。
On the other hand, in the test batteries 1-1 to 1-4 and the test batteries 2-3 and 2-4 in which a layer made of low crystalline carbon is formed and an electron withdrawing group is introduced on the surface, durability characteristics are examined. It turns out that improvements have been made. Furthermore, it has become clear that the test batteries 1-1 to 1-4 have improved both output characteristics and durability characteristics, and the thickness of the functional group (electron withdrawing group) is preferably 100 nm or less (test battery). 2-4 and other test batteries are considered), and the value of the pore volume per unit surface area is preferably 0.015 mL (consideration from the comparison between test battery 2-3 and other test batteries). I understood that.
-Effect of crystallinity of graphite on battery performance Except for using the graphite material shown below, a negative electrode carbon material was produced in the same manner as in Test Example 1-2, and Test Examples 1-5 and 2-5, respectively. Negative electrode carbon material. In Test Example 1-5, graphite, ketjen black, and acetylene black were mixed at a ratio of 92: 5: 3 and then heated under reduced pressure (200 ° C.) for 2 hours. In Test Example 2-5, graphite and Ketjen black were mixed. A mixture of chain black and acetylene black in a ratio of 98: 1: 1 was used.

これらの負極炭素材料を用いて試験電池1−2と同様の方法にて試験電池を作成し、上述した耐久特性及び出力特性の試験を行った。結果を表2に示す。   Using these negative electrode carbon materials, test batteries were prepared in the same manner as the test battery 1-2, and the above-described durability characteristics and output characteristics were tested. The results are shown in Table 2.

Figure 0005733184
Figure 0005733184

表2より明らかなように、試験電池1−5については耐久特性及び出力特性の双方について著しい改善が認められた。試験電池2−5については僅かに耐久特性が低下したものの、他の試験電池と比べても出力特性の著しい完全が認められた。この結果から耐久特性及び出力特性の双方を改善したい場合にはI(002)/I(110)の値を50以下にすることが望ましいことが分かった。
・非水電解質の検討
支持塩として表3に示すオキサラト錯体を2質量%添加した以外は試験電池1−2と同様の方法で製造した試験電池1−6〜1−9について上述したものと同じ耐久特性試験及び出力特性試験を行った。結果を表3に示す。
As is clear from Table 2, the test batteries 1-5 were markedly improved in both durability characteristics and output characteristics. Although test battery 2-5 slightly deteriorated in durability characteristics, remarkable completeness in output characteristics was recognized as compared with other test batteries. From this result, it was found that it is desirable to set the value of I (002) / I (110) to 50 or less in order to improve both durability characteristics and output characteristics.
-Examination of non-aqueous electrolyte The same as described above for test batteries 1-6 to 1-9 produced by the same method as test battery 1-2, except that 2% by mass of the oxalato complex shown in Table 3 was added as a supporting salt. A durability characteristic test and an output characteristic test were conducted. The results are shown in Table 3.

Figure 0005733184
Figure 0005733184

表3より明らかなように、非水電解質中にオキサラト錯体を添加することにより耐久特性及び出力特性共に優れたものになることが分かった。   As is clear from Table 3, it was found that by adding the oxalato complex to the non-aqueous electrolyte, both durability characteristics and output characteristics were excellent.

試験電池1−6に対してオキサラト錯体の添加量を4質量%(試験電池1−10)、6質量%(試験電池1−11)、8質量%(試験電池1−12)、10質量%(試験電池1−13)とした以外は同様の方法により試験電池を製造し上述した耐久特性及び出力特性試験を行った。その結果、試験電池1−10が他の試験電池よりも容量維持率が向上し且つ抵抗の低下が確認された。これは、オキサラト錯体が適正量であるため、負極表面の官能基で還元分解されないオキサラト錯体が生成せずに、充放電に伴い正極で酸化分解されることがないためと推察できる。すなわち、オキサラト錯体は0.5質量%〜4質量%が望ましいことが分かった。
・製造条件の検討
電子求引性基導入工程における温度を700℃にした以外は試験例1−2の負極炭素材料と同様の方法により負極炭素材料を製造し、その負極炭素材料を用いて試験電池2−6を製造した。製造した試験電池2−6について上述した耐久特性試験及び出力特性試験を行った。その結果、試験電池2−6は容量維持率が94,抵抗が120となった。この理由としては温度が高いことにより黒鉛の層間に酸素が侵入し酸化させたことで黒鉛の結晶構造が大きく乱れたためであると考えられる。これは合わせて行ったXRD解析から黒鉛層間化合物が確認されており、上記推察を支持している。
The addition amount of the oxalato complex is 4 mass% (test battery 1-10), 6 mass% (test battery 1-11), 8 mass% (test battery 1-12), 10 mass% with respect to test battery 1-6. A test battery was produced by the same method except that (Test battery 1-13) was used, and the durability characteristics and output characteristics tests described above were performed. As a result, it was confirmed that the capacity of the test battery 1-10 was improved as compared with the other test batteries and the resistance was lowered. It can be inferred that this is because the oxalato complex is in an appropriate amount, so that an oxalato complex that is not reductively decomposed by a functional group on the surface of the negative electrode is not generated, and is not oxidatively decomposed at the positive electrode with charge / discharge. That is, it was found that the oxalato complex is preferably 0.5% by mass to 4% by mass.
-Examination of production conditions A negative electrode carbon material was produced in the same manner as the negative electrode carbon material of Test Example 1-2 except that the temperature in the electron withdrawing group introduction step was set to 700 ° C, and the negative electrode carbon material was tested. Battery 2-6 was produced. The manufactured test battery 2-6 was subjected to the above-described durability characteristic test and output characteristic test. As a result, the test battery 2-6 had a capacity maintenance ratio of 94 and a resistance of 120. The reason for this is thought to be that the crystal structure of graphite was greatly disturbed due to the high temperature causing oxygen to enter and oxidize between the graphite layers. This confirms the graphite intercalation compound from the XRD analysis conducted together, and supports the above inference.

Claims (6)

黒鉛とその黒鉛を構成する黒鉛結晶の一部乃至全部を被覆するピッチ由来の低結晶炭素とからなる炭素材と、前記炭素材の表面に結合し酸素原子を含む電子求引性基と、を有し、
表面の炭素原子に対する酸素原子の数の比であるO/Cが0.01〜0.10であり、
表面から100nmの深さでの前記O/Cの値は0.002以下であることを特徴とする非水電解質二次電池用の負極炭素材料。
A carbon material composed of graphite and pitch-derived low crystalline carbon covering a part or all of the graphite crystals constituting the graphite, and an electron withdrawing group bonded to the surface of the carbon material and containing an oxygen atom. Yes, and
O / C, which is the ratio of the number of oxygen atoms to the surface carbon atoms, is 0.01 to 0.10,
The negative electrode carbon material for a non-aqueous electrolyte secondary battery , wherein the O / C value at a depth of 100 nm from the surface is 0.002 or less .
前記非水電解質二次電池は電解質中にオキサラト錯体を含む請求項1に記載の負極炭素材料。   The negative electrode carbon material according to claim 1, wherein the nonaqueous electrolyte secondary battery includes an oxalato complex in the electrolyte. 単位表面積(1cm)当たりの全細孔容積(孔径3nm以上の細孔)が0.015mL以下である請求項1又は2に記載の負極炭素材料。 3. The negative electrode carbon material according to claim 1, wherein the total pore volume (pores having a pore diameter of 3 nm or more) per unit surface area (1 cm 2 ) is 0.015 mL or less. (110)面のX線回折ピーク強度I(110)に対する(002)面のX線回折ピーク強度I(002)であるI(002)/I(110)が50以下である請求項1〜3の何れか1項に記載の負極炭素材料。 (110) plane of the X-ray diffraction peak intensity is I the relative (110) (002) X-ray diffraction peak intensity I (002) I (002) / I (110) is 50 or less claims 1-3 The negative electrode carbon material according to any one of the above. 正極と、請求項1〜4の何れか1項に記載の負極炭素材料を活物質として含有する負極と、を有することを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising: a positive electrode; and a negative electrode containing the negative electrode carbon material according to any one of claims 1 to 4 as an active material. ピッチにて被覆した黒鉛を300℃から500℃の温度範囲の非酸化雰囲気下で焼成する脱タール工程と、
500℃から1000℃の範囲の非酸化雰囲気下で焼成する高温焼成工程と、
酸素原子を含む電子求引性基の前駆体を気相にて接触させて100℃〜500℃の温度範囲で焼成する電子求引性基導入工程と、
を有することを特徴とする非水電解質二次電池用の負極炭素材料の製造方法。
A detarring step of firing the pitch-coated graphite in a non-oxidizing atmosphere in a temperature range of 300 ° C to 500 ° C;
A high-temperature firing step of firing in a non-oxidizing atmosphere in the range of 500 ° C. to 1000 ° C .;
An electron-withdrawing group introduction step of bringing a precursor of an electron-withdrawing group containing an oxygen atom into contact in a gas phase and firing in a temperature range of 100 ° C to 500 ° C;
The manufacturing method of the negative electrode carbon material for nonaqueous electrolyte secondary batteries characterized by having.
JP2011265824A 2011-12-05 2011-12-05 Negative electrode carbon material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the negative electrode carbon material Active JP5733184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265824A JP5733184B2 (en) 2011-12-05 2011-12-05 Negative electrode carbon material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the negative electrode carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265824A JP5733184B2 (en) 2011-12-05 2011-12-05 Negative electrode carbon material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the negative electrode carbon material

Publications (2)

Publication Number Publication Date
JP2013118138A JP2013118138A (en) 2013-06-13
JP5733184B2 true JP5733184B2 (en) 2015-06-10

Family

ID=48712558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265824A Active JP5733184B2 (en) 2011-12-05 2011-12-05 Negative electrode carbon material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the negative electrode carbon material

Country Status (1)

Country Link
JP (1) JP5733184B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500892B2 (en) * 2014-03-26 2019-04-17 日本電気株式会社 Negative electrode carbon material, method of manufacturing negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery
JPWO2021141074A1 (en) * 2020-01-08 2021-07-15
CN112645301B (en) * 2020-12-23 2023-08-15 福建杉杉科技有限公司 Particle surface in-situ oxidation and carbon coated modified graphite negative electrode material and preparation method thereof
WO2024108573A1 (en) * 2022-11-25 2024-05-30 宁德时代新能源科技股份有限公司 Carbon material and preparation method therefor, secondary battery containing carbon material, and electric apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460742B2 (en) * 1994-08-04 2003-10-27 三菱化学株式会社 Method for producing electrode material for non-aqueous solvent secondary battery
JP3677992B2 (en) * 1998-03-24 2005-08-03 三菱化学株式会社 Lithium ion secondary battery
JP2004063457A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
JP5128063B2 (en) * 2005-11-18 2013-01-23 昭和電工株式会社 Composite graphite and lithium secondary battery using the same
JP2011210666A (en) * 2010-03-30 2011-10-20 Mitsubishi Chemicals Corp Resin coated active material for nonaqueous secondary battery electrode

Also Published As

Publication number Publication date
JP2013118138A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
KR102088491B1 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising the same
JP5111369B2 (en) Positive electrode, manufacturing method thereof, and lithium secondary battery using the positive electrode
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6728134B2 (en) Non-aqueous electrolyte secondary battery
KR20190083305A (en) Method of pre-lithiating an anode for lithium secondary battery and Lithium metal laminate for being used therefor
JP5590424B2 (en) Lithium ion secondary battery
JP5527633B2 (en) Method for evaluating negative electrode active material and negative electrode active material
JP2011192539A (en) Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2012172831A1 (en) Nonaqueous electrolyte secondary battery
JP5517007B2 (en) Lithium ion secondary battery
KR20140105794A (en) Lithium secondary battery and method for manufacturing same
JP2011001254A (en) METHOD FOR PRODUCING NITRIDED Li-Ti COMPOUND OXIDE, NITRIDED Li-Ti COMPOUND OXIDE AND LITHIUM BATTERY
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5733184B2 (en) Negative electrode carbon material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the negative electrode carbon material
US10811681B2 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery and method for producing lithium ion secondary battery
EP2846383A1 (en) Conductive material for secondary battery and electrode for lithium secondary battery comprising same
JP5920666B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2013134921A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
US20230290955A1 (en) Carbon-based conductive agent, secondary battery, and electrical device
JP4857608B2 (en) Lithium secondary battery and manufacturing method thereof
JP6613952B2 (en) Positive electrode active material, and positive electrode and lithium ion secondary battery using the same
JP2009283276A (en) Lithium secondary battery manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R151 Written notification of patent or utility model registration

Ref document number: 5733184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250