JP5732741B2 - Sn-Zn plated high-strength steel sheet for press working with excellent corrosion resistance and method for producing the same - Google Patents
Sn-Zn plated high-strength steel sheet for press working with excellent corrosion resistance and method for producing the same Download PDFInfo
- Publication number
- JP5732741B2 JP5732741B2 JP2010093327A JP2010093327A JP5732741B2 JP 5732741 B2 JP5732741 B2 JP 5732741B2 JP 2010093327 A JP2010093327 A JP 2010093327A JP 2010093327 A JP2010093327 A JP 2010093327A JP 5732741 B2 JP5732741 B2 JP 5732741B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- steel sheet
- steel plate
- pickling
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車および家電等の分野に適用されるプレス加工用Sn−Znめっき高強度鋼板およびその製造方法に関し、特に、自動車の燃料タンク用途に好適な耐食性に優れたプレス加工用Sn−Znめっき高強度鋼板およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a Sn-Zn plated high-strength steel sheet for press working applied to the fields of automobiles, home appliances, and the like, and a method for producing the same. The present invention relates to a plated high-strength steel plate and a method for producing the same.
近年、自動車用鋼板においては、車体重量軽減による燃費向上を目的として、高強度化が進んでいる。燃料タンク用鋼板でも同様に、タンクの軽量化および車体デザインの複雑化、更には燃料タンクの収納設置場所の関係から、燃料タンク形状の複雑化が進み、優れた成形性および高強度化が要求されている。従来、このような成形性と高強度との両立の要望を満足させるために、極低炭素鋼にTiおよびNbのような炭窒化物形成元素を添加したIF(Interstitial Free)鋼に、P、SiおよびMn等の固溶強化元素を添加した高強度IF鋼が開発されてきた。 In recent years, steel sheets for automobiles have been increased in strength for the purpose of improving fuel efficiency by reducing vehicle body weight. Similarly for steel plates for fuel tanks, the weight of the tanks and the complexity of the vehicle body design, as well as the complexity of the fuel tank shape, due to the location of the fuel tank storage and installation, requires excellent formability and high strength. Has been. Conventionally, in order to satisfy the demand for coexistence of such formability and high strength, IF (Interstitial Free) steel in which carbonitride-forming elements such as Ti and Nb are added to ultra-low carbon steel, P, High strength IF steels to which solid solution strengthening elements such as Si and Mn are added have been developed.
しかしながら、燃料タンクに高強度鋼板を使用した場合、拝み状シーム溶接部の引張強度が低温で低いという問題や、成形後に粒界破壊によって二次加工脆化が発生しやすくなるという問題点があった。すなわち鋼板を高強度化しても、溶接継手強度が鋼板の高強度化に見合ったように高くならないという問題やIF鋼の粒界強度の低下という問題があった。これらは、タンクのシーム溶接部は拝み状形状となっており、特に高強度鋼板の場合には応力が集中し易く、靭性が低下して引張強度が低くなるといった原因や、IF鋼はCおよびN等がNbまたはTiを炭化物または窒化物として析出固定するため、結晶粒界が非常に清浄になり、成形後に粒界破壊し易くなるということに起因する。これらは重要保安部品である燃料タンクが、低温地域において衝突による衝撃を受けた場合の耐破壊性に対しての懸念となる。 However, when high-strength steel plates are used for the fuel tank, there are problems that the tensile strength of the wavy seam weld is low at low temperatures and that secondary work embrittlement is likely to occur due to grain boundary fracture after forming. It was. That is, even if the strength of the steel plate is increased, there has been a problem that the weld joint strength does not increase as appropriate for the strength increase of the steel plate, and there is a problem that the grain boundary strength of the IF steel is reduced. The seam welded part of the tank has a wrinkle shape, especially in the case of a high strength steel plate, stress is likely to concentrate, and the toughness is lowered and the tensile strength is lowered. This is because N or the like precipitates and fixes Nb or Ti as carbides or nitrides, so that the crystal grain boundaries become very clean, and the grain boundaries are easily broken after forming. These are concerns about the destruction resistance when the fuel tank, which is an important safety part, is subjected to an impact caused by a collision in a low temperature region.
更に、ガソリンおよびアルコールまたはガソリンが劣化して生じる有機酸に対して、フィルターの目詰まりの原因となる腐食生成物が生成せず、孔あき腐食が生じない鋼板も求められている。この要求に対しては、従来、鋼板表面にPb−Sn合金、Al−Si合金、Sn−Zn合金およびZn−Al合金めっきを施すことが提案され、適用されている。このため、基体となる鋼板には、これらの合金のめっき性が良好であることが必要である。 Further, there is a demand for a steel plate that does not generate corrosion products that cause clogging of the filter and does not cause perforated corrosion to gasoline and alcohol or organic acids that are produced by deterioration of gasoline. In response to this requirement, it has been proposed and applied to apply Pb—Sn alloy, Al—Si alloy, Sn—Zn alloy and Zn—Al alloy plating to the steel sheet surface. For this reason, the steel plate used as a base | substrate needs that the plating property of these alloys is favorable.
これらの問題点のうち、二次加工脆化については、発生を回避するためのいくつかの方法が提案されている(例えば、特許文献1及び2参照)。例えば、特許文献1では、粒界偏析による耐二次加工脆化の劣化を回避するため、Ti添加IF鋼をベースに、P含有量をできるだけ低減させ、その分、Mn、Siをバランスよく多量に添加することで、耐二次加工脆性に優れた高張力鋼板を得る技術が提案されている。また、特許文献2では、極低炭素鋼板を使用し、TiおよびNbに加えてBを添加することで、粒界強度を上昇させ、耐二次加工脆性を高める技術が提案されている。この特許文献2に記載の技術では、耐二次加工脆性の向上およびオーステナイト粒の再結晶の遅れに伴う熱間圧延時の負荷の増大防止を目的として、B含有量を最適化している。 Among these problems, several methods for avoiding the occurrence of secondary work embrittlement have been proposed (see, for example, Patent Documents 1 and 2). For example, in Patent Document 1, in order to avoid deterioration of secondary work embrittlement resistance due to grain boundary segregation, the P content is reduced as much as possible based on Ti-added IF steel, and a large amount of Mn and Si are balanced accordingly. There has been proposed a technique for obtaining a high-tensile steel sheet excellent in secondary work brittleness resistance. Patent Document 2 proposes a technique of using an ultra-low carbon steel plate and adding B in addition to Ti and Nb to increase the grain boundary strength and increase the secondary work brittleness resistance. In the technique described in Patent Document 2, the B content is optimized for the purpose of improving secondary work embrittlement resistance and preventing an increase in load during hot rolling accompanying a delay in recrystallization of austenite grains.
また、溶接性を改善する目的でもいくつかの提案がなされている(例えば、特許文献3〜5参照。)。例えば、特許文献3に記載の技術は、Tiおよび/またはNbを添加した極低炭素鋼板を焼鈍時に浸炭し、表層にマルテンサイトおよびベイナイト組織を形成し、スポット溶接性を向上しようとするものである。また、特許文献4に記載の技術は、極低炭素鋼にCuを添加し、溶接時の熱影響部を広くすることにより、スポット溶接継手強度を高めようとするものである。更に、特許文献5に記載の技術は、鋼にMgを添加して鋼板中にMg酸化物および/またはMg硫化物を生成させることにより、ピニング効果により、溶接部、熱影響部の細粒化を図り、溶接部の疲労強度の劣化を防止する技術であり非特許文献1には、厚鋼板でTiNを微細分散させて溶接部熱影響部の靭性を改善する技術が開示されている。 Some proposals have also been made for the purpose of improving weldability (see, for example, Patent Documents 3 to 5). For example, the technique described in Patent Document 3 is intended to improve spot weldability by carburizing an ultra-low carbon steel sheet added with Ti and / or Nb during annealing to form a martensite and bainite structure on the surface layer. is there. Further, the technique described in Patent Document 4 intends to increase the strength of a spot welded joint by adding Cu to an extremely low carbon steel to widen a heat affected zone during welding. Furthermore, the technique described in Patent Document 5 is to refine Mg in the welded part and heat-affected part by the pinning effect by adding Mg to the steel and generating Mg oxide and / or Mg sulfide in the steel sheet. Non-Patent Document 1 discloses a technique for improving the toughness of the heat affected zone by finely dispersing TiN in a thick steel plate.
更に、高強度鋼板の溶融めっき性を改善する目的の技術もいくつか提案されている(例えば、特許文献6、7参照)。例えば、特許文献6に記載の溶融亜鉛めっき高強度冷延鋼板では、溶融めっき性を阻害するSの含有量を0.03質量%以下およびPの含有量を0.01〜0.12%に制限する一方で、強化元素としてMnおよびCrを積極的に添加している。また、特許文献7に記載の高張力合金化亜鉛めっき鋼板では、Si含有量とMn含有量との相互関係を特定の範囲内とすることにより、溶融合金Znめっき性の改善を図っている。
耐二次加工脆性改善のため、B添加しMn−Pの添加バランスを最適化することにより高強度で耐二次加工脆性の優れた鋼板を提供するものもある(例えば、特許文献7参照)。また、耐二次加工脆性改善のため、B,Ti,Nbを添加する技術も開示されている(たとえば、特許文献8参照)。
Furthermore, several techniques for improving the hot dipping properties of high-strength steel sheets have been proposed (see, for example, Patent Documents 6 and 7). For example, in the hot dip galvanized high-strength cold-rolled steel sheet described in Patent Document 6, the content of S that hinders hot dipping properties is 0.03% by mass or less, and the content of P is 0.01 to 0.12%. While limiting, Mn and Cr are positively added as reinforcing elements. Moreover, in the high-tensile alloyed galvanized steel sheet described in Patent Document 7, the molten alloy Zn plating property is improved by setting the correlation between the Si content and the Mn content within a specific range.
In order to improve the secondary work brittleness resistance, there is also a steel sheet that provides high strength and excellent secondary work brittleness resistance by adding B and optimizing the addition balance of Mn-P (for example, see Patent Document 7). . Further, a technique of adding B, Ti, Nb for improving secondary work brittleness resistance is also disclosed (for example, see Patent Document 8).
更に、タンク特有の拝み状溶接部の引張強度改善のための溶接方法に関する技術(特許文献9)や深絞り用、プレス加工用高強度鋼板に関する技術(例えば、特許文献10、特許文献11、特許文献12参照)も開示されており、加えて、めっき外観確保のための技術が開示されている。
Further, a technique related to a welding method for improving the tensile strength of a peculiar welded portion unique to a tank (Patent Document 9) and a technique related to a deep drawing and high-strength steel sheet for press working (for example,
また、Si含有鋼のめっき性を向上させるために、凹凸を付与したロールで残留応力を生じさせる方法や(例えば、特許文献13参照)、表面粗度を抑制することにより、均一にめっきでき、めっき性が向上する技術がある(例えば、特許文献14参照)開示されている。また、酸洗後に0.3〜5μmの研削を行った後に、NiあるいはNi基合金めっきを施し、めっき性を改善させる技術がある(例えば、特許文献15参照)。さらに、熱延鋼板で粒界酸化等の内部酸化を生成させ、焼鈍時のSiの外方拡散抑制により、めっき性を改善する技術がある(例えば、特許文献16参照)。 Moreover, in order to improve the plating property of Si-containing steel, it is possible to uniformly plate by suppressing the surface roughness or the method of generating residual stress with a roll having irregularities (for example, see Patent Document 13), There is a technique for improving plating properties (for example, see Patent Document 14). Further, there is a technique for improving plating performance by performing Ni or Ni-based alloy plating after performing grinding of 0.3 to 5 μm after pickling (see, for example, Patent Document 15). Furthermore, there is a technique for improving plating properties by generating internal oxidation such as grain boundary oxidation in a hot-rolled steel sheet and suppressing outward diffusion of Si during annealing (see, for example, Patent Document 16).
以上のように、高強度鋼板の加工性、溶接性、拝み状溶接部の引張強度、耐二次加工脆性、めっき性に関する技術がある。 As described above, there are techniques relating to the workability, weldability, tensile strength of the wavy welded portion, secondary work brittleness resistance, and plating property of the high-strength steel sheet.
しかしながら、前述した従来の技術には以下に示す問題点がある。 However, the conventional techniques described above have the following problems.
即ち、特許文献1に記載の方法で製作された鋼板は、加工性や耐二次加工は良好であるが、条件によっては、水素焼鈍炉のような特別に露点の低い炉で焼鈍しないとめっき性が確保できず、十分な耐食性を得ることが困難である。特許文献2に記載の方法で作製された鋼板は、加工性や耐二次加工脆性について留意しているが、めっき性や耐食性については留意されておらず、めっき不良につながる。また、特許文献3に記載の方法は、焼鈍中に浸炭するが、実際の製造設備では通板速度、雰囲気ガス組成および温度が一定でないため、浸炭量が変化し、製造される鋼板の間で材質のバラツキが大きくなり、安定した鋼板の製造が困難であるという問題点がある。更に、特許文献4に記載の方法はCuを多量に添加するため、Cuによる表面欠陥が多発し、歩留まりが低下するという問題点がある。 That is, the steel sheet manufactured by the method described in Patent Document 1 has good workability and secondary processing resistance, but depending on conditions, it must be annealed in a furnace with a particularly low dew point such as a hydrogen annealing furnace. Therefore, it is difficult to obtain sufficient corrosion resistance. The steel plate produced by the method described in Patent Document 2 pays attention to workability and secondary work brittleness resistance, but does not pay attention to plating property and corrosion resistance, leading to poor plating. Moreover, although the method of patent document 3 carburizes during annealing, since the plate speed, the atmosphere gas composition, and temperature are not constant in an actual production facility, the amount of carburization changes, and between the steel plates manufactured. There is a problem that the variation in material becomes large and it is difficult to produce a stable steel plate. Furthermore, the method described in Patent Document 4 has a problem in that since a large amount of Cu is added, surface defects due to Cu frequently occur and the yield decreases.
更にまた、特許文献5や非特許文献1に記載の方法は、比較的溶接後の冷却速度が遅いアーク溶接等では効果があるが、冷却速度が速いシーム溶接等ではその効果が認められないという問題点があり、また、特許文献5や特許文献1に記載の厚鋼板と燃料タンクに使用する薄鋼板とでは成分も異なり、更には溶接部の形状も異なるため即適用できる技術とは言えない。更にまた、特許文献6は溶融亜鉛めっき性を考慮し、Siを0.03%以下に制限して、強化元素としてPやMnを活用しているが、PやMnの多量添加は溶接性および耐二次加工脆性が不十分であるという問題点がある。特許文献7は、その点は考慮して、溶融亜鉛めっき性は確保しているものの、タンク用の耐食性には不十分である。 Furthermore, the methods described in Patent Document 5 and Non-Patent Document 1 are effective in arc welding or the like where the cooling rate after welding is relatively slow, but the effect is not recognized in seam welding or the like where the cooling rate is high. There is a problem, and the steel plate described in Patent Document 5 and Patent Document 1 and the thin steel plate used in the fuel tank have different components, and further, the shape of the welded portion is different, so it cannot be said that the technology can be applied immediately. . Furthermore, Patent Document 6 considers hot dip galvanizing properties, restricts Si to 0.03% or less, and utilizes P and Mn as reinforcing elements. There is a problem that the secondary work brittleness resistance is insufficient. In consideration of this point, Patent Document 7 has insufficient hot-dip galvanizing properties but is insufficient for corrosion resistance for tanks.
特許文献8は、強度確保のためPを多量に添加していることとPとBのバランスが最適でないため、十分な低温靭性を得られないという欠点があることに加え、めっき性に関して十分な対策が検討されていないため、耐食性に劣る。特許文献9は、成形性向上のため多量のTiを使用しており、溶接部の強度や靭性を十分確保することができなく、また、Tiの添加量が適当でもNbが少ないため加工性を十分確保できない問題があることに加えめっき性については考慮されておらず、更にSiも0.5を上限に制限している。特許文献10はレーザー溶接を用いて改善する技術であり、燃料タンク製造に使用されているシーム溶接では適用困難であり、また、母材特性改善による溶接部特性改善技術には言及されていない。
Patent Document 8 has a disadvantage that sufficient low-temperature toughness cannot be obtained because a large amount of P is added to ensure strength and the balance between P and B is not optimal. Since measures have not been studied, it is inferior in corrosion resistance. Patent Document 9 uses a large amount of Ti for improving formability, and cannot sufficiently ensure the strength and toughness of the welded portion. Also, even if the addition amount of Ti is appropriate, Nb is small, so workability is improved. In addition to problems that cannot be sufficiently secured, the plating property is not considered, and Si is also limited to an upper limit of 0.5.
特許文献11は、母材特性改善のための技術ではあるが、耐食性が低く、加えて条件によっては拝み状シーム溶接部の靭性が低く、製鋼コストが高く加工性が低いという問題がある。また、特許文献12は条件によっては拝み状シーム溶接部の靭性が低く、加えて加工性の低下を招くといった問題もある。これらの特許文献10や特許文献12ではタンク特有の拝み状溶接部の引張強度改善やめっき外観は確保されるものの、条件によっては耐食性が低下するといった問題があった。
Although Patent Document 11 is a technique for improving the base material characteristics, there is a problem that the corrosion resistance is low, and depending on the conditions, the toughness of the wavy seam weld is low, the steelmaking cost is high, and the workability is low. Further, Patent Document 12 has a problem that, depending on conditions, the toughness of the wavy seam welded portion is low, and in addition, the workability is reduced. In these
特許文献13では、鋼板に残留応力を生じさせるために、凹凸を付与したロールを使用する必要があり、また耐食性は評価されていない。一方、特許文献14では、逆に表面粗度が大きいことがめっき不良の原因となるとしている。特許文献15で開示されている技術は、酸洗後の表面を研削するものであるが、酸洗板を全長全幅均一に研削するには追加設備が必要であり、また均一性に課題が残る。特許文献16の技術だけでは、熱延後に表層に残存したSi酸化物を除去することはできない。 In patent document 13, in order to produce a residual stress in a steel plate, it is necessary to use the roll which provided the unevenness | corrugation, and corrosion resistance is not evaluated. On the other hand, in Patent Document 14, a large surface roughness is the cause of defective plating. The technique disclosed in Patent Document 15 grinds the surface after pickling, but additional equipment is required to grind the pickling plate uniformly over the entire length, and there remains a problem in uniformity. . Only the technique of Patent Document 16 cannot remove the Si oxide remaining in the surface layer after hot rolling.
以上のように従来知見には耐二次加工脆性を向上させるものや、厚鋼板分野での溶接部靭性改善技術はある。しかしながら、燃料タンクは、製造工程において、プレスといった加工工程があり、シーム溶接といった熱処理工程があるため、母材の特性のみならず、加工後、熱処理後の特性も重要となる。すなわち高強度鋼を用いた場合、一般的に靭性は低下するため、耐二次加工脆性と溶接部靭性が同時に重要となる。更に表面はめっきして製品となるため、めっき性や耐食性も重要となるが、高強度鋼板にはめっきが付きにくく、耐食性が十分でないという問題がある。特に高強度化による軽量化、すなわち鋼板の薄肉化が進む中、更に耐食性が重要となる状況下で、例えば960時間のSSTという厳しい試験において、赤錆発生率を50%以下に抑制する技術は見当たらない。 As described above, the conventional knowledge includes a technique for improving secondary work brittleness resistance and a technique for improving weld toughness in the field of thick steel sheets. However, since the fuel tank has a processing step such as pressing in the manufacturing process and a heat treatment step such as seam welding, not only the characteristics of the base material but also the characteristics after processing and heat treatment are important. That is, when high-strength steel is used, toughness generally decreases, so that secondary work brittleness resistance and weld toughness are important simultaneously. Furthermore, since the surface is plated to become a product, plating properties and corrosion resistance are important, but there is a problem that high-strength steel sheets are difficult to be plated and corrosion resistance is not sufficient. In particular, there is no technology to reduce the red rust occurrence rate to 50% or less in a strict test of SST for 960 hours, for example, in a situation where corrosion resistance becomes more important as weight reduction due to higher strength, that is, thinning of the steel sheet progresses. Absent.
本発明はかかる問題点に鑑みてなされたものであり、その課題とするところは、自動車分野、特に燃料タンク用途に適用可能なプレス成形性を有し、優れた耐二次加工脆性および優れたシーム溶接部低温靭性を有する、340MPa以上の高強度鋼板に耐食性向上のために溶融Sn−Znめっきを施したSn−Znめっき高強度鋼板およびその製造方法を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to have press formability applicable to the automotive field, in particular, fuel tank use, excellent secondary work brittleness resistance, and excellent An object of the present invention is to provide a Sn-Zn plated high-strength steel plate having a low temperature toughness of seam welded portion and subjected to hot Sn-Zn plating for improving corrosion resistance on a high-strength steel plate of 340 MPa or more and a method for producing the same.
本発明者らは、前述の課題を解決するために、Sn−Znめっき高強度鋼板およびその製造方法ついて鋭意検討し、SSTでの耐食性試験で赤錆が発生するメカニズムを研究した。 In order to solve the above-mentioned problems, the present inventors diligently studied about a Sn—Zn plated high-strength steel sheet and a method for producing the same, and studied a mechanism of red rust generation in an SST corrosion resistance test.
その結果、焼鈍工程で濃化するSiやMnの酸化物によるめっき濡れ性の低下に加え、熱延工程でのスケール生成に伴い、スケール/地鉄界面に濃化するSi酸化物の残存が原因で、冷延、焼鈍後に、粉砕された微細なSi酸化物が残存し、これが溶融Sn−Znめっきの濡れ性を低下し、その結果耐食性を低下させる原因であることが判明した。 As a result, in addition to the decrease in plating wettability due to oxides of Si and Mn that are concentrated in the annealing process, there is a residual Si oxide that is concentrated at the scale / base metal interface due to the scale formation in the hot rolling process. Thus, it was found that after cold rolling and annealing, fine pulverized Si oxide remains, which decreases the wettability of the molten Sn—Zn plating and, as a result, decreases the corrosion resistance.
したがって、高強度鋼板について溶融Sn−Znめっきの濡れ性を低下させないためには、酸洗以降に残存するめっきの濡れ性の低下の原因となるSi酸化物を低減させればよく、このためには熱延でのスケール生成量の低減により達成できることを知見した。 Therefore, in order not to reduce the wettability of the molten Sn—Zn plating for the high-strength steel plate, it is only necessary to reduce the Si oxide that causes a decrease in the wettability of the plating remaining after the pickling. It was found that this can be achieved by reducing the amount of scale produced by hot rolling.
本発明は、これらの知見に基づいて完成したものであり、その発明の要旨は次の通りである。 The present invention has been completed based on these findings, and the gist of the invention is as follows.
(1) 質量%で、
C:0.0005〜0.0050%、
Si:0.3超〜1.0%、
Mn:0.70〜2.0%、
P:0.05%以下、
Ti:0.010〜0.050%、
Nb:0.010〜0.040%、
B:0.0005〜0.0030%、
S:0.010%以下、
Al:0.01〜0.30%、
N:0.0010〜0.01%
を含有し、残部がFeおよび不可避的不純物からなる成分組成の高強度鋼板で、かつ、Si表面濃度が0.3%超〜1.5%、表面のSi含有酸化物の面積率が全表面に対して3%以下、かつ、Si含有酸化物1個の大きさが1μm以下である高強度鋼板に、面積率で97%以上のFeSn2合金層上に、1〜8.8%のZnと残部がSnおよび不可避的不純物からなり、その付着量が片面当り10〜150g/m2である溶融Sn−Znめっきを設けたことを特徴とするSn−Znめっき高強度鋼板。
(1) In mass%,
C: 0.0005 to 0.0050%,
Si: more than 0.3 to 1.0%,
Mn: 0.70 to 2.0%,
P: 0.05% or less,
Ti: 0.010 to 0.050%,
Nb: 0.010 to 0.040%,
B: 0.0005 to 0.0030%,
S: 0.010% or less,
Al: 0.01-0.30%,
N: 0.0010 to 0.01%
High-strength steel sheet having a composition comprising Fe and inevitable impurities as the balance, Si surface concentration of more than 0.3% to 1.5%, and the surface area ratio of the Si-containing oxide on the entire surface 1% to 8.8% Zn on the FeSn 2 alloy layer having an area ratio of 97% or more on a high-strength steel plate having a size of 3% or less and one Si-containing oxide of 1 μm or less. A Sn-Zn plated high-strength steel sheet, which is provided with molten Sn-Zn plating, the balance of which consists of Sn and inevitable impurities, the adhesion amount of which is 10 to 150 g / m 2 per side.
(2) 上記(1)に記載の成分組成の溶鋼を連続鋳造してスラブを得る工程と、該スラブを1000℃以上1300℃以下で加熱する工程と、仕上げ温度がAr3温度以上1000℃以下の条件で熱間圧延して熱延鋼板を得る工程と、該熱間圧延の仕上げ温度を[FT]℃としたときに、[FT]×0.6−500(sec.)以上の時間で酸洗を行ない熱延鋼板の表面スケールを除去する酸洗工程と、該酸洗した鋼板を50%以上の冷延率で冷間圧延して所定の厚さの冷延鋼板とする工程と、該冷延鋼板を再結晶温度以上の温度で焼鈍する工程と、該焼鈍鋼板の表面スケールを除去する酸洗工程と、該酸洗した鋼板表面に溶融めっき前にFe−Niプレめっきを施した後、1〜8.8%のZnと残部がSnおよび不可避的不純物からなり、その付着量が片面当り10〜150g/m2である溶融Sn−Znめっきを施す工程とを有し、めっき処理前の鋼板のSi表面濃度が0.3%超〜1.5%であることを特徴とする上記(1)に記載のSn−Znめっき高強度鋼板の製造方法。 (2) A step of continuously casting the molten steel having the composition described in (1) to obtain a slab, a step of heating the slab at 1000 ° C. to 1300 ° C., and a finishing temperature of Ar 3 temperature to 1000 ° C. The process of obtaining a hot-rolled steel sheet by hot rolling under the conditions of [FT] × 0.6-500 (sec.) Or more when the finishing temperature of the hot rolling is [FT] ° C. Pickling to remove the surface scale of the hot-rolled steel sheet by pickling, and to cold-roll the pickled steel sheet at a cold rolling rate of 50% or more to obtain a cold-rolled steel sheet having a predetermined thickness; A step of annealing the cold-rolled steel sheet at a temperature higher than the recrystallization temperature, a pickling process for removing the surface scale of the annealed steel sheet, and Fe-Ni pre-plating was performed on the pickled steel sheet surface before hot dipping. Later, 1 to 8.8% Zn and the balance consists of Sn and inevitable impurities, A step of performing molten Sn—Zn plating with an adhesion amount of 10 to 150 g / m 2 per side, and the Si surface concentration of the steel sheet before the plating treatment is more than 0.3% to 1.5%. The manufacturing method of the Sn-Zn plating high-strength steel plate as described in said (1) characterized by these.
(3) 上記(2)に記載の酸洗工程のいずれもが、20〜400g/lの硫酸水溶液中に硝酸塩、硫酸塩、フルオロケイ酸塩、フルオロホウ酸塩の1種または2種以上を混合した酸洗溶液で電解酸洗する工程であることを特徴とする上記(2)に記載のSn−Znめっき高強度鋼板の製造方法。 Any of the pickling process described in (3) above SL (2), nitrate in sulfuric acid aqueous solution of 20 to 400 g / l, sulfates, fluoro silicates, one or two or more of fluoroborate The method for producing a Sn-Zn plated high-strength steel sheet according to the above (2), which is a step of electrolytic pickling with a mixed pickling solution.
本発明の鋼板は、優れた耐食性を有する340MPa以上のSn−Znめっき高強度鋼板であり、更に優れたプレス成形性、耐二次加工脆性、拝み状溶接部の引張強度をも有するため、自動車分野、特に燃料タンク用途に適用可能な優れたSn−Znめっき高強度鋼板およびその製造方法を提供することができる。これにより、鋼板の高強度化が可能となり、自動車の車体重量軽減による燃費向上が可能となり、とりわけ、燃料タンクの軽量化、車体デザインの複雑化が可能となる。 The steel sheet of the present invention is a Sn-Zn plated high-strength steel sheet having excellent corrosion resistance of 340 MPa or more, and further has excellent press formability, secondary work brittleness resistance, and tensile strength of a wrinkled weld. It is possible to provide an excellent Sn—Zn plated high-strength steel sheet applicable to the field, particularly to fuel tank applications, and a method for producing the same. This makes it possible to increase the strength of the steel sheet and to improve the fuel efficiency by reducing the weight of the vehicle body. In particular, the fuel tank can be reduced in weight and the vehicle body design can be complicated.
更に、本発明の鋼板で製造した燃料タンクは、自動車燃料の中で、特にバイオ燃料を用いた時に大きな効果を発揮する。 Furthermore, the fuel tank manufactured with the steel plate of the present invention exerts a great effect when automobile fuel is used, particularly when biofuel is used.
以下、本発明を実施するための形態について、詳細に説明する。なお、以下の説明においては、組成における質量%は、単に%と記載する。 Hereinafter, embodiments for carrying out the present invention will be described in detail. In the following description, mass% in the composition is simply described as%.
本願発明者は、従来技術では極めて困難であった優れたプレス成形性、耐二次加工脆性と拝み状溶接部の引張強度、更には優れためっき性、耐食性を有する高強度鋼板を得るため、鋭意検討を重ねた。
その結果、熱延工程でのスケール生成に伴い、スケール/地鉄界面に濃化するSi酸化物を低減させることで、340MPa以上の引張り強度の高強度鋼板で、自動車分野、特に燃料タンク用途に適用可能なプレス成形性を有し、かつ、優れた耐二次加工脆性と拝み状溶接部の引張強度を有し、更に優れためっき性、耐食性を有することを実現できる高強度鋼板を見出し本発明に至った。
In order to obtain a high-strength steel sheet having excellent press formability, secondary work brittleness resistance and tensile strength of a wrinkled weld, which is extremely difficult in the prior art, and further having excellent plating properties and corrosion resistance, We studied earnestly.
As a result, with the generation of scale in the hot rolling process, by reducing the Si oxide concentrated at the scale / base metal interface, it is a high-strength steel sheet with a tensile strength of 340 MPa or more, for the automotive field, especially for fuel tank applications. We have found a high-strength steel sheet that has applicable press-formability, has excellent secondary work brittleness resistance, and has a tensile strength of the wavy welded portion, and can also have excellent plating and corrosion resistance. Invented.
先ず、本発明の高強度鋼板における成分の数値限定理由について説明する。なお、成分についての%は、質量%を意味する。 First, the reason for limiting the numerical values of the components in the high-strength steel sheet of the present invention will be described. In addition,% about a component means the mass%.
C:0.0005〜0.0050%
Cは、本発明において極めて重要な元素である。具体的には、Cは、NbおよびTiと結合して炭化物を形成し、高強度化を達成するために極めて有効な元素である。しかしながら、C含有量が0.0050%を超えると、Cの固定に必要なTiおよびNbを添加したとしても加工性が低下すると共に、シーム溶接およびレーザ溶接における拝み状シーム溶接部靭性が低下する。一方、本発明の鋼板においては、C含有量が低くても、他の強化方法で補うことができるが、C含有量が0.0005%未満の場合、強度確保が困難になると共に、製鋼時の脱炭コストが上昇する。よって、C含有量は0.0005〜0.0050%とする。また、極めて高い加工性および溶接部靭性が要求される場合には、C含有量を0.0030%以下とすることが好ましい。
C: 0.0005 to 0.0050%
C is an extremely important element in the present invention. Specifically, C is an extremely effective element for combining Nb and Ti to form carbides and achieving high strength. However, when the C content exceeds 0.0050%, even if Ti and Nb necessary for fixing C are added, the workability is lowered and the toughness of the seam welded portion in seam welding and laser welding is also lowered. . On the other hand, in the steel sheet of the present invention, even if the C content is low, it can be supplemented by other strengthening methods. However, when the C content is less than 0.0005%, it is difficult to ensure the strength and at the time of steelmaking. The decarburization cost increases. Therefore, the C content is set to 0.0005 to 0.0050%. Moreover, when extremely high workability and weld toughness are required, the C content is preferably 0.0030% or less.
Si:0.3超〜1.0%
Siは固溶強化元素として、高強度化するために有効な元素である。340MPa以上の引張強度と優れた耐二次加工脆性や拝み状シーム溶接部靭性を確保するためには0.3%超が必要である。一方で、Si含有量が過多になると、具体的には、Si含有量が1.0%を超えると、その他の条件は本発明の範囲内であったとしても溶融めっき性が損なわれる。よって、Si含有量の0.3超〜1.0%とする。
Si: more than 0.3 to 1.0%
Si is an effective element for increasing the strength as a solid solution strengthening element. In order to ensure a tensile strength of 340 MPa or more and excellent secondary work brittleness resistance or toughness of a wavy seam weld, more than 0.3% is necessary. On the other hand, if the Si content is excessive, specifically, if the Si content exceeds 1.0%, the hot dipping property is impaired even if other conditions are within the scope of the present invention. Therefore, it is more than 0.3 to 1.0% of the Si content.
Mn:0.70〜2.0%
Mnは、Siと同様に固溶強化により鋼板強度を高める元素であり、耐二次加工脆性、溶接部靭性およびめっき性、耐食性の向上を目的とした本発明の鋼板を高強度化するために重要な元素の1つである。Mnには、組織を微細化して高強度化する機構と、固溶強化による高強度化機構とがあるが、Mn含有量が0.70%未満の場合、その添加効果が得られず、また他の元素で補完した場合は、耐二次加工脆性、溶接部靭性およびめっき性の全ての項目で目標を達成することができない。一方、Mnの含有量が2.0%を超えると、深絞り性の指標であるr値の面内異方性が大きくなり、プレス成形性が損なわれると共に、鋼板の表面にMn酸化物が生成し、めっき性が損なわれる。よって、Mn含有量は0.70〜2.0%とする。また、Mn含有量を1.0%以上とすることにより、熱延仕上げ温度を910℃以下にしても鋼板の組織を維持することができるのでMn含有量は1.0〜2.0%が好ましい。
Mn: 0.70 to 2.0%
Mn is an element that increases the strength of the steel sheet by solid solution strengthening, similar to Si, in order to increase the strength of the steel sheet of the present invention with the aim of improving secondary work brittleness resistance, weld toughness and plating properties, and corrosion resistance. One of the important elements. Mn has a mechanism for increasing the strength by refining the structure and a mechanism for increasing the strength by solid solution strengthening. However, when the Mn content is less than 0.70%, the addition effect cannot be obtained. When supplemented with other elements, the targets cannot be achieved in all items of secondary work brittleness resistance, weld toughness and plating properties. On the other hand, if the Mn content exceeds 2.0%, the in-plane anisotropy of the r value, which is an index of deep drawability, increases, press formability is impaired, and Mn oxide is present on the surface of the steel sheet. It is produced and the plating property is impaired. Therefore, the Mn content is 0.70 to 2.0%. Further, by setting the Mn content to 1.0% or more, the structure of the steel sheet can be maintained even if the hot rolling finishing temperature is 910 ° C. or less, so the Mn content is 1.0 to 2.0%. preferable.
P:0.05%以下
Pは、添加しても加工性の劣化が少なく、固溶強化で高強度化に有効な元素である。しかしながら、Pは、粒界に偏析して耐二次加工脆性を劣化させると共に、溶接部に凝固偏析を生じ、拝み状シーム溶接部靭性を劣化させる元素でもある。また、Pは、めっき時までの熱履歴により、鋼板の表面に偏析し、めっき性も劣化させる。具体的には、P含有量が0.05%を超えると、これらの特性が低下する。よって、P含有量は0.05%以下に規制する。なお、P含有量の下限値は特に規定する必要はないが、P含有量を0.005%未満にすると、精錬コストが高くなるのでP含有量は0.005%以上とすることが好ましい。また、強度確保の観点からは0.02%以上が好ましい。
P: 0.05% or less P is an element effective in increasing strength by solid solution strengthening with little deterioration in workability even when added. However, P is also an element that segregates at the grain boundary to deteriorate the secondary work brittleness resistance and causes solidification segregation at the welded portion, which deteriorates the toughness of the wavy seam welded portion. Further, P segregates on the surface of the steel sheet due to the thermal history up to the plating and deteriorates the plating property. Specifically, when the P content exceeds 0.05%, these characteristics deteriorate. Therefore, the P content is restricted to 0.05% or less. The lower limit of the P content does not need to be specified, but if the P content is less than 0.005%, the refining cost increases, so the P content is preferably 0.005% or more. Moreover, from a viewpoint of ensuring strength, 0.02% or more is preferable.
Ti:0.010〜0.050%
Tiは、CおよびNとの親和力が強く、凝固時または熱間圧延時に炭窒化物を形成し、鋼中に固溶しているCおよびNを低減して、加工性を高める効果がある。しかしながら、Ti含有量が0.010%未満では、この効果が得られない。一方、Ti含有量が0.050%を超えると、溶接継手の溶接部の強度および靭性、即ち、拝み状シーム溶接部靭性が劣化する。よって、Ti含有量は0.010〜0.050%とする。
Ti: 0.010 to 0.050%
Ti has a strong affinity for C and N, and forms carbonitrides during solidification or hot rolling, and has the effect of reducing C and N dissolved in the steel and improving workability. However, when the Ti content is less than 0.010%, this effect cannot be obtained. On the other hand, when the Ti content exceeds 0.050%, the strength and toughness of the welded portion of the welded joint, that is, the torsional seam welded portion toughness deteriorates. Therefore, the Ti content is set to 0.010 to 0.050%.
Nb:0.010〜0.040%
Nbは、Tiと同様にCおよびNとの親和力が強く、凝固時または熱間圧延時に炭窒化物を形成し、鋼中に固溶しているCおよびNを低減して、加工性を高める効果がある。しかしながら、Nb含有量が0.010%未満の場合、この効果が得られない。一方、Nb含有量が0.040%を超えると、再結晶温度が高くなり、高温焼鈍が必要になると共に、溶接継手の溶接部の靭性が劣化する。よって、Nb含有量は0.010〜0.040%とする。
Nb: 0.010 to 0.040%
Nb has a strong affinity with C and N like Ti, forms carbonitride during solidification or hot rolling, reduces C and N dissolved in steel, and improves workability effective. However, this effect cannot be obtained when the Nb content is less than 0.010%. On the other hand, when the Nb content exceeds 0.040%, the recrystallization temperature increases, high temperature annealing is required, and the toughness of the welded portion of the welded joint deteriorates. Therefore, the Nb content is set to 0.010 to 0.040%.
B:0.0005〜0.0030%
Bは、粒界に偏析することにより、粒界強度を高め、耐二次加工脆性を良好にする元素である。しかしながら、B含有量が0.0005%未満の場合、その効果が得られない。
B: 0.0005 to 0.0030%
B is an element that increases the grain boundary strength and improves the secondary work brittleness resistance by segregating at the grain boundaries. However, when the B content is less than 0.0005%, the effect cannot be obtained.
一方、B含有量が0.0030%を超えると、溶接時にBがγ粒界に偏析してフェライト変態を抑制し、溶接部およびその熱影響部の組織が低温変態生成組織となるため、この溶接部および熱影響部が硬質化すると共に靭性が劣化し、その結果、拝み状シーム溶接部靭性が劣化する。 On the other hand, if the B content exceeds 0.0030%, B segregates at the γ grain boundary during welding and suppresses ferrite transformation, and the structure of the welded part and its heat-affected zone becomes a low-temperature transformation-generated structure. The welded part and the heat-affected zone harden and the toughness deteriorates. As a result, the torsional seam welded part toughness deteriorates.
また、多量にBを添加すると、熱間圧延時におけるフェライト変態も抑制され、低温変態生成組織の熱延鋼板となるため、熱延鋼板の強度が高くなり、冷間圧延時の負荷が高くなる。更に、B含有量が0.0030%を超えると、再結晶温度が高くなり、高温での焼鈍が必要となるため、製造コストの上昇を招くと共に、深絞り性の指標であるr値の面内異方性が大きくなり、プレス成形性が劣化する。よって、B含有量は0.0005〜0.0030%とする。なお、B含有量の好ましい範囲は、前述した理由から0.0005〜0.0015%である。 Further, when B is added in a large amount, ferrite transformation during hot rolling is also suppressed, and a hot rolled steel sheet having a low temperature transformation formation structure is obtained, so the strength of the hot rolled steel sheet is increased and the load during cold rolling is increased. . Furthermore, if the B content exceeds 0.0030%, the recrystallization temperature becomes high, and annealing at a high temperature is required. This leads to an increase in manufacturing cost and an r value surface that is an index of deep drawability. The internal anisotropy increases and the press formability deteriorates. Therefore, the B content is set to 0.0005 to 0.0030%. In addition, the preferable range of B content is 0.0005 to 0.0015% from the reason mentioned above.
S:0.010%以下
Sは、鋼の精錬時に不可避的に混入する不純物であり、MnおよびTiと結合して析出物を形成し、加工性を劣化させるため、S含有量は0.010%以下に規制する。なお、S含有量を0.0001%未満に低減するには製造コストが高くなるため、S含有量は0.0001%以上とすることが好ましい。
S: 0.010% or less S is an impurity that is inevitably mixed during the refining of steel, and combines with Mn and Ti to form precipitates and deteriorate the workability. Therefore, the S content is 0.010%. % Or less. In order to reduce the S content to less than 0.0001%, the manufacturing cost increases. Therefore, the S content is preferably set to 0.0001% or more.
Al:0.01〜0.30%
Alは、鋼の精錬時に脱酸材として使用される元素であるが、Al含有量が0.01%未満では脱酸効果が得られない。しかしながら、Al含有量が0.30%を超えると、拝み状シーム溶接部の靭性の低下や加工性の低下を招く。よって、Al含有量は0.01〜0.30%とする。
Al: 0.01-0.30%
Al is an element used as a deoxidizing material during refining of steel, but if the Al content is less than 0.01%, the deoxidizing effect cannot be obtained. However, if the Al content exceeds 0.30%, the toughness of the wavy seam welded portion and the workability are reduced. Therefore, the Al content is set to 0.01 to 0.30%.
N:0.0010〜0.01%
Nは、鋼の精錬時に不可避的に混入する元素である。また、Nは、Ti、AlおよびNbの窒化物を形成し、加工性には悪影響を及ぼさないが、溶接部靭性を劣化させる。このため、N含有量は0.01%以下に規制する必要がある。一方、N含有量を0.0010%未満に低減するには、製造コストが高くなる。よって、N含有量は0.0010〜0.01%とする。
N: 0.0010 to 0.01%
N is an element inevitably mixed during the refining of steel. N forms nitrides of Ti, Al, and Nb and does not adversely affect workability, but deteriorates the toughness of the weld. For this reason, it is necessary to regulate N content to 0.01% or less. On the other hand, to reduce the N content to less than 0.0010%, the manufacturing cost increases. Therefore, the N content is set to 0.0010 to 0.01%.
なお、本発明の鋼板における残部、即ち、上述した各元素以外の成分は、Feおよび不可避的不純物である。 In addition, the remainder in the steel plate of this invention, ie, components other than each element mentioned above, is Fe and an unavoidable impurity.
本発明の高強度鋼板においては、以上のように元素含有量を特定範囲内にすることにより、340MPa以上の引張強度で、自動車分野、特に燃料タンク用途に適用可能なプレス成形性を有し、低温靭性、めっき性、耐食性に優れたSn−Znめっき高強度鋼板およびその製造方法を提供することができる。これらの効果により、鋼板の高強度化が可能となり、自動車の車体重量軽減による燃費向上が可能となり、とりわけ、燃料タンクの軽量化、車体デザインの複雑化が可能となる。この効果は工業的には極めて大きい。 In the high-strength steel sheet of the present invention, by making the element content within a specific range as described above, with a tensile strength of 340 MPa or more, it has a press formability applicable to the automotive field, in particular, a fuel tank application, An Sn-Zn plated high-strength steel sheet excellent in low-temperature toughness, plating property, and corrosion resistance and a method for producing the same can be provided. These effects make it possible to increase the strength of the steel sheet, improve fuel efficiency by reducing the weight of the vehicle body, and in particular, reduce the weight of the fuel tank and complicate the vehicle body design. This effect is extremely large industrially.
本発明者らは、高強度鋼板の鋼板成分および溶融Sn−Znめっきの濡れ性について鋭意検討し、SSTでの耐食性試験で赤錆が発生するメカニズムを研究した。その結果、溶融Sn−Znめっきにおいては、焼鈍工程で濃化するSiやMnの酸化物によるめっき濡れ性の低下に加え、熱延工程でのスケール生成に伴い、スケール/地鉄界面に濃化するSi含有酸化物の残存が原因で、冷延、焼鈍後に、粉砕された微細なSi含有酸化物が残存し、これがめっき濡れ性を低下し、その結果耐食性を低下させる原因であることが判明した。 The present inventors diligently studied about the steel plate components of the high-strength steel plate and the wettability of the molten Sn—Zn plating, and studied the mechanism by which red rust occurs in the corrosion resistance test at SST. As a result, in molten Sn-Zn plating, in addition to the decrease in plating wettability caused by oxides of Si and Mn that are concentrated in the annealing process, as the scale is generated in the hot rolling process, it is concentrated at the scale / base metal interface. It turns out that after the cold rolling and annealing, finely pulverized Si-containing oxide remains, which reduces the plating wettability and consequently the corrosion resistance. did.
すなわち、鋼板表面にSiが濃化したSi含有酸化物が存在する鋼板に、Sn−Znめっきを行なうと、Si酸化物が存在している部分でめっき不良が生じ、めっきが抜けた部分が形成される。このために、Sn−Znめっきをしたにも拘らず、耐食性が低下するものである。 That is, when Sn-Zn plating is performed on a steel sheet having a Si-containing oxide enriched with Si on the surface of the steel sheet, plating failure occurs in the portion where the Si oxide is present, and a portion where plating is lost is formed. Is done. For this reason, although Sn-Zn plating is performed, the corrosion resistance is lowered.
本発明では、Sn−Znめっき処理前の鋼板のSi表面濃度を0.3超〜1.5%以下、表面のSi含有酸化物の面積率が全表面に対して3%以下、かつ、Si含有酸化物1個の大きさを1μm以下に制御することにより、高強度の鋼板かつ耐食性を確保できることを知見した。上述した通り340MPa以上の引張強度と優れた耐二次加工脆性や拝み状シーム溶接部靭性を確保するためには、鋼板(地鉄)中に0.3%超Siが含有されていることから、鋼板のSi表面濃度の下限は0.3%超とした。一方、Si表面濃度が1.5%を超えると、上述した通りめっきが抜けたSn−Znめっき不良部分が多くなりすぎて、耐食性が低下する。よって、Si表面濃度を0.3超〜1.5%とする。Si表面濃度の測定は、CMA(Computer−aided Micro Analyzer)等元素濃度を定量的に測定できる装置で行う。 In the present invention, the Si surface concentration of the steel sheet before Sn—Zn plating treatment is more than 0.3 to 1.5% or less, the area ratio of the Si-containing oxide on the surface is 3% or less with respect to the entire surface, and Si It has been found that a high strength steel sheet and corrosion resistance can be secured by controlling the size of one contained oxide to 1 μm or less. As described above, in order to ensure the tensile strength of 340 MPa or more and the excellent secondary work brittleness resistance and the toughness of the seam welded seam, the steel sheet (base iron) contains more than 0.3% Si. The lower limit of the Si surface concentration of the steel sheet was over 0.3%. On the other hand, when the Si surface concentration exceeds 1.5%, as described above, the Sn—Zn plating defective portion from which plating is lost increases so that the corrosion resistance is lowered. Therefore, the Si surface concentration is set to more than 0.3 to 1.5%. The Si surface concentration is measured by a device capable of quantitatively measuring the element concentration such as CMA (Computer-Aided Micro Analyzer).
また、Si含有酸化物は、鋼板表面に存在させれば、Sn−Znめっき不良を生じさせる。しかし、めっき不良が生じても耐食性に悪影響を与えないSi酸化物の存在状態としては、鋼板表面のSi含有酸化物の面積率が全表面に対して3%以下、かつ、Si含有酸化物1個の大きさを1μm以下に制御することが重要であることがわかった。すなわち、鋼板表面のSi含有酸化物の面積率が全表面に対して3%以下、かつ、Si含有酸化物1個の大きさが1μm以下であれば、Sn−Znめっきの際にめっきが抜けた不良部が生じるとしても、めっき不良部の大きさが小さくて少ないから、そのめっき不良部はめっきで覆われためっき層となり、耐食性に悪影響を与えないからである。なお、Si酸化物の存在状態は、SEM(Scanning Electron Microscope)等の高倍で観察可能な装置で行う。 In addition, if the Si-containing oxide is present on the surface of the steel sheet, it causes Sn—Zn plating defects. However, as the existence state of the Si oxide that does not adversely affect the corrosion resistance even if plating failure occurs, the area ratio of the Si-containing oxide on the steel sheet surface is 3% or less with respect to the entire surface, and the Si-containing oxide 1 It was found that it is important to control the size of the individual to 1 μm or less. That is, if the area ratio of the Si-containing oxide on the surface of the steel sheet is 3% or less with respect to the entire surface and the size of one Si-containing oxide is 1 μm or less, the plating is removed during Sn-Zn plating. This is because even if a defective portion is generated, the size of the defective plating portion is small and small, so that the defective plating portion becomes a plating layer covered with plating and does not adversely affect the corrosion resistance. Note that the presence state of the Si oxide is performed with a device that can be observed at a high magnification, such as SEM (Scanning Electron Microscope).
このように鋼板表面に残存するSi含有酸化物の存在状態を制御する手段について説明する。 The means for controlling the presence state of the Si-containing oxide remaining on the steel sheet surface will be described.
まず、鋼板表面に濃化したSi含有酸化物が形成されるメカニズムについて考察する。図1(a)に示すように、鋼板地鉄1中には固溶Si(Fe+固溶Si)が存在している。この鋼板を加熱すると、図1(b)に示すように、鋼板地鉄表面にスケール(Fe酸化物)2が生成する。地鉄中のSiはスケール中に取り込まれずにスケールと地鉄との界面に濃化してSi含有酸化物3となって存在する。デスケーリングを行なって、スケールを削除しても地鉄表面にはSi含有酸化物が残存する。このSi含有酸化物は、熱間圧延や焼鈍中に生成する。 First, the mechanism by which concentrated Si-containing oxides are formed on the steel sheet surface will be considered. As shown in FIG. 1 (a), solid solution Si (Fe + solid solution Si) is present in the steel plate 1. When this steel plate is heated, as shown in FIG. 1B, scale (Fe oxide) 2 is generated on the surface of the steel plate. Si in the base iron is not taken into the scale, but is concentrated at the interface between the scale and the base iron to form the Si-containing oxide 3. Even if descaling is performed and the scale is removed, the Si-containing oxide remains on the surface of the base iron. This Si-containing oxide is generated during hot rolling or annealing.
本発明では、Si含有酸化物を低減させるには、熱間圧延のスケール生成量の低減と酸洗時間の適正化により達成でき、熱間圧延のスケール生成量(スケール厚み)の低減のためには、熱間圧延の仕上温度を800〜925℃の低温にすることが重要である。そして、熱間圧延の仕上温度を低温としたことによって生成したスケールおよび表面濃化したSiは、酸洗によって除去することができ、特に、熱間圧延の仕上温度と酸洗時間とを制御することにより、本発明が目的とするSi表面濃化、鋼板表面に残存するSi含有酸化物の存在状態を制御できることを見出した。 In the present invention, in order to reduce the Si-containing oxide, it can be achieved by reducing the scale production amount of hot rolling and optimizing the pickling time, and for reducing the scale production amount (scale thickness) of hot rolling. It is important to set the finishing temperature of hot rolling to a low temperature of 800 to 925 ° C. And the scale and surface-concentrated Si generated by lowering the hot rolling finishing temperature can be removed by pickling, and in particular, controlling the hot rolling finishing temperature and pickling time. Thus, the present inventors have found that the Si surface enrichment targeted by the present invention and the existence state of the Si-containing oxide remaining on the steel sheet surface can be controlled.
図2は、熱間仕上温度FT(℃)と酸洗時間(sec)との関係によるSi表面濃化が1.5%以下になる条件を示す図で、Si表面濃化が1.5%となった場合を◇、Si表面濃化が1.3%となった場合を○、そしてSi表面濃化が1.1%となった場合を△で示してある。なお、熱延スケール除去のための酸洗には、鉄鋼業で一般的に用いられている5〜20%の塩酸を用いる。 FIG. 2 is a diagram showing conditions under which the Si surface concentration is 1.5% or less due to the relationship between the hot finishing temperature FT (° C.) and the pickling time (sec), and the Si surface concentration is 1.5%. ◯, the case where the Si surface enrichment is 1.3%, and the case where the Si surface enrichment is 1.1% are indicated by Δ. In addition, 5 to 20% hydrochloric acid generally used in the steel industry is used for pickling for removing the hot-rolled scale.
図2に示すように、熱間仕上温度FT(℃)が高くなるにしたがって、スケール生成量が増加し、酸洗時間を長くしなければSi表面濃化を1.5%以下とすることができない。ここで、Si表面濃化を1.5%以下とすることができる領域で酸洗を行なえばよく、その領域は、熱間圧延仕上げ温度を[FT]℃としたときに、[FT]×0.6−500(sec.)以上の時間で熱延鋼板の表面スケールを除去する酸洗を行なえば良いことが分かる。 As shown in FIG. 2, as the hot finish temperature FT (° C.) increases, the amount of scale generation increases, and if the pickling time is not lengthened, the Si surface concentration may be 1.5% or less. Can not. Here, pickling may be performed in a region where the Si surface concentration can be 1.5% or less, and the region is [FT] × when the hot rolling finish temperature is [FT] ° C. It can be seen that pickling for removing the surface scale of the hot-rolled steel sheet may be performed in a time of 0.6 to 500 (sec.) Or more.
したがって、本発明における酸洗時間は、熱間圧延仕上げ温度を[FT]℃としたときに、[FT]×0.6−500(sec.)以上の時間と限定した。なお、上限は特に限定されるものではなく、適宜定めればよい。 Therefore, the pickling time in the present invention is limited to [FT] × 0.6-500 (sec.) Or more when the hot rolling finish temperature is [FT] ° C. The upper limit is not particularly limited and may be determined as appropriate.
なお、酸洗は常法通りの酸洗を行なえばよく、酸洗では、塩酸、硫酸、硝酸水溶液やこれらの混合水溶液の使用が例示されるが、酸洗速度が大きい塩酸水溶液が好適である。例えば、塩酸濃度は5〜20mass%、液温は80〜95℃、酸洗時間は20〜100秒とすることができる。また、酸洗前に、熱延スケールにクラックを発生させ(スケールブレーキング)、脱スケール性を向上させて、脱スケールすることが好ましい。 The pickling may be performed as usual, and examples of the pickling include use of hydrochloric acid, sulfuric acid, nitric acid aqueous solution or a mixed aqueous solution thereof, but a hydrochloric acid aqueous solution having a high pickling speed is preferable. . For example, the hydrochloric acid concentration can be 5 to 20 mass%, the liquid temperature can be 80 to 95 ° C., and the pickling time can be 20 to 100 seconds. Moreover, before pickling, it is preferable to generate a crack in the hot-rolled scale (scale braking) to improve the descaling property and descaling.
また、酸洗した熱延鋼板に50%以上の冷延率で冷間圧延して所定の厚さの冷延鋼板とし、再結晶温度以上の温度で焼鈍した後に、酸洗、特に、電解酸洗することによっても、本発明が目的とするSi表面濃化、鋼板表面に残存するSi含有酸化物の存在状態を制御することができる。 The pickled hot-rolled steel sheet is cold-rolled at a cold rolling rate of 50% or more to obtain a cold-rolled steel sheet having a predetermined thickness, annealed at a temperature higher than the recrystallization temperature, and then pickled. Even by washing, it is possible to control the Si surface enrichment targeted by the present invention and the existence state of the Si-containing oxide remaining on the steel sheet surface.
この場合の電解酸洗は、焼鈍鋼板を20〜400g/lの硫酸水溶液中に硝酸塩、硫酸塩、フルオロケイ酸塩、フルオロホウ酸塩の1種または2種以上を混合した酸洗溶液で電解酸洗する。なお、この電解酸洗は、本発明の熱間圧延後の酸洗にも適用できる。 In this case, the electrolytic pickling is performed by using an acid pickling solution in which an annealed steel sheet is mixed with one or more of nitrate, sulfate, fluorosilicate, and fluoroborate in 20 to 400 g / l sulfuric acid aqueous solution. Wash. This electrolytic pickling can also be applied to pickling after hot rolling of the present invention.
本発明の電解酸洗液に於いて主剤として使用する硫酸は酸化謨の溶解作用、通電性向上のために添加するものであるが、他の溶剤と共存する場合、20g/l未満の濃度では酸洗効率が著しく悪く400g/l超の濃度では過酸洗となり表面外観を害する。従って、本発明に於いては、硫酸は20〜400g/lで使用する。そして、硫酸水溶液中に酸化膜の除去適度を大巾に向上させるために、フルオロケイ酸ソーダ、フルオロケイ酸カリウムの如きフルオロケイ酸塩やフルオロホウ酸ソーダ、フルオロホウ酸アンモニウムの如さフルオロホウ酸塩の1種または2種以上を、それぞれ10〜100g/l添加する。フルオロケイ酸塩、フルオロホウ酸塩は、それぞれ10g/l未満の添加量であると酸化膜の除去適度の向上に寄与しなく、100g/l超の添加量では効果が飽和してしまうので、10〜100g/lとした。 The sulfuric acid used as the main agent in the electrolytic pickling solution of the present invention is added to improve the dissolving action and conductivity of the oxidized soot, but when it coexists with other solvents, the concentration is less than 20 g / l. The pickling efficiency is remarkably poor, and if the concentration exceeds 400 g / l, the pickling becomes peracid pickling and the surface appearance is damaged. Accordingly, in the present invention, sulfuric acid is used at 20 to 400 g / l. Then, in order to greatly improve the moderate removal of oxide film in sulfuric acid aqueous solution, fluorosilicate such as sodium fluorosilicate, potassium fluorosilicate, sodium fluoroborate, fluoroborate such as ammonium fluoroborate 1 type or 2 types or more are added 10-100 g / l, respectively. Fluorosilicate and fluoroborate do not contribute to an appropriate improvement in the removal of the oxide film when the addition amount is less than 10 g / l, and the effect is saturated when the addition amount exceeds 100 g / l. ˜100 g / l.
また、硝酸塩は酸化膜の除去速度を向上させるが、過酸洗を抑制する効果がある。硝酸塩としては硝酸ナトリウム、硝酸カリウム、硝酸アンモニウム等を用いることができ、50〜200g/lとする。50g/l未満では効果が得られず、一方200g/l超では効果が飽和してしまう。 In addition, nitrate improves the removal rate of the oxide film, but has the effect of suppressing peracid washing. As nitrate, sodium nitrate, potassium nitrate, ammonium nitrate, etc. can be used, and it is set as 50-200 g / l. If it is less than 50 g / l, the effect cannot be obtained, while if it exceeds 200 g / l, the effect is saturated.
また、硫酸ナトリュウムに代表される硫酸塩は、電解酸洗における過酸洗を抑制する効果があるが、50g/l未満では効果が得られず、一方200g/l超では効果が飽和してしまうので、50〜200g/lとした。 Also, sulfates represented by sodium sulfate have the effect of suppressing peracid washing in electrolytic pickling, but no effect is obtained at less than 50 g / l, while the effect is saturated at over 200 g / l. Therefore, it was set to 50 to 200 g / l.
次に、本発明の鋼板の製造方法について説明する。 Next, the manufacturing method of the steel plate of this invention is demonstrated.
本発明の鋼板を製造する際は、先ず上述した鋼組成となるように調整した原料を転炉または電気炉に投入し、真空脱ガス処理を行ってスラブにする。次に、このスラブを、加熱温度が1000℃以上1300℃以下、仕上げ温度がAr3温度以上1000℃以下の条件で熱間圧延し、熱延鋼板を得る。熱間圧延の加熱は、圧延温度確保のために1000℃以上が必要であり、靭性低下の要因となる粗大TiN生成を抑制するためやオーステナイト粒粗大化を抑制するために、更には加熱コスト抑制のために1300℃以下とする。特に粗大なTiNは拝み状シーム溶接部の靭性低下につながる。また、熱間圧延の仕上温度がAr3温度未満であると、鋼板の加工性が損なわれるため、熱間圧延の仕上温度はAr3温度以上とする。また、熱間圧延で1000℃を超える仕上げ温度は、確保することが難しく、また、本発明の特徴である酸洗後のSi表面濃度を1.5%以下に低減することが困難となる。よって、仕上げ温度はAr3温度以上1000℃以下とした。 When manufacturing the steel plate of this invention, the raw material adjusted so that it may become the steel composition mentioned above is first thrown into a converter or an electric furnace, and a vacuum degassing process is performed to make a slab. Next, this slab is hot-rolled under the conditions of a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower and a finishing temperature of Ar 3 temperature or higher and 1000 ° C. or lower to obtain a hot rolled steel sheet. The heating of the hot rolling requires 1000 ° C. or higher to secure the rolling temperature, and in order to suppress the formation of coarse TiN that causes toughness reduction and to suppress the austenite grain coarsening, further reduce the heating cost. Therefore, the temperature is set to 1300 ° C. or lower. In particular, coarse TiN leads to a decrease in toughness of the wavy seam weld. Moreover, finishing temperature of hot rolling is below Ar 3 temperature, the workability of the steel sheet is impaired, finishing temperature of hot rolling is the Ar 3 temperature or more. Further, it is difficult to ensure a finishing temperature exceeding 1000 ° C. by hot rolling, and it is difficult to reduce the Si surface concentration after pickling, which is a feature of the present invention, to 1.5% or less. Therefore, the finishing temperature is set to Ar 3 temperature or higher and 1000 ° C. or lower.
次に、上述の方法で作製した熱延鋼板を、必要に応じて脱スケールした後、50%以上の冷間圧延率で冷間圧延して、所定の板厚の冷延鋼板を得る。このとき、冷間圧延率が50%未満の場合、焼鈍後の鋼板の強度が低下すると共に、深絞り加工性が劣化する。なお、この冷間圧延率は65〜85%とすることが好ましく、これにより、強度および深絞り加工性がより優れた鋼板が得られる。 Next, the hot-rolled steel sheet produced by the above-described method is descaled as necessary, and then cold-rolled at a cold rolling rate of 50% or more to obtain a cold-rolled steel sheet having a predetermined thickness. At this time, when the cold rolling rate is less than 50%, the strength of the steel sheet after annealing is lowered and the deep drawing workability is deteriorated. In addition, it is preferable that this cold rolling rate shall be 65 to 85%, and, thereby, the steel plate which was more excellent in intensity | strength and deep drawing workability is obtained.
その後、冷延鋼板を再結晶温度以上の温度で焼鈍する。その際、焼鈍温度が再結晶温度未満の場合は、良好な集合組織が発達せず、深絞り加工性が劣化する。一方、焼鈍温度が高くなると鋼板の強度が低下するため、焼鈍は850℃以下の温度で実施することが好ましい。 Thereafter, the cold rolled steel sheet is annealed at a temperature higher than the recrystallization temperature. At that time, when the annealing temperature is lower than the recrystallization temperature, a good texture does not develop, and the deep drawing processability deteriorates. On the other hand, since the strength of the steel sheet decreases as the annealing temperature increases, annealing is preferably performed at a temperature of 850 ° C. or lower.
次に、焼鈍後鋼板の表面に溶融Sn−Znめっきを施し、めっき鋼板とする。このめっきは、耐食性の観点からは、面積率で97%以上のFeSn2合金層上に、1〜8.8%のZnと残部がSn:91.2〜99%および不可避的不純物および/または付随的成分からなり、その付着量が片面10〜150g/m2であるめっきを施すことが好ましい。 Next, the surface of the steel plate after annealing is subjected to molten Sn—Zn plating to obtain a plated steel plate. From the viewpoint of corrosion resistance, this plating has an area ratio of 97% or more on a FeSn 2 alloy layer with 1 to 8.8% Zn and the balance Sn: 91.2 to 99% and inevitable impurities and / or It is preferable to perform plating which consists of an incidental component and the adhesion amount is 10-150 g / m < 2 > on one side.
これらの限定理由は以下のとおりである。 The reasons for these limitations are as follows.
まず、FeSn2合金層の面積率が97%以上としたのは、面積率が97%未満である場合、その上のSn−Znめっきが十分に生成しない可能性が生じるため、FeSn2合金層の面積率で97%を下限とした。上限は100%であることが好ましいが、実操業では99.5%を上限とすることが好ましい。FeSn2合金層は、溶融めっき浴中に浸漬させることによって生成し、浸漬時間を長くすれば多く生成する。 First, the area ratio of the FeSn 2 alloy layer is 97% or more, if the area ratio is less than 97%, since the possibility of Sn-Zn plated thereon is not sufficiently generated occurs, FeSn 2 alloy layer The lower limit of the area ratio was 97%. The upper limit is preferably 100%, but 99.5% is preferable as the upper limit in actual operation. The FeSn 2 alloy layer is generated by being immersed in a hot dipping bath, and more is generated if the immersion time is increased.
めっき組成のZnの限定理由であるが、燃料タンク内面と外面における耐食性のバランスにより限定したものである。燃料タンク外面は、完璧な防錆能力が必要とされるため燃料タンク成形後に塗装される。したがって、塗装厚みが防錆能力を決定するが、素材としてはめっき層のもつ防食効果により赤錆を防止する。特に、塗装のつきまわりの悪い部位ではこのめっき層のもつ防食効果は極めて重要となる。Sn基めっきにZnの添加でめっき層の電位を下げ、犠牲防食能を付与する。そのためには1質量%以上のZnの添加が必要である。Sn−Zn二元共晶点である8.8%を超える過剰なZnの添加は、粗大なZn結晶の成長を促進する、融点上昇をひきおこし、めっき下層の金属間化合物層(いわゆる合金層)の過剰な成長につながる等の理由で8.8%以下でなくてはならない。粗大なZn結晶はZnの有する犠牲防食能が発現する点は問題ないが、一方で粗大なZn結晶部で選択腐食をおこしやすくなる。また、めっき下層の金属間化合物層の成長は金属間化合物自体が非常に脆いため、プレス成形時にめっき割れが生じやすくなり、めっき層の防食効果が低下する。 The reason for the limitation of the Zn of the plating composition is that it is limited by the balance of corrosion resistance between the inner surface and the outer surface of the fuel tank. The outer surface of the fuel tank is painted after the fuel tank is molded because perfect rust prevention capability is required. Therefore, although the coating thickness determines the rust prevention ability, the material prevents red rust by the anticorrosion effect of the plating layer. In particular, the anticorrosive effect of the plating layer is extremely important in the part where the coating is not good. Addition of Zn to Sn-based plating lowers the potential of the plating layer and provides sacrificial anticorrosive ability. For that purpose, 1 mass% or more of Zn needs to be added. Addition of excess Zn exceeding 8.8%, which is the Sn-Zn binary eutectic point, promotes growth of coarse Zn crystals, raises the melting point, and forms an intermetallic compound layer (so-called alloy layer) under the plating. It must be 8.8% or less because it leads to excessive growth. The coarse Zn crystal has no problem in that the sacrificial anticorrosive ability of Zn appears, but on the other hand, the coarse Zn crystal part is likely to undergo selective corrosion. Moreover, since the intermetallic compound itself is very brittle during the growth of the intermetallic compound layer under the plating layer, plating cracks are likely to occur during press molding, and the anticorrosion effect of the plating layer is reduced.
一方、燃料タンク内面での腐食は、正常なガソリンのみの場合には問題とならないが、水の混入・塩素イオンの混入・ガソリンの酸化劣化による有機カルボン酸の生成等により、激しい腐食環境が出現する可能性がある。もし、穿孔腐食によりガソリンが燃料タンク外部に漏れた場合、重大事故につながる恐れがあり、これらの腐食は完全に防止されねばならない。上記の腐食促進成分を含む劣化ガソリンを作製し、各種条件下での性能を調べたところ、Znを8.8%以下含有するSn−Zn合金めっきは極めて優れた耐食性を発揮することが確認された。 On the other hand, corrosion on the inner surface of the fuel tank is not a problem when only normal gasoline is used, but a severe corrosive environment appears due to water contamination, chlorine ion contamination, and the formation of organic carboxylic acids due to oxidative degradation of gasoline. there's a possibility that. If gasoline leaks outside the fuel tank due to piercing corrosion, it can lead to serious accidents, and these corrosions must be completely prevented. When a deteriorated gasoline containing the above-mentioned corrosion promoting component was prepared and the performance under various conditions was examined, it was confirmed that Sn—Zn alloy plating containing Zn of 8.8% or less exhibits extremely excellent corrosion resistance. It was.
Znを全く含まない純SnまたはZn含有量が1%未満の場合、腐食環境中に暴露された初期より、めっき金属が地鉄に対し犠牲防食能を持たないため、燃料タンク内面ではめっきピンホール部での孔食、タンク外面では早期の赤錆発生が問題となる。一方、Znが8.8%を超えて多量に含まれる場合、Znが優先的に溶解し、腐食生成物が短期間に多量に発生するため、キャブレターの目詰まりを起こしやすい問題がある。 When pure Sn or Zn content does not contain Zn at all, the plating metal has no sacrificial anti-corrosion ability against the iron from the beginning when exposed to corrosive environment. There is a problem of pitting corrosion at the part and early red rust generation on the outer surface of the tank. On the other hand, when Zn is contained in a large amount exceeding 8.8%, Zn is preferentially dissolved, and a large amount of corrosion products are generated in a short time, so that there is a problem that the carburetor is easily clogged.
また、耐食性以外の性能面では、Zn含有量が多くなることによってめっき層の加工性も低下し、Sn基めっきの特長である良プレス成形性を損なう。さらに、Zn含有量が多くなることによってめっき層の融点上昇とZn酸化物に起因し、はんだ性が大幅に低下する。 Moreover, in terms of performance other than corrosion resistance, the workability of the plating layer is reduced due to an increase in the Zn content, and good press formability, which is a feature of Sn-based plating, is impaired. Furthermore, due to the increased Zn content, the solderability is greatly reduced due to an increase in the melting point of the plating layer and Zn oxide.
したがって、本発明におけるSn−Zn合金めっきにおけるZn含有量は、1〜8.8%の範囲、更により十分な犠牲防食作用を得るには3.0〜8.8%の範囲にすることが望ましい。 Therefore, the Zn content in the Sn—Zn alloy plating according to the present invention is in the range of 1 to 8.8%, and further in the range of 3.0 to 8.8% in order to obtain a more sufficient sacrificial anticorrosive action. desirable.
このSn−Znめっきの付着量は、片面10g/m2未満では良好な耐食性が確保できず、150g/m2を超えて付着するにはコストが上昇することに加え、厚みがまだらになり模様欠陥となったり、溶接性を低下させたりする。よって、Sn−Znめっきの付着量は片面10〜150g/m2とした。
更にめっき性を向上させるためには、めっきの前にFe−Niのプレめっきを施すことがSn−Znめっきの濡れ性と初晶Snを微細化させて耐食性を向上させるために有効である。この付着量は、めっきの濡れ性の点で0.2g/m2以上、Niの割合は、初晶Snを微細化の点から10〜70質量%が望ましい。そして、上述の方法により作製された鋼板は、更に、必要に応じて表面に電気めっきを施してもよい。
If the adhesion amount of this Sn—Zn plating is less than 10 g / m 2 on one side, good corrosion resistance cannot be secured, and if it exceeds 150 g / m 2 , the cost increases and the thickness becomes mottled. It becomes a defect and weldability is lowered. Therefore, the adhesion amount of Sn—Zn plating was set to 10 to 150 g / m 2 on one side.
In order to further improve the plating property, it is effective to perform pre-plating of Fe—Ni before plating in order to improve the corrosion resistance by refining the wettability of Sn—Zn plating and primary crystal Sn. The amount of adhesion is preferably 0.2 g / m 2 or more in terms of wettability of plating, and the proportion of Ni is preferably 10 to 70% by mass from the viewpoint of refining primary crystal Sn. And as for the steel plate produced by the above-mentioned method, you may electroplate the surface further as needed.
以下、本発明の実施例および比較例を挙げて、本発明の効果について具体的に説明する。
本実施例においては、下記表1に示す組成の鋼を溶製し、1000〜1300℃に加熱保持した後、表2の通り熱延仕上温度を840〜975℃、巻き取り温度が580〜750℃の条件で熱間圧延し、板厚が3.5mmの熱延板にした。次に、この熱延板を酸洗した後で冷間圧延して、厚さが1.0mmの冷延板にした。
更に、この冷延板に対して、760〜840℃で60秒間保持するサイクルの焼鈍を行い、焼鈍鋼板を得た。この鋼板を表2に示す酸洗液で表面を電解酸洗し、Fe−Niめっきを1g/m2施した後、フラックス法でSn−Znめっきを行った。Fe−Ni合金めっき浴はNiめっきのワット浴に対して、硫酸鉄を100g/L添加したものを使用した。フラックスはZnCl2―NH4Cl水溶液をロール塗布して使用し、めっき浴のZnの組成は表2のように実施した。浴温は280℃とし、めっき後ガスワイピングによりめっき付着量を表2のように調整した。更に、溶融めっき処理後の鋼板に、Cr3+主体の処理を施し、実施例および比較例の高強度鋼板とした。なお、下記表1に示す鋼組成における残部は、Feおよび不可避的不純物である。また、下記表1における下線は、本発明の範囲外であることを示す。
Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention.
In this example, steel having the composition shown in Table 1 below was melted and heated to 1000-1300 ° C., and then the hot rolling finishing temperature was 840-975 ° C. and the winding temperature was 580-750 as shown in Table 2. It was hot-rolled under the condition of ° C. to obtain a hot-rolled sheet having a thickness of 3.5 mm. Next, the hot-rolled sheet was pickled and cold-rolled to obtain a cold-rolled sheet having a thickness of 1.0 mm.
Furthermore, the cold rolled sheet was annealed in a cycle that was held at 760 to 840 ° C. for 60 seconds to obtain an annealed steel sheet. The surface of this steel plate was electrolytically pickled with the pickling solution shown in Table 2, Fe-Ni plating was applied at 1 g / m 2 , and then Sn—Zn plating was performed by a flux method. The Fe-Ni alloy plating bath used was a nickel plating Watt bath with 100 g / L of iron sulfate added. As the flux, a ZnCl2-NH4Cl aqueous solution was applied by roll coating, and the composition of Zn in the plating bath was as shown in Table 2. The bath temperature was 280 ° C., and the amount of plating adhered was adjusted as shown in Table 2 by gas wiping after plating. Furthermore, the steel plate after the hot dipping treatment was subjected to a Cr3 + main treatment to obtain high-strength steel plates of Examples and Comparative Examples. The balance in the steel composition shown in Table 1 below is Fe and inevitable impurities. Moreover, the underline in the following Table 1 shows that it is outside the scope of the present invention.
次に、上述の方法で作製した実施例および比較例の各高強度鋼板について、引張り特性、深絞り加工の指標であるr値、耐二次加工脆性、拝み状シーム溶接部低温靭性および耐食性について評価した。以下、その評価方法について説明する。 Next, for each of the high-strength steel sheets of Examples and Comparative Examples prepared by the above-described methods, the tensile characteristics, the r value that is an index of deep drawing, the secondary work brittleness, the low temperature toughness of the seam welded portion, and the corrosion resistance evaluated. Hereinafter, the evaluation method will be described.
引張り特性は、各溶融めっき鋼板から引張り方向が圧延方向と並行になるようにして採取したJIS5号試験片を使用して引張り試験を行い、その引張り強さTSおよび伸びElにより評価した。そして、引張り強さTSが440MPa以上で、伸びElが33%以上のものを合格とした。 Tensile properties were evaluated from tensile strength TS and elongation El using a JIS No. 5 test piece collected from each hot-dip plated steel sheet so that the tensile direction was parallel to the rolling direction. And the thing whose tensile strength TS is 440 Mpa or more and elongation El is 33% or more was set as the pass.
r値の評価は、各溶融めっき鋼板から圧延方向に平行方向、45°方向、直角方向の3方向について夫々JIS5号引張り試験片を採取し、各試験片のr値を測定した。そして、圧延方向に平行なr値をr0、45°方向のr値をr45、直角方向のr値をr90としたとき、下記(C)式により求められる各方向のr値の平均値raveにより評価した。なお、本実施例においてはraveが1.40以上のものを合格とした。
rave=(r0+2×r45+r90)/4 ・・・・(C)
耐二次加工脆性は、溶融めっき鋼板を直径95mmにブランキングした後、外径が50mmのポンチで円筒絞りを行い、図3に示すように、その絞りカップ4を、30°の円錐台5に載せ、種々の温度条件下で、高さ1m位置から重さ5kgの錘6を落下させて、カップに割れが発生しない最低の温度(耐二次加工脆性温度)を求めた。この耐二次加工脆性温度は、鋼板の板厚および試験方法により変化するが、冷延鋼板の板厚が1.0mmである本実施例においては、−50℃以下を合格とした。
Evaluation of the r value was performed by collecting JIS No. 5 tensile test pieces from each hot-dip plated steel sheet in three directions, ie, parallel to the rolling direction, 45 ° direction, and perpendicular direction, and measuring the r value of each test piece. Then, when the r value parallel to the rolling direction is r 0 , the r value in the 45 ° direction is r 45 , and the r value in the perpendicular direction is r 90 , the average of the r values in each direction obtained by the following formula (C) Evaluation was based on the value r ave . In this example, a sample having a r ave of 1.40 or more was accepted.
r ave = (r 0 + 2 × r 45 + r 90 ) / 4 (C)
The secondary work brittleness resistance is obtained by blanking the hot-dip plated steel sheet to a diameter of 95 mm, and then performing cylindrical drawing with a punch having an outer diameter of 50 mm, and as shown in FIG. The weight 6 having a weight of 5 kg was dropped from a position of 1 m in height under various temperature conditions, and the lowest temperature at which the cup did not crack (secondary work brittleness resistance) was determined. Although the secondary work brittleness temperature varies depending on the thickness of the steel sheet and the test method, in this example in which the thickness of the cold-rolled steel sheet is 1.0 mm, −50 ° C. or less was accepted.
拝み状シーム溶接部7の靭性評価は図4に示す試験片形状にフランジを曲げ加工し、各試験片(鋼板)8a部、8b部をチャックで固定して200mm/min.の速度で引張試験を種々の温度で行ない、破断後の破面を調査し、脆性破面と延性破面が50%ずつとなる温度を延性脆性遷移温度として求めた。本実施例においては、−40℃以下のものを合格とした。 The toughness evaluation of the worship-shaped seam welded portion 7 was performed by bending a flange into a test piece shape shown in FIG. 4 and fixing each test piece (steel plate) 8a and 8b with a chuck at 200 mm / min. Tensile tests were conducted at various temperatures, the fracture surface after fracture was investigated, and the temperature at which the brittle fracture surface and the ductile fracture surface were 50% each was determined as the ductile brittle transition temperature. In the present Example, the thing below -40 degreeC was set as the pass.
また、耐食性はSST960時間での赤錆発生率で評価し、50%以下のものを合格とした。以上の評価結果を表3にまとめて示す。 Further, the corrosion resistance was evaluated by the red rust occurrence rate at SST 960 hours, and 50% or less was regarded as acceptable. The above evaluation results are summarized in Table 3.
上記表3に示すように、本発明の範囲内の実施例のNo.1の鋼板は、耐食性の指標であるSST960時間での赤錆発生率が9.9%と良好であり、伸びElも36.6%、r値の平均値raveが1.65と優れた加工特性を有し、耐二次加工脆性温度、拝み状シーム溶接部の延性脆性遷移温度共に低温で良好であった。本発明の範囲内の実施例のNo.2の鋼板も、SST960時間での赤錆発生率が13.0%と耐食性が良好であり、加工性の指標である伸びElが36.3%、raveが1.64と優れた特性を有すると共に、耐二次加工脆性および拝み状シーム溶接部靭性にも優れていた。本発明の範囲内の実施例のNo.3の鋼板も、SST赤錆発生率が9.6%と耐食性に優れており、加工性の指標である伸びElが35.6%、raveが1.67と優れた特性を有すると共に、耐二次加工脆性および拝み状シーム溶接部靭性も優れた特性を有していた。 As shown in Table 3 above, the No. of the example within the scope of the present invention. Steel plate No. 1 has a good red rust occurrence rate of 9.9% at SST 960 hours, which is an index of corrosion resistance, an elongation El of 36.6%, and an average value rave of r value of 1.65 and excellent processing characteristics. The secondary work brittleness temperature and the ductile brittle transition temperature of the wavy seam weld were good at low temperatures. Examples No. within the scope of the present invention. Steel plate No. 2 also has excellent corrosion resistance with a red rust occurrence rate of 13.0% at SST 960 hours, excellent properties such as an elongation El of 36.3% and a rave of 1.64, which are indexes of workability. Also, it was excellent in secondary work brittleness resistance and toughness of the wrinkled seam weld. Examples No. within the scope of the present invention. The steel plate No. 3 also has excellent SST red rust occurrence rate of 9.6%, excellent properties such as elongation El of 35.6% and rave of 1.67, which are indexes of workability, Sub-working brittleness and tough seam weld toughness also had excellent properties.
本発明の範囲内の実施例のNo.4の鋼板は、SST赤錆発生率が11.3%と耐食性に優れており、伸びElが37.1%、r値の平均値raveが1.69と優れた加工特性を有し、耐二次加工脆性温度、拝み状シーム溶接部の延性脆性遷移温度共に低温で良好であった。本発明の範囲内の実施例のNo.5の鋼板も、SST赤錆発生率が5.0%と耐食性に優れており、加工性の指標である伸びElが36.4%、raveが1.67と優れた特性を有すると共に、耐二次加工脆性および拝み状シーム溶接部靭性にも優れていた。本発明の範囲内の実施例のNo.6の鋼板も、SST赤錆発生率が9.6%と耐食性に優れており、加工性の指標である伸びElが35.5%、raveが1.64と優れた特性を有すると共に、耐二次加工脆性および拝み状シーム溶接部靭性も優れた特性を有していた。 Examples No. within the scope of the present invention. Steel plate No. 4 has excellent SST red rust occurrence rate of 11.3%, excellent corrosion resistance, elongation El of 37.1%, r value average value 1.69 and excellent processing characteristics. Both the next processing brittle temperature and the ductile brittle transition temperature of the wavy seam weld were good at low temperatures. Examples No. within the scope of the present invention. The steel plate No. 5 also has excellent SST red rust occurrence rate of 5.0%, excellent corrosion resistance, elongation characteristics El of 36.4% and rave of 1.67. It was also excellent in secondary processing brittleness and toughness of the wavy seam weld. Examples No. within the scope of the present invention. Steel plate No. 6 also has excellent SST red rust occurrence rate of 9.6%, excellent properties such as elongation El of 35.5% and rave of 1.64, which are indexes of workability, Sub-working brittleness and tough seam weld toughness also had excellent properties.
本発明の範囲内の実施例のNo.7の鋼板も、SST赤錆発生率が43.6%と耐食性に優れており、加工性の指標である伸びElが34.3%、raveが1.58と優れた特性を有すると共に、耐二次加工脆性および拝み状シーム溶接部靭性も優れていた。本発明の範囲内の実施例のNo.8の鋼板も、SST赤錆発生率が8.4%と耐食性に優れており、加工性の指標である伸びElが37.6%、raveが1.72と優れた特性を有すると共に、耐二次加工脆性および拝み状シーム溶接部靭性も優れていた。同様にNo.9〜No.14も優れた耐食性、加工性、耐二次加工脆性および優れた拝み状シーム溶接部靭性を有していた。 Examples No. within the scope of the present invention. Steel sheet No. 7 also has excellent SST red rust occurrence rate of 43.6%, excellent properties such as elongation El of 34.3% and rave of 1.58, which are indexes of workability, Sub-working brittleness and tough seam weld toughness were also excellent. Examples No. within the scope of the present invention. Steel plate No. 8 also has excellent SST red rust occurrence rate of 8.4%, excellent properties such as elongation El of 37.6% and rave of 1.72, which are indexes of workability, and has two resistance. Sub-working brittleness and tough seam weld toughness were also excellent. Similarly, no. 9-No. No. 14 also had excellent corrosion resistance, workability, secondary work brittleness resistance and excellent comb-like seam weld toughness.
これらに対して、熱延後の酸洗時間が[FT]×0.6−500(sec.)未満であったNo.15、No.16、No.17、No.18、No.19、No.20、No.22、No.23、No.26の鋼板は酸洗後のSi表面濃度も1.5%を超えて、SST赤錆発生率が50%を超え耐食性に劣っていた。また、C含有量が本発明の範囲から外れた比較例のNo.21の鋼板は、加工性の指標である伸びElが30.2%、r値が1.14と低く、加工性が前述の実施例の鋼板に比べて劣っており、更に、拝み状シーム溶接部靭性も劣っていた。 On the other hand, the pickling time after hot rolling was [FT] × 0.6-500 (sec.) Less than No. 15, no. 16, no. 17, no. 18, no. 19, no. 20, no. 22, no. 23, no. The steel plate No. 26 had an Si surface concentration after pickling exceeding 1.5%, and the SST red rust occurrence rate exceeded 50% and was inferior in corrosion resistance. In addition, No. of the comparative example in which the C content is out of the scope of the present invention. Steel sheet No. 21 has an elongation El as an index of workability of 30.2% and an r value as low as 1.14, and the workability is inferior to the steel sheets of the above-mentioned examples. The toughness was also inferior.
No.23の鋼板は、Mn含有量が本発明の上限を超え、加工性の指標である伸びElおよびr値が前述の実施例の鋼板に比べて低く、加工性が劣っていた。No.24の鋼板は、P含有量が本発明の範囲から外れた比較例であり、耐二次加工脆性および拝み状シーム溶接部靭性が前述の実施例の鋼板よりも劣っていた。No.25の鋼板は、Ti含有量が本発明の範囲未満である比較例である。この鋼板は、伸びElおよびr値が低く、加工性が劣っていた。No.26の鋼板はTi含有量が本発明の上限を超えている比較例である。この鋼板は、伸びElおよびr値が低く、更に拝み状シーム溶接部靭性も前述の実施例の鋼板よりも劣っていた。No.27の鋼板は、Nb含有量が本発明の範囲未満である比較例である。この溶融めっき鋼板は、r値および伸びElが低く、本発明の優れた加工性を有する目的に合致しない。 No. The steel plate No. 23 had an Mn content exceeding the upper limit of the present invention, and the elongation El and r value, which are indexes of workability, were lower than those of the above-described Examples, and the workability was inferior. No. Steel plate No. 24 is a comparative example in which the P content deviated from the scope of the present invention, and the secondary work brittleness resistance and the wavy seam weld toughness were inferior to those of the above-described examples. No. Steel plate No. 25 is a comparative example in which the Ti content is less than the range of the present invention. This steel sheet had low elongation El and r value, and was inferior in workability. No. Steel plate No. 26 is a comparative example in which the Ti content exceeds the upper limit of the present invention. This steel sheet had low elongation El and r value, and was inferior to the steel sheet of the above-mentioned example in the toroidal seam weld toughness. No. Steel plate No. 27 is a comparative example in which the Nb content is less than the range of the present invention. This hot dipped steel sheet has a low r value and elongation El and does not meet the purpose of the present invention having excellent workability.
No.28の鋼板は、B含有量が0.0003%と本発明の下限値に満たない比較例である。この鋼板は、耐二次加工脆性温度が−20℃であり、前述の実施例の鋼板と比較して劣っていた。また、めっきのZn質量%が低いために、十分な犠牲防食効果を有しておらず外面耐食性に劣る。No.29の鋼板は、B含有量が本発明の範囲を超えている比較例である。この鋼板は、加工性の指標である伸びElおよびr値が低く、また拝み状シーム溶接部の延性脆性遷移温度も高く、溶接部靭性が劣っていた。更に、めっきのZn質量%が高く、Sn初晶が現れずに共晶セル粒界のZn偏析および粗大Zn結晶の成長が助長されるため耐食性も低下した。 No. Steel plate No. 28 is a comparative example in which the B content is 0.0003%, which is less than the lower limit of the present invention. This steel plate had a secondary work brittleness resistance of −20 ° C., which was inferior to the steel plates of the above-mentioned examples. Moreover, since Zn mass% of plating is low, it does not have sufficient sacrificial anticorrosive effect and is inferior to external surface corrosion resistance. No. No. 29 steel plate is a comparative example in which the B content exceeds the range of the present invention. This steel sheet had low elongation El and r values, which are indexes of workability, and had a high ductile brittle transition temperature at the wavy seam welded portion, resulting in poor welded portion toughness. Furthermore, since the Zn mass% of the plating was high, Sn segregation did not appear and Zn segregation at the eutectic cell grain boundaries and growth of coarse Zn crystals were promoted, so the corrosion resistance was also lowered.
1 鋼板地金
2 スケール(Fe酸化物)
3 Si酸化物
4 絞りカップ
5 円錐台
6 錘
7 拝み状シーム溶接部
8a、8b 試験片(鋼板)
1 Steel sheet metal 2 Scale (Fe oxide)
3 Si oxide 4 Drawing cup 5 Frustum 6 Weight 7 Wrinkle-shaped seam weld 8a, 8b Test piece (steel plate)
Claims (3)
C:0.0005〜0.0050%、
Si:0.3超〜1.0%、
Mn:0.70〜2.0%、
P:0.05%以下、
Ti:0.010〜0.050%、
Nb:0.010〜0.040%、
B:0.0005〜0.0030%、
S:0.010%以下、
Al:0.01〜0.30%、
N:0.0010〜0.01%
を含有し、残部がFeおよび不可避的不純物からなる成分組成の高強度鋼板で、かつ、Si表面濃度が0.3%超〜1.5%、表面のSi含有酸化物の面積率が全表面に対して3%以下、かつ、Si含有酸化物1個の大きさが1μm以下である高強度鋼板に、面積率で97%以上のFeSn2合金層上に、1〜8.8%のZnと残部がSnおよび不可避的不純物からなり、その付着量が片面当り10〜150g/m2である溶融Sn−Znめっきを設けたことを特徴とするSn−Znめっき高強度鋼板。 % By mass
C: 0.0005 to 0.0050%,
Si: more than 0.3 to 1.0%,
Mn: 0.70 to 2.0%,
P: 0.05% or less,
Ti: 0.010 to 0.050%,
Nb: 0.010 to 0.040%,
B: 0.0005 to 0.0030%,
S: 0.010% or less,
Al: 0.01-0.30%,
N: 0.0010 to 0.01%
High-strength steel sheet having a composition comprising Fe and inevitable impurities as the balance, Si surface concentration of more than 0.3% to 1.5%, and the surface area ratio of the Si-containing oxide on the entire surface 1% to 8.8% Zn on the FeSn 2 alloy layer having an area ratio of 97% or more on a high-strength steel plate having a size of 3% or less and one Si-containing oxide of 1 μm or less. A Sn-Zn plated high-strength steel sheet, which is provided with molten Sn-Zn plating, the balance of which consists of Sn and inevitable impurities, the adhesion amount of which is 10 to 150 g / m 2 per side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010093327A JP5732741B2 (en) | 2010-04-14 | 2010-04-14 | Sn-Zn plated high-strength steel sheet for press working with excellent corrosion resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010093327A JP5732741B2 (en) | 2010-04-14 | 2010-04-14 | Sn-Zn plated high-strength steel sheet for press working with excellent corrosion resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011219845A JP2011219845A (en) | 2011-11-04 |
JP5732741B2 true JP5732741B2 (en) | 2015-06-10 |
Family
ID=45037183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010093327A Active JP5732741B2 (en) | 2010-04-14 | 2010-04-14 | Sn-Zn plated high-strength steel sheet for press working with excellent corrosion resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5732741B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2718904T3 (en) | 2012-04-13 | 2019-07-05 | Nippon Steel Corp | Steel sheet for electroplating, galvanized steel sheet, and methods for producing it |
JP5978838B2 (en) * | 2012-07-31 | 2016-08-24 | 新日鐵住金株式会社 | Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof |
KR102010053B1 (en) * | 2017-11-07 | 2019-08-12 | 주식회사 포스코 | High strength and low toughness cold-rolled steel sheet having good fracture characteristics, method for manufacturing same |
US11371130B2 (en) * | 2018-04-26 | 2022-06-28 | Nippon Steel Corporation | Hot-dip Sn—Zn-based alloy-plated steel sheet |
WO2024195860A1 (en) * | 2023-03-22 | 2024-09-26 | 日本製鉄株式会社 | Sn-zn based-alloy plated steel material, battery case and fuel tank |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61276999A (en) * | 1985-05-30 | 1986-12-06 | Nippon Steel Corp | Method for pickling steel sheet containing chromium |
JP2938449B1 (en) * | 1998-10-13 | 1999-08-23 | 新日本製鐵株式会社 | Hot-dip Sn-Zn plated steel sheet |
JP2004131818A (en) * | 2002-10-11 | 2004-04-30 | Nippon Steel Corp | Hot-dip tin-zinc base coated steel sheet excellent in workability and corrosion resistance |
JP2004315919A (en) * | 2003-04-18 | 2004-11-11 | Jfe Steel Kk | Galvanized steel sheet and method for manufacturing the same |
JP2005336574A (en) * | 2004-05-28 | 2005-12-08 | Nippon Steel Corp | METHOD FOR PRODUCING HOT DIP Sn-Zn BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE |
KR100742833B1 (en) * | 2005-12-24 | 2007-07-25 | 주식회사 포스코 | High Mn Steel Sheet for High Corrosion Resistance and Method of Manufacturing Galvanizing the Steel Sheet |
JP4580403B2 (en) * | 2006-03-17 | 2010-11-10 | 新日本製鐵株式会社 | Hot-dip hot-dip steel sheet for deep drawing and method for producing the same |
JP4580402B2 (en) * | 2006-03-17 | 2010-11-10 | 新日本製鐵株式会社 | Hot-dip hot-dip steel sheet for press working and manufacturing method thereof |
JP5391607B2 (en) * | 2008-08-05 | 2014-01-15 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same |
-
2010
- 2010-04-14 JP JP2010093327A patent/JP5732741B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011219845A (en) | 2011-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111492075B (en) | Steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet | |
JP5079795B2 (en) | Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and method for producing the same | |
TWI422688B (en) | High strength steel sheet having superior ductility and method for manufacturing the same | |
JP5574061B2 (en) | Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and corrosion resistance and its manufacturing method | |
JP5765092B2 (en) | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same | |
CA2786381C (en) | High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same | |
JP5825343B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5549968B2 (en) | Steel sheet for electroplating, electroplated steel sheet, and production method thereof | |
JP5732741B2 (en) | Sn-Zn plated high-strength steel sheet for press working with excellent corrosion resistance and method for producing the same | |
JP5391607B2 (en) | High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same | |
JP5264234B2 (en) | Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same | |
JP4436275B2 (en) | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them | |
JP5167867B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent surface properties and method for producing the same | |
JP4940813B2 (en) | Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more | |
JP4580403B2 (en) | Hot-dip hot-dip steel sheet for deep drawing and method for producing the same | |
CN114585758B (en) | High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet | |
JP4580402B2 (en) | Hot-dip hot-dip steel sheet for press working and manufacturing method thereof | |
JP4818710B2 (en) | Deep drawing high strength cold-rolled steel sheet, deep drawing high strength hot-dip galvanized steel sheet and method for producing the same | |
WO2024150820A1 (en) | Welded joint | |
JP5042486B2 (en) | Deep drawing high strength steel sheet and hot dipped cold-rolled steel sheet | |
WO2024089931A1 (en) | Hot-pressed member and steel sheet for hot pressing | |
JP2023507960A (en) | High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140822 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150317 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150330 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5732741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |