JP5731301B2 - Gas supply device for vacuum processing equipment - Google Patents

Gas supply device for vacuum processing equipment Download PDF

Info

Publication number
JP5731301B2
JP5731301B2 JP2011154514A JP2011154514A JP5731301B2 JP 5731301 B2 JP5731301 B2 JP 5731301B2 JP 2011154514 A JP2011154514 A JP 2011154514A JP 2011154514 A JP2011154514 A JP 2011154514A JP 5731301 B2 JP5731301 B2 JP 5731301B2
Authority
JP
Japan
Prior art keywords
gas
gas supply
reaction chamber
flow rate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011154514A
Other languages
Japanese (ja)
Other versions
JP2013021206A (en
Inventor
和也 塚越
和也 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011154514A priority Critical patent/JP5731301B2/en
Publication of JP2013021206A publication Critical patent/JP2013021206A/en
Application granted granted Critical
Publication of JP5731301B2 publication Critical patent/JP5731301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、真空処理装置用のガス供給装置に関し、特に、MOCVD装置にてポストミックス式で複数種の原料ガスを減圧下の反応室内に導入するのに利用されるものに関する。   The present invention relates to a gas supply device for a vacuum processing apparatus, and more particularly to a gas supply apparatus used for introducing a plurality of types of source gases into a reaction chamber under reduced pressure by a MOCVD apparatus.

従来、例えば、有機金属化合物膜の成膜方法として、有機金属化合物の気相からの析出により有機金属化合物膜を得ることが知られており(例えば、特許文献1参照)、このような成膜には、真空処理装置たるMOCVD(有機金属化学気相成長)装置が一般に用いられている。そして、このMOCVD装置に、形成しようする有機金属化合物膜の組成に応じて選択された2種以上の有機金属材料からなる原料ガスを夫々供給するためにガス供給装置が用いられる。   Conventionally, for example, as a method for forming an organometallic compound film, it is known to obtain an organometallic compound film by deposition of an organometallic compound from a gas phase (see, for example, Patent Document 1). In general, a MOCVD (metal organic chemical vapor deposition) apparatus as a vacuum processing apparatus is generally used. A gas supply apparatus is used to supply the MOCVD apparatus with source gases made of two or more kinds of organometallic materials selected according to the composition of the organometallic compound film to be formed.

ここで、MOCVD法にて成膜する際、原料ガスの種類によってはその反応性が非常に高く、反応室内に導入する前に各原料ガスを混合すると、反応が促進されてパーティクル等を発生し、良好な成膜を阻害する要因となることがある。そこで、上記特許文献1記載の如く、予め各原料ガスを混合する混合器を用いるのではなく、処理すべき基板が配置された反応室まで原料ガスを混合せずに導入し、基板表面で各原料ガスを混合することが一般に行われている(所謂、ポストミックス式のガス導入装置)。   Here, when forming a film by the MOCVD method, the reactivity is very high depending on the type of the source gas, and if each source gas is mixed before being introduced into the reaction chamber, the reaction is promoted to generate particles and the like. This may be a factor that hinders good film formation. Therefore, as described in Patent Document 1 above, instead of using a mixer that mixes each raw material gas in advance, the raw material gas is introduced to the reaction chamber in which the substrate to be processed is arranged without being mixed. Mixing raw material gases is generally carried out (so-called postmix type gas introduction device).

図3には、所謂ポストミックス式のガス供給装置を備えたMOCVD装置が示されている。このものは、反応室1aを画成する真空チャンバ1を備え、真空チャンバ1には、反応室1a内を真空引きして減圧する真空ポンプPに通じる、圧力制御弁APC等が介設された排気管2が接続されている。また、真空チャンバ1の底部には、処理すべき基板Wを位置決め保持するステージ3が設けられている。そして、基板Wに対向させて真空チャンバ1の天井部には、反応室1aを臨むガス供給装置GSのガス導入部4が設けられている。   FIG. 3 shows an MOCVD apparatus equipped with a so-called postmix type gas supply apparatus. This includes a vacuum chamber 1 that defines a reaction chamber 1a, and a vacuum control valve APC or the like that is connected to a vacuum pump P that evacuates and depressurizes the inside of the reaction chamber 1a. An exhaust pipe 2 is connected. A stage 3 for positioning and holding the substrate W to be processed is provided at the bottom of the vacuum chamber 1. A gas introduction unit 4 of the gas supply device GS facing the reaction chamber 1a is provided on the ceiling of the vacuum chamber 1 so as to face the substrate W.

2種類の原料ガスを反応室1a内に導入する場合を例に説明すると、ガス導入部4は、3枚の隔板4〜4を上下方向に等間隔で列設し、向かい合う2枚の隔板4〜4で夫々画成された同一容積の下側の隔絶空間4aと上側の隔絶空間4bとを有する。上側の隔板4は、真空チャンバ1の天板を兼用し、また、隔板4、4は、天板4に反応室1a内に向かって突設した環状壁41で保持されている。また、最下側の隔板4には、所定のパターンで複数個のガス導入口42a、42bが開設され、この隔板4がシャワープレートの役割を果たすようになっている。ガス導入口の半数のもの42aは下側の隔絶空間4aに直接連通している。他方で、残りの半数のもの42bには、連通路を構成するストロー管43が夫々挿設され、ストロー管43の上端が、下側の隔絶空間4aを上下方向で貫通して上側の隔絶空間4bに夫々連通している。通常、ガス導入口42aの内径と、他のガス導入口42bに挿設されるストロー管43の内径とは同一で、ガス導入口42a、42bの総面積が互いに一致するように設計されている。 The case where two kinds of source gases are introduced into the reaction chamber 1a will be described as an example. The gas introduction unit 4 includes three separator plates 4 1 to 4 3 arranged at equal intervals in the vertical direction, and two sheets facing each other. The lower isolation space 4a and the upper isolation space 4b of the same volume defined by the separation plates 4 1 to 4 3 respectively . Diaphragm 4 3 The upper also serves as a top plate of the vacuum chamber 1, also the diaphragm 4 1, 4 2 is held by an annular wall 41 which projects towards the reaction chamber 1a to the top plate 4 3 ing. Further, the partition plate 4 1 of lowermost, a plurality of gas inlet 42a in a predetermined pattern, 42b is opened, the diaphragm 4 1 is turned to serve the shower plate. Half of the gas inlets 42a communicate directly with the lower isolation space 4a. On the other hand, the remaining half 42b is provided with a straw tube 43 that constitutes a communication path, and the upper end of the straw tube 43 penetrates the lower isolation space 4a in the vertical direction, and the upper isolation space. Each communicates with 4b. Usually, the inner diameter of the gas inlet 42a and the inner diameter of the straw tube 43 inserted in the other gas inlet 42b are the same, and the total area of the gas inlets 42a and 42b is designed to match each other. .

両隔絶空間4a、4bには、図外のガス源に通じるガス供給管5、5が接続されている。両ガス供給管5、5にはマスフローコントローラ(流量制御手段)51が介設され、両隔絶空間4a、4bに、各原料ガスを所定の流量で導入できるようになっている。この場合、原料ガスを希釈し、または、原料ガスを反応室へと送る等のため、両ガス供給管5、5に、アルゴンや窒素等の希ガスを供給する、マスフローコントローラ61を介設した不活性ガス供給管5、5を夫々接続してもよい。 Gas supply pipes 5 1 and 5 2 communicating with a gas source (not shown) are connected to both the isolation spaces 4a and 4b. Both gas supply pipes 5 1 , 5 2 are provided with a mass flow controller (flow rate control means) 51 so that each source gas can be introduced into both isolation spaces 4 a, 4 b at a predetermined flow rate. In this case, in order to dilute the source gas, or to send the source gas to the reaction chamber, etc., the mass flow controller 61 is used to supply a rare gas such as argon or nitrogen to both the gas supply pipes 5 1 , 5 2. The provided inert gas supply pipes 5 1 and 5 2 may be connected to each other.

ところで、上記ガス供給装置GSにて反応室1a内に2種類の原料ガスを夫々供給し、基板W表面で反応させて成膜する場合、シャワープレート4の両ガス導入口42a、42bから吐出されるガス流量に差があると、例えばシャワープレート4と基板Wとの間の空間でうずが発生して基板への原料ガスの円滑な流れが阻害され、膜厚や膜質の基板面内均一性よく成膜できないという問題が生じる。ここで、両ガス導入口42a、42bから吐出されるガス流量は、ガス導入口42a、42bの総面積と、隔絶空間4a、4bへのガス供給量とで決まる。上記の如く、シャワープレート4に設けたガス導入口42a、42bの総面積が互いに一致するように設計することが通常であることから、両隔絶空間4a、4bへのガス供給量さえ互いに一致していればよい。
Meanwhile, two kinds of the raw material gas into the reaction chamber 1a in the gas supply system GS to each feed, when forming by reacting with the substrate W surface, both gas inlet port 42a of the shower plate 4 1, discharge from 42b If there is a difference in flow rate of the gas, for example, the shower plate 4 1 and the space inhibited smooth flow of the material gas vortex is generated to the substrate in between the the substrate W, the film thickness and film quality of the substrate surface There arises a problem that the film cannot be formed with good uniformity. Here, the gas flow rate discharged from both the gas inlets 42a and 42b is determined by the total area of the gas inlets 42a and 42b and the amount of gas supplied to the isolation spaces 4a and 4b. As described above, the shower plate 4 gas inlet 42a provided in the 1, since it is possible to design such that the total area of the 42b coincide with each other is usually both isolated space 4a, one with each other even amount of gas supplied to 4b I do it.

然し、上記従来例では、例えばガス源からの原料ガスの供給にも不活性ガスを用いる等により、各ガス供給管を介して隔絶空間に供給する原料ガスのガス流量を互いに揃えることが困難な場合が多く、しかも、マスフローコントローラの故障等で例えば設定流量にずれを生じたような場合、隔絶空間へのガス供給量が変化してしまう。その上、上記のように、基板に対して離間する方向に隔絶空間の複数を設けたのでは、各隔絶空間からガス供給管を通して反応室に導入するガス流量も変化し易い。   However, in the above-described conventional example, it is difficult to make the gas flow rates of the source gases supplied to the isolation space through the gas supply pipes equal to each other, for example, by using an inert gas also for supplying the source gas from the gas source. In many cases, and further, for example, when the set flow rate is deviated due to a failure of the mass flow controller or the like, the gas supply amount to the isolation space changes. In addition, as described above, when a plurality of isolation spaces are provided in a direction away from the substrate, the gas flow rate introduced into the reaction chamber from each isolation space through the gas supply pipe easily changes.

特開2005−158919号公報JP 2005-158919 A

本発明は、以上の点に鑑み、複数種の原料ガスを、複数の隔絶空間に同等のガス供給量で導入できて、同等のガス流量で基板に供給できるようにした簡単な構成の真空処理装置用のガス供給装置を提供することをその課題とするものである。   In view of the above points, the present invention is capable of introducing a plurality of types of source gases into a plurality of isolated spaces with the same gas supply amount and supplying the substrate with the same gas flow rate with a simple configuration vacuum processing. An object of the present invention is to provide a gas supply device for an apparatus.

上記課題を解決するために、本発明は、複数種の原料ガスを混合することなく、減圧下の反応室内に夫々導入する真空処理装置用のガス供給装置であって、反応室内を臨むガス導入部を備え、このガス導入部は複数の隔絶空間を有し、各隔絶空間に、原料ガスを供給する、流量制御手段を介設したガス供給管が夫々接続されると共に、各隔絶空間から夫々反応室に通じるガス導入口が設けられ、各ガス供給管に、他の流量制御手段を介設した1本のガス管を分岐した分岐管が夫々接続され、このガス管を流れるガスの流量を、ガス供給管を流れる原料ガスの流量差より多くなるように制御し、各ガス導入口から反応室に夫々導入される、原料ガスと各分岐管からのガスとの合計のガス流量が同等となるようにしたことを特徴とする。
Gas in order to solve the above problems, the present invention is such that mixing a plurality of kinds of raw material gases Ku, a gas supply apparatus for a vacuum processing apparatus which respectively introduced into the reaction chamber under reduced pressure, facing the reaction chamber The gas introduction unit has a plurality of isolated spaces, each of which is connected to a gas supply pipe through which a flow rate control means for supplying a source gas is connected. A gas introduction port leading to each reaction chamber is provided, and each gas supply pipe is connected to a branch pipe branched from one gas pipe provided with other flow rate control means, and the flow rate of gas flowing through this gas pipe Is controlled to be larger than the flow rate difference of the raw material gas flowing through the gas supply pipe, and the total gas flow rate of the raw material gas and the gas from each branch pipe respectively introduced from the respective gas inlets to the reaction chamber is equal. characterized in that set to be.

本発明によれば、1本のガス管を分岐した分岐管を、原料ガスを導入するガス供給管に夫々接続した構成を採用したため、2本のガス供給管で2種類の原料ガスを反応室内に夫々導入する場合を例に説明すると、減圧下の反応室に互いに連通する、流量制御手段の下流側における両ガス供給管内の圧力が同等となる。そして、両ガス供給管のうちいずれか一方のガス流量が低下すると、この低下したガス供給管に分岐管から不活性ガスが優先的に流入することで、簡単な構成により両隔絶空間にガス供給管を介して導入されるガス流量を互いに一致させる構成が実現できる。また、分岐管内のガス流量を、ガス供給管内を流れる原料ガスの流量差より多くなるように制御することで、ガス導入口から吐出されるガスの流量を同一にできて両ガスを円滑に基板に供給することができ、しかも、不活性ガスがガス供給管内を逆流する等の不具合の発生を確実に抑制することができる。なお、本発明において、ガス流量の一致とは、厳密にガス流量(即ち、原料ガスと流量調整用の不活性ガスとの合計のガス流量)が一致している場合だけでなく、シャワープレートの両ガス導入口から吐出されるガス流量の差が小さく、基板に対して原料ガスが円滑に供給されて、膜厚や膜質の基板面内均一性よく成膜できる場合を含む。
According to the present invention, since the structure in which the branch pipe branched from one gas pipe is connected to the gas supply pipe for introducing the raw material gas is adopted, two kinds of raw material gases are transferred into the reaction chamber by the two gas supply pipes. In the case of introducing each of the two, the pressures in the two gas supply pipes on the downstream side of the flow rate control means communicating with each other in the reaction chamber under reduced pressure are equal. When the gas flow rate of either one of the gas supply pipes decreases, the inert gas preferentially flows into the reduced gas supply pipe from the branch pipe, thereby supplying the gas to both isolation spaces with a simple configuration. It is possible to realize a configuration in which the gas flow rates introduced through the pipes match each other. In addition, by controlling the gas flow rate in the branch pipe to be larger than the flow rate difference of the raw material gas flowing in the gas supply pipe, the flow rate of the gas discharged from the gas inlet can be made the same, and both gases can be smoothly boarded. In addition, it is possible to reliably suppress the occurrence of problems such as the inert gas flowing backward in the gas supply pipe. In the present invention, the coincidence of the gas flow rates is not limited to the case where the gas flow rates are strictly the same (that is, the total gas flow rate of the raw material gas and the inert gas for flow rate adjustment), This includes the case where the difference between the gas flow rates discharged from the two gas inlets is small, the source gas is smoothly supplied to the substrate, and the film thickness and film quality can be formed with good uniformity within the substrate surface.

本発明においては、前記分岐管の接続箇所から各隔絶空間までのガス供給管の長さを揃えておけば、より確実に複数種の原料ガスを同等の流量で基板に供給することができる。   In the present invention, if the lengths of the gas supply pipes from the connection location of the branch pipe to each isolation space are made uniform, a plurality of types of source gases can be more reliably supplied to the substrate at the same flow rate.

また、本発明においては、前記各隔絶空間から反応室に夫々通じるガス導入口のコンダクタンスを一致させることが好ましい。これによれば、隔絶空間へのガス流量を互いに一致させることができることと相俟って、基板に対して、複数種の原料ガス(即ち、原料ガス及び不活性ガス)を同等の流量で確実に供給することができる。   In the present invention, it is preferable that the conductances of the gas inlets that lead from the respective isolation spaces to the reaction chamber are matched. According to this, coupled with the fact that the gas flow rates to the isolation space can be made to coincide with each other, a plurality of types of source gases (that is, source gases and inert gases) can be reliably supplied to the substrate at equal flow rates. Can be supplied to.

なお、本発明においては、前記隔絶空間の夫々は、一方向に列設した複数枚の隔板のうち向かい合う2枚の隔板で画成され、各隔板の列設方向で反応室に向かう方向を下とし、最下側に位置する隔板に前記ガス導入口が開設されており、これらのガス導入口は、最下側の隔絶空間に直接連通すると共に、隔絶空間または隔板を上下方向に貫通する連通路を介して他の各隔絶空間に夫々連通するようにすればよい。   In the present invention, each of the isolation spaces is defined by two opposing diaphragms among a plurality of diaphragms arranged in one direction, and is directed to the reaction chamber in the direction in which each diaphragm is arranged. The gas introduction port is opened in the partition plate located at the lowermost side with the direction facing downward, and these gas introduction ports communicate directly with the isolation space on the lowermost side and move the isolation space or the partition plate up and down. What is necessary is just to make it each communicate with each other isolation space via the communicating path which penetrates in a direction.

本発明の実施形態のガス供給装置を備えたMOCVD装置を模式的に示す図。The figure which shows typically the MOCVD apparatus provided with the gas supply apparatus of embodiment of this invention. シャワープレートたる隔板の平面図。The top view of the partition plate which is a shower plate. 従来例のガス供給装置を備えたMOCVD装置を模式的に示す図。The figure which shows typically the MOCVD apparatus provided with the gas supply apparatus of the prior art example.

以下、図面を参照して、真空処理装置をMOCVD装置とし、2種の原料が液相状態で収納された両容器から原料ガスを2本のガス供給管を介して反応室内にポストミックス式で導入する場合を例に、本発明の実施形態の真空処理装置用のガス供給装置を説明する。以下においては、上記従来例と同一の部材、要素には同一の符号を用いることとする。   In the following, referring to the drawings, the vacuum processing apparatus is an MOCVD apparatus, and raw material gases from both containers in which two kinds of raw materials are stored in a liquid phase state are put into a reaction chamber through two gas supply pipes in a post-mix type. Taking the case of introduction as an example, a gas supply apparatus for a vacuum processing apparatus according to an embodiment of the present invention will be described. In the following, the same symbols are used for the same members and elements as in the conventional example.

図1を参照して、ガス供給装置GSは、反応室の天井部に設けたガス導入部4と、両原料ガスを供給する、マスフローコントローラ51(流量制御手段)が介設されたガス供給管5、5と、原料ガスをガス供給管5、5へと送り出す図示省略のガス源とを備える。ガス源としては、公知のものが利用でき、特に図示して説明しないが、例えば、各原料を液相状態で夫々収納する容器を備える。原料としては、基板W表面に形成しようする有機金属化合物膜の組成に応じて選択され、例えば、発光ダイオードの製造工程にて所定の有機金属化合物膜を成膜する場合、In、Ga、N、Mgが用いられる。この場合、同種の原料を複数個の容器に収納することもできる。 Referring to FIG. 1, a gas supply device GS includes a gas introduction pipe 4 provided at the ceiling of a reaction chamber, and a gas supply pipe provided with a mass flow controller 51 (flow rate control means) for supplying both source gases. 5 1 , 5 2 and a gas source (not shown) that feeds the source gas to the gas supply pipes 5 1 , 5 2 . As the gas source, a known gas source can be used, and although not particularly illustrated and described, for example, a container for storing each raw material in a liquid phase state is provided. The raw material is selected according to the composition of the organometallic compound film to be formed on the surface of the substrate W. For example, when a predetermined organometallic compound film is formed in the manufacturing process of the light emitting diode, In, Ga, N 2 Mg is used. In this case, the same kind of raw material can be stored in a plurality of containers.

各容器には、図外のヒータが設けられ、原料が、その蒸気圧に応じた所定温度に加熱保持されるようになっている。各容器には、不活性ガスからなるプッシングガス(バブリングガス)を供給するプッシングガスラインが夫々接続されている。そして、流量制御されたプッシングガスが容器内に導入され、当該プッシングガスのバブリング作用により、原料ガスが、第1及び第2の両ガス供給管5、5へと送り出される。 Each container is provided with a heater (not shown) so that the raw material is heated and held at a predetermined temperature corresponding to its vapor pressure. Each container is connected to a pushing gas line for supplying a pushing gas (bubbling gas) made of an inert gas. Then, the flow rate controlled Pusshingugasu is introduced into the container, by bubbling action of the Pusshingugasu, raw material gas is fed to the first and both the gas supply pipe 5 1 second, 5 2.

ところで、ガス供給管5、5を介して両隔絶空間4a、4bに夫々ガス(即ち、原料ガス及び不活性ガス)を導入し、両隔絶空間4a、4bで一旦拡散されたガスをシャワープレート4の両ガス導入口42a、42bから反応室1a内に原料ガスを夫々供給し、基板W表面で反応させて成膜する場合、シャワープレート4の両ガス導入口42a、42bから吐出されるガス流量(流速)に差があると、例えばシャワープレート4と基板Wとの間の空間でうずが発生して基板Wへの原料ガスの円滑な流れが阻害され、膜厚や膜質の基板面内均一性よく成膜できない。本実施形態では、両隔絶空間4a、4bへの原料ガスのガス供給量を互いに一致させるために、ガス供給管5、5として同一径のものを用いると共に、マスフローコントローラ51から両隔絶空間4a、4bまでの長さを同一とした。
Incidentally, both isolated space 4a through the gas supply pipe 5 1, 5 2, introduced respectively gas (i.e., the raw material gas and inert gas) to 4b, both isolated space 4a, once spread gas 4b shower both gas inlet 42a of the plate 4 1, the raw material gas was respectively supplied from 42b into the reaction chamber 1a, when forming by reacting with the substrate W surface, both gas inlet port 42a of the shower plate 4 1, discharge from 42b If there is a difference in gas flow rate (flow velocity) which is, for example, vortex in a space between the shower plate 4 1 and the substrate W is inhibited smooth flow of the raw material gas to the substrate W is generated, the film thickness and film quality The film cannot be formed with good uniformity in the substrate surface. In the present embodiment, gas supply pipes 5 1 , 5 2 having the same diameter are used as gas supply pipes 5 1 , 5 2 in order to match the gas supply amounts of the source gases to the both isolation spaces 4 a, 4 b, and from the mass flow controller 51 to the both isolation spaces. The lengths up to 4a and 4b were the same.

また、上記の如く、原料ガスを希釈し、または、原料ガスを反応室1aへと送る等のための不活性ガス供給管6、6とは別に(図1中、図示せず)、各ガス供給管5、5に、アルゴン等の不活性ガスを導入する、マスフローコントローラ71(他の流量制御手段)を介設した1本のガス管7を分岐した分岐管7、7を夫々接続し、ガス供給管5、5を介して原料ガスを供給する際、マスフローコントローラ51の下流側でガス供給管5、5に分岐管7、7から流量調整用の不活性ガスを流すこととした。この場合、両分岐管7、7の長さを揃えると共に、ガス管7を流れるガスの流量を、ガス供給管5、5を流れる原料ガスの流量差より多くなるように制御することとした。なお、流量制御は、例えば、MOCVD装置の作動を統括制御する制御部により、マスフローコントローラ71を制御して行えばよい。 Further, as described above, separately from the inert gas supply pipes 6 1 and 6 2 for diluting the source gas or sending the source gas to the reaction chamber 1a (not shown in FIG. 1), Branch pipes 7 1 , 7 branched from one gas pipe 7 provided with a mass flow controller 71 (other flow rate control means) for introducing an inert gas such as argon into each gas supply pipe 5 1 , 5 2. 2 was respectively connected, when supplying the raw material gas through a gas supply pipe 5 1, 5 2, the flow rate adjustment from the branch pipe 71, 7 2 in the gas supply pipe 5 1, 5 2 downstream of the mass flow controller 51 It was decided to flow an inert gas. In this case, the lengths of both the branch pipes 7 1 and 7 2 are made uniform, and the flow rate of the gas flowing through the gas pipe 7 is controlled to be larger than the flow rate difference of the source gas flowing through the gas supply pipes 5 1 and 5 2. It was decided. The flow rate control may be performed, for example, by controlling the mass flow controller 71 by a control unit that performs overall control of the operation of the MOCVD apparatus.

上記によれば、減圧下の反応室1aに互いに連通する、マスフローコントローラ51の下流側における両ガス供給管内5、5の圧力が同等となる。そして、両ガス供給管5、5のうちいずれか一方のガス流量が低下すると、この低下したガス供給管5、5に分岐管7、7から不活性ガスが優先的に流入することで、簡単な構成により両隔絶空間4a、4bにガス供給管5、5を介して導入されるガス流量(原料ガスと不活性ガスとの合計のガス流量)を互いに一致させる構成が実現できる。また、不活性ガスの流量を、ガス供給管5、5を流れる原料ガスの流量差より多くなるように制御することで、ガス導入口42a、42bから吐出されるガスの流量を同一にできて両ガスを円滑に基板に供給することができ、しかも、不活性ガスがガス供給管5、5内を逆流する等の不具合の発生を確実に抑制することができる。
According to the above, the pressures in the gas supply pipes 5 1 and 5 2 on the downstream side of the mass flow controller 51 communicating with the reaction chamber 1a under reduced pressure are equal. When the gas flow rate of either one of the gas supply pipes 5 1 and 5 2 is reduced, the inert gas is preferentially supplied from the branch pipes 7 1 and 7 2 to the reduced gas supply pipes 5 1 and 5 2. By flowing in, the gas flow rates (total gas flow rates of the raw material gas and the inert gas) introduced into the both isolation spaces 4a and 4b via the gas supply pipes 5 1 and 5 2 are made to coincide with each other with a simple configuration. Configuration can be realized. Further, the flow rate of the inert gas, by controlling so much made of the flow rate difference of the raw material gas flowing through the gas supply pipe 5 1, 5 2, gas inlets 42a, the flow rate of the gas discharged from 42b in the same it can be both gas can be smoothly supplied to the substrate, moreover, it is possible to reliably suppress the occurrence of problems such as an inert gas to flow back through the gas supply pipe 5 1, 5 2.

次に、両隔絶空間4a、4bから各ガス導入口42a、42bを介して反応室1a内に同等の流量で原料ガスを吐出するために、図2に示すように、ガス導入口42aと、ガス導入口42bとの形成個数を一致させると共に、互い違いとなるようにシャワープレート4に等間隔で形成した。そして、ガス導入口42bにその先端部が挿設されたストロー管43の内径を、ガス導入口42aより小さくし(内径に差をつける)、下側の隔絶空間4aから反応室1aに通じる一のガス導入口42aと、上側の隔絶空間4bからストロー管43を経て反応室1aに通じる他のガス導入口42bとのコンダクタンスを互いに一致させるようにした。この場合、MOCVDによる成膜時の反応室1a内の圧力範囲(隔絶空間4a、4b内の圧力は同等となる)では、通常、粘性流領域となるため、この粘性流のコンダクタンスの一般式と、ガス導入口42aの長さ(隔板4の板厚)及びストロー管43の長さとから夫々のコンダクタンスを算出し、このコンダクタンスを考慮して径を決定すればよい。 Next, in order to discharge the raw material gas at the same flow rate into the reaction chamber 1a from the both isolation spaces 4a and 4b through the gas inlets 42a and 42b, as shown in FIG. together match the formation number of a gas inlet 42b, formed at equal intervals in the shower plate 4 1 so as to alternately. Then, the inner diameter of the straw tube 43 whose tip is inserted into the gas introduction port 42b is made smaller than that of the gas introduction port 42a (the inner diameter is made different), and is communicated from the lower isolation space 4a to the reaction chamber 1a. The conductances of the gas inlet 42a and the other gas inlet 42b communicating with the reaction chamber 1a from the upper isolation space 4b through the straw tube 43 are made to coincide with each other. In this case, in the pressure range in the reaction chamber 1a at the time of film formation by MOCVD (the pressures in the isolation spaces 4a and 4b are equal), usually a viscous flow region is obtained. calculates the conductance of each of the length of the length of the gas inlet 42a (diaphragm 4 1 of thickness) and straw tube 43, may be determined diameter in consideration of the conductance.

上記によれば、下側の隔絶空間4aから直接ガス導入口42aを介して反応室1aに吐出されるまでと、上側の隔絶空間4bからストロー管43を経てその端部(つまり、ガス供給口42b)から反応室1aに吐出されるまでとのコンダクタンスを揃えることと、両隔絶空間4a、4bへのガス流量を互いに一致させることができることとが相俟って、基板Wに対して、原料ガスと不活性ガスとからなるガスを同等の流量で確実に供給することができる。 According to the above, until the gas is discharged from the lower isolation space 4a directly to the reaction chamber 1a via the gas inlet 42a, the end portion (that is, the gas supply port) passes from the upper isolation space 4b through the straw tube 43. 42b) to the discharge until the reaction chamber 1a is discharged, and the gas flow rates to the two isolation spaces 4a and 4b can be made to coincide with each other. A gas composed of a gas and an inert gas can be reliably supplied at an equivalent flow rate.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、2種類の原料ガスを反応室内に供給するものを例に説明したが、3種以上の原料ガスの供給にも本発明のガス供給装置は適用することができる。また、上記実施形態においては、処理装置としてMOCVD装置を例としたが、処理装置はこれに限定されるものではなく、複数種の原料ガスを反応室内の基板に供給して混合するものであれば、本発明のガス供給システムは広く適用できる。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above embodiment, the case where two types of source gases are supplied into the reaction chamber has been described as an example, but the gas supply apparatus of the present invention can also be applied to supply three or more types of source gases. In the above-described embodiment, the MOCVD apparatus is taken as an example of the processing apparatus. However, the processing apparatus is not limited to this, and may supply and mix plural kinds of source gases to the substrate in the reaction chamber. For example, the gas supply system of the present invention can be widely applied.

また、上記実施形態では、3枚の隔板4〜4を上下方向に等間隔で列設し、向かい合う2枚の隔板4〜4により、同一容積の下側の隔絶空間4aと上側の隔絶空間4bとを画成したものを例に説明したが、隔絶空間が複数形成されたものであれば、ガス導入部の形態は上記のものに限定されるものではない。例えば、同一輪郭を有する複数枚の所定の厚さの板材を用い、各板材の上面や下面にガス通路等を構成する窪み部を凹設し、これらを上下方向で重ね合わせて接合することで、相互に隔絶された隔絶空間を形成し、各隔絶空間から、板材を上下方向に貫通して最下部の板材に通じるガス導入口を穿設してガス導入部を構成することができる。 In the above-described embodiment, the three partition plates 4 1 to 4 3 are arranged at equal intervals in the vertical direction, and the two isolated plates 4 1 to 4 3 facing each other form a lower isolation space 4a having the same volume. However, as long as a plurality of isolation spaces are formed, the form of the gas introduction part is not limited to the above. For example, by using a plurality of plate materials having the same contour and having a predetermined thickness, concave portions that constitute gas passages and the like are formed on the upper surface and lower surface of each plate material, and these are overlapped and joined in the vertical direction. The gas introduction part can be configured by forming an isolated space that is isolated from each other, and through each of the isolated spaces, a gas introduction port that penetrates the plate material in the vertical direction and communicates with the lowermost plate material.

更に、本実施形態では、流量制御手段をマスフローコントローラとから構成したものを例に説明したが、これに限定されるものではない。更に、上記実施形態では、コンダクタンスを揃えるためにガス導入口の径に差をつけるものを例に説明したが、これに限定されるものはなく、他の方法でもよい。また、上記実施形態では、ガス供給管5、5を介して原料ガスを供給する際、マスフローコントローラ51の下流側でガス供給管5、5に分岐管7、7から流量調節用の不活性ガスを流すこととしたが、これに限定されるものではなく、場合によっては、流量調整用に原料ガスを使用することもできる。 Further, in the present embodiment, the flow rate control unit is configured by the mass flow controller. However, the present invention is not limited to this. Furthermore, in the above-described embodiment, an example has been described in which the diameter of the gas inlet is made different in order to make conductance uniform. However, the present invention is not limited to this, and other methods may be used. In the above embodiment, when supplying the raw material gas through a gas supply pipe 5 1, 5 2, the flow from the branch pipe 71, 7 2 downstream in the gas supply pipe 5 1, 5 2 of the mass flow controller 51 Although the inert gas for adjustment is made to flow, the present invention is not limited to this, and in some cases, the raw material gas can also be used for flow rate adjustment.

1…真空チャンバ(真空処理装置(MOCVD装置)、GS…ガス供給装置、4…ガス導入部、4、4、4…隔板、4a、4b…隔絶空間、42a、42b…ガス導入口、43…ストロー管(連通路)、5、5…ガス供給管(原料ガス用)、51、71…マスフローコントローラ(流量制御手段)、7…ガス管(流量調整のための不活性ガス用)、7、7…分岐管。 DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber (Vacuum processing apparatus (MOCVD apparatus), GS ... Gas supply apparatus, 4 ... Gas introduction part, 4 < 1 >, 4 < 2 >, 4 < 3 > ... Separation plate, 4a, 4b ... Isolation space, 42a, 42b ... Gas introduction Mouth, 43 ... Straw pipe (communication path), 5 1 , 5 2 ... Gas supply pipe (for source gas), 51, 71 ... Mass flow controller (flow rate control means), 7 ... Gas pipe (inert for flow rate adjustment) For gas), 7 1 , 7 2 ...

Claims (4)

複数種の原料ガスを混合することなく、減圧下の反応室内に夫々導入する真空処理装置用のガス供給装置であって、
反応室内を臨むガス導入部を備え、このガス導入部は複数の隔絶空間を有し、各隔絶空間に、原料ガスを供給する、流量制御手段を介設したガス供給管が夫々接続されると共に、各隔絶空間から夫々反応室に通じるガス導入口が設けられ、
各ガス供給管に、他の流量制御手段を介設した1本のガス管を分岐した分岐管が夫々接続され、このガス管を流れるガスの流量を、ガス供給管を流れる原料ガスの流量差より多くなるように制御し、各ガス導入口から反応室に夫々導入される、原料ガスと各分岐管からのガスとの合計のガス流量が同等となるようにしたことを特徴とする真空処理装置用のガス供給装置。
Things Ku mixing a plurality of kinds of raw material gas, a gas supply apparatus for a vacuum processing apparatus which respectively introduced into the reaction chamber under reduced pressure,
A gas introduction part facing the reaction chamber is provided, and the gas introduction part has a plurality of isolated spaces, and gas supply pipes for supplying a raw material gas are connected to each isolated space via a flow rate control unit, respectively. , Gas inlets are provided from each isolated space to the reaction chamber,
Each gas supply pipe is connected to a branch pipe branched from one gas pipe provided with other flow rate control means, and the flow rate of the gas flowing through this gas pipe is determined by the flow rate difference of the raw material gas flowing through the gas supply pipe. The vacuum processing is characterized in that the total gas flow rate of the raw material gas and the gas from each branch pipe, which are controlled so as to be increased, are introduced into the reaction chamber from each gas introduction port , respectively, are equal. Gas supply device for equipment.
前記分岐管の接続箇所から各隔絶空間までのガス供給管の長さを揃えることを特徴とする請求項1記載の真空処理装置用のガス供給装置。   2. The gas supply apparatus for a vacuum processing apparatus according to claim 1, wherein the length of the gas supply pipe from the connection location of the branch pipe to each isolation space is made uniform. 前記各隔絶空間から反応室に夫々通じるガス導入口のコンダクタンスを一致させることを特徴とする請求項1または請求項2記載の真空処理装置用のガス供給装置。   The gas supply device for a vacuum processing apparatus according to claim 1 or 2, wherein conductances of gas introduction ports respectively communicating from the respective isolation spaces to the reaction chamber are made to coincide with each other. 前記隔絶空間の夫々は、一方向に列設した複数枚の隔板のうち向かい合う2枚の隔板で画成され、各隔板の列設方向で反応室に向かう方向を下とし、最下側に位置する隔板に前記ガス導入口が開設されており、これらのガス導入口は、最下側の隔絶空間に直接連通すると共に、隔絶空間または隔板を上下方向に貫通する連通路を介して他の各隔絶空間に夫々連通することを特徴とする請求項1〜3のいずれか1項に記載の真空処理装置用のガス供給装置。   Each of the isolation spaces is defined by two opposing diaphragms among a plurality of diaphragms arranged in one direction, with the direction toward the reaction chamber being the bottom in the direction of arrangement of each diaphragm, and the lowest The gas introduction ports are opened in the partition plate located on the side, and these gas introduction ports communicate directly with the lowest isolation space and communicate with the isolation space or the communication passage that vertically penetrates the separation plate. The gas supply device for a vacuum processing apparatus according to any one of claims 1 to 3, wherein the gas supply device communicates with each other isolation space via a gas passage.
JP2011154514A 2011-07-13 2011-07-13 Gas supply device for vacuum processing equipment Active JP5731301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154514A JP5731301B2 (en) 2011-07-13 2011-07-13 Gas supply device for vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154514A JP5731301B2 (en) 2011-07-13 2011-07-13 Gas supply device for vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2013021206A JP2013021206A (en) 2013-01-31
JP5731301B2 true JP5731301B2 (en) 2015-06-10

Family

ID=47692338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154514A Active JP5731301B2 (en) 2011-07-13 2011-07-13 Gas supply device for vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP5731301B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487338B2 (en) * 1999-08-31 2010-06-23 東京エレクトロン株式会社 Film forming apparatus and film forming method
TWI556309B (en) * 2009-06-19 2016-11-01 半導體能源研究所股份有限公司 Plasma treatment apparatus, method for forming film, and method for manufacturing thin film transistor

Also Published As

Publication number Publication date
JP2013021206A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
KR102323167B1 (en) Method and apparatus for purging and plasma suppression in a process chamber
US9315897B2 (en) Showerhead for film depositing vacuum equipment
KR102156389B1 (en) Gas distribution showerhead for semiconductor processing
US7918938B2 (en) High temperature ALD inlet manifold
KR102313335B1 (en) Gas supply manifold and method of supplying gases to chamber using same
TWI391599B (en) Plural gas distribution system, plural gas distribution showerhead apparatus, and semiconductor manufacturing plural gas distribution system
US9297071B2 (en) Solid precursor delivery assemblies and related methods
CN105839077B (en) Method and apparatus for depositing III-V main group semiconductor layers
KR20170067827A (en) Atomic layer deposition chamber with thermal lid
KR20170142891A (en) Showerhead curtain gas method and system for film profile modulation
JP2008103679A (en) Gas distribution apparatus for use in semiconductor workpiece processing reactor, and its reactor
KR19990085442A (en) Semiconductor thin film deposition equipment by continuous gas injection
KR20140023934A (en) Multiple level showerhead design
JP2005303292A (en) Thin film deposition system
TWI724974B (en) Fluid distributing device for a thin-film deposition apparatus, related apparatus and methods
WO2019124099A1 (en) Film-forming device
US10497542B2 (en) Flow control showerhead with integrated flow restrictors for improved gas delivery to a semiconductor process
JP2021019201A (en) Showerhead device for semiconductor processing system
US8496753B2 (en) Arrangement in connection with ALD reactor
JP5731301B2 (en) Gas supply device for vacuum processing equipment
WO2023213128A1 (en) System, equipment and method for thin film deposition
KR102210390B1 (en) Integration of dual remote plasmas sources for flowable cvd
JP2019134162A (en) Gas nozzle applied in chemical vapor deposition system
CN110541159A (en) Atomic layer deposition apparatus and method
US20210130956A1 (en) High temperature dual chamber showerhead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250