JP5731274B2 - Pellet molding method - Google Patents

Pellet molding method Download PDF

Info

Publication number
JP5731274B2
JP5731274B2 JP2011107897A JP2011107897A JP5731274B2 JP 5731274 B2 JP5731274 B2 JP 5731274B2 JP 2011107897 A JP2011107897 A JP 2011107897A JP 2011107897 A JP2011107897 A JP 2011107897A JP 5731274 B2 JP5731274 B2 JP 5731274B2
Authority
JP
Japan
Prior art keywords
pellet
molding
growth rate
pellets
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011107897A
Other languages
Japanese (ja)
Other versions
JP2012237045A (en
Inventor
大策 条辺
大策 条辺
櫻井 雄一
雄一 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011107897A priority Critical patent/JP5731274B2/en
Publication of JP2012237045A publication Critical patent/JP2012237045A/en
Application granted granted Critical
Publication of JP5731274B2 publication Critical patent/JP5731274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、粉状金属酸化物に、少なくとも還元剤、水分、およびバインダーを加えて非連続式成型機内に投入し、混合、混練して成型する回転炉床式還元炉向けペレットの成型方法に関する。例えば、製鉄工程から発生する各種製鉄ダストを成型して回転炉床式還元炉で還元処理する場合の非連続式成型機において、原料ダストの性状に左右されずに強度が高く、容易に安定成型が可能となるペレットの成型方法に関するものである。 The present invention relates to a method for forming pellets for a rotary hearth type reduction furnace in which at least a reducing agent, moisture, and a binder are added to a powdered metal oxide, and the mixture is placed in a discontinuous molding machine, mixed, kneaded and molded. . For example, in non-continuous molding machines where various types of steelmaking dust generated from the ironmaking process are molded and reduced in a rotary hearth type reduction furnace, the strength is high regardless of the properties of the raw material dust, and stable molding is easily performed. The present invention relates to a method for forming pellets.

粉状金属酸化物、還元剤、水分、およびバインダーを含む原料を混練して球状のペレットを成型し、これを高温で還元して経済的な還元鉄を製造する設備として回転炉床式還元炉が知られている。前記還元炉は、固定した耐火物の天井と側壁の下で、中央部を欠いた円盤状の耐火物の炉床がレールの上を一定速度で回転する型式の焼成炉(以下、回転炉と称す)である。回転炉の炉床直径は10〜50メートルかつ、炉床幅は2〜6メートルである。炉床は回転しながら、原料供給部、加熱帯、還元帯、製品排出部を移動していく。原料ペレットは1000℃程度と高温の原料供給部に投入される。その後、加熱帯で、約1200℃以上まで加熱されたのちに、還元帯で、炭素と酸化金属が反応して、還元金属が生成する。回転炉床法では、加熱が迅速なために、反応は7〜20分で終了する。還元ペレットは、炉内から排出されて冷却され、その後、電気炉や高炉の原料として使用される。 Rotary hearth type reducing furnace as equipment for kneading raw materials containing powdered metal oxide, reducing agent, moisture and binder to form spherical pellets and reducing them at high temperature to produce economical reduced iron It has been known. The reduction furnace is a type of firing furnace (hereinafter referred to as a rotary furnace) in which a disk-shaped refractory hearth lacking a central portion rotates on a rail at a constant speed under a fixed refractory ceiling and side walls. It is called). The hearth diameter of the rotary furnace is 10-50 meters and the hearth width is 2-6 meters. While the hearth is rotating, the raw material supply unit, heating zone, reduction zone, and product discharge unit are moved. The raw material pellets are put into a high temperature raw material supply section of about 1000 ° C. Then, after heating to about 1200 ° C. or higher in the heating zone, carbon and metal oxide react in the reduction zone to produce reduced metal. In the rotary hearth method, since the heating is rapid, the reaction is completed in 7 to 20 minutes. The reduced pellets are discharged from the furnace and cooled, and then used as a raw material for an electric furnace or a blast furnace.

前記回転炉による還元鉄の製造において、前記ペレットの強度が不十分である場合、崩壊したペレットが炉床耐火物にビルトアップして、岩盤化され排出スクリューのブレードを摩耗させる問題がある。このように、ペレットを還元するプロセスでは、安定的な操業の実現のためにペレットの強度が高いことが重要である。特に還元剤を原料とするペレットでは、主に還元剤及び水分の割合が適正でない場合には成型がし難く、強度が上がりづらい問題があり、強度を上げることが望まれている。 In the production of reduced iron by the rotary furnace, when the pellet has insufficient strength, there is a problem that the collapsed pellet is built up to the hearth refractory and is rocked and wears the blade of the discharge screw. Thus, in the process of reducing pellets, it is important that the strength of the pellets is high in order to realize stable operation. In particular, pellets that use a reducing agent as a raw material have a problem that it is difficult to mold mainly when the proportions of the reducing agent and moisture are not appropriate, and it is difficult to increase the strength, and it is desired to increase the strength.

実際のペレット製造プロセスにおいて、前記ペレットの強度は原料性状の変動、例えば、前記粉状金属酸化物及び還元剤が保有している水分、粒径、配合割合、前記粉状金属酸化物及び還元剤に添加する水分、バインダーの添加量、前記粉状金属酸化物を構成する主として転炉、高炉、焼結、圧延設備から副生される各粉状金属酸化物の設備毎の配合割合など、数多くのパラメータにより成型のし易さや成型されるペレットの強度が異なる。よって、現実には、熟練したオペレータが成型機の機側で目視観察・検査を運転中に常時実施し、種々の成型条件を都度、経験則により適宜変更・操作して粒径の安定した強度の高いペレットを成型しており、安定的に強度の高いペレットを容易に成型することが難しい。 In the actual pellet manufacturing process, the strength of the pellets varies in raw material properties, for example, the water content, particle size, blending ratio, powdered metal oxide and reducing agent possessed by the powdered metal oxide and reducing agent. Moisture to be added, amount of binder added, blending ratio of each powdered metal oxide by-product mainly from converters, blast furnaces, sintering, rolling equipment constituting the powdered metal oxide, etc. Depending on the parameters, the ease of molding and the strength of the pellets to be molded vary. Therefore, in reality, a skilled operator always carries out visual observation and inspection on the machine side during operation, and various molding conditions are changed and operated as appropriate according to empirical rules, and the stable strength of the particle size. It is difficult to form a stable high-strength pellet easily.

一方、前記強度の高いペレットの成型方法に関しては従来から種々の提案がなされており、例えば、特許第3635253号公報(下記特許文献1)には、非連続式成型機であるパン式成型機でペレットを製造する方法として、原料の10μm以下の粒径の粒子を20〜80%含むように予め調整する方法が記載されている。 On the other hand, various proposals have been made regarding the molding method of the high-strength pellets. For example, Japanese Patent No. 3635253 (Patent Document 1 below) discloses a bread-type molding machine which is a discontinuous molding machine. As a method for producing pellets, a method is described in which the raw material is prepared in advance so as to contain 20 to 80% of particles having a particle size of 10 μm or less.

しかし、この特許文献1の方法は、原料を事前に粉砕すると共に所定の粒径に合うように原料を選択する必要があるため、ペレット成型前の事前工程に多大な時間を要し、実用的な技術として適用できない。また、成型の制御方法として予め原料の水分を測定しておき8〜13%の範囲で水分を制御すると記載されているが具体的な制御方法は開示されていなく、前記のとおり粉状金属酸化物及び還元剤の保有する水分量は種々相違するため安定的に強度の高いペレットを成型することは難しく、同様に実用的な技術でない。 However, since the method of Patent Document 1 needs to pulverize the raw material in advance and select the raw material so as to meet a predetermined particle size, it requires a lot of time for the preliminary process before pellet molding, and is practical. It cannot be applied as a new technology. In addition, as a molding control method, it is described that the moisture of the raw material is measured in advance and the moisture is controlled within a range of 8 to 13%, but a specific control method is not disclosed, and as described above, powder metal oxidation Since the amount of water held by the product and the reducing agent is different, it is difficult to stably form high-strength pellets, which is also not a practical technique.

特許第3635253号公報Japanese Patent No. 3635253

本発明は、前述のような従来技術の問題点を解決するものであって、強度の高いペレットを、前記原料の性状が変動しても、運転者の技量に関係なく、安定して、短時間で容易に成型が可能なペレットの成型方法を提供することを課題とする。 The present invention solves the problems of the prior art as described above. A high-strength pellet can be stably and short-cut regardless of the skill of the driver, even if the properties of the raw material fluctuate. It is an object of the present invention to provide a pellet molding method that can be easily molded in time.

本発明は、前記問題点に鑑みなされたものであり、その要旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1)製鉄工程から発生する粉状金属酸化物に、少なくとも還元剤、水分、およびバインダーを加えて非連続式成型機内に投入し、混練して成型する回転炉床式還元炉用ペレットの成型方法において、混練中のペレットの成長速度Aを所定の時間毎に下記(a)式で求め、求められた前記成長速度Aが0.3超(%/s)の場合に巨大化状態と判断して乾燥粉を添加して再度混合および混練し、前記成長速度Aが0.2未満(%/s)の場合に非成長状態と判断して水を添加して再度混練し、前記成長速度Aが0.2〜0.3(%/s)の場合に安定成長状態と判断して直ちに成型工程に移行し、成型することを特徴とするペレットの成型方法。
ペレット成長速度A= (be−bs)/t・・・・(a) 式
t:混練時間(s)
bs:前記混練時間・当初の6mm以上の粒径の割合(%)
be:前記混練時間・最後の6mm以上の粒径の割合(%)
(2)前記還元剤として、コークス粉、石炭粉、CDQ粉から選ばれる少なくとも1以上からなることを特徴とする(1)に記載のペレットの成型方法。
(3)前記粉状金属酸化物として、前記製鉄工程の設備である転炉、高炉、焼結、圧延設備から選ばれる少なくとも1以上の設備から副生される粉状金属酸化物からなることを特徴とする(1)または(2)に記載のペレットの成型方法。
This invention is made | formed in view of the said problem, and the place made into the summary is the following content as described in the claim.
(1) Molding of pellets for rotary hearth-type reduction furnaces that add at least a reducing agent, moisture, and a binder to the powdered metal oxide generated from the iron making process, put them into a discontinuous molding machine, knead and mold In the method, the growth rate A of the pellets during kneading is determined by the following formula (a) every predetermined time, and when the determined growth rate A exceeds 0.3 (% / s), it is determined that the state is enlarged. Then, dry powder is added and mixed and kneaded again. When the growth rate A is less than 0.2 (% / s), it is judged as a non-growth state and water is added and kneaded again. A method for forming pellets, characterized in that in the case of 0.2 to 0.3 (% / s), it is determined that the state is a stable growth state, and the process immediately proceeds to a molding step and is molded.
Pellet growth rate A = ( be−bs ) / t (a) Formula t: kneading time (s)
bs: the kneading time and the ratio of the initial particle diameter of 6 mm or more (%)
be: the kneading time and the ratio of the particle diameter of the last 6 mm or more (%)
(2) The method for molding pellets according to (1), wherein the reducing agent comprises at least one selected from coke powder, coal powder, and CDQ powder.
(3) The powdered metal oxide is composed of a powdered metal oxide by-produced from at least one facility selected from a converter, a blast furnace, sintering, and a rolling facility, which are facilities in the iron making process. The method for molding a pellet according to (1) or (2), characterized in that it is characterized.

本発明により、前記原料性状が変動しても、運転者の技量に関係なく強度の高いペレットを安定して成型することが可能となった。また成型を対象とする原料の粉砕及び粒径に合うように原料の選択が不要、即ち、ぺレット成型前の事前工程が皆無となり、成型時間を大幅に短縮することが可能で実用的に適する技術となった。更に、成型状況を連続で把握することができるので、成型不具合発生時に迅速にその対応が可能となるペレットの成型方法を提供することができるなど、産業上有用な著しい効果を奏する。 According to the present invention, it is possible to stably form a high-strength pellet regardless of the skill of the driver even if the raw material properties fluctuate. In addition, it is not necessary to select the raw material to match the pulverization and particle size of the raw material to be molded, that is, there is no prior process before pellet molding, and the molding time can be greatly shortened, which is practically suitable. It became technology. Furthermore, since the molding state can be continuously grasped, there is a remarkable industrially useful effect, such as providing a pellet molding method that can quickly cope with a molding failure.

本発明を適用する回転炉床式還元プロセスを例示する図である。It is a figure which illustrates the rotary hearth type reduction process to which this invention is applied. 本発明のペレットの成型方法における予備テスト1のペレット成型状態を説明する図である。It is a figure explaining the pellet shaping | molding state of the preliminary test 1 in the shaping | molding method of the pellet of this invention. 本発明のペレットの成型方法における予備テスト2のペレット成長状態を説明する図である。It is a figure explaining the pellet growth state of the preliminary test 2 in the shaping | molding method of the pellet of this invention. (a)(b)本発明のペレットの成型方法における混練中のペレット成長速度の測定方法を説明する図である。(A) (b) It is a figure explaining the measuring method of the pellet growth rate during kneading | mixing in the molding method of the pellet of this invention. 本発明のペレットの成型方法における好ましい実施形態を例示する図である。It is a figure which illustrates preferable embodiment in the shaping | molding method of the pellet of this invention. 本発明のペレットの成型方法における実施例を示す図である。It is a figure which shows the Example in the shaping | molding method of the pellet of this invention.

まず、本発明を適用する回転炉床式還元プロセスを図1に示す。図1に示すように、粉状金属酸化物貯留槽1、還元剤貯留槽2、バインダー貯留槽3、からなる原料の貯留設備がある。さらに、混合原料槽4、成型装置5およびペレット乾燥装置6、からなる原料処理設備があり、また、焼成還元装置である回転炉床式還元炉7があり、これには、還元鉄冷却装置8と排ガス処理装置9が付随しており、本発明のペレットの成型方法は前記成型装置5に適用される。前記成型装置5には、混練状態を撮像し、画像解析する撮像手段10、該撮像手段の解析結果にもとづいて、制御手段11からの信号により前記成型装置5に水を供給する水ホッパー12、乾燥粉を供給する乾燥粉ホッパー13が付帯されている。14は流量調整弁である。 First, a rotary hearth type reduction process to which the present invention is applied is shown in FIG. As shown in FIG. 1, there is a raw material storage facility including a powder metal oxide storage tank 1, a reducing agent storage tank 2, and a binder storage tank 3. Furthermore, there is a raw material processing facility comprising a mixed raw material tank 4, a molding device 5 and a pellet drying device 6, and a rotary hearth type reduction furnace 7 which is a calcining reduction device, which includes a reduced iron cooling device 8 And the exhaust gas treatment device 9 are attached, and the method for molding pellets of the present invention is applied to the molding device 5. The molding device 5 includes an imaging unit 10 that captures and analyzes the kneaded state, a water hopper 12 that supplies water to the molding unit 5 based on a signal from the control unit 11 based on an analysis result of the imaging unit, A dry powder hopper 13 for supplying the dry powder is attached. 14 is a flow control valve.

本発明のペレットの成型方法の完成において、本発明者らは、以下のステップにより、本発明を完成させた。まず、強度の高いペレットの成型において、その強度を左右する最大の因子として種々のテスト結果から、成型されるペレットには成型中、核となる適正粒径があると以下の知見を得た。以下に説明する。 In completing the pellet molding method of the present invention, the inventors completed the present invention by the following steps. First, the following knowledge was obtained from the various test results as the most important factor in determining the strength of a high-strength pellet when the pellet had a proper particle size as a core during molding. This will be described below.

<予備テスト1>
図2は製鉄工程から発生する粉状金属酸化物として、各々高炉、転炉、焼結、圧延設備から副生された各粉状金属酸化物、次に、前記4者の設備から副生された粉状金属酸化物を略同量の配合したものに対し、水分を10重量%、バインダーとしてベントナイト1重量%混合し、非連続式成型機の一つであるペレガイアを用いて、予備テスト5種を実施した。その結果を図2に示す。図2から明らかなように、前記5種のテストにおいて、時間の経過とともに粒の成長は進み、いずれの場合も、平均粒径が6mm前後になると粒の成長が安定することが判明し、これにより、強度の高いペレットを成型するための核となる平均粒径は、約6mm前後と判明した。
<Preliminary test 1>
FIG. 2 shows powder metal oxides generated from the iron making process, powder metal oxides by-produced from the blast furnace, converter, sintering, and rolling equipment, respectively, and then by-products from the four equipments. Preliminary test 5 using 10% by weight of water and 1% by weight of bentonite as a binder, and Pelegaia which is one of discontinuous molding machines. Seed was carried out. The result is shown in FIG. As is clear from FIG. 2, in the five types of tests, the growth of grains progressed with time, and in any case, it was found that the growth of grains became stable when the average grain size was around 6 mm. Thus, it was found that the average particle size as a core for molding a high-strength pellet was about 6 mm.

<予備テスト2>
続いて、次のテストを実施した。図3は高炉、転炉各粉状金属酸化物に、バインダーとしてベントナイト1重量%混合したものに対し、水分の添加量を5、10、15重量%変更させ、前記予備テスト1と同様に、非連続式成型機の一つであるペレガイアを用いて、予備テスト2種を実施した。図3において、横軸が時間、縦軸を平均粒径が6mm以上の割合を示す。 図3から明らかなように、高炉、転炉各粉状金属酸化物において、何れも場合も、添加する水分の量が10重量前後になると平均粒径6mm以上の割合増加が停止し、安定することが判明した。なお、前記平均粒径が6mm以上の割合の判定は、混錬時のペレットを撮像し、観察領域の内、粒径6mm以上の割合を画像処理により判定した。
<Preliminary test 2>
Subsequently, the following test was performed. FIG. 3 shows a mixture of powdered metal oxides of blast furnace and converter with 1% by weight of bentonite as a binder, and the amount of water added was changed by 5, 10, and 15% by weight. Two types of preliminary tests were performed using Pelegaia, which is one of discontinuous molding machines. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the ratio of the average particle size of 6 mm or more. As is clear from FIG. 3, in each of the powder metal oxides of the blast furnace and the converter, in both cases, when the amount of water to be added is around 10 wt. It has been found. The ratio of the average particle diameter of 6 mm or more was determined by imaging the pellets during kneading and determining the ratio of the particle diameter of 6 mm or more in the observation area by image processing.

これまでの事前予備テスト1及び2のテスト結果をふまえ、強度が高く、前記原料の性状が変動しても短時間で容易に安定したペレットを成型する方法を以下のとおり完成した。すなわち、前記ペレットを成型するには、前記核となる平均粒径が6mm以上の増加割合を以下のとおり、観察・判定し、該判定の結果、水又は粉状金属酸化物の乾燥粉を適宜添加して適正なる混練状態を達成し、その後、成型工程に移行することにより達成可能とし、本発明を完成した。 Based on the results of the previous preliminary tests 1 and 2, a method for forming a stable pellet with high strength and easily in a short time even if the properties of the raw material fluctuate was completed as follows. That is, in order to mold the pellets, the increase rate of the average particle size of the core of 6 mm or more is observed and determined as follows, and as a result of the determination, dry powder of water or powdered metal oxide is appropriately used. It was made possible to achieve an appropriate kneading state by adding it, and then to shift to a molding process, thereby completing the present invention.

本発明によれば、ペレット成長速度(%/s)を測定することにより成型物の成型具合が容易に把握でき、成長速度が急激に増加した場合、成型物が異常成長し更には泥状となり成型不可となり、成長速度に変化が見られない場合、成型物は大きくならず粉状のままとなる。一方、成長速度がある範囲で緩やかに増加した場合、強度のある希望粒径をもつ成型物が製造可能となるので、混錬中のペレットの成長速度(%/s)を測定することにより、変動のない安定したペレットを製造できるうえ、事前に成型不具合が把握可能となり迅速な対応が可能となる。 According to the present invention, by measuring the pellet growth rate (% / s), it is possible to easily grasp the molding condition of the molded product, and when the growth rate increases rapidly, the molded product grows abnormally and becomes muddy. When molding is impossible and no change is observed in the growth rate, the molded product does not become large and remains in powder form. On the other hand, if the growth rate increases slowly within a certain range, it becomes possible to produce a molded product with a strong desired particle size, so by measuring the growth rate (% / s) of the pellet during kneading, In addition to producing stable pellets that do not fluctuate, it is possible to grasp molding defects in advance and to respond quickly.

図4(a)、(b)は、本発明のペレットの成型方法における混練中のペレット成長速度の測定方法を説明する図である。図示するように、混錬時間t1のペレットを撮像し画像処理図4(a)、同様に、t2のペレットを撮像し、画像処理図4(b)を行うことによって、観察領域の内、粒径6mm以上の巨大粒の面積比率(%)を求め、t1〜t2(s)間に増加した粒径6mm以上の巨大粒の割合(%)を算定することによりペレット成長速度(%/s)を算定することができる。この画像処理によるペレット成長速度(%/s)を算定は、オンライン処理が適するが、より簡便な方法として6mm目の篩を用いて篩上と篩下の重量比を算定することにより求めることもできる。なお、前記、ペレットの成長速度を測定する頻度(時間)については、ペレットの成長度合いにもよるが30〜60秒とすることが好ましい。 4 (a) and 4 (b) are diagrams illustrating a method for measuring the pellet growth rate during kneading in the pellet molding method of the present invention. As shown in the figure, the pellets at the kneading time t1 are imaged and processed in the image processing FIG. 4 (a). Similarly, the pellets at t2 are imaged and processed in the image processing FIG. 4 (b). Pellet growth rate (% / s) by calculating the area ratio (%) of giant grains with a diameter of 6 mm or more and calculating the ratio (%) of giant grains with a grain size of 6 mm or more increased between t1 and t2 (s) Can be calculated. The calculation of pellet growth rate (% / s) by this image processing is suitable for online processing, but as a simpler method, it can also be obtained by calculating the weight ratio between the upper and lower sieves using a 6 mm sieve. it can. The frequency (time) for measuring the pellet growth rate is preferably 30 to 60 seconds, although it depends on the degree of pellet growth.

図5は、本発明のペレットの成型方法における好ましい実施形態を例示する図であり、図5(a)は基本運転、図5(b)は巨大化時の対応、図5(c)は非成長時の対応を示す。 FIG. 5 is a diagram illustrating a preferred embodiment of the pellet molding method of the present invention, in which FIG. 5 (a) is a basic operation, FIG. 5 (b) is a response at the time of enlarging, and FIG. Show the response during growth.

図5(a)の非連続式成型機の基本運転では、複数の原料を混ぜる混合(解砕)の後、水を添加してペレットの核を作る混錬を行った後、ペレットの核を成長させる成型を行う。混練工程中に、前記ペレット成型状態が巨大化状態の場合には、乾燥粉を添加して回転数を変化させて再度混合および混練することにより、ペレットの泥化による異常成長を防止することができる。 In the basic operation of the discontinuous molding machine in Fig. 5 (a), after mixing (pulverization) to mix a plurality of raw materials, water is added to knead to make pellet nuclei. Mold to grow. During the kneading step, when the pellet molding state is in a huge state, it is possible to prevent abnormal growth due to pelletization by adding dry powder, changing the rotation speed and mixing and kneading again. it can.

また、前記成型状態が非成長状態の場合には、混練工程後に、水を添加して回転数を変化させて再度混練することにより、粒成長を促進させることができる。
このように、本発明によれば、ペレット成型状態を連続で把握できるため、上記の成型不可の場合に迅速な対応(リカバリー)が可能となる。本発明に用いるペレット成型装置は問わないが、バッチ処理を行う非連続式成型装置を用いることにより、成型不可の場合の対応が容易である。
Moreover, when the said molding state is a non-growth state, a grain growth can be promoted by adding water after a kneading | mixing process, changing a rotation speed, and kneading again.
As described above, according to the present invention, since the pellet molding state can be continuously grasped, a quick response (recovery) is possible when the above-described molding is impossible. The pellet molding apparatus used in the present invention is not limited, but by using a non-continuous molding apparatus that performs batch processing, it is easy to cope with the case where molding is impossible.

図6は、代表的なペレット原料として製鉄工程から発生する製鉄ダストを用いた本発明の実施例を示す。粉状金属酸化物として前記のとおり製鉄ダストを用い水分を10重量%、バインダーとしてベントナイト1重量%混合し、非連続式成型機の一つであるペレガイアを用いて成型を実施した。
図6に前記実施例におけるペレット成長速度(%/s)を示す。
破線のようにペレット成長速度が0.3(%/s)超、粒径6mm以上の巨大粒が急激に増加する場合は泥状となり、または一点鎖線のように0.2(%/s)未満、粒径6mm以上の巨大粒が0.2(%)に届かず下方安定する場合は成型不可(粉のまま)だった。実線のようにペレット成長速度が0.2〜0.3(%/s)では成型が短時間で容易に可能だった。
FIG. 6 shows an embodiment of the present invention using iron-making dust generated from an iron-making process as a typical pellet raw material. As described above, iron dust was used as a powdered metal oxide, 10% by weight of water was mixed with 1% by weight of bentonite as a binder, and molding was performed using Peregia, which is one of discontinuous molding machines.
FIG. 6 shows the pellet growth rate (% / s) in the above example.
If the pellet growth rate exceeds 0.3 (% / s) as shown by the broken line, and huge particles with a particle size of 6 mm or more increase rapidly, it becomes mud or less than 0.2 (% / s) as shown by the alternate long and short dash line. When huge particles of 6mm or more did not reach 0.2 (%) and stabilized downward, it was impossible to mold (powdered). As indicated by the solid line, when the pellet growth rate was 0.2 to 0.3 (% / s), molding was easily possible in a short time.

以上に説明したように、本発明のペレットの成型方法により、原料性状の変動に左右されず、また、運転者の技量に関係なく安定した成型が可能となるうえ、成型状況を連続で把握することができるので、成型不具合発生時に迅速にその対応が可能となり、本発明の効果が確認できた。 As described above, the pellet molding method of the present invention is not affected by fluctuations in raw material properties, enables stable molding regardless of the skill of the driver, and continuously grasps the molding status. Therefore, when a molding defect occurs, it is possible to quickly cope with it, and the effect of the present invention can be confirmed.

1 粒状金属酸化物貯留槽
2 還元剤貯留槽
3 バインダー貯留槽
4 混合原料槽
5 成型装置
6 ペレット乾燥装置
7 回転炉床式還元炉
8 還元鉄冷却装置
9 排ガス処理装置
10撮像手段
11制御手段
12水ホッパー
13乾燥粉ホッパー
14 流量調整弁
DESCRIPTION OF SYMBOLS 1 Granular metal oxide storage tank 2 Reductant storage tank 3 Binder storage tank 4 Mixed raw material tank 5 Molding device 6 Pellet drying device 7 Rotary hearth type reduction furnace 8 Reduced iron cooling device 9 Exhaust gas treatment device
10 Imaging means
11 Control means
12 water hopper
13 Dry powder hopper
14 Flow control valve

Claims (3)

製鉄工程から発生する粉状金属酸化物に、少なくとも還元剤、水分、およびバインダーを加えて非連続式成型機内に投入し、混合、混練して成型する回転炉床式還元炉用ペレットの成型方法において、
混練中のペレットの成長速度Aを所定の時間毎に下記(a)式で求め、求められた前記成長速度Aが0.3超(%/s)の場合に巨大化状態と判断して乾燥粉を添加して再度混合および混練し、前記成長速度Aが0.2未満(%/s)の場合に非成長状態と判断して水を添加して再度混練し、前記成長速度Aが0.2〜0.3(%/s)の場合に安定成長状態と判断して直ちに成型工程に移行し、成型することを特徴とするペレットの成型方法。
ペレット成長速度A= (be−bs)/t・・・・ (a) 式
t:混練時間(s)
bs:前記混練時間・当初の6mm以上の粒径の割合(%)
be:前記混練時間・最後の6mm以上の粒径の割合(%)
A method for forming pellets for a rotary hearth-type reduction furnace in which at least a reducing agent, moisture, and a binder are added to a powdered metal oxide generated from an iron making process, and the mixture is put into a discontinuous molding machine, mixed, kneaded and molded. In
The growth rate A of the pellets during kneading is determined by the following formula (a) every predetermined time, and when the determined growth rate A exceeds 0.3 (% / s), it is determined that the state is enlarged and dry powder is obtained. When the growth rate A is less than 0.2 (% / s), it is judged as a non-growth state and water is added and kneaded again, so that the growth rate A is 0.2 to 0.3 (% / s), a method for forming pellets, characterized in that it is determined to be in a stable growth state and immediately proceeds to a molding process and is molded.
Pellet growth rate A = ( be−bs ) / t (a) Formula t: kneading time (s)
bs: the kneading time and the ratio of the initial particle diameter of 6 mm or more (%)
be: the kneading time and the ratio of the particle diameter of the last 6 mm or more (%)
前記還元剤として、コークス粉、石炭粉、CDQ粉から選ばれる少なくとも1以上からなることを特徴とする請求項1に記載のペレットの成型方法。   The pellet forming method according to claim 1, wherein the reducing agent is at least one selected from coke powder, coal powder, and CDQ powder. 前記粉状金属酸化物として、前記製鉄工程の設備である転炉、高炉、焼結、圧延設備から選ばれる少なくとも1以上の設備から副生される粉状金属酸化物からなることを特徴とする請求項1または請求項2に記載のペレットの成型方法。   The powdered metal oxide is composed of a powdered metal oxide by-produced from at least one facility selected from a converter, a blast furnace, sintering, and a rolling facility that are facilities in the iron making process. The molding method of the pellet of Claim 1 or Claim 2.
JP2011107897A 2011-05-13 2011-05-13 Pellet molding method Active JP5731274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107897A JP5731274B2 (en) 2011-05-13 2011-05-13 Pellet molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107897A JP5731274B2 (en) 2011-05-13 2011-05-13 Pellet molding method

Publications (2)

Publication Number Publication Date
JP2012237045A JP2012237045A (en) 2012-12-06
JP5731274B2 true JP5731274B2 (en) 2015-06-10

Family

ID=47460200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107897A Active JP5731274B2 (en) 2011-05-13 2011-05-13 Pellet molding method

Country Status (1)

Country Link
JP (1) JP5731274B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410540B (en) * 2020-11-27 2023-01-31 山西太钢不锈钢股份有限公司 Preparation method of magnesium pellet and magnesium pellet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133778B2 (en) * 2003-12-04 2008-08-13 新日本製鐵株式会社 Wet mixing method of reducing furnace raw materials

Also Published As

Publication number Publication date
JP2012237045A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP2011084734A (en) Method for producing ferro coke
JP5984139B2 (en) Briquette manufacturing method
US10155996B2 (en) Method and device for manufacturing granulates
JP5731274B2 (en) Pellet molding method
JP5299446B2 (en) Blast furnace operation method using ferro-coke
JP2001348625A (en) Method for producing pellet for iron-marking raw material
JP7151055B2 (en) How to use steelmaking slag in sintering
JP4630304B2 (en) Self-fluxing pellets for blast furnace and manufacturing method thereof
JP6458916B1 (en) Method for producing sintered ore
JP2009097065A (en) Method for producing pre-reduced iron
JP6273983B2 (en) Blast furnace operation method using reduced iron
JP5114721B2 (en) Method for producing dust agglomerates
JP2017197813A (en) Pellet production method, and method of refining nickel oxide ore
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP5768563B2 (en) Blast furnace operation method
JP6333770B2 (en) Method for producing ferronickel
JP6849279B2 (en) How to make briquettes
JP2020158849A (en) Method for promoting combustion of carbonaceous material in sintering
JP6268474B2 (en) Sintering raw material manufacturing method
JP6458807B2 (en) Raw material charging method to blast furnace
JP7024647B2 (en) Granulation method of raw material for sintering
KR102205814B1 (en) Manufacturing method of ferrocox
WO2022071369A1 (en) Method for manufacturing sintered ore, and sintered ore
JP2010185104A (en) Method for producing sintered ore for blast furnace
JP6287021B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250