JP5731022B1 - Absolute position detector - Google Patents

Absolute position detector Download PDF

Info

Publication number
JP5731022B1
JP5731022B1 JP2014000711A JP2014000711A JP5731022B1 JP 5731022 B1 JP5731022 B1 JP 5731022B1 JP 2014000711 A JP2014000711 A JP 2014000711A JP 2014000711 A JP2014000711 A JP 2014000711A JP 5731022 B1 JP5731022 B1 JP 5731022B1
Authority
JP
Japan
Prior art keywords
gear
phase
signal
motor
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014000711A
Other languages
Japanese (ja)
Other versions
JP2015129660A (en
Inventor
光男 宇塚
光男 宇塚
Original Assignee
ソフトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトロニクス株式会社 filed Critical ソフトロニクス株式会社
Priority to JP2014000711A priority Critical patent/JP5731022B1/en
Application granted granted Critical
Publication of JP5731022B1 publication Critical patent/JP5731022B1/en
Publication of JP2015129660A publication Critical patent/JP2015129660A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】絶対位置検出装置において、構造を簡素化し、小型化およびコストの低減を図る。【解決手段】複数の磁気センサS1,S2,S3,S4の出力信号に基づいて、モータの回転角の絶対角を検出する絶対位置検出装置において、モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の歯車1に歯数の異なる2つの歯車2,3を噛み合わせ、その2つの歯車2,3の回転角度を検出したそれぞれ2つの90?位相差の検出信号に基づいて、モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の絶対角を検出する。【選択図】図1In an absolute position detection device, the structure is simplified, the size is reduced, and the cost is reduced. In an absolute position detection device that detects an absolute angle of a rotation angle of a motor based on output signals of a plurality of magnetic sensors S1, S2, S3, S4, the rotation axis of the motor or the rotation axis of the motor The two gears 2 and 3 having different number of teeth are meshed with the gear 1 of the output shaft of the connected speed reducer, and the rotation angle of the two gears 2 and 3 is detected. Based on this, the absolute angle of the rotating shaft of the motor or the output shaft of the speed reducer connected to the rotating shaft of the motor is detected. [Selection] Figure 1

Description

本発明は、複数の磁気センサの出力信号に基づいてモータの回転軸,減速機の出力軸の絶対角、または、ラックの位置を検出する絶対位置検出装置に関する。   The present invention relates to an absolute position detection device that detects an absolute angle of a rotating shaft of a motor, an output shaft of a reduction gear, or a position of a rack based on output signals of a plurality of magnetic sensors.

特許文献1にリラクタンスレソルバを用いた絶対位置検出装置が提案されている。   Patent Document 1 proposes an absolute position detection device using a reluctance resolver.

特許第3704462号公報Japanese Patent No. 3704462

しかしながら、特許文献1に示すような、リラクタンスレゾルバを用いた絶対位置検出装置は、構造が複雑で、かつ、小型化に不向きであった。   However, an absolute position detection device using a reluctance resolver as shown in Patent Document 1 has a complicated structure and is not suitable for miniaturization.

以上示したようなことから、絶対位置検出装置において、構造を簡素化し、小型化およびコストの低減を図ることが課題となる。   As described above, in the absolute position detection device, it is an issue to simplify the structure, to reduce the size and to reduce the cost.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、複数の磁気センサの出力信号に基づいて、モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の絶対角を検出する絶対位置検出装置であって、モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の歯車に歯数の異なる第1歯車,第2歯車を噛み合わせ、その第1歯車,第2歯車の回転角度を検出した各歯車それぞれ2つの90°位相差の検出信号に基づいて、第1歯車と第2歯車の角度差を算出し、第1歯車と第2歯車の角度差と、第1歯車の歯数と、第2歯車の歯数と、モータの回転軸の歯数、または、モータの回転軸に接続された減速機の出力軸の歯車に歯数と、から、モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の絶対角を検出することを特徴とする。   The present invention has been devised in view of the above-described conventional problems. One aspect of the present invention is based on output signals of a plurality of magnetic sensors, and a reduction gear connected to a motor rotation shaft or a motor rotation shaft. An absolute position detecting device for detecting an absolute angle of an output shaft of a machine, wherein a first gear having a different number of teeth is provided on a gear of an output shaft of a speed reducer connected to a rotation shaft of a motor or a rotation shaft of a motor. The angle difference between the first gear and the second gear is calculated based on the two 90 ° phase difference detection signals for each of the gears that have engaged the two gears and detected the rotation angles of the first gear and the second gear. The angle difference between the first gear and the second gear, the number of teeth of the first gear, the number of teeth of the second gear, the number of teeth of the rotating shaft of the motor, or the output of the speed reducer connected to the rotating shaft of the motor From the number of teeth on the shaft gear, connected to the motor rotation shaft or motor rotation shaft And detecting the absolute angle of the output shaft of the speed machine.

また、その他の態様として、ラックに形成された歯に噛み合う歯車に設置された複数の磁気センサの出力信号に基づいて、ラックの絶対位置を検出する絶対位置検出装置であって、ラックの歯に歯数の異なる第1歯車,第2歯車を噛み合わせ、その第1歯車,第2歯車の回転角度を検出した各歯車それぞれ2つの90°位相差の検出信号に基づいて、第1歯車,第2歯車の角度差を算出し、第1歯車と第2歯車の角度差と、第1歯車の歯数と、第2歯車の歯数と、ラックの歯数と、から、ラックの絶対位置を検出することを特徴とする。   According to another aspect, there is provided an absolute position detection device for detecting an absolute position of a rack based on output signals of a plurality of magnetic sensors installed in gears meshing with teeth formed on the rack. The first gear and the second gear with different number of teeth are meshed, and the first gear and the second gear are detected based on the two 90 ° phase difference detection signals of the respective gears that detect the rotation angle of the first gear and the second gear. The angle difference between the two gears is calculated, and the absolute position of the rack is determined from the angle difference between the first gear and the second gear, the number of teeth of the first gear, the number of teeth of the second gear, and the number of teeth of the rack. It is characterized by detecting.

また、その一態様として、歯車に120°間隔で磁気センサを配置し、磁気センサから出力された120°位相の異なる3相のセンサ出力信号を用いて、互いに異なる2つのセンサ出力信号の差をとることにより、高調波歪みを除去した3相の正弦波信号を生成し、前記3相の正弦波信号のうち2相の正弦波信号を加算または減算して合成信号を生成し、前記3相の正弦波信号のうち、合成信号の生成に用いなかった正弦波信号を用いて位相差信号を生成し、前記合成信号と前記位相差信号を、前記2つの90°位相差の検出信号とすることを特徴とする。   Also, as one aspect thereof, magnetic sensors are arranged on the gears at intervals of 120 °, and the difference between two different sensor output signals is calculated using three-phase sensor output signals with different 120 ° phases output from the magnetic sensor. To generate a three-phase sine wave signal from which harmonic distortion has been removed, add or subtract two-phase sine wave signals from the three-phase sine wave signals, and generate a composite signal; A phase difference signal is generated using a sine wave signal that was not used to generate a combined signal, and the combined signal and the phase difference signal are used as the two 90 ° phase difference detection signals. It is characterized by that.

また、前記2つの歯車は、着磁可能な部材で形成してもよい。   The two gears may be formed of a magnetizable member.

本発明によれば、絶対位置検出装置において、構造を簡素化し、小型化およびコストの低減を図ることが可能となる。   According to the present invention, it is possible to simplify the structure, reduce the size, and reduce the cost in the absolute position detection device.

実施形態1における絶対位置検出装置を示す平面図。FIG. 2 is a plan view showing the absolute position detection device according to the first embodiment. 実施形態1における絶対位置検出装置を示す側面図。FIG. 2 is a side view showing the absolute position detection device according to the first embodiment. 実施形態1における歯車と磁石を示す側面図。The side view which shows the gearwheel and magnet in Embodiment 1. FIG. 実施形態2における歯車を示す平面図および側面図。The top view and side view which show the gearwheel in Embodiment 2. FIG. 実施形態3における歯車を示す概略図。Schematic which shows the gearwheel in Embodiment 3. FIG. 実施形態4における磁気センサの位置を示す概略図。Schematic which shows the position of the magnetic sensor in Embodiment 4. FIG. 歪んだセンサ出力信号を示すタイムチャート。The time chart which shows the distorted sensor output signal. 合成信号および位相差信号を示すタイムチャート。The time chart which shows a synthetic | combination signal and a phase difference signal. ラックとピニオンを示す概略図。Schematic which shows a rack and a pinion.

以下、本願発明における絶対位置検出装置の実施形態1〜5を図1〜図9に基づいて詳細に説明する。   Embodiments 1 to 5 of the absolute position detection device according to the present invention will be described below in detail with reference to FIGS.

[実施形態1]
図1〜図3に示すように、本実施形態1における絶対位置検出装置は、被検出側のモータの回転軸またはモータの回転軸に接続された減速機の出力軸に歯数Lの歯車1が設けられている。この歯車1に噛み合うように歯数Mの歯車2が軸2aに回転自在に軸支されており、歯車1に噛み合うように、歯数Mと異なる歯数Nの歯車3が軸3aに回転自在に軸支されている。
[Embodiment 1]
As shown in FIGS. 1 to 3, the absolute position detection device according to the first embodiment has a gear 1 having a number of teeth L on the rotation shaft of the motor to be detected or the output shaft of the reduction gear connected to the rotation shaft of the motor. Is provided. A gear 2 having the number of teeth M is rotatably supported on the shaft 2a so as to mesh with the gear 1, and a gear 3 having a number N of teeth different from the number M of teeth is rotatable on the shaft 3a so as to mesh with the gear 1. Is pivotally supported.

歯車2,3にそれぞれ一対の磁極(S,N)の磁石4が重ねられるように配置される。また、モータの固定側に、歯車2,歯車3のそれぞれの回転角を検出し、電気角で90°の位相差の検出信号が得られるように、ホール素子,磁気抵抗効果素子等の磁気センサS1,S2,S3,S4を配置する。これにより、磁気センサS1,S2,S3,S4のセンサ出力信号(電圧信号)の位相差からモータの回転軸、または、減速機の出力軸の回転角を多回転に亘って検出する。   It arrange | positions so that the magnet 4 of a pair of magnetic pole (S, N) may overlap with the gearwheels 2 and 3, respectively. In addition, a magnetic sensor such as a Hall element or a magnetoresistive effect element is provided so that the rotation angle of each of the gears 2 and 3 is detected on the fixed side of the motor, and a detection signal having a phase difference of 90 ° in electrical angle is obtained. S1, S2, S3 and S4 are arranged. Thereby, the rotation angle of the rotating shaft of the motor or the output shaft of the speed reducer is detected over multiple rotations from the phase difference of the sensor output signals (voltage signals) of the magnetic sensors S1, S2, S3, S4.

モータの回転軸の回転角をαとすると、以下の(1)式に示すように、磁気センサS1からXs,磁気センサS2からXc,磁気センサS3からはYs,磁気センサS4からはYcのセンサ出力信号が得られる。   Assuming that the rotation angle of the rotating shaft of the motor is α, as shown in the following equation (1), the magnetic sensor S1 to Xs, the magnetic sensor S2 to Xc, the magnetic sensor S3 to Ys, and the magnetic sensor S4 to Yc sensor An output signal is obtained.

Figure 0005731022
Figure 0005731022

ここで、sinθを以下の(2)式とすると、三角関数の加法定理から、以下の(3)式が得られる。また、(4)式から歯車2と歯車3の角度差θが算出できる。   Here, when sin θ is the following equation (2), the following equation (3) is obtained from the addition theorem of trigonometric functions. Further, the angle difference θ between the gear 2 and the gear 3 can be calculated from the equation (4).

Figure 0005731022
Figure 0005731022

一方、以下の(5)式から、以下の(6)を導くことができ、(6)式から歯車2と歯車3の角度差θとαの関係が解る。   On the other hand, the following (6) can be derived from the following equation (5), and the relationship between the angular difference θ and α between the gear 2 and the gear 3 can be understood from the equation (6).

Figure 0005731022
Figure 0005731022

これにより、モータの回転軸の回転角αが1回転以上でも回転角度を検出することが可能となる。   As a result, the rotation angle can be detected even if the rotation angle α of the rotation shaft of the motor is one rotation or more.

以上示したように、本実施形態1によれば、極めて簡素化された構造でモータの回転軸の機械的位置(絶対角)を絶対値として検出できる。その結果、機器のコストダウン、また小型化を図ることが可能となる。   As described above, according to the first embodiment, the mechanical position (absolute angle) of the rotating shaft of the motor can be detected as an absolute value with a very simplified structure. As a result, the cost of the device can be reduced and the size can be reduced.

また、本実施形態1によれば、2つの歯車2,3の回転角度に基づいて絶対角を演算するため、装置の電源をOFFにする場合でも、絶対角を記憶する必要がない。さらに、電源を切った後、外力によりモータの回転軸が回転しても電源投入後にその回転角度を検出することが可能となる。   Further, according to the first embodiment, since the absolute angle is calculated based on the rotation angles of the two gears 2 and 3, it is not necessary to store the absolute angle even when the apparatus is turned off. Furthermore, even after the power is turned off, even if the rotation shaft of the motor is rotated by an external force, the rotation angle can be detected after the power is turned on.

[実施形態2]
図4は、本実施形態2における歯車2,3を示す平面図および側面図である。図4に示すように、本実施形態2では、歯車2,3をプラスチックマグネット等の着磁可能な材料で作成し、その歯車2,3に直接N極,S極を着磁したものである。このように、歯車2,3と磁石とを一部品とし、一体化することにより、別途、磁石4を設けることが不要となる。
[Embodiment 2]
FIG. 4 is a plan view and a side view showing the gears 2 and 3 in the second embodiment. As shown in FIG. 4, in the second embodiment, the gears 2 and 3 are made of a magnetizable material such as a plastic magnet, and the N and S poles are magnetized directly on the gears 2 and 3. . Thus, the gears 2 and 3 and the magnet are made into one component and integrated, so that it is not necessary to provide the magnet 4 separately.

また、本実施形態2によれば、実施形態1と同様の作用効果を奏する。   Further, according to the second embodiment, the same effects as those of the first embodiment can be obtained.

[実施形態3]
図5は、本実施形態3における歯車1,2,3を示す概略図である。実施形態1では、歯車1に対して歯車2,3を噛み合わせるように配置していた。本実施形態3では、歯車1に対して歯車2を噛み合わせ、歯車2に対して歯車3を噛み合わせるように配置している。このように、必ずしも歯車1に歯車2,3を噛み合わせなくてもよい。
[Embodiment 3]
FIG. 5 is a schematic diagram showing the gears 1, 2, 3 in the third embodiment. In the first embodiment, the gears 2 and 3 are arranged to mesh with the gear 1. In the third embodiment, the gear 2 is meshed with the gear 1 and the gear 3 is meshed with the gear 2. Thus, the gears 2 and 3 are not necessarily meshed with the gear 1.

本実施形態3によれば、実施形態1と同様の作用効果を奏する。   According to the third embodiment, the same effects as those of the first embodiment are obtained.

[実施形態4]
ホール素子や磁気抵抗効果素子等の磁気センサS1,S2,S3,S4から得られるsin信号,cos信号は、第3次高調波を多く含み歪んだ波形となる場合が多く、このような場合、検出誤差が大きくなる。
[Embodiment 4]
The sin signal and the cosine signal obtained from the magnetic sensors S1, S2, S3, and S4 such as Hall elements and magnetoresistive elements often have a distorted waveform including a lot of third harmonics. Detection error increases.

そのため、本実施形態4では、図6に示すように、それぞれ120°の間隔で磁気センサSX1,SX2,SX3を配置する。そして、それぞれ120°位相差のアナログの3相のセンサ出力信号U0,V0,W0から90°位相差の2相の正確な正弦波を演算し、モータの回転軸の絶対角を検出するものである。   Therefore, in the fourth embodiment, as shown in FIG. 6, the magnetic sensors SX1, SX2, SX3 are arranged at intervals of 120 °. It calculates the two-phase accurate sine wave of 90 ° phase difference from the analog three-phase sensor output signals U0, V0, W0 of 120 ° phase difference, respectively, and detects the absolute angle of the motor rotation shaft. is there.

以下、120°位相差の3相のセンサ出力信号U0,V0,W0から2相の正確な正弦波を演算する方法を説明する。   Hereinafter, a method of calculating a two-phase accurate sine wave from the three-phase sensor output signals U0, V0, and W0 having a 120 ° phase difference will be described.

図7に示すように、3相のセンサ出力信号U0,V0,W0は、略台形状に歪み正確な正弦波にはならない。   As shown in FIG. 7, the three-phase sensor output signals U0, V0, W0 are not substantially sine waves that are substantially trapezoidally distorted.

この3相のセンサ出力信号U0,V0,W0の中から、互いに異なる2相の信号の差(U0−V0,V0−W0,W0−U0)である正弦波信号U1,V1,W1を算出する。この3相の正弦波信号U1,V1,W1は、高調波歪みが除去された正確な正弦波となる。   From these three-phase sensor output signals U0, V0, and W0, sine wave signals U1, V1, and W1, which are differences between two different-phase signals (U0−V0, V0−W0, and W0−U0), are calculated. . The three-phase sine wave signals U1, V1, and W1 are accurate sine waves from which harmonic distortion has been removed.

更に、3相の正弦波信号U1,V1,W1のうちの2相を加算あるいは減算し、合成信号Rxを生成する。また、正弦波信号U1,V1,W1の中から、合成信号Rxの生成に用いなかった正弦波信号を位相差信号Ryとする。   Further, two phases of the three-phase sine wave signals U1, V1, and W1 are added or subtracted to generate a composite signal Rx. Also, a sine wave signal that is not used to generate the composite signal Rx from among the sine wave signals U1, V1, and W1 is referred to as a phase difference signal Ry.

図8に示すように、この合成信号Rxは位相差信号Ry(正弦波信号W1)から90°位相差の信号となる。この2相の合成信号Rx,位相差信号Ryを実施形態1における磁気センサS1,S2またはS3,S4から出力されたセンサ出力信号Xs,XcまたはYs,Ycの代わりに用いる。また、高調波歪みが除去された3相の正弦波信号U1,V1,W1をモータの整流信号とすることも可能であり、従来の3相のセンサ出力信号を用いた駆動回路にも容易に適用することができる。   As shown in FIG. 8, the combined signal Rx is a signal having a phase difference of 90 ° from the phase difference signal Ry (sine wave signal W1). The two-phase combined signal Rx and phase difference signal Ry are used in place of the sensor output signals Xs, Xc or Ys, Yc output from the magnetic sensors S1, S2 or S3, S4 in the first embodiment. It is also possible to use the three-phase sine wave signals U1, V1, and W1 from which harmonic distortion has been removed as the rectification signal of the motor, and it can be easily applied to a drive circuit using a conventional three-phase sensor output signal. Can be applied.

次に、センサ出力信号U0,V0,W0から合成信号Rx,位相差信号Ryを算出する方法の一例を説明する。   Next, an example of a method for calculating the composite signal Rx and the phase difference signal Ry from the sensor output signals U0, V0, W0 will be described.

まず、図7に示すような、略台形状に歪んだセンサ出力信号U0,V0,W0を以下の(7)式とする。   First, sensor output signals U0, V0, and W0 distorted in a substantially trapezoidal shape as shown in FIG.

Figure 0005731022
Figure 0005731022

次に、正弦波信号U1は以下の(8)式となる。   Next, the sine wave signal U1 is expressed by the following equation (8).

Figure 0005731022
Figure 0005731022

同様に、正弦波信号V1,W2は以下の(9)式となる。   Similarly, the sine wave signals V1 and W2 are expressed by the following equation (9).

Figure 0005731022
Figure 0005731022

上記(8),(9)式は、正弦波信号U1,V1,W1が、元のセンサ出力信号U0,V0,W0から各々30°位相シフトして互いに120°位相が異なり、かつ、第3次高調波を除去した基本波のみの正弦波が得られることを示している。   The above equations (8) and (9) indicate that the sine wave signals U1, V1, and W1 are shifted from each other by 30 ° from the original sensor output signals U0, V0, and W0 and are 120 ° out of phase with each other. It shows that a sine wave of only the fundamental wave from which the second harmonic is removed can be obtained.

また、以下の(10)式により、120°位相差の正弦波信号U1,V1,W1から90°位相差の合成信号Rx,位相差信号Ryを生成する。   Also, a synthesized signal Rx and a phase difference signal Ry having a 90 ° phase difference are generated from the sine wave signals U1, V1, and W1 having a 120 ° phase difference by the following equation (10).

Figure 0005731022
Figure 0005731022

位相差信号Ryは正弦波信号W1を√3倍したものである。位相差信号Ryは合成信号Rxと波高値が同じで90°位相差の正弦波となる。   The phase difference signal Ry is a sine wave signal W1 multiplied by √3. The phase difference signal Ry is a sine wave having the same peak value as the synthesized signal Rx and a phase difference of 90 °.

このようにして、3相の高調波を含んだ略台形波状のセンサ出力信号U0,V0,W0から、3相の整流用の正弦波信号U1,V1,W1と位相差90度の合成信号Rx,位相差信号Ryが得られることが分かる。   In this way, from the substantially trapezoidal sensor output signals U0, V0, W0 including the three-phase harmonics, the combined signal Rx having a phase difference of 90 degrees with the three-phase rectifying sine wave signals U1, V1, W1. It can be seen that the phase difference signal Ry is obtained.

以上示したように、本実施形態4におけるモータ回転角検出装置によれば、電気角120°位相差の3相のセンサ出力信号U0,V0,W0から、高調波を除去した90°位相差の2相の合成信号Rx,位相差信号Ryを生成することが可能となる。その結果、その90°位相差の2相の合成信号Rx,位相差信号Ryを用いて、正確なモータの回転軸における絶対角または角度制御が可能となる。   As described above, according to the motor rotation angle detection device of the fourth embodiment, the 90 ° phase difference obtained by removing harmonics from the three-phase sensor output signals U0, V0, and W0 having an electrical angle of 120 °. It becomes possible to generate the two-phase composite signal Rx and the phase difference signal Ry. As a result, the absolute angle or angle control on the rotation shaft of the motor can be accurately performed using the two-phase composite signal Rx and the phase difference signal Ry having the 90 ° phase difference.

また、3相の正弦波信号U1,V1,W1をモータの整流信号として使用することも可能なため、従来方式の駆動回路にも簡単に接続可能となる。   Further, since the three-phase sine wave signals U1, V1, and W1 can be used as the rectification signal of the motor, it can be easily connected to a conventional driving circuit.

また、高価なエンコーダやレゾルバを使用する必要がないため、コストの低減を図ることが可能となる。   In addition, since it is not necessary to use an expensive encoder or resolver, the cost can be reduced.

[実施形態5]
図9は、本実施形態5における絶対位置検出装置を示す概略図である。図9に示すように、本実施形態5における絶対位置検出装置は、直線状に平行移動するラック5と、検出部としてのピニオン(歯車)2,3と、を備えている。本実施形態5における絶対位置検出装置は、ラック5の平行移動に伴いピニオン(歯車)2,3が回転するようになっている。また、ピニオン(歯車)2,3には、磁気センサS1〜S4が設けられている。この磁気センサS1〜S4のセンサ出力信号Xs,Xc,Ys,Ycにより、実施形態1〜4と同様に、ラックの絶対位置を検出することが可能となる。
[Embodiment 5]
FIG. 9 is a schematic diagram illustrating an absolute position detection apparatus according to the fifth embodiment. As shown in FIG. 9, the absolute position detection apparatus according to the fifth embodiment includes a rack 5 that translates linearly and pinions (gears) 2 and 3 as detection units. In the absolute position detection apparatus according to the fifth embodiment, the pinions (gears) 2 and 3 rotate with the parallel movement of the rack 5. The pinions (gears) 2 and 3 are provided with magnetic sensors S1 to S4. The absolute position of the rack can be detected from the sensor output signals Xs, Xc, Ys, and Yc of the magnetic sensors S1 to S4 as in the first to fourth embodiments.

本実施形態5に示すように、モータの回転軸の絶対角に限らず、ラックの絶対位置も検出することが可能となる。   As shown in the fifth embodiment, it is possible to detect not only the absolute angle of the rotating shaft of the motor but also the absolute position of the rack.

S1〜S4…磁気センサ
SX1,SX2,SX3…磁気センサ
1〜3…歯車
2a,3a…軸
4…磁石
5…ラック
S1-S4 ... Magnetic sensor SX1, SX2, SX3 ... Magnetic sensor 1-3 ... Gear 2a, 3a ... Shaft 4 ... Magnet 5 ... Rack

Claims (2)

複数の磁気センサの出力信号に基づいて、モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の絶対角を検出する絶対位置検出装置であって、
モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の歯車に歯数の異なる第1歯車,第2歯車を噛み合わせ、
第1歯車および第2歯車に120°間隔で磁気センサを配置し、磁気センサから出力された120°位相の異なる3相のセンサ出力信号を用いて、互いに異なる2つのセンサ出力信号の差をとることにより、高調波歪みを除去した3相の正弦波信号を生成し、
前記3相の正弦波信号のうち2相の正弦波信号を加算または減算して合成信号を生成し、
前記3相の正弦波信号のうち、合成信号の生成に用いなかった正弦波信号を用いて位相差信号を生成し、
前記合成信号と前記位相差信号を、前記2つの90°位相差の検出信号とし、
その第1歯車,第2歯車の回転角度を検出した各歯車それぞれ2つの90°位相差の検出信号に基づいて、第1歯車と第2歯車の角度差を算出し、
第1歯車と第2歯車の角度差と、第1歯車の歯数と、第2歯車の歯数と、モータの回転軸の歯数、または、モータの回転軸に接続された減速機の出力軸の歯車に歯数と、から、モータの回転軸、または、モータの回転軸に接続された減速機の出力軸の絶対角を検出することを特徴とする絶対位置検出装置。
An absolute position detection device that detects an absolute angle of a rotating shaft of a motor or an output shaft of a reduction gear connected to the rotating shaft of a motor based on output signals of a plurality of magnetic sensors,
The first gear and the second gear with different number of teeth are meshed with the gear of the rotating shaft of the motor or the output shaft of the speed reducer connected to the rotating shaft of the motor,
Magnetic sensors are arranged at 120 ° intervals on the first gear and the second gear, and a difference between two different sensor output signals is obtained by using three-phase sensor output signals with different 120 ° phases output from the magnetic sensor. To generate a three-phase sine wave signal from which harmonic distortion has been removed,
Adding or subtracting two-phase sine wave signals from the three-phase sine wave signals to generate a composite signal;
Among the three-phase sine wave signals, a phase difference signal is generated using a sine wave signal that was not used to generate a composite signal,
The combined signal and the phase difference signal are used as the two 90 ° phase difference detection signals,
Based on the two 90 ° phase difference detection signals for each of the gears that detected the rotation angles of the first gear and the second gear, the angle difference between the first gear and the second gear is calculated,
The angle difference between the first gear and the second gear, the number of teeth of the first gear, the number of teeth of the second gear, the number of teeth of the rotating shaft of the motor, or the output of the speed reducer connected to the rotating shaft of the motor An absolute position detecting device for detecting an absolute angle of a rotating shaft of a motor or an output shaft of a speed reducer connected to the rotating shaft of a motor from the number of teeth in a shaft gear.
ラックに形成された歯に噛み合う歯車に設置された複数の磁気センサの出力信号に基づいて、ラックの絶対位置を検出する絶対位置検出装置であって、
ラックの歯に歯数の異なる第1歯車,第2歯車を噛み合わせ、
前記第1歯車および第2歯車に120°間隔で磁気センサを配置し、磁気センサから出力された120°位相の異なる3相のセンサ出力信号を用いて、互いに異なる2つのセンサ出力信号の差をとることにより、高調波歪みを除去した3相の正弦波信号を生成し、
前記3相の正弦波信号のうち2相の正弦波信号を加算または減算して合成信号を生成し、
前記3相の正弦波信号のうち、合成信号の生成に用いなかった正弦波信号を用いて位相差信号を生成し、
前記合成信号と前記位相差信号を、前記2つの90°位相差の検出信号とし、
その第1歯車,第2歯車の回転角度を検出した各歯車それぞれ2つの90°位相差の検出信号に基づいて、第1歯車,第2歯車の角度差を算出し、
第1歯車と第2歯車の角度差と、第1歯車の歯数と、第2歯車の歯数と、ラックの歯数と、から、ラックの絶対位置を検出することを特徴とする絶対位置検出装置。
An absolute position detection device that detects the absolute position of a rack based on output signals of a plurality of magnetic sensors installed in gears meshing with teeth formed on the rack,
The first gear and the second gear with different number of teeth are meshed with the teeth of the rack,
Magnetic sensors are arranged at intervals of 120 ° on the first gear and the second gear, and the difference between two different sensor output signals is calculated using three-phase sensor output signals with different 120 ° phases output from the magnetic sensor. To generate a three-phase sine wave signal from which harmonic distortion has been removed,
Adding or subtracting two-phase sine wave signals from the three-phase sine wave signals to generate a composite signal;
Among the three-phase sine wave signals, a phase difference signal is generated using a sine wave signal that was not used to generate a composite signal,
The combined signal and the phase difference signal are used as the two 90 ° phase difference detection signals,
Based on the two 90 ° phase difference detection signals for each of the gears that detected the rotation angles of the first gear and the second gear, the angle difference between the first gear and the second gear is calculated,
The absolute position of the rack is detected from the angle difference between the first gear and the second gear, the number of teeth of the first gear, the number of teeth of the second gear, and the number of teeth of the rack. Detection device.
JP2014000711A 2014-01-07 2014-01-07 Absolute position detector Active JP5731022B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000711A JP5731022B1 (en) 2014-01-07 2014-01-07 Absolute position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000711A JP5731022B1 (en) 2014-01-07 2014-01-07 Absolute position detector

Publications (2)

Publication Number Publication Date
JP5731022B1 true JP5731022B1 (en) 2015-06-10
JP2015129660A JP2015129660A (en) 2015-07-16

Family

ID=53486823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000711A Active JP5731022B1 (en) 2014-01-07 2014-01-07 Absolute position detector

Country Status (1)

Country Link
JP (1) JP5731022B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382329B1 (en) * 2015-11-26 2020-12-23 Mitsubishi Electric Corporation Angle detection device and electric power steering device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003625A (en) * 2003-06-16 2005-01-06 Matsushita Electric Ind Co Ltd Rotation angle detecting device
JP2007078552A (en) * 2005-09-15 2007-03-29 Ntn Corp Multiple rotational angle detection apparatus and bearing having the same
JP2007078401A (en) * 2005-09-12 2007-03-29 Ntn Corp Apparatus for detecting linear position
JP2007333520A (en) * 2006-06-14 2007-12-27 Furukawa Electric Co Ltd:The Rotation angle detector
JP2012141276A (en) * 2010-12-14 2012-07-26 Jtekt Corp Rotation angle detecting device
JP2012189375A (en) * 2011-03-09 2012-10-04 Jtekt Corp Rotation angle detection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003625A (en) * 2003-06-16 2005-01-06 Matsushita Electric Ind Co Ltd Rotation angle detecting device
JP2007078401A (en) * 2005-09-12 2007-03-29 Ntn Corp Apparatus for detecting linear position
JP2007078552A (en) * 2005-09-15 2007-03-29 Ntn Corp Multiple rotational angle detection apparatus and bearing having the same
JP2007333520A (en) * 2006-06-14 2007-12-27 Furukawa Electric Co Ltd:The Rotation angle detector
JP2012141276A (en) * 2010-12-14 2012-07-26 Jtekt Corp Rotation angle detecting device
JP2012189375A (en) * 2011-03-09 2012-10-04 Jtekt Corp Rotation angle detection apparatus

Also Published As

Publication number Publication date
JP2015129660A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP3899821B2 (en) Rotation angle detector
JP6649018B2 (en) Rotary encoder and method for detecting absolute angular position of rotary encoder
JP6484008B2 (en) Encoder and rotation angle position calculation method
CN108291799B (en) Angle detection device and electric power steering device
JP2013257231A (en) Rotation angle sensor
JP5256174B2 (en) Magnetic absolute encoder
JP2007285799A (en) Rotation angle detector
US20160011015A1 (en) Angle sensor, a bearing unit, electrical motor, a control system and error-check system
JP2018132360A (en) Rotary encoder and method of detecting absolute angular position thereof
JP4142607B2 (en) Variable reluctance resolver
CN109546808B (en) Steering engine and method for reducing virtual position of steering engine
CN107860404B (en) Rotary encoder and absolute angle position detection method for rotary encoder
US20080143323A1 (en) Method of detecting rotational position by using hall element and hall element resolver
US9175982B2 (en) Hall sensor signal generating device
JP5731022B1 (en) Absolute position detector
WO2005043074A1 (en) Steering angle detection device
JP2007333520A (en) Rotation angle detector
CN202709991U (en) Detection device for absolute-type multi-circle rotation angle
JP2014019264A (en) Power steering device
JP2002340618A (en) Turning angle detecting device
KR20110016573A (en) Rotor position sensor
TWI425187B (en) Resolver unit
JP4992691B2 (en) Rotation / linear motion combined motor position detector and rotational / linear motion combined motor
JP2015049046A (en) Angle detector
JP2009244022A (en) Phase detection circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5731022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250