JP5730473B2 - Angle of arrival locator - Google Patents

Angle of arrival locator Download PDF

Info

Publication number
JP5730473B2
JP5730473B2 JP2009153850A JP2009153850A JP5730473B2 JP 5730473 B2 JP5730473 B2 JP 5730473B2 JP 2009153850 A JP2009153850 A JP 2009153850A JP 2009153850 A JP2009153850 A JP 2009153850A JP 5730473 B2 JP5730473 B2 JP 5730473B2
Authority
JP
Japan
Prior art keywords
arrival
antennas
arrival angle
angle
received waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009153850A
Other languages
Japanese (ja)
Other versions
JP2011007739A (en
Inventor
智也 越後貫
智也 越後貫
英嗣 北川
英嗣 北川
恭雄 古谷
恭雄 古谷
正晋 林
正晋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2009153850A priority Critical patent/JP5730473B2/en
Publication of JP2011007739A publication Critical patent/JP2011007739A/en
Application granted granted Critical
Publication of JP5730473B2 publication Critical patent/JP5730473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、複数のアンテナに到来する受信波の到来角を求める到来角標定装置と、その到来角標定装置によって求められた複数の到来角に所定の航法を適用することにより受信波が送信された地点の位置を求める位置標定装置とに関する。   The present invention provides an arrival angle locating device that determines the arrival angles of received waves arriving at a plurality of antennas, and a received wave is transmitted by applying predetermined navigation to the plurality of arrival angles obtained by the arrival angle locating device. The present invention relates to a position locating device for obtaining the position of a spot.

水面下の音を無線伝送するソノブイは、水面上の位置が航空機等の移動体(以下、単に「航空機」という。)に搭載された位置標定装置によって予め特定されなければならない。
従来の位置標定装置では、以下のような前提の下で、ソノブイの位置の標定が実現されていた。
The sonobuoy that wirelessly transmits the sound below the surface of the water must be specified in advance by a position locating device mounted on a moving body such as an aircraft (hereinafter simply referred to as “aircraft”).
In the conventional position locating device, the position of the Sonobuoy position has been realized under the following premise.

(1) ソノブイが位置する方向が航空機の機体に対して左右の何れの方向であるかが既知である。
(2) 位置の標定の対象となるソノブイの方向は、そのソノブイから到来する受信波の到来角θの方向余弦の値として識別されるため、上記機体の左右の何れか一方の方向に限定される。
(3) ソノブイの位置の初期値がある程度の精度で得られる。
(1) It is known whether the direction in which the sonobuoy is located is the left or right direction with respect to the aircraft body.
(2) The direction of the sonobuoy subject to location determination is identified as the value of the direction cosine of the arrival angle θ of the received wave arriving from the sonobuoy, and is thus limited to either the left or right direction of the aircraft. The
(3) The initial value of the Sonobuoy position can be obtained with a certain degree of accuracy.

なお、本発明に関連性がある先行技術としては、以下に列記する先行技術がある。
(1) 「航空機のマルチパス誤差を補償したデータを有するマルチパス誤差補償テーブル6と、航法装置20から出力される航法信号による航法データの誤差を補償したデータを有する航法データ誤差補償テーブル7と、ソノブイからの発信信号が受信変換されたソノブイ信号に関する位相差誤差を補償したデータを有する位相差誤差補償テーブル8と、測角演算器4からの角度信号及び航法信号に基づいて到来角を算出する際、各誤差補償テーブル6,7,8から各誤差補償データを参照して誤差補償した到来角を用いてソノブイの設定位置を算出する誤差補償/位置評定演算器5とを備えることにより、簡易な構成で位相差検出誤差や移動体(航空機)固有の移動状態付随誤差(航法誤差)を抑制できると共に、ソノブイの位置評定を安定的に正確にして迅速に行い得る」点に特徴があるソノブイ位置評定装置…特許文献1
The prior arts related to the present invention include the prior arts listed below.
(1) “Multipath error compensation table 6 having data that compensates for multipath errors of the aircraft, and navigation data error compensation table 7 having data that compensates for errors in navigation data based on navigation signals output from the navigation device 20; The arrival angle is calculated based on the phase difference error compensation table 8 having data for compensating the phase difference error regarding the sonobuoy signal obtained by receiving and converting the transmission signal from the sonobuoy, and the angle signal and the navigation signal from the angle measuring unit 4. In this case, by including an error compensation / position evaluation calculator 5 that calculates the set position of the Sonobuoy using the arrival angle that has been error-compensated by referring to the error compensation data from the error compensation tables 6, 7, and 8, A simple configuration can suppress phase difference detection errors and movement state-related errors (navigation errors) inherent to the moving object (aircraft), and stable positioning of Sonobuoy Sonobuoy position evaluation device characterized in that it can be performed accurately and quickly ... Patent Document 1

(2) 「受信した信号から基準位置を受信復調部24で復調し、また電波到来角検出部23で移動体から見た基準位置送信用ブイの方位を受信した信号から移動体の2つの位置において検出し、2つの位置における基準位置送信用ブイの方位を基に、三角測量の原理を用いて基準位置送信用ブイの位置を評定処理部26で評定し、位置補正データ作成部25で基準位置送信用ブイの評定位置と復調した基準位置との誤差を表す位置補正データを作成すると共に、ソノブイからの電波を同様に電波到来角検出部23及び評定処理部26で処理しソノブイの位置を評定し、これを位置補正部27で位置補正データにより補正することにより、ソノブイの位置を短時間で高精度で安価に検出できる」点に特徴があるソノブイ位置検出方式…特許文献2 (2) “The reference position is demodulated by the reception demodulator 24 from the received signal, and the reference position transmission buoy direction as viewed from the mobile object by the radio wave arrival angle detector 23 is received from the signal, and the two positions of the mobile object are received. Based on the orientation of the reference position transmission buoy at the two positions, the position of the reference position transmission buoy is evaluated by the evaluation processing unit 26 using the principle of triangulation, and the position correction data generation unit 25 performs the reference Position correction data representing an error between the rated position of the position transmitting buoy and the demodulated reference position is created, and the radio wave from the Sonobuoy is similarly processed by the radio wave arrival angle detecting unit 23 and the rating processing unit 26 to determine the position of the Sonobuoy. The sonobuoy position detection method characterized in that the position of the sonobuoy can be detected in a short time with high accuracy and at a low cost by evaluating and correcting this with position correction data by the position correction unit 27. Patent Document 2

(3) 「移動体用装置104に、送信時刻情報を移動体用拡散符号でスペクトラム拡散した信号を送信する装置2及び3を備え、ソノブイ用装置には、前記信号を受信し、移動体用拡散符号で逆拡散して送信時刻情報を復調した後、送信時刻情報をソノブイ用拡散符号で再びスペクトラム拡散して移動体用装置104に送信する機能を備え、移動体用装置104には、更に、ソノブイ用装置から送信される信号を受信して、ソノブイ用拡散符号で逆拡散して送信時刻情報を復調し、この送信時刻情報と受信時刻情報との差を演算する装置6、7、及び8を備えることによって、移動体においてソノブイの位置を高精度で検出することができる」点に特徴があるソノブイ位置検出方式…特許文献3 (3) “The mobile device 104 includes devices 2 and 3 that transmit signals obtained by spectrum-spreading transmission time information using a mobile spreading code. The sonobuoy device receives the signal, and After despreading with the spreading code and demodulating the transmission time information, the transmission time information is spread again with the Sonobuoy spreading code and transmitted to the mobile device 104. Receiving the signal transmitted from the Sonobuoy device, despreading the signal with the Sonobuoy spreading code, demodulating the transmission time information, and calculating the difference between the transmission time information and the reception time information; The position of the sonobuoy can be detected with high accuracy in the moving body by providing the "8" sonobuoy position detection method ... Patent Document 3

特開平8−110373号公報JP-A-8-110373 特開平8−114664号公報JP-A-8-114664 特開平8−114665号公報JP-A-8-114665

しかし、上述した従来例では、何れのソノブイも、機体の左翼側と右翼側との何れの方向に位置するかが正確に特定されていないと、位置標定が正しく実現されなかった。
また、位置標定が可能なソノブイの方向は、そのソノブイから到来する受信波の到来角θの方向余弦の値のみとして識別されるため、上記機体の左右の何れか一方のみの方向に限定されていた。
However, in the above-described conventional example, if any of the sonobuoys is located in the direction of the left wing side or the right wing side of the airframe, it has not been specified correctly.
Also, the direction of the sonobuoy that can be located is identified only as the value of the direction cosine of the arrival angle θ of the received wave coming from the sonobuoy, and is thus limited to only the left or right direction of the aircraft. It was.

さらに、従来例では、航空機の飛行経路や姿勢によっては、ソノブイが位置する方向が機体の右翼側と左翼側との何れにあるか特定することが困難となり得る。
しかも、水面上のソノブイは、位置が潮流等に応じて変化し得るため、機体の右翼側と左翼側との何れの方向に位置するかの特定が困難となる場合が多かった。
Furthermore, in the conventional example, depending on the flight path and attitude of the aircraft, it may be difficult to specify whether the direction in which the sonobuoy is located is on the right wing side or the left wing side of the aircraft.
Moreover, since the position of the sonobuoy on the water surface can change depending on the tidal current or the like, it has often been difficult to specify in which direction the right wing side or the left wing side of the aircraft is located.

本発明は、構成の大幅な複雑化と、ランニングコストの大幅な増加との何れも生じることなく、柔軟に精度よく受信波の到来角を求めることができる到来角標定装置提供することを目的とする。 An object of the present invention is to provide an angle-of-arrival locating apparatus capable of obtaining an arrival angle of a received wave flexibly and accurately without causing any significant complication of the configuration or a significant increase in running cost. And

請求項1に記載の発明では、記録手段は、少なくとも1つが同一直線上に配置されず、かつ移動体に搭載された複数N(≧3)のアンテナに到来した受信波に併せて、前記移動体の航法系が与える前記移動体の位置および姿勢を記録する。選択手段は、前記記録手段によって記録された受信波より、異なる2つの受信波からなるユニークなn(≦N)組の対を順次選択する。到来角概算手段は、前記選択手段によって選択された対毎に、含まれる2つの受信波の位相差および波長と、前記含まれる2つの受信波と共に前記記録手段に記録された前記移動体の位置および姿勢と、前記含まれる2つの受信波が到来したアンテナの間隔と定まる2通りの到来角を順次求める。不確定性排除手段は、前記到来角概算手段によって既に求められた複数の2通りの到来角に共に含まれる特定の1つの到来角を探索する。前記選択手段は、前記不確定性排除手段によって前記特定の1つの到来角が特定されたときに、後続する対の選択を打ち切る。 In the first aspect of the present invention, at least one of the recording means is not arranged on the same straight line , and the moving means is combined with received waves arriving at a plurality of N (≧ 3) antennas mounted on the moving body. The position and posture of the moving body given by the body navigation system are recorded. The selecting means sequentially selects unique n (≦ N) pairs of two different received waves from the received waves recorded by the recording means. For each pair selected by the selection means, the arrival angle estimation means includes the phase difference and wavelength of the two received waves included , and the position of the moving body recorded in the recording means together with the two received waves included. and an attitude, sequentially obtains the arrival angle of the two ways determined by said distance between two antennas receiving waves arrives included. The uncertainty eliminating unit searches for one specific arrival angle that is included in the plurality of two arrival angles already obtained by the arrival angle estimating unit. The selecting means aborts the selection of the subsequent pair when the specific one angle of arrival is specified by the uncertainty eliminating means.

すなわち、到来角の不確定性の排除は、その不確定性の排除のために適用される対が無駄に選択されることなく実現される。
したがって、ランニングコストの削減に併せて、実装や熱設計にかかわる制約の緩和が図られる。
That is, the elimination of the uncertainty of the arrival angle is realized without wastefully selecting the pair applied for the elimination of the uncertainty.
Therefore, along with the reduction of running cost, the restrictions on mounting and thermal design can be eased.

本発明によれば、従来例で生じていた到来角の不確定性(アンビギュイティ)は、ハードウェアの構成や処理量が大幅に増加することなく、しかも、精度が低下することなく安定に排除される。   According to the present invention, the arrival angle ambiguity that has occurred in the conventional example is stable without significantly increasing the hardware configuration or processing amount, and without reducing accuracy. Eliminated.

また、受信波の送信点の位置は、上記不確定性に制約されることなく、しかも、個々の受信波の到来角に含まれる誤差に起因して精度が低下することなく、その送信点の位置の変位に柔軟に追従しつつ求められる。
したがって、本発明は、受信波の送信点の位置の標定にかかわる制約が大幅に緩和され、その標定の精度が安定に高く維持されると共に、多様な分野への柔軟な応用が可能となる。
In addition, the position of the transmission point of the received wave is not limited by the uncertainty, and the accuracy of the transmission point is not reduced due to an error included in the arrival angle of each received wave. It is required while flexibly following the displacement of the position.
Therefore, according to the present invention, the restriction on the location of the transmission point of the received wave is greatly relaxed, the orientation accuracy is stably maintained high, and flexible application to various fields is possible.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本実施形態におけるアンテナの配置を示す図である。It is a figure which shows arrangement | positioning of the antenna in this embodiment. 本実施形態における到来角算出部の動作フローチャートである。It is an operation | movement flowchart of the angle-of-arrival calculation part in this embodiment. 本実施形態における位置標定部の動作フローチャートである。It is an operation | movement flowchart of the position location part in this embodiment. 本実施形態の動作原理を示す図である。It is a figure which shows the principle of operation of this embodiment.

以下、図面に基づいて本発明の実施形態について詳細に説明する。
図1は、本発明の一実施形態を示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of the present invention.

図において、位置標定装置10は、例えば、航空機30に搭載され、以下の通りに構成される。なお、航空機30はソノブイ20-1〜20-k が投下された海面上を飛行し、その航空機30の機体上には、アンテナ31-1〜31-Nが取り付けられる。なお、アンテナ31-1〜31-Nの符号「31」に付加された添え番号「1」〜「N」は、航空機30の機首の先端に対する距離が小さい順に付与される。また、アンテナ31-1〜31-(N/4),31-(N/4+1)〜31-(N/2),31-(N/2+1)〜31-(3N/4),31-(3N/4+1)〜31-Nは、例えば、アンテナ31-1〜31-Nの数Nが「8」である場合には、図2に示すように、それぞれ直線A、B、C、D上に一定の間隔dで配置されると共に、直線A、Bは互いに交叉し、かつ直線C、Dも互いに交叉する。   In the figure, the position locating device 10 is mounted on, for example, an aircraft 30 and configured as follows. The aircraft 30 flies over the sea surface on which the sonobuoys 20-1 to 20-k are dropped, and antennas 31-1 to 31-N are attached to the aircraft 30. Note that the suffix numbers “1” to “N” added to the reference numeral “31” of the antennas 31-1 to 31-N are assigned in ascending order of the distance from the tip of the nose of the aircraft 30. The antennas 31-1 to 31- (N / 4), 31- (N / 4 + 1) to 31- (N / 2), 31- (N / 2 + 1) to 31- (3N / 4) , 31- (3N / 4 + 1) to 31-N, for example, when the number N of antennas 31-1 to 31-N is “8”, as shown in FIG. Arranged on B, C, and D at a constant interval d, the straight lines A and B cross each other, and the straight lines C and D also cross each other.

上記アンテナ31-1〜31-Nの給電点は、複数の受信機11-1〜11-Nの入力にそれぞれ接続される。これらの受信機11-1〜11-Nの出力は到来角算出部12の対応する入力に接続され、その到来角算出部12の出力は位置標定部13の第一の入力に接続される。位置標定部13の第二の入力には、航空機30の航法系(図示されない。)によってその航空機30の位置や姿勢が与えられ、この位置標定部13の出力には、ソノブイ20-1〜20-kに関して標定された個々の位置(標定結果)が出力される。   The feeding points of the antennas 31-1 to 31-N are connected to the inputs of the plurality of receivers 11-1 to 11-N, respectively. The outputs of these receivers 11-1 to 11 -N are connected to corresponding inputs of the arrival angle calculation unit 12, and the outputs of the arrival angle calculation unit 12 are connected to the first input of the position location unit 13. A position and attitude of the aircraft 30 are given to the second input of the position locating unit 13 by a navigation system (not shown) of the aircraft 30, and outputs of the position locating unit 13 include sonobuoys 20-1 to 20-20. The individual positions (orientation results) that are standardized with respect to -k are output.

図3は、本実施形態における到来角算出部の動作フローチャートである。
図4は、本実施形態における位置標定部の動作フローチャートである。
図5は、本実施形態の動作原理を示す図である。
FIG. 3 is an operation flowchart of the arrival angle calculation unit in the present embodiment.
FIG. 4 is an operation flowchart of the position locating unit in the present embodiment.
FIG. 5 is a diagram showing the operation principle of this embodiment.

以下、図1〜図5を参照して本発明の第一の実施形態の動作を説明する。なお、以下では、ソノブイ20-1〜20-kの内、位置の標定対象となる特定のソノブイについては、添え番号「1」〜「k」の何れも含まない符号「20」を付与して表記する。   The operation of the first embodiment of the present invention will be described below with reference to FIGS. In the following, among the sonobuoys 20-1 to 20-k, a specific sonobuoy for which the position is to be determined is assigned a code “20” that does not include any of the suffix numbers “1” to “k”. write.

受信機11-1〜11-Nは、ソノブイ20からアンテナ31-1〜31-Nに到来した受信波r1〜rNを取り込み、例えば、所定の中間周波信号またはベースバンド信号として到来角算出部12に引き渡す。 Receiver 11-1 to 11-N takes the received wave r 1 ~r N coming from the sonobuoy 20 to the antenna 31-1 to 31-N, for example, the angle of arrival is calculated as a predetermined intermediate frequency signal or baseband signal Delivered to part 12.

到来角算出部12は、以下の処理(以下、「到来角算出処理」という。)を行う。
(1) 既述の航法系から与えられる航空機30の位置および姿勢と、これらの受信波r〜rNが到来したアンテナ31-1〜31-N の航空機30上の取り付け位置とに基づいて、既定の座標系(以下、「測位座標系」という。)におけるこれらのアンテナ31-1〜31-N の絶対的な位置を求める(図3ステップS1)。
The arrival angle calculation unit 12 performs the following process (hereinafter referred to as “arrival angle calculation process”).
(1) Based on the position and attitude of the aircraft 30 given from the navigation system described above, and the mounting positions on the aircraft 30 of the antennas 31-1 to 31-N from which these received waves r 1 to r N arrive Then, absolute positions of these antennas 31-1 to 31-N in a predetermined coordinate system (hereinafter referred to as “positioning coordinate system”) are obtained (step S1 in FIG. 3).

(2) 受信波r〜rNをディジタル信号に変換し(図3ステップS2)、これらのディジタル信号に併せて、上記アンテナ31-1〜31-Nの絶対的な位置を記憶する(図3ステップS3)。 (2) The received waves r 1 to r N are converted into digital signals (step S2 in FIG. 3), and the absolute positions of the antennas 31-1 to 31-N are stored together with these digital signals (see FIG. 3 step S3).

(3) このようにして記憶された受信波r〜r(N/4),r(N/4+1)〜r(N/2),r(N/2+1)〜r(3N/4),r(3N/4+1)〜rNから、それぞれ異なる2つの受信波の対(以下、「受信波対」という。)を数n(=1≦(N/2))個ずつ選択する(図3ステップS4)。なお、以下では、アンテナ31-1〜31-Nの個数Nは、「8」であると仮定する。 (3) Received waves r 1 to r (N / 4) , r (N / 4 + 1) to r (N / 2 ) , r (N / 2 + 1) to r (3N / 4) , stored in this way from r (3N / 4 + 1) ~r n, two different reception wave pair (hereinafter, referred to as "received wave pair".) each number n of (= 1 ≦ (n / 2 ) C 2) or by selecting ( FIG. 3 step S4). In the following, it is assumed that the number N of antennas 31-1 to 31-N is “8”.

(4) このようにして選択された受信波対の内、例えば、受信波対(r,r)に関して以下の処理(4-1)〜(4-3)を行う。 (4) Of the received wave pairs selected in this way, for example, the following processes (4-1) to (4-3) are performed on the received wave pair (r 1 , r 2 ).

(4-1) 受信波対(r,r)の位相差δ1を求める(図3ステップS5)。なお、このような位相差δ1は、受信波r,rの伝搬路長の差(図5(a))に起因して生じる。 (4-1) The phase difference δ1 of the received wave pair (r 1 , r 2 ) is obtained (step S5 in FIG. 3). Such a phase difference δ1 is caused by a difference in propagation path length between the received waves r 1 and r 2 (FIG. 5 (a)).

(4-2) 受信波r,rの波長λと、アンテナ31-1,31-2 の間隔dとに対して下式で示される到来角α1(図5(b))を求める(図3ステップS6)。なお、下式の項α1は、既述の直線A上におけるアンテナ31-1,31-2 の位置を基準として示される受信波r,rの到来角(0≦α1<2π)である。
α1=cos−1(λ・δ1/(2πd))
(4-2) An arrival angle α1 (FIG. 5 (b)) represented by the following equation is obtained with respect to the wavelength λ of the received waves r 1 and r 2 and the distance d between the antennas 31-1 and 31-2 ( FIG. 3 step S6). The term α1 in the following equation is the arrival angle (0 ≦ α1 <2π) of the received waves r 1 and r 2 shown with reference to the positions of the antennas 31-1 and 31-2 on the straight line A described above. .
α1 = cos −1 (λ · δ1 / (2πd))

(4-3) 直線Aに対して上記到来角α1の方向と対称な方向(図5(c))を示す到来角α1′(0≦α1′<2π)(図5(d))を求める(図3ステップS7)。 (4-3) An arrival angle α1 ′ (0 ≦ α1 ′ <2π) (FIG. 5 (d)) indicating a direction (FIG. 5 (c)) symmetrical to the direction of the arrival angle α1 with respect to the straight line A is obtained. (FIG. 3, step S7).

(5) 受信波対(r,r)に関して以下の処理(5-1)〜(5-3)を行う。
(5-1) 受信波対(r,r)の位相差δ2を求める(図3ステップS8)。なお、このような位相差δ2は、受信波r,rの伝搬路長の差(図5(e))に起因して生じる。
(5) The following processes (5-1) to (5-3) are performed on the received wave pair (r 3 , r 4 ).
(5-1) The phase difference δ2 of the received wave pair (r 3 , r 4 ) is obtained (step S8 in FIG. 3). Such a phase difference δ2 is caused by a difference in propagation path length between the received waves r 3 and r 4 (FIG. 5 (e)).

(5-2) 受信波r,rの波長λと、アンテナ31-3,31-4 の間隔dとに対して下式で示される到来角α2(図5(f))を求める(図3ステップS9)。なお、下式の項α2は、既述の直線B上におけるアンテナ31-3,31-4 の位置を基準として示される受信波r,rの到来角(0≦α2<2π)である。
α2=cos−1(λ・δ2/(2πd))
(5-2) An arrival angle α2 (FIG. 5 (f)) expressed by the following equation is obtained with respect to the wavelength λ of the received waves r 3 and r 4 and the distance d between the antennas 31-3 and 31-4 ( FIG. 3 step S9). The term α2 in the following expression is the arrival angle (0 ≦ α2 <2π) of the received waves r 3 and r 4 shown with reference to the positions of the antennas 31-3 and 31-4 on the straight line B described above. .
α2 = cos −1 (λ · δ2 / (2πd))

(5-3) 直線Bに対して上記到来角α2の方向と対称な方向(図5(g))を示す到来角α2′(0≦α2′<2π)(図5(h))を求める(図3ステップS10)。 (5-3) An arrival angle α2 ′ (0 ≦ α2 ′ <2π) (FIG. 5 (h)) indicating a direction (FIG. 5 (g)) symmetrical to the direction of the arrival angle α2 with respect to the straight line B is obtained. (FIG. 3, step S10).

(6) 受信波対(r,r)に関して上記処理(4-1)〜(4-3)に準じた処理を施すことにより、下式で示される受信波r,rの到来角α3、α3′を求める(図3ステップS11)。なお、下式の項α3、α3′は、アンテナ31-5,31-6 の位置を基準として示され、これらのアンテナ31-5,31-6 が配置された直線に対して互い対称である受信波r,rの到来角(0≦α3<2π,0≦α3′<2π)である。
α3=cos−1(λ・δ3/(2πd))
(6) by performing a process according to the above process (4-1) to (4-3) on the received wave pair (r 5, r 6), the arrival of the received wave r 5, r 6 of the following formula The angles α3 and α3 ′ are obtained (step S11 in FIG. 3). The terms α3 and α3 ′ in the following expression are shown with reference to the positions of the antennas 31-5 and 31-6, and are symmetric with respect to the straight line on which the antennas 31-5 and 31-6 are arranged. The angles of arrival of the received waves r 5 and r 6 (0 ≦ α3 <2π, 0 ≦ α3 ′ <2π).
α3 = cos −1 (λ · δ3 / (2πd))

(7) 受信波対(r,r)に関して上記処理(4-1)〜(4-3)に準じた処理を施すことにより、下式で示される受信波r,rの到来角α4、α4′を求める(図3ステップS12)。なお、下式の項α4、α4′は、アンテナ31-7,31-8 の位置を基準として示され、これらのアンテナ31-7,31-8 が配置された直線に対して互い対称である受信波r,rの到来角(0≦α4<2π,0≦α4′<2π)である。
α4=cos−1(λ・δ4/(2πd))
(7) by performing the processing according to the above process (4-1) to (4-3) on the received wave pair (r 7, r 8), arrival of the received wave r 7, r 8 of the following formula The angles α4 and α4 ′ are obtained (step S12 in FIG. 3). The terms α4 and α4 ′ in the following formula are shown with reference to the positions of the antennas 31-7 and 31-8, and are symmetric with respect to the straight line on which the antennas 31-7 and 31-8 are arranged. The arrival angles of the received waves r 7 and r 8 (0 ≦ α4 <2π, 0 ≦ α4 ′ <2π).
α4 = cos −1 (λ · δ4 / (2πd))

(8) 上記到来角α1、α1′の内、直線A、Bの交叉角χABに対して以下の式が成立する1つの到来角ψ1(0≦ψ1<2π)を特定する(図3ステップS13)。
ψ1=π−χAB−α2(または、π−χAB−α2′)
(8) Among the arrival angles α1, α1 ′, one arrival angle ψ1 (0 ≦ ψ1 <2π) that satisfies the following expression is specified for the crossing angle χ AB of the straight lines A and B (step in FIG. 3). S13).
ψ1 = π−χ AB −α2 (or π−χ AB −α2 ′)

(9) 下式に示す算術演算を行うことにより、上記到来角ψ1を既述の測位座標系における到来角ψ1′に換算する。ここに、K1は、アンテナ31-1〜31-4の位置が上記測位座標系で示されることに伴う補正値である(図3ステップS14)。
ψ1′=ψ1+K1
(9) The arrival angle ψ1 is converted into the arrival angle ψ1 ′ in the positioning coordinate system described above by performing the arithmetic operation shown in the following equation. Here, K1 is a correction value associated with the positions of the antennas 31-1 to 31-4 being indicated by the positioning coordinate system (step S14 in FIG. 3).
ψ1 '= ψ1 + K1

(10)上記到来角α3、α3′の内、直線C、Dの交叉角χCDに対して以下の式が成立する一方の到来角ψ2(0≦ψ2<2π)を特定する(図3ステップS15)。
ψ2=π−χCD−α4(または、π−χCD−α4′)
(10) Among the arrival angles α3 and α3 ′, one arrival angle ψ2 (0 ≦ ψ2 <2π) for which the following equation is established with respect to the intersection angle χ CD of the straight lines C and D is specified (step in FIG. 3). S15).
ψ2 = π−χ CD −α4 (or π−χ CD −α4 ′)

(11) 下式に示す算術演算を行うことにより、上記到来角ψ2を既述の測位座標系における到来角ψ2′に換算する。ここに、K2は、アンテナ31-5〜31-8の位置が上記測位座標系で示されることに伴う補正値である(図3ステップS16)。
ψ2′=ψ2+K2
(11) By performing the arithmetic operation shown in the following equation, the angle of arrival ψ2 is converted to the angle of arrival ψ2 'in the positioning coordinate system described above. Here, K2 is a correction value associated with the positions of the antennas 31-5 to 31-8 indicated in the positioning coordinate system (step S16 in FIG. 3).
ψ2 '= ψ2 + K2

位置標定部13は、例えば、上述した到来角ψ1′、ψ2′が到来角算出部12によって算出される度に、以下の処理(以下、「位置標定処理」という。)を行う。
(1) 直線A上のアンテナ31-1,31-2で挟まれた区間の重心(中点)GA(または、直線B上のアンテナ31-3,31-4で挟まれた区間の重心(中点)GB)と、直線C上のアンテナ31-5,31-6で挟まれた区間の重心(中点)GC(または、直線D上のアンテナ31-7,31-8で挟まれた区間の重心(中点)GD)との測位座標系における座標を識別する(図4ステップS1)。
For example, each time the arrival angles ψ1 ′ and ψ2 ′ described above are calculated by the arrival angle calculation unit 12, the position determination unit 13 performs the following process (hereinafter referred to as “position determination process”).
(1) The center of gravity (middle point) GA between the antennas 31-1 and 31-2 on the straight line A (or the center of gravity of the section between the antennas 31-3 and 31-4 on the straight line B ( Midpoint) GB) and the center of gravity (midpoint) GC between the antennas 31-5 and 31-6 on the straight line C (or between the antennas 31-7 and 31-8 on the straight line D) The coordinates in the positioning coordinate system with the center of gravity (midpoint GD) of the section are identified (step S1 in FIG. 4).

(2) 重心(中点)GA(または、GB)から到来角ψ1′の方向に描くことができる第一の半直線と、重心GC(または、GD)から到来角ψ2′の方向に描くことができる第二の半直線を特定する(図4ステップS2)。
(3) これらの半直線の交点としてソノブイ20の位置を特定する(図4ステップS3)。
(2) A first half line that can be drawn from the center of gravity (midpoint) GA (or GB) in the direction of the arrival angle ψ1 ′, and a drawing from the center of gravity GC (or GD) in the direction of the arrival angle ψ2 ′. A second half line that can be identified is identified (step S2 in FIG. 4).
(3) The position of the sonobuoy 20 is specified as the intersection of these half lines (step S3 in FIG. 4).

すなわち、従来例で生じていたソノブイの方向や位置の不確定性(アンビギュイティ)は、ハードウェアの構成や処理量の大幅な増加を伴うことなく容易に排除される。   That is, the uncertainty or ambiguity of the sonobuoy that has occurred in the conventional example can be easily eliminated without significantly increasing the hardware configuration or the processing amount.

したがって、本実施形態によれば、従来例に比べて、ソノブイの位置の標定にかかわる制約が大幅に緩和され、その標定の精度が安定に高く維持される。
なお、本実施形態では、直線A、B、C、D上にそれぞれ配置されたアンテナの数が何れも「2」以上であるために、これらの直線A、B、C、D上にそれぞれ配置されたアンテナに到来した受信波対が1つずつに限定されている。
Therefore, according to this embodiment, compared with the conventional example, the restrictions on the orientation of the position of the sonobuoy are greatly relaxed, and the accuracy of the orientation is stably maintained high.
In this embodiment, since the number of antennas arranged on each of the straight lines A, B, C, and D is “2” or more, the antennas are arranged on these straight lines A, B, C, and D, respectively. The number of received wave pairs arriving at the selected antenna is limited to one.

しかし、本発明はこのような構成に限定されず、例えば,直線A、B、C、Dの一部または全ての上にそれぞれ配置されたアンテナの数が「3」以上である場合には、これらの3つ以上のアンテナに個別に到来した受信波の位相差は、既述の不確定性を排除することによって得られる1つの到来角(例えば、到来角ψ1′)の精度を高める積分処理等に適用されてもよい。   However, the present invention is not limited to such a configuration. For example, when the number of antennas respectively disposed on part or all of the straight lines A, B, C, and D is “3” or more, The phase difference of the received waves individually arriving at these three or more antennas is an integration process that improves the accuracy of one arrival angle (for example, arrival angle ψ1 ′) obtained by eliminating the uncertainty described above. Etc. may be applied.

なお、本実施形態では、到来角算出処理および位置標定処理は、ディジタル領域の処理として実現されている。
しかし、これらの処理は、例えば、場合には、アンテナ31-1〜31-Nに到来した受信波の何れも、記憶されることなく、既述の処理に等価であるアナログ領域の処理が並行して施されてもよい。
In the present embodiment, the arrival angle calculation process and the position location process are realized as digital domain processes.
However, in these cases, for example, in the case where none of the received waves arriving at the antennas 31-1 to 31-N is stored, the analog domain processing equivalent to the above-described processing is performed in parallel. May be applied.

さらに、既述の到来角算定処理および位置標定処理は、「海面に対する航空機30の高度が加味された処理」として実現されるべき場合には、例えば、アンテナ31-1〜31-Nが3つの直線上に複数個ずつ配置されることによって、3次元に拡張されてもよい。   Furthermore, when the above-described arrival angle calculation processing and position location processing are to be realized as “processing in which the altitude of the aircraft 30 with respect to the sea surface is taken into consideration”, for example, three antennas 31-1 to 31-N are provided. It may be expanded to three dimensions by arranging a plurality of each on a straight line.

また、本実施形態では、本発明は、受信波の到来角に基づいてそのソノブイ20の位置を標定する位置標定装置に適用されている。
しかし、本発明は、このようなソノブイ20の位置の標定に限定されず、多様な無線周波信号の送信点の方位角や位置を標定するためにも適用可能である。
In the present embodiment, the present invention is applied to a position locating device that locates the position of the sonobuoy 20 based on the angle of arrival of the received wave.
However, the present invention is not limited to such positioning of the position of the sonobuoy 20, but can also be applied to determine the azimuth and position of various radio frequency signal transmission points.

さらに、本実施形態では、ソノブイ20-1〜20-k の何れか1つから複数のアンテナに個別に到来した受信波の到来角を求め、これらの到来角に基づいてその1つのソノブイの位置を標定するために、本発明が適用されている。
しかし、本発明は、このような用途に限定されず、例えば、所定の多元接続方式が適用されることによって上記複数のソノブイとの間に異なる無線伝送路が形成されるならば、これらの複数のソノブイの個々の到来角や位置の標定にも、同様に適用可能である。
Furthermore, in the present embodiment, the arrival angles of received waves individually arriving at a plurality of antennas from any one of the sonobuoys 20-1 to 20-k are obtained, and the position of the one sonobuoy is determined based on these arrival angles. The present invention has been applied to standardize.
However, the present invention is not limited to such an application. For example, if different wireless transmission paths are formed between the plurality of sonobuoys by applying a predetermined multiple access method, the plurality of these multiple access methods are used. It is equally applicable to the orientation of the individual angles of arrival and position of Sonobuoy.

また、本実施形態では、アンテナ31-1〜31-Nの個数Nが「8」であるために、受信波r〜r(N/4),r(N/4+1)〜r(N/2),r(N/2+1)〜r(3N/4),r(3N/4+1)〜rNの何れも1つの受信波対に該当し、そのために、これらの受信波r〜r(N/4),r(N/4+1)〜r(N/2),r(N/2+1)〜r(3N/4),r(3N/4+1)〜rNから複数の受信波対を選択する処理が不要となっている。 In this embodiment, since the number N of the antennas 31-1 to 31-N is “8”, the received waves r 1 to r (N / 4) and r (N / 4 + 1) to r (N / 2), r (N / 2 + 1) ~r (3N / 4), r (3N / 4 + 1) none of the ~r N corresponds to one of the received wave pair, Therefore, these received wave r 1 ~r ( N / 4), r (N / 4 + 1) ~r (N / 2), select r (N / 2 + 1) ~r (3N / 4), r (3N / 4 + 1) ~r plurality of received waves pairs from N The processing to do is unnecessary.

しかし、本発明は、アンテナ31-1〜31-Nの個数Nが「9」である場合には、受信波r〜r(N/4),r(N/4+1)〜r(N/2),r(N/2+1)〜r(3N/4),r(3N/4+1)〜rNの一部または全てから複数の受信波対が適宜選択され、このような冗長な受信波が到来角ψ1′(ψ2′)の精度を高めるために用いられてもよい。 However, according to the present invention, when the number N of the antennas 31-1 to 31-N is “9”, the received waves r 1 to r (N / 4) and r (N / 4 + 1) to r (N / 2), r (N / 2 + 1) ~r (3N / 4), r (3N / 4 + 1) ~r plurality of received waves pairs from some or all of the N is appropriately selected, such redundant reception wave It may be used to increase the accuracy of the arrival angle ψ1 ′ (ψ2 ′).

また、本実施形態では、受信波r〜r(N/4),r(N/4+1)〜r(N/2),r(N/2+1)〜r(3N/4),r(3N/4+1)〜rNからそれぞれ所望の数の受信波対を選択する処理と、選択された全ての受信波対に対して施される既述の処理との何れもが行われている。
しかし、到来角ψ1′(ψ2′)が所望の精度で得られた時点で、新たな受信波を選択する処理と、余剰の受信波対に基づいて行われる処理との全てまたは何れかが打ち切られることによって、ランニングコストの削減、実装・熱設計にかかわる制約の緩和が図られてもよい。
In this embodiment, the received waves r 1 to r (N / 4) , r (N / 4 + 1) to r (N / 2 ) , r (N / 2 + 1) to r (3N / 4) , r (3N / 4 + 1) to r N , both of a process for selecting a desired number of received wave pairs and the process described above applied to all selected received wave pairs are performed.
However, when the arrival angle ψ1 ′ (ψ2 ′) is obtained with the desired accuracy, all or one of the process of selecting a new received wave and the process performed based on the surplus received wave pair is aborted. As a result, the running cost can be reduced, and the restrictions on mounting and thermal design can be eased.

さらに、本実施形態では、アンテナ31-1〜31-Nの何れもが航空機30に物理的に取り付けられ、これらのアンテナ31-1〜31-Nが区分された4つのグループ毎に含まれる2つのアンテナに到来する受信波の位相差に基づいて、その受信波の到来角(ソノブイ20の方位角)およびソノブイ20の位置の標定が実現されている。 Further, in the present embodiment, any of the antennas 31-1 to 31-N is physically attached to the aircraft 30 and these antennas 31-1 to 31-N are included in every four groups divided. Based on the phase difference of the received waves arriving at the two antennas, the arrival angle of the received waves (azimuth angle of the sonobuoy 20) and the position of the sonobuoy 20 are realized.

しかし、本実施形態は、このような構成に限定されず、例えば、以下の通りに構成されることにより、航空機30に搭載可能なアンテナの配置および数Nに制約があっても、上記到来角(方位角)および位置の標定の精度を高めることが可能となる。 However, the present embodiment is not limited to such a configuration. For example, even if the arrangement and the number N of antennas that can be mounted on the aircraft 30 are limited, the arrival angle is configured as follows. It is possible to improve the accuracy of (azimuth angle) and position orientation.

(1) アンテナの数Nは、「2」以上の小さな複数に設定される。
(2) 上記到来角(方位角)および位置については、航空機30の航法系が与える航法座標系の下で求められる。なお、このような到来角(方位角)が上記航法座標系の下では求められない場合には、航空機30の異なる位置でそれぞれ求められた到来角(方位角)は、共通の航法座標系へマッピングされた後に位置の標定に供されてもよい。
(1) The number N of antennas is set to a small number of “2” or more.
(2) The arrival angle (azimuth angle) and position are obtained under the navigation coordinate system given by the navigation system of the aircraft 30. When such an arrival angle (azimuth angle) cannot be obtained under the navigation coordinate system, the arrival angles (azimuth angles) obtained at different positions of the aircraft 30 are transferred to the common navigation coordinate system. After mapping, it may be used for position location.

(3) 既述の「直線Aと直線Bとが交叉する」との条件と、「直線Cと直線Dとが交叉する」との条件は、上記航法系が与える航空機30の位置と姿勢(または機首の方向)に基づいて識別される。 (3) The above-mentioned conditions “the straight line A and the straight line B intersect” and “the straight line C and the straight line D intersect” are based on the position and posture of the aircraft 30 given by the navigation system ( Or the direction of the nose).

(4) 上記4つのグループの一部または全てに属する2つのアンテナの物理的な間隔は、航空機30の移動に応じた位置(これらの2つのアンテナの位置)の変化が既述の航法座標系の下で特定されることによって、大きな値に柔軟に精度よく設定される。 (4) The physical distance between the two antennas belonging to some or all of the above four groups is such that the change in the position (the position of these two antennas) according to the movement of the aircraft 30 is the navigation coordinate system described above. By being specified below, a large value can be set flexibly and accurately.

また、本実施形態では、アンテナ31-1〜31-Nが航空機30に取り付けられ、これらのアンテナ31-1〜31-Nに到来した受信波の位相差に基づいてソノブイ20の方位および位置の標定が実現されている。
しかし、本発明はソノブイ20以外の送信機や送信点の方位・位置の標定にも適用可能であり、かつアンテナ31-1〜31-Nは航空機20以外の移動体に取り付けられてもよい。
In the present embodiment, the antennas 31-1 to 31-N are attached to the aircraft 30, and the orientation and position of the sonobuoy 20 are determined based on the phase difference of the received waves that have arrived at these antennas 31-1 to 31-N. Orientation has been realized.
However, the present invention can be applied to transmitters other than the Sonobuoy 20 and orientation of the transmission points, and the antennas 31-1 to 31 -N may be attached to a moving body other than the aircraft 20.

さらに、本発明は、既述の実施形態に限定されず、本発明の範囲において多様な実施形態の構成が可能であり、構成要素の全てまたは一部に如何なる改良が施されてもよい。   Furthermore, the present invention is not limited to the above-described embodiments, and various configurations can be made within the scope of the present invention, and any improvement may be applied to all or some of the components.

また、本実施形態では、到来角ψ1′、ψ2′(または、ψ1、ψ2)については、何れも、所望の座標系おける複数通りの値として求められ、これらの複数通りの値が既述の不確定性(アンビギュイティ)の排除に先行して(あるいは後続して)積分されたり、平均化されることにより、精度が高められてもよい。 In the present embodiment, the arrival angles ψ1 ′, ψ2 ′ (or ψ1, ψ2) are all obtained as a plurality of values in a desired coordinate system, and these plurality of values are described above. Accuracy may be increased by integration or averaging prior to (or subsequent to) elimination of uncertainty (ambiguity).

以下、本願に開示された発明を整理し、「特許請求の範囲」および「課題を解決するための手段」の欄の記載に準じた様式により列記する。 Hereinafter, the inventions disclosed in the present application will be organized and listed in a format according to the descriptions in the “Claims” and “Means for Solving the Problems” columns.

] 少なくとも1つが同一直線上に配置されていない複数N(≧3)のアンテナに到来した受信波から選択され、かつ異なる2つの受信波からなるユニークなn(≦N)組の対について、個別に含まれる2つの受信波の位相差と、前記個別に含まれる2つの受信波が到来したアンテナの間隔と、前記2つの受信波の波長とで定まる2通りの到来角を求める到来角概算手段と、
前記n組の対について求められた2通りの到来角に共に含まれる特定の1つの到来角を求める不確定性排除手段と
を備えたことを特徴とする到来角標定装置。
[ 1 ] Unique n (≦ N) pairs of two received waves selected from received waves arriving at a plurality of N (≧ 3) antennas, at least one of which is not arranged on the same straight line The angle of arrival for obtaining two arrival angles determined by the phase difference between the two received waves included individually, the interval between the antennas where the two received waves included individually arrive, and the wavelength of the two received waves. A rough estimate and
An arrival angle locating device comprising: uncertainty elimination means for obtaining one specific arrival angle that is included in the two arrival angles obtained for the n pairs.

[1]に記載の発明では、到来角概算手段は、少なくとも1つが同一直線上に配置されていない複数N(≧3)のアンテナに到来した受信波から選択され、かつ異なる2つの受信波からなるユニークなn(≦N)組の対について、個別に含まれる2つの受信波の位相差と、前記個別に含まれる2つの受信波が到来したアンテナの間隔と、前記2つの受信波の波長とで定まる2通りの到来角を求める。不確定性排除手段は、前記n組の対について求められた2通りの到来角に共に含まれる特定の1つの到来角を求める。 In the invention described in [1] , the arrival angle estimation means is selected from received waves that have arrived at a plurality of N (≧ 3) antennas, at least one of which is not arranged on the same straight line, and from two different received waves For a unique n (≦ N) pair, the phase difference between the two received waves individually included, the interval between the antennas from which the two received waves included individually, and the wavelengths of the two received waves Find the two angles of arrival determined by The uncertainty exclusion unit obtains one specific arrival angle included in both of the two arrival angles obtained for the n sets of pairs.

すなわち、上記ユニークなn組の対の何れについても、異なる2つのアンテナに同じ位相差で到来する受信波の到来角が2(あるいは複数)通りあるために生じるその到来角の不確定性は、異なる対に基づいて求められた到来角にも含まれる到来角が選択されることによって排除される。   That is, for any of the above unique n pairs of pairs, the arrival angle uncertainty that arises because there are two (or more) arrival angles of received waves that arrive at two different antennas with the same phase difference is: An arrival angle that is also included in the arrival angles obtained based on different pairs is excluded by being selected.

したがって、複数Nのアンテナに到来する受信波の到来角は、その受信波の送信源がこれらのアンテナに対してどのような方向に位置する場合であっても、安定に確度高く求められる。   Therefore, the angle of arrival of the received waves arriving at a plurality of N antennas can be obtained stably and with high accuracy regardless of the direction in which the transmission source of the received waves is located with respect to these antennas.

] 少なくとも1つが同一直線上に配置されていない複数N(≧3)のアンテナに到来した受信波を記録する記録手段と、
前記記録手段によって記録された受信波から選択され、かつ異なる2つの受信波からなるユニークなn(≦N)組の対について、個別に含まれる2つの受信波の位相差と、前記個別に含まれる2つの受信波が到来したアンテナの間隔と、前記2つの受信波の波長とで定まる2通りの到来角を求める到来角概算手段と、
前記n組の対について求められた2通りの到来角に共に含まれる特定の1つの到来角を求める不確定性排除手段と
を備えたことを特徴とする到来角標定装置。
[ 2 ] Recording means for recording received waves arriving at a plurality of N (≧ 3) antennas, at least one of which is not arranged on the same straight line;
A phase difference between two received waves individually included in a unique n (≦ N) pair selected from the received waves recorded by the recording means and consisting of two different received waves, and the individually included Arrival angle estimation means for obtaining two arrival angles determined by the interval between the antennas where the two received waves arrived and the wavelengths of the two received waves;
An arrival angle locating device comprising: uncertainty elimination means for obtaining one specific arrival angle that is included in the two arrival angles obtained for the n pairs.

[2]に記載の発明では、記録手段は、少なくとも1つが同一直線上に配置されていない複数N(≧3)のアンテナに到来した受信波を記録する。到来角概算手段は、前記記録手段によって記録された受信波から選択され、かつ異なる2つの受信波からなるユニークなn(≦N)組の対について、個別に含まれる2つの受信波の位相差と、前記個別に含まれる2つの受信波が到来したアンテナの間隔と、前記2つの受信波の波長とで定まる2通りの到来角を求める。不確定性排除手段は、前記n組の対について求められた2通りの到来角に共に含まれる特定の1つの到来角を求める。 In the invention described in [2] , the recording unit records the received waves that have arrived at a plurality of N (≧ 3) antennas, at least one of which is not arranged on the same straight line. The arrival angle estimating means is selected from the received waves recorded by the recording means, and for the unique n (≦ N) pairs of two received waves, the phase difference between the two received waves included individually. Then, two arrival angles determined by the interval between the antennas where the two received waves included individually arrive and the wavelength of the two received waves are obtained. The uncertainty exclusion unit obtains one specific arrival angle included in both of the two arrival angles obtained for the n sets of pairs.

既述の到来角の不確定性は、複数Nのアンテナに到来し、かつ記録された受信波から上記n組の対が選択されることにより、上記[1]に記載の発明と同様に排除される。
したがって、このような不確定性の排除は、複数Nのアンテナが物理的に不規則に設置された場合であっても、安定に確度高く達成される。
The aforementioned arrival angle uncertainty is eliminated in the same manner as in the invention described in [1] above by selecting the n pairs from the recorded received waves that arrive at a plurality of N antennas. Is done.
Therefore, the elimination of such uncertainty is achieved stably and with high accuracy even when a plurality of N antennas are physically irregularly installed.

上記[2]に記載の到来角標定装置において、
前記不確定性排除手段は、前記特定の1つの到来角を既定の精度で特定できたときに、前記特定の1つの到来角を求めるための処理を打ち切る
ことを特徴とする到来角標定装置。
[ 3 ] In the angle of arrival locating device according to [2 ] above ,
The arrival angle locating device, wherein the uncertainty eliminating unit terminates the processing for obtaining the specific one arrival angle when the specific one arrival angle can be specified with a predetermined accuracy.

[3]に記載の発明では、上記[2]に記載の到来角標定装置において、前記不確定性排除手段は、前記特定の1つの到来角を既定の精度で特定できたときに、前記特定の1つの到来角を求めるための処理を打ち切る。
ことを特徴とする到来角標定装置。
In the invention described in [3] , in the arrival angle locating device described in [2] , the uncertainty eliminating unit can specify the specific arrival angle when the specific one arrival angle can be specified with a predetermined accuracy. The processing for obtaining one angle of arrival is terminated.
An arrival angle locating device characterized by that.

すなわち、到来角の不確定性の排除は、不確定性排除手段によって無駄な処理を行われることなく実現される。
したがって、ランニングコストの削減に併せて、実装や熱設計にかかわる制約の緩和が図られる。
That is, the uncertainty of the arrival angle can be eliminated without performing unnecessary processing by the uncertainty eliminating means.
Therefore, along with the reduction of running cost, the restrictions on mounting and thermal design can be eased.

上記[1]ないし[3]の何れか1項に記載の到来角標定装置において、
前記到来角概算手段は、
前記複数Nのアンテナが搭載された移動体の航法系が与える座標系において前記2通りの到来角を求める
ことを特徴とする到来角標定装置。
[ 4 ] In the arrival angle locating device according to any one of [1] to [3] ,
The arrival angle estimation means is:
The arrival angle locating device characterized in that the two arrival angles are obtained in a coordinate system provided by a navigation system of a moving body on which the plurality of N antennas are mounted.

[4]に記載の発明では、上記[1]ないし[3]の何れか1項に記載の到来角標定装置において、前記到来角概算手段は、前記複数Nのアンテナが搭載された移動体の航法系が与える座標系において前記2通りの到来角を求める。 In the invention according to [4] , in the arrival angle locating device according to any one of the above [1] to [3] , the arrival angle estimation means is a mobile object on which the plurality of N antennas are mounted. The two angles of arrival are obtained in the coordinate system given by the navigation system.

すなわち、移動体(複数Nのアンテナ)の位置が変化した場合であっても、受信波の到来角は、その移動体の航法系が与える座標系において求められる。
したがって、このような到来角は、上記航法系に適合した多様な測位や測距に柔軟に適用することが可能となる。
That is, even when the position of the mobile body (a plurality of N antennas) changes, the arrival angle of the received wave can be obtained in the coordinate system provided by the navigation system of the mobile body.
Therefore, such an arrival angle can be flexibly applied to various positioning and ranging suitable for the navigation system.

] 少なくとも1つが同一直線上に配置されていない複数N(≧3)のアンテナに到来した受信波を記録する記録手段と、
前記記録手段によって記録された受信波より、異なる2つの受信波からなるユニークなn(≦N)組の対を順次選択する選択手段と、
前記選択手段によって選択された対に含まれる2つの受信波の位相差と、前記個別に含まれる2つの受信波が到来したアンテナの間隔と、前記2つの受信波の波長とで定まる2通りの到来角を順次求める到来角概算手段と、
前記到来角概算手段によって既に求められた複数の2通りの到来角に共に含まれる特定の1つの到来角を探索する不確定性排除手段とを備え、
前記選択手段は、
前記不確定性排除手段によって前記特定の1つの到来角が特定されたときに、後続する対の選択を打ち切る
ことを特徴とする到来角標定装置。
[ 5 ] Recording means for recording received waves arriving at a plurality of N (≧ 3) antennas, at least one of which is not arranged on the same straight line;
Selection means for sequentially selecting unique n (≦ N) pairs of two received waves from the received waves recorded by the recording means;
There are two types determined by the phase difference between the two received waves included in the pair selected by the selection means, the interval between the antennas where the two received waves included individually arrived, and the wavelength of the two received waves. Arrival angle estimation means for sequentially determining the arrival angle;
Uncertainty eliminating means for searching for a specific arrival angle that is included in a plurality of two arrival angles already obtained by the arrival angle estimation means,
The selection means includes
An arrival angle locating apparatus, wherein when the specific one angle of arrival is specified by the uncertainty eliminating means, selection of a subsequent pair is terminated.

[5]に記載の発明では、記録手段は、少なくとも1つが同一直線上に配置されていない複数N(≧3)のアンテナに到来した受信波を記録する。選択手段は、前記記録手段によって記録された受信波より、異なる2つの受信波からなるユニークなn(≦N)組の対を順次選択する。到来角概算手段は、前記選択手段によって選択された対に含まれる2つの受信波の位相差と、前記個別に含まれる2つの受信波が到来したアンテナの間隔と、前記2つの受信波の波長とで定まる2通りの到来角を順次求める。不確定性排除手段は、前記到来角概算手段によって既に求められた複数の2通りの到来角に共に含まれる特定の1つの到来角を探索する。前記選択手段は、前記不確定性排除手段によって前記特定の1つの到来角が特定されたときに、後続する対の選択を打ち切る。 In the invention described in [5] , the recording unit records the received waves that have arrived at a plurality of N (≧ 3) antennas, at least one of which is not arranged on the same straight line. The selecting means sequentially selects unique n (≦ N) pairs of two different received waves from the received waves recorded by the recording means. The arrival angle estimation means includes a phase difference between the two received waves included in the pair selected by the selecting means, an interval between the antennas where the two received waves included individually have arrived, and a wavelength of the two received waves. The two arrival angles determined by The uncertainty eliminating unit searches for one specific arrival angle that is included in the plurality of two arrival angles already obtained by the arrival angle estimating unit. The selecting means aborts the selection of the subsequent pair when the specific one angle of arrival is specified by the uncertainty eliminating means.

すなわち、到来角の不確定性の排除は、その不確定性の排除のために適用される対が無駄に選択されることなく実現される。
したがって、ランニングコストの削減に併せて、実装や熱設計にかかわる制約の緩和が図られる。
That is, the elimination of the uncertainty of the arrival angle is realized without wastefully selecting the pair applied for the elimination of the uncertainty.
Therefore, along with the reduction of running cost, the restrictions on mounting and thermal design can be eased.

上記[1]ないし[5]の何れか1項に記載の到来角標定装置において、前記不確定性排除手段は、前記複数の2通りの到来角に規定の精度で共に含まれる到来角の平均値として、前記特定の1つ到来角を求める
ことを特徴とする到来角標定装置。
[ 6 ] The arrival angle locating device according to any one of [1] to [5] , wherein the uncertainty eliminating unit includes arrivals included in the plurality of two arrival angles together with a specified accuracy. An angle-of-arrival locating apparatus, wherein the specific one angle of arrival is obtained as an average value of angles.

[6]に記載の発明では、上記[1]ないし[5]の何れか1項に記載の到来角標定装置において、前記不確定性排除手段は、前記複数の2通りの到来角に規定の精度で共に含まれる到来角の平均値として、前記特定の1つ到来角を求める。 In the invention described in [6] , in the angle-of-arrival locating device according to any one of [1] to [5] , the uncertainty eliminating means is defined by the plurality of two arrival angles. The specific one arrival angle is obtained as an average value of the arrival angles included together with accuracy.

すなわち、受信波の到来角は、複数Nのアンテナの位置の変動や誤差だけではなく、その受信波の送信源の位置の急激な変動、あるいは受信波が伝搬する伝搬路の特性の変動等に起因して大きな誤差を生じることなく求められる。
したがって、従来波の到来角の精度が高められ、かつ安定に維持される。
That is, the arrival angle of the received wave is not only due to fluctuations or errors in the position of the plurality of N antennas, but also due to sudden fluctuations in the position of the transmission source of the received wave, or fluctuations in the characteristics of the propagation path through which the received wave propagates This is required without causing a large error.
Therefore, the accuracy of the arrival angle of the conventional wave is increased and maintained stably.

] 少なくとも1つが同一直線上に配置されていない複数(≧3)のアンテナを個別に含む複数p組のアンテナに到来した受信波の到来角ψ1〜ψpを個別に求める第1ないし第pの到来角標定装置と、
前記p組のアンテナに到来した受信波の到来角ψ1〜ψpと、前記p組のアンテナの位置とに基づいて前記受信波の送信点の位置を求める測位手段とを備え、
前記第1ないし第pの到来角標定装置は、
上記[1]ないし[6]の何れか1項に記載の到来角標定装置である
ことを特徴とする位置標定装置。
[ 7 ] First to pth for individually obtaining arrival angles ψ1 to ψp of received waves arriving at a plurality of p sets of antennas individually including a plurality (≧ 3) of antennas, at least one of which is not arranged on the same straight line The arrival angle locator of
Positioning means for determining the position of the transmission point of the received wave based on the arrival angles ψ1 to ψp of the received wave arriving at the p sets of antennas and the position of the p set of antennas;
The first to p-th arrival angle locating devices include:
The position locating device according to any one of the above [1] to [6] .

[7]に記載の発明では、第1ないし第pの到来角標定装置は、少なくとも1つが同一直線上に配置されていない複数(≧3)のアンテナを個別に含む複数p組のアンテナに到来した受信波の到来角ψ1〜ψpを個別に求める。測位手段は、前記p組のアンテナに到来した受信波の到来角ψ1〜ψpと、前記p組のアンテナの位置とに基づいて前記受信波の送信点の位置を求める。前記第1ないし第pの到来角標定装置は、上記[1]ないし[6]の何れか1項に記載の到来角標定装置である。 In the invention according to [7] , the first to p-th arrival angle locating devices arrive at a plurality of p sets of antennas individually including a plurality (≧ 3) of antennas, at least one of which is not arranged on the same straight line. The received angles ψ1 to ψp of the received waves are obtained individually. The positioning means obtains the position of the transmission point of the received wave based on the arrival angles ψ1 to ψp of the received wave that has arrived at the p sets of antennas and the position of the p set of antennas. The first to pth arrival angle locating devices are the arrival angle locating devices according to any one of [1] to [6] .

すなわち、受信波の送信点の位置は、上記[1]ないし[6]の何れか1項に記載の到来角標定装置によって不確定性を伴うことなく求められた到来角に基づいて求められる。また、第1ないし第pの到来角標定装置が上記[4]に記載の到来角標定装置である場合には、受信波の到来角ψ1〜ψpは、移動体(複数Nのアンテナ)の位置が変化した場合であっても、その移動体の航法系が与える座標系において求められる。 That is, the position of the transmission point of the received wave is obtained based on the arrival angle obtained without any uncertainty by the arrival angle locating device according to any one of [1] to [6] . When the first to pth arrival angle locating devices are the arrival angle locating devices described in [4] above , the arrival angles ψ1 to ψp of the received waves are the positions of the mobile body (multiple N antennas). Even if is changed, it is obtained in the coordinate system given by the navigation system of the moving body.

したがって、受信波の送信点の位置は、その送信点の位置の変位と、複数Nのアンテナの位置および姿勢だけではなく、これらの送信点からアンテナに至る無線伝送路の特性に柔軟に追従しつつ求められる。さらに、第1ないし第pの到来角標定装置が上記[4]に記載の到来角標定装置である場合には、受信波の送信点の位置は、上記移動体の位置の変化が大きいほど上述したp組のアンテナの位置が物理的に大きく領域に分布するため、精度よく求められる。 Therefore, the position of the transmission point of the received wave flexibly follows not only the displacement of the position of the transmission point and the positions and postures of the multiple N antennas, but also the characteristics of the wireless transmission path from these transmission points to the antenna. It is demanded. Further, when the first to p-th arrival angle locating devices are the arrival angle locating devices described in [4] , the position of the transmission point of the received wave is larger as the change in the position of the moving body is larger. Since the positions of the p sets of antennas are physically large and distributed in the region, they are required with high accuracy.

10 位置標定装置
11 受信機
12 到来角算出部
13 位置標定部
20 ソノブイ
30 航空機
DESCRIPTION OF SYMBOLS 10 Position location apparatus 11 Receiver 12 Arrival angle calculation part 13 Position location part 20 Sonobuoy 30 Aircraft

Claims (1)

少なくとも1つが同一直線上に配置されず、かつ移動体に搭載された複数N(≧3)のアンテナに到来した受信波に併せて、前記移動体の航法系が与える前記移動体の位置および姿勢を記録する記録手段と、
前記記録手段によって記録された受信波より、異なる2つの受信波からなるユニークなn(≦N)組の対を順次選択する選択手段と、
前記選択手段によって選択された対毎に、含まれる2つの受信波の位相差および波長と、前記含まれる2つの受信波と共に前記記録手段に記録された前記移動体の位置および姿勢と、前記含まれる2つの受信波が到来したアンテナの間隔と定まる2通りの到来角を順次求める到来角概算手段と、
前記到来角概算手段によって既に求められた複数の2通りの到来角に共に含まれる特定の1つの到来角を探索する不確定性排除手段とを備え、
前記選択手段は、
前記不確定性排除手段によって前記特定の1つの到来角が特定されたときに、後続する対の選択を打ち切る
ことを特徴とする到来角標定装置。
The position and posture of the mobile body provided by the navigation system of the mobile body in combination with received waves that have arrived at a plurality of N (≧ 3) antennas that are not arranged on the same straight line and are mounted on the mobile body Recording means for recording,
Selection means for sequentially selecting unique n (≦ N) pairs of two received waves from the received waves recorded by the recording means;
For each pair selected by the selection means, the phase difference and wavelength of the two received waves included, the position and orientation of the moving body recorded in the recording means together with the two received waves included, and the included and the distance between the two antennas receiving waves arrives the arrival angle of the two types and the arrival angle estimated means found sequentially determined by that,
Uncertainty eliminating means for searching for a specific arrival angle that is included in a plurality of two arrival angles already obtained by the arrival angle estimation means,
The selection means includes
An arrival angle locating apparatus, wherein when the specific one angle of arrival is specified by the uncertainty eliminating means, selection of a subsequent pair is terminated.
JP2009153850A 2009-06-29 2009-06-29 Angle of arrival locator Active JP5730473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153850A JP5730473B2 (en) 2009-06-29 2009-06-29 Angle of arrival locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153850A JP5730473B2 (en) 2009-06-29 2009-06-29 Angle of arrival locator

Publications (2)

Publication Number Publication Date
JP2011007739A JP2011007739A (en) 2011-01-13
JP5730473B2 true JP5730473B2 (en) 2015-06-10

Family

ID=43564569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153850A Active JP5730473B2 (en) 2009-06-29 2009-06-29 Angle of arrival locator

Country Status (1)

Country Link
JP (1) JP5730473B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438488A (en) * 1990-06-04 1992-02-07 Mitsubishi Heavy Ind Ltd Measuring method for azimuth of radio wave source utilizing flight data
JPH06213989A (en) * 1993-01-18 1994-08-05 Mitsubishi Electric Corp Azimuth measuring device and time interval measuring device
JP2002082153A (en) * 2000-09-08 2002-03-22 Taiyo Musen Co Ltd Azimuth measuring method
JP2003174662A (en) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp Method for locating position of mobile communication terminal, and base station
JP2005003579A (en) * 2003-06-13 2005-01-06 Mitsubishi Electric Corp Angle measurement system and positioning system
JP4708179B2 (en) * 2005-12-14 2011-06-22 三菱電機株式会社 Radio wave arrival direction measuring device

Also Published As

Publication number Publication date
JP2011007739A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
DK3123197T3 (en) METHODS AND APPARATUS FOR DETERMINING THE ARRANGEMENT (AOA) OF A RADAR WARNING RECEIVER
US8279114B2 (en) Method of determining position in a hybrid positioning system using a dilution of precision metric
US7911385B2 (en) RF transmitter geolocation system and related methods
Goswami Indoor location technologies
CN102435194B (en) General airborne navigation system based on ground mobile communication network
CN106658713A (en) Method for locating mobile users of single base station on basis of multi-parameter estimation
US8340022B2 (en) Wireless location determination system and method
CN101682394A (en) Use satellite-signal to determine that the geographical position of tellurian reflector separates
CN108872932B (en) Beyond-visual-range target direct positioning result deviation rectifying method based on neural network
CN101272605A (en) Mobile terminal locating method and positioning device
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
US10349214B2 (en) Localization using access point
AU2015264707B2 (en) Direct geolocation from TDOA, FDOA, and AGL
US7515104B2 (en) Structured array geolocation
CN106937378B (en) Inhibit the localization method and mobile station of non-market value
JP5730506B2 (en) Direction-of-arrival locator and position locator
WO2016064631A1 (en) Mitigating effects of multipath during position computation
WO2018119949A1 (en) Channel state information phase correction method and apparatus
US7519500B2 (en) Method for improved location determination accuracy using filtered and unfiltered ranging signals
WO2011041430A1 (en) Determining position in a hybrid positioning system using a dilution of precision metric
JP2004150852A (en) Satellite signal receiver
JP5730473B2 (en) Angle of arrival locator
JP4215264B2 (en) Position and orientation estimation device
JP2005077318A (en) Global positioning system
CN115884365A (en) Method and equipment for sending and receiving direct path or non-direct path indication information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R151 Written notification of patent or utility model registration

Ref document number: 5730473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151